Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:

  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах.  Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:
  • Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
  • Нельзя дистанционно выключить и включить электродвигатель.
Похожие темы:
  • Проверка обмоток электродвигателя. Неисправности и методы проверок
  • Звезда и треугольник принцип подключения. Особенности и работа
  • Схемы по электрике. Виды и типы. Обозначения

Схемы Подключения Трехфазного Асинхронного Электродвигателя и Описание

Подключение трехфазного асинхронного электродвигателя

Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы, связанные с подготовкой к включению, определением правильного способа подключения и, конечно, разберём возможные варианты схем включения двигателя. Поэтому не будем ходить вокруг да около, а сразу приступим к разбору поставленных вопросов.

Содержание

  • Подготовка асинхронного электродвигателя к включению
    • Определение начала и конца обмотки
    • Выбор схемы подключения электродвигателя
  • Подключение асинхронного электродвигателя
    • Схема прямого включения асинхронного электродвигателя
    • Схема реверсивного включения электродвигателя
  • Вывод

Подготовка асинхронного электродвигателя к включению

Виды электродвигателей

На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

Определение начала и конца обмотки

Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

Обмотки статора электродвигателя

  • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
  • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
  • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления.
    Между остальными четырьмя выводами значение будет практически бесконечным.
  • Следующим этапом будет определение их начала и конца.

ЭДС при различных вариантах соединения обмоток электродвигателя

  • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
  • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.

Схема определения начала и конца обмоток электродвигателя

  • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
  • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
  • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

Выбор схемы подключения электродвигателя

Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

Номинальные параметры на бирке электродвигателя

  • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
  • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.

Разница между схемами соединения «звезда» и «треугольник»

  • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
  • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Трехполюсный автоматический выключатель

Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.

Номинальные параметры пускателей

Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя.

Кнопочный пост на две кнопки

Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот.

Таблица выбора сечения провода

Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Схема подключения первичных и вторичных цепей схемы включения электродвигателя

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.

Расположение элементов пускателя

  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.

Нормально закрытые и нормально открытые контакты

  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.

Подключение кнопки «Пуск» и «Стоп»

  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».

Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1.  Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

Вывод

Способы подключения асинхронного трехфазного электродвигателя зависят от типа двигателя, схемы его соединения и задач, которые стоят перед нами. Мы привели лишь самые распространенные схемы подключения, но существуют и еще более сложные варианты. Особенно это касается асинхронных машин с фазным ротором, которые имеют функцию торможения.

Как подключить 3-х фазный двигатель в звезду и треугольник?

Трехфазный асинхронный двигатель может быть подключен по схеме «звезда» и «треугольник» в зависимости от напряжения питания. В трехфазном двигателе шесть отдельных обмоток, по две на каждую фазу. Внутренняя конструкция и соединения катушки внутри двигателя определяются при его изготовлении.

Конфигурации подключения трехфазного двигателя можно разделить на две категории. Одна Звезда, а другая Дельта.

В высоковольтная конфигурация , две обмотки каждой фазы соединены последовательно друг с другом. Наибольшее значение напряжения питания распределяется поровну между обмотками, и через каждую обмотку проходит номинальный ток.

В низковольтной конфигурации две обмотки каждой фазы соединены параллельно друг другу. При этом нижнее значение питающего напряжения поровну распределяется между обмотками и через каждую обмотку проходит номинальный ток.

Обратите внимание, что соединение низкого напряжения обязательно должно потреблять в два раза больше тока от источника, чем соединение высокого напряжения. На паспортных табличках большинства двигателей указываются два значения напряжения и тока.

Трехфазные двигатели имеют три независимые обмотки. Статор двигателя удерживает все три обмотки в пазах статора. Эти обмотки электрически смещены друг от друга на 120 градусов. Он питается от трехфазной системы переменного тока (ac).

Асинхронные трехфазные двигатели можно найти в двух классах.

  • Роторы с фазным ротором относятся к первому классу
  • Второй класс относится к ротору с короткозамкнутым ротором или также известен как ротор с короткозамкнутым ротором. Это связано с его формой, похожей на клетку.

Трехфазные (3Ø) двигатели

Возможно подключение любой трехфазной обмотки по схеме звезда или треугольник. При соединении звездой все концы катушки подключаются к точке куна и питаются от других свободных концов.

Соединение треугольником, с другой стороны, соединяет каждый конец катушки с началом следующей фазы, позволяя питать систему через точки соединения.

При соединении звездой ток, протекающий по каждой фазе, совпадает с линейным током, а напряжение, подаваемое на каждую фазу, на (1/кв. 3) меньше линейного напряжения.

С другой стороны, при соединении треугольником интенсивность, проходящая через каждую фазу, (корень из 3) меньше, чем интенсивность линии. При этом напряжение, которому подвергается каждая фаза, совпадает с линейным напряжением.

Мы обсудим как конфигурацию звезды и треугольника, так и способ подключения трехфазного двигателя в звезду и треугольник.

Соединение двигателя звезда-треугольник

Статор электродвигателя имеет три обмотки, каждая с двумя концами. Первая обмотка или обмотка имеет концы, называемые U и X или U1 и U2. Секундная обмотка V и Y или также называемая V1 и V2. Третья обмотка называет свои концы W и Z или также W1 и W2.

1. Соединение звездой

Для соединения звездой соединим концы обмоток W2, U2 и V2. Как указано на схеме следующего изображения, которое соответствует клеммам электродвигателя.

На каждом конце обмоток, называемых U1, V1 и W1, будут соединены линии L1, L2 и L3 трехфазного источника питания. Представление на электрической схеме соединения звездой выглядит следующим образом.

2. Соединение треугольником

Чтобы выполнить соединение треугольником, мы соединяем концы катушки U1 с концом W2, катушку V1 с U2 и, наконец, конец катушки W1 с V2. На следующем изображении показана схема соединения треугольником в электродвигателе.

Представление на электрической схеме будет соответствовать следующему изображению.

Мы можем подключить электродвигатели по схеме «звезда» или «треугольник» в зависимости от имеющегося у нас входного напряжения, также возможен запуск двигателя по схеме «звезда-треугольник». Для этого нам потребуется, чтобы номинальное напряжение двигателя треугольника было равно напряжению питания двигателя.

Например, электродвигатель, на шильдике которого указано 690/400 вольт, можно соединить звездой-треугольником, если у нас напряжение питания 400 вольт. Тогда как для двигателя на 400/230 вольт напряжение питания должно быть 230 вольт.

Таким образом, мы не будем потреблять столько энергии при запуске, поэтому по прошествии некоторого времени мы сможем перейти от соединения звезда к треугольнику и увеличить мощность двигателя. Этот процесс обычно выполняется в двигателях мощностью более 7. кВт зависит от силы или крутящего момента, которые двигатель имеет при запуске.

Читать далее

Похожие сообщения:

Пожалуйста, следуйте и ставьте нам лайки:

Как устранять неисправности трехфазных двигателей переменного тока. ~ Изучение электротехники

Как устранить неполадки трехфазных двигателей переменного тока.

Трехфазные асинхронные двигатели являются одними из самых популярных электродвигателей, которые обычно используются на перерабатывающих предприятиях или в любых производственных предприятиях. Они используются в ситуациях, когда требуется большая мощность. Марка «беличья клетка» является самой популярной и они выполняют различные задачи, где бы они ни применялись.

Из-за того, что эти двигатели играют важную роль на любом предприятии, отказ двигателя, невозможность запуска, шумная работа и другие проблемы должны быть устранены как можно скорее, чтобы избежать дорогостоящего простоя производства. В приведенной ниже таблице приведены часто встречающиеся проблемы с трехфазными асинхронными двигателями с короткозамкнутым ротором, причины проблем и меры по их устранению, чтобы вернуть двигатель в производство. Это руководство по поиску и устранению неисправностей также можно применять к другим типам трехфазных асинхронных двигателей:


.
Проблема с двигателем Причина Средство
Двигатель не запускается Перегоревшие предохранители Замените предохранитель соответствующим типом и номиналом
Отключения из-за перегрузки Проверка и сброс перегрузки в пускателе
Неправильный источник питания Убедитесь, что подаваемая мощность соответствует спецификациям на паспортной табличке и коэффициенту нагрузки 9.0090
Неправильное подключение линии Проверьте соединения по электрической схеме, прилагаемой к двигателю
Обрыв цепи обмотки или переключателя управления Обычно на это указывает гудящий звук при замыкании переключателя. Проверьте наличие ослабленных соединений проводки. Убедитесь, что все контакты управления замкнуты.
Механическая неисправность Убедитесь, что двигатель и привод вращаются свободно. Проверить подшипники и смазку
Закороченный статор Обозначается перегоревшими предохранителями. Двигатель необходимо перемотать
Плохое соединение катушки статора Снять концевые ремни. Найдите плохой контакт с помощью контрольной лампы.
Ротор неисправен Проверка на наличие сломанных стержней или концевых колец
Двигатель может быть перегружен Уменьшить нагрузку двигателя
Останов двигателя Одна фаза может быть разомкнута Проверить питающие линии на обрыв фазы
Неправильное приложение Изменить тип или размер. Обратитесь к производителю двигателя
Перегрузка Уменьшить нагрузку
Низкое напряжение Убедитесь, что напряжение, указанное в паспортной табличке, сохраняется. Проверьте подключение.
Обрыв цепи Перегорели предохранители. Проверить реле перегрузки, статор и кнопки
Двигатель работает, а затем глохнет Сбой питания Проверить надежность соединения с линией, предохранителями и блоком управления
Двигатель не набирает скорость Двигатель используется не для того приложения Обратитесь к производителю для правильного применения двигателя
Слишком низкое напряжение на клеммах двигателя из-за падения напряжения в сети Используйте более высокое напряжение на клеммах трансформатора или уменьшите нагрузку. Проверьте соединения. Проверьте проводники на соответствие размерам.
Слишком высокая пусковая нагрузка Проверьте, какую нагрузку должен выдерживать двигатель при пуске.
Сломанные стержни ротора или незакрепленный ротор Ищите трещины возле колец. Может потребоваться новый ротор, так как ремонт обычно временный, а не постоянный
Обрыв первичного контура Найдите неисправность с помощью тестирующего устройства и отремонтируйте.
Двигатель слишком долго разгоняется и/или потребляет большой ток (А) Чрезмерная нагрузка Уменьшить нагрузку
Низкое напряжение при запуске Проверить высокое сопротивление. Подходящий размер провода.
Неисправный ротор с короткозамкнутым ротором Заменить новым ротором
Слишком низкое подаваемое напряжение Увеличьте напряжение на клеммах трансформатора путем переключения ответвлений.
Неправильное вращение Неправильная последовательность фаз Обратные соединения на двигателе или на распределительном щите.
Двигатель перегревается при работе под нагрузкой Перегрузка Уменьшить нагрузку
Вентиляционные отверстия рамы или кронштейна могут быть забиты грязью и препятствовать надлежащей вентиляции двигателя. Откройте вентиляционные отверстия и проверьте наличие непрерывного потока воздуха из двигателя.
Двигатель может иметь обрыв одной фазы Убедитесь, что все провода правильно подключены.
Заземленная катушка Найдите и отремонтируйте
Несбалансированное напряжение на клеммах Проверьте наличие неисправных проводов, соединений и трансформаторов.
Двигатель вибрирует Двигатель смещен Перестроить
Слабая опора Укрепить основание
Муфта разбалансирована Уравновешивающая муфта
Приводное оборудование неуравновешенное Ребалансировка ведомого оборудования
Дефектные подшипники Заменить подшипник
Подшипники не на одной линии Линейные подшипники правильно установлены
Балансировочные грузы смещены Повторная балансировка двигателя
Многофазный двигатель, работающий от одной фазы Проверка на обрыв цепи
Чрезмерный осевой люфт Отрегулировать подшипник
Несимметричный линейный ток многофазных двигателей при нормальной работе Неравные напряжения на клеммах Проверить провода и соединения
Однофазный режим Проверка открытых контактов
Несимметричное напряжение Исправьте несбалансированное питание
Шумная работа Воздушный зазор неравномерный Проверьте и откорректируйте посадку кронштейна или подшипника.
Дисбаланс ротора Ребаланс
Горячие подшипники общего назначения Изогнутый или подпружиненный вал Выпрямить или заменить вал
Чрезмерное натяжение ремня Уменьшить натяжение ремня
Шкив слишком далеко Подвиньте шкив ближе к подшипнику двигателя
Слишком маленький диаметр шкива Используйте шкивы большего размера
Несоосность Исправить перенастройкой привода
Горячие шариковые подшипники Недостаточное количество смазки Поддерживайте надлежащее количество смазки в подшипнике
Ухудшение качества смазки или загрязнение смазки Удалить старую смазку, тщательно промыть подшипники керосином и заменить новой смазкой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *