Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Сравнение схем включения транзисторов | Основы электроакустики

Сравнение схем включения транзисторов

 

Схемы включения биполярных транзисторов.  Сравнительные данные свойств транзисторов в схемах с ОБ, ОК и ОЭ приведены в таблице

 

 

В схеме с общей базой эмиттерный переход включен в прямом направлении, поэтому при незначительных изме­нениях напряжения ДUэ сильно меняется ток ДIэ, вследствие чего входное сопротивление транзистора rвх = ДUэ/ДIэ при UK=const мало (десятки омов). Коллекторный переход включен в обратном направлении, поэтому изменения напряжения на этом переходе ДUк незначительно влияют на изменения тока ДIк, вследствие чего вы­ходное сопротивление гвых = ДUк/ДIк при Iэ=const велико (до не­скольких мегаомов). Большое различие входных и выходных сопро­тивлений затрудняет согласование каскадов в многокаскадных уси­лителях. 

Таблица

Параметры

Сравнительные показатели свойств транзисторов в схемах

с общей базой

с общим эмитте­ром

с общим коллек­тором

Коэффициенты передачи по току

0,6 — 0,95

 

Десятки — сотни

Больше, чем в схеме с ОЭ

усиления по напря

жению

Тысячи

Меньше, чем в схеме с ОБ

0,7 — 0,99

усиления по мощности

Менее чем на  схеме с ОЭ

Большое (тысячи)

Меньше, чем в схеме с ОЭ

Сопротивление:

 

 

 

входное

 

 

Малое (единицы — десятки омов)

Большое (десятки —тысячи омов)

Большое (сотни килоомов)

 

выходное

 

Большое (тысячи омов – единицы мегаомов)

Сотни омов, —

десятки килоомов

Единицы омов — десятки килоомов

Сдвиг фаз

180°

В схеме с ОБ входным (управляющим) является ток Iэ, а выходным — ток Iк. Последний всегда меньше тока эмиттера, так как часть инжектируемых носителей заряда рекомбинирует в базе, по­этому а=ДIк/ДIэ<1. Коэффициент усиления по напряжению Kн в схеме велик, поскольку изменения токов на входе ДIэ и выходе ДIк почти одинаковы, а rВЫх>rвх. Коэффициент усиления по мощности также велик (Kм=аKн=1000). Эмиттерный переход включается в проводящем направлении, поэтому изменения тока 13, а следователь­но, и тока Iк происходят без фазового сдвига (Ф=0°).

В схеме с общим эмиттером управляющим служит ток базы Is — Is — Iк. Поскольку большинство носителей зарядов, инжектиру­емых эмиттером, достигает коллекторной области [Iк= (0,9 ч-0,99) Iэ] и лишь незначительная часть рекомбинирует в базе, ток базы мал: Iб=(0,01-0,1) Iэ. При этих условиях Kтэ = ДIк/ДIб>Kтб=ДIк/ДIэ и составляет 10 — 150. Усиление по напряжению примерно такое же, как и в схеме с ОБ. Благодаря высокому коэффициенту передачи тока эта схема обеспечивает большое (Kм до 10000) уси­ление по мощности.

Напряжение в схеме с ОЭ на входе U3 и выходе UK одного по­рядка, поэтому гВх=ДUэ/ДIэ здесь больше, чем в схеме с ОБ, и до­стигает десятков — тысяч омов. В этой схеме напряжение коллектор­ного источника Ек частично приложено к эмиттерному переходу, по­этому изменения ДUк вызывают большие изменения тока ДIк, вслед­ствие чего rвых=ДUк/ДIк при Iб=const меньше, чем в схеме с ОБ, что облегчает согласование каскадов в многокаскадных усилителях.

В схеме с ОЭ положительные полуволны подводимого напряже­ния сигнала действуют в противофазе с напряжением смещения, по­этому ток Iэ, а следовательно, и Iк уменьшаются; отрицательные полуволны сигнала действуют согласованно с напряжением смеще­ния, и токи 1д и Iк возрастают. В результате напряжение сигнала, снимаемое с нагрузки в выходной цепи, будет (по отношению к об­щей точке схемы) противофазным с напряжением подводимого сиг­нала (т. е. ф=180°).

В схеме с общим коллектором входным является ток Iб, а вы­ходным Iэ. Так как во входной цепи проходит малый ток базы, входное сопротивление rВX=ДUвх/ДIвх достигает десятков килоомов, Выходное напряжение в схеме приложено к эмиттерному переходу, поэтому малые изменения этого напряжения вызывают большие изменения Iэ, вследствие чего rВых=ДUвых/ДIвых мало (десятки омов).

Напряжение подводимого сигнала Uвх и выходное напряжение Uвых в схеме действуют встречно, т. е. U36 = Uвx — Uвых. Для полу­чения на эмиттерном переходе требуемого напряжения необходимо скомпенсировать выходное напряжение, что достигается при Uвх>Uвых. В этих условиях схема с ОК не дает усиления по напря­жению (Kн<1). Коэффициент передачи по току Kт=ДIэ/ДIб =ДIэ/(ДIэ — ДIк) = 1/(1 — а) здесь несколько больше, чем в схеме с ОЭ. Отсутствие усиления по напряжению приводит к снижению усиления по мощности против схем с ОБ и ОЭ.

В схеме отрицательные полуволны подводимого напряжения сигнала Uвх действуют встречно напряжению смещения, поэтому результирующее прямое напряжение на эмиттерном переходе и ток Iэ=Iб+Iк уменьшаются. При этом напряжение сигнала, снимаемое с нагрузки в цепи эмиттера, повторяет фазу напряжения подводи­мого сигнала, т. е. Ф=0 (эмиттерный повторитель). 

Схема с ОИ является инвертирующим усилителем, способным усиливать сигналы по напряжению и току и обладает сравнительно небольшими междуэлектродными емкостями, (Сзи=1-20 пФ; Сзс=0,5-8 пФ; Сси<Сзи).

Входная емкость СВх.и = Сзи+СэС, проход­ная Спр.и = Сзс, выходная СВых.и=Сзс+ССи. Крутизна S характе­ристики Iс=Ф(Uз) представляет собой внешнюю проводимость пря­мой передачи и для транзисторов малой мощности составляет 0,5 — 10 мСм. Выходное сопротивление сравнительно велико (обычно многократно превышает сопротивление нагрузки), поэтому коэф­фициент усиления каскада &»5Rн достигает десятков единиц. Вход­ное сопротивление (если пренебречь областями очень низких и вы­соких частот) .носит емкостной характер; входная емкость Свх= — Сэя+SRнСзс. Поскольку междуэлектродные емкости малы, на па­раметры схемы существенно влияют емкости монтажа См= 1-5-3 пФ. Общая шунтирующая емкость С0=СЕ1+См определяет частоту верхнего среза fв.ср=1/(2пС0Rн).

Схема с ОЗ подобно схеме с ОБ не изменяет полярности сиг­нала и обеспечивает его-усиление по напряжению аналогично уси­лению сигнала в схеме с ОИ. Входное сопротивление гвх= U3m/Iит вследствие потребления от источника сигнала сравнительно боль­шого тока Iст=Iит=SUзот оказывается незначительным.

Выходное сопротивление rвых~rси(1+SRи) из-за влияния отрицательной об­ратной связи по току (элементом которой является внутреннее со­противление источника сигнала RИ) велико. Влияние емкостной составляющей входной проводимости мало (так как она шунтиро­вана сравнительно большой активной проводимостью gВх=1/rвх=S), поэтому каскад с ОЗ более широкополосен, чем схема с ОИ.

Схема с ОС не меняет фазу входного сигнала на выходе (истоковый повторитель), значительно усиливает ток (но не может усиливать напряжение), обладает высоким активным входным со­противлением, малой входной емкостью СВх = Сзс+С3и(1 — K), где K. = Ucm/UC3m=SRн/(1+SRн), и небольшим выходным сопротивле­нием r=l/S (близким к входному сопротивлению схемы с, ОЗ), большой широкополосностью благодаря малой входной емкости.

Схемы составных транзисторов. Составной транзистор пред­ставляет собой комбинацию двух (и более) транзисторов, соеди­ненных таким образом, что число внешних выводов этой комбинированной схемы равно числу выводов одиночного транзистора. Составной транзистор, выполненный по схеме сдвоенного эмиттер-ного повторителяне изменяет полярности сигнала, об­ладает большим коэффициентом передачи тока hzi=hziVihziVz, име­ет большое входное и малое выходное сопротивления.

Составной транзистор в виде усилителя на разноструктурных (р-n-р и n-р-n) транзисторах содержит два каскада с ОЭ с глубокой последовательной ООС по напряжению. Поскольку каждый каскад изменяет полярность сигнала, в целом схема пред­ставляет собой неинвертирующий усилитель. С выхода схемы напряжение подается на вход (эмиттер первого транзистора) в про-тивофазе с входным сигналом, подводимым к цепи базы. Приве­денный составной транзистор обладает свойствами эмиттерного повторителя. Его коэффициент усиления меньше единицы, а из-за ОС входное сопротивление велико, выходное мало. Точкой малого выходного сопротивления является коллектор транзистора V2, так как от него начинается цепь ОС по напряжению, поэтому вывод коллектора транзистора V2 играет роль эмиттера составного тран­зистора, а вывод эмиттера V2 — роль его коллектора.

При выбранных структурах транзисторов, VI и V2 схема обладает свой­ствами р-n-р-транзистора.

Составной транзистор, выполненный по каскодной схеме представляет собой усилитель, в котором транзистор VI включен по схеме с ОЭ, a V2 — по схеме с ОБ. Схема эквивалент­на одиночному транзистору, включенному по схеме с ОЭ с пара* метрами, близкими к параметрам транзистора VI. Последний обла­дает высоким выходным сопротивлением, что обеспечивает транзи« стору V2 получение широкой полосы частот

2. Три схемы включения транзистора

В зависимости от того, какой электрод транзистора является общим для входного и выходного сигналов, различают три схемы включения транзистора: с общей базой (ОБ) − рис.5,а; с общим эмиттером (ОЭ) − рис.5,б; с общим коллектором − (ОК) рис.5,в. Трем возможным схемам включения транзисторов соответствуют три основных типа усилительных каскадов: с ОБ, ОЭ и ОК. В схеме с ОБ входной сигнал подается на эмиттер транзистора, выходной сигнал снимается с коллектора, а база является общей для входного и выходного сигналов. В схеме с ОЭ входной сигнал подается на базу транзистора, выходной снимается с коллектора, а эмиттер является общим для входного и выходного сигналов. В схеме с ОК входной сигнал подается на базу транзистора, выходной снимается с эмиттера, а коллектор, через источник питания соединен с общим проводом, т.е. является общим для входного и выходного сигналов.

В этих схемах источники постоянного напряжения и резисторы обеспечивают необходимые значения напряжений и начальных токов. Входные сигналы переменного тока создаются источниками Uвх. Они изменяют ток эмиттера транзистора, а соответственно и ток коллектора. Приращения тока коллектора (рис.5,а,б) и тока эмиттера (рис.6,в) соответственно на резисторах Rк и Rэ создадут приращения напряжений, которые и являются выходными сигналами Uвых. Параметры схем обычно выбирают так, чтобы Uвых было бы во много раз больше вызвавшего его приращения Uвх (рис. 5,а,б) или близко к нему (рис.5,в).

Вид входных и выходных вольт-амперных характеристик (ВАХ) транзистора зависит от схемы включения. Для схемы включения с ОБ статические характеристики имеют вид, показанный на рис.6, для схемы с ОЭ – на рис.7. Статические характеристики для схемы с ОК аналогичны соответствующим характеристикам для схемы с ОЭ и, как правило, в справочной литературе не приводятся.

В цепях, где транзистор включен по схеме с ОЭ или ОК, удобно пользоваться не коэффициентом передачи эмиттерного тока , а “коэффициентом передачи базового тока”  (в справочной литературе он приведен в виде параметра h21э). Это обусловлено тем, что в схемах с ОЭ обычно задается изменение тока базы. Связь между коэффициентами  и  определяется формулой

=(1). (3)

Т ак как =0.90.995, то 1. У транзисторов, выпускаемых промышленностью, 10200. Существуют транзисторы с h21э1000.

Для транзисторов падение напряжения на открытом эмиттерном переходе составляет доли вольта (для германиевых порядка 0.3 В, кремниевых  0.6 В, арсенид-галиевых  1.0 В). На закрытом коллекторном переходе падение напряжения существенно больше и составляет единицы – десятки вольт.

3. Зонные диаграммы биполярного транзистора

3.1. Зонная диаграмма бездрейфового биполярного транзистора в состоянии термодинамического равновесия

В биполярных транзисторах существует два механизма переноса носителей заряда через базу: диффузии и электрического дрейфа. В активном режиме работы в базе любого транзистора имеется градиент концентрации неосновных носителей заряда, поэтому все транзисторы являются диффузионными. Встроенное в базу электрическое поле есть только у транзисторов с неравномерной концентрацией примесей в базе. Такие транзисторы называется дрейфовыми. Они, как правило, имеют большее быстродействие и лучшие частотные свойства за счет более быстрого пролета неосновных носителей через базу.

Зонная диаграмма бездрейфового биполярного транзистора npn – типа в состоянии термодинамического равновесия приведена на рис.8. Она представляет собой два невырожденных несимметричных pn – гомоперехода (все области имеют одинаковую ширину запрещенной зоны W, одинаковую энергию сродства к электрону Рс и одинаковую диэлектрическую проницаемость ε). Области эмиттера, базы и коллектора различаются типом и концентрацией примесей. Типичные значения концентрации примесей составляют: в эмиттере донорных Nd~2·1017 [1/см3], в базе акцепторных Na~1015[1/см3] и коллекторе Nd~1017 [1/см3]. Толщина рn – перехода определяется по формуле , где φ – контактная разность потенциалов. С учетом существенной разницы концентрации примесей полагают, что практически вся обедненная носителями заряда область эмиттерного и коллекторного переходов располагается в низколегированной базе.

В состоянии термодинамического равновесия в эмиттерном и коллекторном переходах выполняется принцип детального равновесия: электронный и дырочный токи равны нулю и общий ток через каждый переход равен нулю.

Транзистор как переключатель – Принципиальная схема, работа и применение

В основном транзистор представляет собой тип полупроводникового устройства. Эти устройства состоят из трех рядов клемм. Взаимодействие между двумя терминалами будет происходить таким образом, что в нем образуются два перехода. Эти переходы и клеммы в целом отвечают за генерацию тока, либо разработаны устройства, управляемые током, либо соответствующие устройства, управляемые напряжением. В этой статье ниже обсуждается транзистор как коммутатор, а также его работа и приложения.

Основное приложение, которое часто используется, это устройство, работающее как коммутатор. Основная концепция его функционирования зависит от режимов его работы. Устройство, которое предпочитает низкое значение напряжения постоянного тока, может быть включено или выключено с помощью транзисторов.

В основном, по мере того, как поколения электронных схем претерпевают революцию и улучшаются для лучшей и комфортной жизни, транзисторы играют заметную роль, заменяя себя электронными лампами.

Это приводит к повышению эффективности и уменьшению размера. Основные функциональные возможности транзистора можно наблюдать либо за счет его использования для усиления, либо для основного применения в цифровых схемах переключения.

Основная причина использования этого транзистора в качестве переключателя заключается в том, что ток на базе напрямую контролирует ток на коллекторе. Если ток на базе превышает минимальное пороговое значение напряжения, то поведение транзистора похоже на замкнутый переключатель, в противном случае он останется в состоянии открытого ключа.

Транзистор в качестве переключателя

При подаче смещения на базу транзистора оба типа биполярных переходных транзисторов могут использоваться в качестве переключателей. Области, в которых работа переключателя предпочтительна, – это либо он должен полностью находиться в области, называемой насыщением, либо в рабочей области отсечки. Основная идея использования этих регионов заключается в том, что режим переключения должен быть полностью включен или выключен.

Как работают транзисторы?

Работа транзистора основана на рабочих зонах. В области отсечки базовый ток будет равен нулю. Поскольку вход равен нулю, ток коллектора также будет равен нулю за счет поддержания максимального напряжения на коллекторе.

Это для транзистора N-P-N, тогда как для транзистора P-N-P значение напряжения на эмиттере должно быть отрицательным. Поскольку в этом состоянии нет потока носителей, ширина области, называемой истощением, увеличивается, что свидетельствует о том, что в этом состоянии не наблюдается никакого потока. Этот тип области называется областью отсечки.

Следующим условием, при котором работает переключатель, является насыщение. Здесь токи на базе и коллекторе максимальны, а напряжение на коллекторе поддерживается минимальным. Это рабочее состояние заставляет транзистор работать в полностью открытом режиме. Это для транзистора N-P-N, тогда как для P-N-P значение напряжения эмиттера должно оставаться положительным по отношению к напряжению базы.

Эта работа транзистора известна как однополюсный одноходовой (SPST). Это указывает на то, что при подаче нуля сигнала на базу транзистор будет включен, в противном случае он будет выключен.

Транзистор N-P-N в качестве переключателя

После подачи напряжения на область основания, на его основе, выполняется операция переключения. Как и в случае с диодом, существует напряжение включения. Между областью эмиттера и базы приложенное напряжение должно достигать напряжения включения. Если он пересекает его, говорят, что транзистор включен, в противном случае – выключен.

Когда транзистор находится в состоянии ON, генерируемый ток имеет тенденцию течь от источника к нагрузке. Нагрузкой может быть либо светодиод, либо резистор, нагрузка зависит от требований.

Транзистор P-N-P в качестве переключателя

Условия работы транзисторов P-N-P и N-P-N различаются в зависимости от приложения положительного или отрицательного напряжения. Но критерии операции остаются прежними. Если он находится во включенном состоянии, наблюдается протекание тока, в противном случае он выключен.

Здесь нагрузка подключается к соответствующему заземлению транзистора, а затем транзистор P-N-P переключает питание. В этом случае клеммная база соединена с землей

Выше приведено основное применение транзистора в качестве переключателя для транзисторов с биполярным переходом P-N-P и N-P-N.

Применение

Применение транзистора, используемого в качестве переключателя, следующее:

  1. Наиболее часто используемое практическое применение, которое используется для транзистора в качестве переключателя, – это работа светодиода.
  2. Работой реле можно управлять, внося необходимые изменения в схему, чтобы любое внешнее устройство подключалось по отношению к реле и управлялось.
  3. Двигатели постоянного тока можно контролировать и контролировать с помощью этой концепции транзисторов. Это приложение используется для включения и выключения двигателя. Изменяя значения частот транзистора, можно изменять скорость двигателя.
  4. Одним из примеров таких выключателей является лампочка. Это облегчает включение света при ярком освещении и отключение при наступлении темноты. Это делается с помощью светозависимого резистора (LDR).
  5. С помощью этого метода переключения можно контролировать компонент, называемый термистором, который измеряет температуру окружающей среды. Термистор называется резистором. Это сопротивление имеет тенденцию увеличиваться, когда измеряемая температура низкая, и наблюдается уменьшение сопротивления, когда измеряемая температура высокая.

Перейдите по этой ссылке, чтобы узнать больше о MCQ для транзисторов и MCQ для смещения транзисторов.

В практическом мире существует множество применений реле, двигателей и т. д. В каждом практическом занятии важную роль играет переключение устройств. Это может быть либо переменная подача, либо постоянная подача. В настоящее время в вопросе обеспечения комфортного и безопасного проживания при проектировании систем автоматизации или систем обнаружения пожара этот способ коммутации устройств играет главенствующую роль. Можете ли вы объяснить основную цель использования реле в схемах автоматики?

Расчет транзистора в качестве переключателя

Хотя транзисторы (BJT) обычно используются для изготовления схем усилителей, их также можно эффективно использовать для коммутационных приложений.

Транзисторный переключатель представляет собой схему, в которой коллектор транзистора включается/выключается с относительно большим током в ответ на соответствующий сигнал включения/выключения слабого тока на его базовом эмиттере.

В качестве примера можно использовать следующую конфигурацию BJT в качестве переключателя для инвертирования входного сигнала для логической схемы компьютера.

Здесь видно, что выходное напряжение Vc противоположно потенциалу, приложенному к базе/эмиттеру транзистора.

Кроме того, база не подключена к какому-либо стационарному источнику постоянного тока, в отличие от схем на базе усилителя. Коллектор имеет источник постоянного тока, который соответствует уровням питания системы, например, 5 В и 0 В в этом случае компьютерного приложения.

Мы поговорим о том, как можно спроектировать эту инверсию напряжения, чтобы обеспечить правильное переключение рабочей точки от отсечки к насыщению вдоль линии нагрузки, как показано на следующем рисунке:

Для данного сценария на приведенном выше рисунке мы предположили, что IC = ICEO = 0 мА, когда IB = 0 мкА (отличное приближение в отношении улучшения стратегий строительства). Дополнительно предположим, что VCE = VCE(sat) = 0 В вместо обычного уровня от 0,1 до 0,3 В.

Теперь при Vi = 5 В биполярный транзистор включится, и проектные соображения должны гарантировать, что конфигурация сильно насыщена, на величину IB, которая может быть больше, чем значение, связанное с кривой IB, наблюдаемой близко к насыщению уровень.

Как видно из рисунка выше, эти условия требуют, чтобы IB был больше 50 мкА.

Уровень насыщения коллектора для показанной цепи можно рассчитать по формуле:

IC(sat) = Vcc / Rc

Величину базового тока в активной области непосредственно перед уровнем насыщения можно рассчитать по формуле :

IB(max) ≅ IC(sat) / βdc ———-Уравнение 1

Это означает, что для реализации уровня насыщения должно выполняться следующее условие:

IB > IC(sat) / IC(sat) / βdc ——– Уравнение 2

На приведенном выше графике, когда Vi = 5 В, результирующий уровень IB можно оценить следующий метод:

Если мы проверим уравнение 2 с этими результатами, мы получим:

Это, кажется, полностью удовлетворяет требуемому условию. Несомненно, любое значение IB, превышающее 60 мкА, будет допущено через точку Q над нагрузочной линией, расположенной очень близко к вертикальной оси.

Теперь, ссылаясь на схему BJT, показанную на первой диаграмме, при Vi = 0 В, IB = 0 мкА и предположении, что IC = ICEO = 0 мА, падение напряжения на RC будет соответствовать формуле:

VRC = ICRC = 0 В.

Это дает нам VC = +5 В для первой диаграммы выше.

В дополнение к коммутационным приложениям компьютерной логики, эта конфигурация BJT также может быть реализована как коммутатор с использованием тех же крайних точек нагрузочной линии.

Когда происходит насыщение, ток IC становится довольно высоким, что, соответственно, снижает напряжение VCE до самой низкой точки.

Это дает уровень сопротивления на двух клеммах, как показано на следующем рисунке и рассчитывается по следующей формуле:

R(нас) = VCE(нас) / IC(нас), как показано на следующем рисунке.

Если мы примем типичное среднее значение для VCE(sat), такое как 0,15 В в приведенной выше формуле, мы получим:

Это значение сопротивления на выводах коллектор-эмиттер выглядит довольно маленьким по сравнению с последовательным сопротивлением в килоомах при клеммы коллектора биполярного транзистора.

Теперь, когда вход Vi = 0 В, переключение биполярного транзистора будет отключено, в результате чего сопротивление на коллекторе-эмиттере составит:

R(отсечка) = Vcc / ICEO = 5 В / 0 мА = ∞ Ω

Это приводит к разомкнутой цепи на выводах коллектор-эмиттер. Если мы рассмотрим типичное значение 10 мкА для ICEO, значение сопротивления отключения будет следующим:

Rcutoff = Vcc / ICEO = 5 В / 10 мкА = 500 кОм

эквивалент разомкнутой цепи для большинства конфигураций BJT в качестве переключателя.

Решение практического примера

Рассчитайте значения RB и RC для транзисторного ключа, сконфигурированного как приведенный ниже инвертор, учитывая, что ICmax = 10 мА

Формула для выражения насыщения коллектора:

ICsat = Vcc / Rc

∴ 10 мА = 10 В / Rc

∴ Rc = 10 В / 10 мА = 1 кОм

Также в точке насыщения

IB ≅ IC(sat) / βdc = 10 мА / 250 = 40 мкА

900 02 Для гарантированного насыщения выберем IB = 60 мкА, и по формуле

IB = Vi – 0,7 В/RB, получаем

RB = 10 В – 0,7 В/60 мкА = 155 кОм,

Округлив вышеприведенный результат до 150 кОм, и вычислив приведенную выше формулу еще раз получим:

IB = Vi – 0,7 В / RB

= 10 В – 0,7 В / 150 кОм = 62 мкА,

поскольку IB = 62 мкА > ICsat / βdc = 40 мкА

Это подтверждается мы должны использовать RB = 150 кОм

Расчет переключающих транзисторов

Вы найдете специальные транзисторы, называемые переключающими транзисторами из-за их высокой скорости переключения с одного уровня напряжения на другой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *