Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

ТДА 2030 – качественная микросхема для УНЧ с множеством защит


ТДА 2030 — это микросхема усилителя низкой частоты TDA2030A, которая считается одной из самых популярных в сообществе радиолюбителей. Данный электронный прибор отличается великолепными электрическими параметрами и, что не маловажно — низкую стоимость. Все эти данные дают возможность без проблем и не тратя больших денежных средств, собрать на ней усилитель низкой частоты с высоким качеством звучания и мощностью 18 Вт.

Кроме доступности и легкости в сборке УНЧ, микросхема TDA2030A обладает рядом скрытых преимуществ, используя которые, можно изготовить множество нужных и хороших приборов. ИМС ТДА 2030 является усилителем мощности звука АВ-класса, либо может служить драйвером для усилителя рассчитанного на мощность 35 Вт, в комплекте с мощными транзисторами в выходном каскаде.

Она в состоянии обеспечить высокий ток в выходном тракте схемы, не имеет серьезных гармонических искажений, работает в широкой полосе частот звукового сигнала. Кроме этого, данная микросхема отличается от других аналогичных приборов незначительными собственными шумами, снабжена защитой от короткого замыкания в нагрузке.

Также ТДА 2030 снабжена системой лимитирования выходной мощности в автоматическом режиме, создавая при этом комфортные условия для работы выходных транзисторов. Чип имеет встроенную защиту от перегрева, которая срабатывает на отключение при достижении температурной составляющей на кристалле +150°С.

TDA2030 абсолютно надежная микросхема для усилителя мощности звука, развивающего мощность на выходе на 18Вт.

Технические характеристики TDA 2030(A)

Напряжения питания……………………………от ±4.5 до ±18 В
Потребляемый ток покоя…………………. 90 мА макс.
Выходная мощность…………………………….18 Вт тип. при ±18 В, 4 Ом и d = 10 %
…………………………………………………………….. 14 Вт тип. при ±18 В, 4 Ом и d = 0.5 %
Номинальный частотный диапазон……….20 — 80.000 Гц

Для большинства радиолюбителей эта микросхема является просто находкой, да еще и за такие смешные деньги. Кроме этого, если использовать ее по мостовой схеме включения, то она способна обеспечит выходную мощность 28 Вт. А при задействовании в выходном каскаде пары дополнительных мощных транзисторов, то на выходе вы получите 35 Вт.

[adsens]
Ниже приведена схема очень простенького двуполярного питания ТДА 2030 с мощностью в нагрузке 14 Вт

Принципиальная схема включения TDA2030 с дополнительными мощными транзисторами на выходе — 34 Вт

Здесь показан принцип включения TDA2030 используя мостовую схему, гарантирующую мощность на выходе — 28 Вт

На снимках ниже представлены печатные платы для усилителей на TDA2030(A)

Печатка для TDA2030 (Изображение со стороны дорожек)

Печатка для TDA2030 с дополнительными мощными транзисторами на выходе — 34 Вт (Изображение со стороны дорожек)

Печатка для TDA2030 — включение в мост (Изображение со стороны дорожек)

Усилитель на TDA2030A

Скачать печатку для TDA2030: tda2030
Скачать печатку для TDA2030 с выходными транзисторами: tda2030_tranz
Скачать печатку для TDA2030 мостовое: tda2030_most

Представленные файлы имеют формат: .lay
Поэтому для их открытия потребуется программа: Sprint-Layout 5.0

TDA2030A схема усилителя, включения с однополярным питанием

Главная » Микросхемы

Микросхема TDA2030A часто используется в схемах усилителя благодаря хорошим техническим характеристикам. Кроме того она недорогая и поэтому чрезвычайно популярна у многих радиолюбителей. Например, с её помощью и небольшим количеством электронной обвязки можно собрать неплохой усилитель звука мощностью до 18 Вт и другие, не менее интересные и полезные электроприборы. В её состав включены защитные схемы предохраняющие последнюю от выхода из строя. В этой статье приведены примеры её применения в схемах усиления.

Более подробно со всеми характеристиками можно ознакомиться в статье TDA2030A.

Содержание

  1. Для двуполярного источника питания
  2. Для однополярного источника питания
  3. Применение внешних транзисторов
  4. Мостовая
  5. Наборы для начинающих

Для двуполярного источника питания

Типовая схема включения TDA2030, с номиналами основных электронных компонентов, для одноканального усилителя с двуполярным питанием (Spilt Power Supply) приведена ниже. В ней микросхема работает как неинвертирующий усилить низкой частоты. Коэффициент усиления (GV) задается отношением величин резисторов R2 и R3, входящих в цепь отрицательной обратной связи. Его значение расчитывают по следующей формуле GV=1+R3/R2 подбирается с помощью резистора R2. При этом, вместе с увеличении R2 растет и GV.

Конденсатор С2 подбирается так, чтобы его емкостное сопротивление (XC), на самой низкой частоте (F), было на порядок меньше значений резистора R2. Согласно формуле XC=1/(2xπ×F×C), для F=40 МГц и C2=47 мкФ, оно будет составлять 1/(2*3,14*40*0,0000047) = 85 Ом.  Входное сопротивление усилителя зависит от резистора R1. Цепочка состоящая из R4 и С7 нужна для частотной стабилизации устройства. Диоды VD1 и VD2 должны быть способны выдержать прямой ток 1 А и обратное напряжение 100 В. Это могут быть отечественные КД209 или КД226, также можно взять зарубежный 1N4007. Если используется однополярный источник питания, то можно использовать следующую схему.

Для однополярного источника питания

Типовая схема с однополярным источником питания (ИП) отличается от предыдущей наличием цепи смещения, необходимой для обеспечения на выходе (Output 4) микросхемы половину от величины питающего напряжения. Эта цепь состоит из делителя (R1,R2) и сопротивления R3. Она требуется для обеспечения одинакового усиления как отрицательной, так и положительной полуволн.

Коэффициент усиления устанавливается отношением величин R4 и R5. Технические характеристики этого усилителя при питающем напряжении +36 В эквивалентны предыдущей схеме с двуполярным питанием от +18 до -18 В.

Применение внешних транзисторов

Если есть желание получить более повышенную мощность усиления, применяют схему включения TDA2030 с силовыми внешними транзисторами. При питающем напряжении ±18 В она может выдать до 35 Вт на нагрузку величиной в 4 Ом. В цепи питания микросхемы находятся резисторы R3 и R4. Если напряжение входного сигнала небольшое, то ток потребляемый микросхемой, маленький. Питание подаваемое с R3 и R4 на базы транзисторов VT1 и VT2 недостаточно для их открытия. В этом случае усиление сигнала происходит за счет транзисторов встроенных внутрь микросхемы.

При увеличении сигнала на входе ток, потребляемый TDA2030, увеличивается. Когда он станет равным 0,3 … 0,4 А падение напряжения на R3 и R4 достигнет величины 0,45 … 0,6 В. При этом VT1 и VT2 откроются, вследствие чего повысится мощность на нагрузке. В качестве выходных транзисторов можно использовать комплементарную пару КТ818 и КТ819.

Мостовая

В мостовой схеме используются две TDA2030, которые работают в противофазе. Для обеспечения такого режима работы напряжение с выхода DА1, через делитель (R6 и R8), приходит на инвертирующий вход DА2. Это позволяет увеличить выходную мощность.

Например, при напряжении источника питания ±16 В она может достигать 32 Вт на нагрузке величиной в 4 Ома.

Наборы для начинающих

В настоящее время в сети интернет и на прилавках радиомагазинов встречаются не только готовые модули с применением рассмотренных решений, но и наборы для начинающих радиолюбителей. Пример сборки  усилителя звуковой частоты с использованием такого конструктора приведен в видео.

Вместе с тем, многим радиолюбителям интереснее найти и спаять все самим. Скачать для этого один из datasheet на TDA2030 (STMicroelectronics), в котором также представлены примеры её применения, можно по ссылке.

Circuit%20diagram%20tda2030 техническое описание и примечания по применению

Модель ECAD Производитель Описание Техническое описание Скачать Купить часть BD7682FJ-LB РОМ Полупроводник ИС квазирезонансного типа (с низким уровнем электромагнитных помех) для управления преобразователем постоянного тока в постоянный для преобразователя переменного тока в постоянный БМ2П139ТФ РОМ Полупроводник 100 кГц PWM DC/DC преобразователь IC со встроенным 650 В MOSFET, напряжение обратной связи = 13 В, упаковка = SOP8 БМ2П209ТФ РОМ Полупроводник 100 кГц PWM преобразователь постоянного тока в постоянный со встроенным 650 В MOSFET, напряжение обратной связи = 20 В, упаковка = SOP8 БМ2П189ТФ
РОМ Полупроводник 100 кГц PWM DC/DC преобразователь IC со встроенным 650 В MOSFET, напряжение обратной связи = 18 В, упаковка = SOP8 БМ2П129ТФ РОМ Полупроводник 100 кГц PWM DC/DC преобразователь IC со встроенным 650 В MOSFET, напряжение обратной связи = 12 В, упаковка = SOP8 BM1P061FJ РОМ Полупроводник Тип управления PWM DC/DC преобразователь IC со встроенным 650V MOSFET

схема%20диаграмма%20tda2030 Листы данных Context Search

Каталог данных MFG и тип ПДФ Теги документов
КИА78*ПИ

Реферат: транзистор КИА78*р ТРАНЗИСТОР 2Н3904 хб*9Д5Н20П хб9д0н90н КИД65004АФ ТРАНЗИСТОР МОСФЕТ КИА7812АПИ хб*2Д0Н60П
Текст: Нет доступного текста файла


Оригинал
PDF 2N2904E до н. э.859 КДС135С 2N2906E до н.э.860 KAC3301QN КДС160 2Н3904 BCV71 KDB2151E КИА78*пи транзистор КИА78*р ТРАНЗИСТОР 2N3904 хб*9Д5Н20П хб9д0н90н КИД65004AF ТРАНЗИСТОР MOSFET KIA7812API хб*2Д0Н60П
хб*9Д5Н20П

Реферат: khb9d0n90n 6v стабилитрон khb * 2D0N60P транзистор KHB7D0N65F BC557 транзистор kia * 278R33PI KHB9Схема Д0Н90Н на транзисторе ктд998
Текст: Нет доступного текста файла


Оригинал
PDF 2N2904E до н.э.859 КДС135С 2N2906E до н.э.860 KAC3301QN КДС160 2Н3904 BCV71 KDB2151E хб*9Д5Н20П хб9д0н90н 6В стабилитрон хб*2Д0Н60П транзистор КХБ7Д0Н65Ф Транзистор BC557 киа*278R33PI Схема КХБ9Д0Н90Н транзистор ктд998
2225Л-11-52

Реферат: 14005-1P1 PI96B30P00F00Z1 MD-25-M-3000X 143-022-03 621-025-260-043 627-037-220-047 213-020-602 395-044-558-201 ПЛКЦ-032-Т-Н

Текст: Нет доступного текста файла


Оригинал
PDF 10-ТТ ПЛКК-028-Т-Н СМП-28ЛЦК-Н СМП-32ЛЦК-Н ПЛКЦ-32-СМТ-ТТ ПЛКК-032-Т-Н СМП-44ЛЦК-Н ПЛКЦ-44-СМТ-ТТ ПЛКК-044-Т-Н ПЛКК-052-Т-Н 2225Л-11-52 14005-1П1 ПИ96Б30П00Ф00З1 МД-25-М-3000Х 143-022-03 621-025-260-043 627-037-220-047 213-020-602 395-044-558-201 ПЛКК-032-Т-Н
ICME68H-R0-D1120NHA

Аннотация: ICM-C68S-TS13-6N95D ICM-C68S-TS13-5034A ICM-C68S-TS13-6084B
Текст: Нет доступного текста файла


Оригинал
PDF 68-контур 635мм ICM-C68H-S112-400R1 ICME-C68L-300HA/C68R-300HA. 20НХА/Л0-Д1120НХА/Р0-Д1121НХА/Л0-Д1121НХА 20RHA/L0-D1120RHA/R0-D1121RHA/L0-D1121RHA ICME68H-R0-D1120NHA ICM-C68S-TS13-6N95D ICM-C68S-TS13-5034A ИКМ-C68S-TS13-6084B
2005 – 85 129-005

Аннотация: 6086B 988002
Текст: Нет доступного текста файла


Оригинал
PDF 68-контур 635мм( ICM-C68H-S112-400N1/400R1 -C68L-300H/C68R-300H. ICM-C68H-S112-403N1 ICME-C68L-303H/C68R-303H. -D1120RH/L0-D1120RH/R0-D1121RH/L0-D1121RH 85 129-005 6086Б 988002
трансформатор переменного тока 220 постоянного тока 12

Реферат: Трансформатор класса 130 (B) с центральным ответвлением Трансформатор с центральным отводом Трансформатор с центральным отводом Трансформатор 4812b 220 110 Трансформатор с центральным отводом Станкор p-6378 Силовой трансформатор Станкор Выходной трансформатор
Текст: Нет доступного текста файла


Оригинал
PDF Д-350 P-8634 ГСД-500 ГИС-500 ГИСД-500 ГСД-750 ГИС-1000 ГСД-1000 ГИСД-1000 ГСД-1500 трансформатор переменного тока 220 постоянного тока 12 Трансформатор класса 130(В) трансформатор с центральным отводом центральный кран трансформатор 4812б 220 110 трансформатор центральный кран трансформатора Станкор р-6378 силовой трансформатор Выходной трансформатор Станкор
Продолжить PCD3

Резюме: A/ICE2QS03 ​​Эквивалент TI040 TI041 a/TDA7292 эквивалента Micro Circuit Engineering IE-V850ES-G1 uPC393G2 a/k5a50d эквивалентно 74hc1574
Текст: Нет доступного текста файла


Оригинал
PDF 144 ГДж ЭА-144-20-0 ГМА144-20-0 U16594EJ1V0UM Продолжить PCD3 Эквивалент A/ICE2QS03 ТИ040 ТИ041 аналог a/TDA7292 Микросхемотехника IE-V850ES-G1 uPC393G2 аналог а/к5а50д 74hc1574
2010 – Недоступно

Резюме: нет абстрактного текста
Текст: Нет доступного текста файла


Оригинал
PDF 68-контур 635мм ICM-C68H-S112-400N1/400R1 -C68L-300HA/C68R-300HA. ICM-C68H-S112-403N1 ICME-C68L-303HA/C68R-303HA. 20НХА/Л0-Д1120НХА/Р0-Д1121НХА/Л0-Д1121НХА 20RHA/L0-D1120RHA/R0-D1121RHA/L0-D1121RHA
2009 – ICM-C68H-SS1A-4109t

Резюме: ICM-C68S-TS13-5033A ICME-C68R-303HA D1120 E60389 LR20812 ICM-C68S-TS
Текст: Нет доступного текста файла


Оригинал
PDF 68-контур 635мм ICM-C68H-S112-400N1/400R1 -C68L-300HA/C68R-300HA. ICM-C68H-S112-403N1 ICME-C68L-303HA/C68R-303HA. 20НХА/Л0-Д1120НХА/Р0-Д1121НХА/Л0-Д1121НХА 20RHA/L0-D1120RHA/R0-D1121RHA/L0-D1121RHA ICM-C68H-SS1A-4109t ICM-C68S-TS13-5033A ICME-C68R-303HA Д1120 E60389 LR20812 ICM-C68S-TS
4812б

Реферат: sta6013 DSW-612 P-8364 Stancor ppc-22 4190A GSD-100 P-8362 P-8384 stancor трансформатор
Текст: Нет доступного текста файла


Оригинал
PDF ЗВЕЗДА-9005 ЗВЕЗДА-9006 ЗВЕЗДА-9007 Р-6133 P-6454 СТА-4125Т P-8638 ТГК130-230 P-8622 ТГК175-230 4812б sta6013 ДСВ-612 P-8364 Станкор ППЦ-22 4190А ГСД-100 P-8362 P-8384 станкор трансформатор
Недоступно

Резюме: нет абстрактного текста
Текст: Нет доступного текста файла


OCR-сканирование
PDF 14Б1-А
Симисторный демпфирующий варистор

Реферат: 3-фазный тиристор, привод постоянного тока, фототиристор, фотопара, фотосимистор, симистор, снаббер
Текст: Нет доступного текста файла


Оригинал
PDF
ЛК1Д09ДЖЛ

Резюме: нет абстрактного текста
Текст: Нет доступного текста файла


Оригинал
PDF LC1D09JL LC1D09JL
ЛК1Д09МД

Реферат: Контактор Philips LC1-D09 140Aac
Текст: Нет доступного текста файла


Оригинал
PDF LC1D09MD LC1D09MD LC1-D09 контактор филипс 140А переменного тока
2003 – QOB360

Резюме: Square d qo центр нагрузки Автоматические выключатели QO2175SB schneider SHUNT TRIP HQO206 воздушный автоматический выключатель q1100an CIRCUIT независимый расцепитель
Текст: Нет доступного текста файла


Оригинал
PDF QOB360 QOB360 квадрат d qo центр нагрузки Автоматические выключатели QO2175SB ШНАЙДЕР МАГАЗИН HQO206 воздушный выключатель q1100an СХЕМА автоматический выключатель
ЛК1ДТ20У7

Резюме: IEC 60947-4-1 LC1-DT20 schneider lc1d
Текст: Нет доступного текста файла


Оригинал
PDF LC1DT20U7 LC1DT20U7 МЭК 60947-4-1 ЛК1-ДТ20 Шнайдер жк1д
LC1-DT40

Аннотация: LC1Dt40
Текст: Нет доступного текста файла


Оригинал
PDF LC1DT40C7 LC1-DT40 LC1Dt40
ЛК1-Д09

Аннотация: lc1d098 LC1D098ED
Текст: Нет доступного текста файла


Оригинал
PDF LC1D098ED LC1-D09 lc1d098 LC1D098ED
лк1д128

Реферат: LC1D128M7 LC1-D контактор Philips контактор lc1-d128 LC1-D12 100A1
Текст: Нет доступного текста файла


Оригинал
PDF LC1D128M7 lc1d128 LC1D128M7 Контактор LC1-D контактор филипс lc1-d128 LC1-D12 100А1
2002 – C9052-02

Реферат: C9052-01 A9053-01 C9052 C9052-03 C9052-04 S2386 S5821 счетчик частоты фотодиодов Схема
Текст: Нет доступного текста файла


Оригинал
PDF C9052 C9052-04 А9053) C9052-01/-02/-03 А9053-01) C9052-01 C9052-02 C9052-03 СЭ-171 КАСС1083E03 C9052-02 C9052-01 А9053-01 C9052-03 S2386 S5821 фотодиоды Цепь счетчика частоты
2003 – QO2175SB

Резюме: автоматический выключатель qo-mbgx HQO306 q1100an «Автоматические выключатели» Автоматические выключатели Square D qo 20-амперный выключатель QOB120VH Square d G1 центр нагрузки

Текст: Нет доступного текста файла


Оригинал
PDF QOB120VH 120/240В QO2175SB qo-mbgx автоматический выключатель HQO306 q1100an “Автоматические выключатели” Автоматические выключатели Автоматический выключатель Square D на 20 ампер QOB120VH квадрат d G1 центр нагрузки
14Б1-А

Резюме: J21A J41C J11-A j71A
Текст: Нет доступного текста файла


Оригинал
PDF
2013 – Недоступно

Резюме: нет абстрактного текста
Текст: Нет доступного текста файла


Оригинал
PDF IDCB75–SA-ENG SA-IDCB62
2003 – QO230

Резюме: q1100an qo-mbgx квадрат d qo МИНИАТЮРНЫЙ ВЫКЛЮЧАТЕЛЬ квадрат d кривые автоматического выключателя квадрат d G1 центр нагрузки «Автоматические выключатели» HQO306 0730DB0301
Текст: Нет доступного текста файла


Оригинал
PDF QO230 120/240В QO230 q1100an qo-mbgx площадь d qo МИНИАТЮРНЫЙ АВТОМАТИЧЕСКИЙ ВЫКЛЮЧАТЕЛЬ кривые автоматического выключателя квадратной формы d квадрат d G1 центр нагрузки “Автоматические выключатели” HQO306 0730DB0301
2003 – квадратный центр нагрузки

Реферат: Автоматические выключатели “Автоматические выключатели” QO240 выключатели главный автоматический выключатель электрические выключатели Schneider HQO206 HQO306 Q1100AN
Текст: Нет доступного текста файла


Оригинал
PDF QO240 120/240В квадрат d qo центр нагрузки Автоматические выключатели “Автоматические выключатели” QO240 выключатели главный автоматический выключатель Электрические выключатели Schneider HQO206 HQO306 Q1100AN

Предыдущий 1 2 3 . .. 23 24 25 Далее

TDA2030 Make Схема усилителя | Hackaday.io

Статья публикуется совместно с JLCPCB. JLCPCB производит дешевые, но высококачественные печатные платы, возможно, из-за эффекта масштаба, чрезвычайно высокой эффективности производства и меньших затрат на рабочую силу.
Окончательную принципиальную схему и конструкцию можно увидеть выше. Мы также благодарим нашего спонсора JLCPCB https://jlcpcb.com/RTA за то, что он спонсировал нам PCB для этого проекта.

Детали

Статья публикуется в сотрудничестве с JLCPCB . JLCPCB производит дешевые, но высококачественные печатные платы, возможно, из-за эффекта масштаба, чрезвычайно высокой эффективности производства и меньших затрат на рабочую силу.

2 доллара США за 1-4-слойные печатные платы.

В этой проектной схеме мы научим вас создавать схему профессионального усилителя превосходного качества. Это очень мощная схема усилителя, которая может воспроизводить чистый и кристальный звук по очень низкой цене.

Чтобы сделать эту схему усилителя, мы используем схему источника питания постоянного тока 12 В. Блок питания содержит 3 ампера. Вы также можете использовать 12-вольтовую батарею в качестве источника питания. Но вы не должны использовать батарею с высоким ампером.

Чтобы сделать эту мощную схему усилителя, нам нужно использовать некоторые электронные компоненты. Все компоненты со схемой печатной платы вы можете заказать у JLCPCB. Они предлагают нам печатную плату самого высокого качества по очень низкой цене.

  1. Sound IC – TDA 2030
  2. Capacitor – 10µf/ 50v 1µf/ 50v
  3. Resistor – 220 Ω, 680 Ω, 18 K Ω
  4. Mylar Polyester Film Capacitor – 2A 104J
  5. Звуковой динамик
  6. Кабель аудиовхода
  7. Печатная плата (производство JLCPCB)
  8. Блок питания

2 9 Окончательный вариант схемы показан выше. Они используют систему онлайн-заказов, профессиональное и эффективное обслуживание клиентов, цифровые технологии производства, полностью автоматические производственные линии, а стабильные партнеры по логистике делают все возможное, чтобы доставить вам печатные платы быстрее.

Их технология печатных плат позволяет нам производить высокоточные платы, подходящие для промышленных, военных, аэрокосмических и медицинских приложений.

Чтобы сделать эту схему усилителя, во-первых, мы подключаем резистор 18 кОм с 1-й ветвью звуковой ИС. Затем подключаем резистор 680 Ом к 2-ой ножке звуковой ИС. Чтобы сделать эту схему усилителя, мы используем резистор 18 кОм. Подключаем еще один резистор 18 кОм со 2 и 4но ножкой звуковой ИС. Затем подключаем последний резистор с этой схемой усилителя. Соединяем резистор 220 Ом с 4но ножкой звуковой ИС.

Теперь нам нужно соединить электролитический конденсатор со схемой усилителя. Сначала подключаем конденсатор 1мкФ/50В к схеме усилителя.

Мы соединяем положительную ногу этого конденсатора с 1-й ногой звуковой микросхемы.

На этот раз я подключу к схеме конденсатор 10 мкф/50 В. Соединяем положительную ветвь этого конденсатора с пустой клеммой резистора 680 Ом. Подключите другую положительную ветвь конденсатора к пустой клемме резистора 220 Ом.

Нам нужно сделать параллельное соединение с пленочным конденсатором из майлара и полиэстера и конденсатором 220 мкф/25 В. Делаем две штуки параллельным соединением. Теперь соедините отрицательную ветвь конденсатора с 3-й ветвью звуковой IC и соедините другую положительную ветвь конденсатора с 5-й ветвью звуковой IC.

Для ввода напряжения заземления нам необходимо выполнить заземление для этой схемы усилителя. Подключаем всю свободную ногу резистора и конденсатора. Затем отрежьте лишнюю ногу от всех компонентов электроники.

Для вывода звука, во-первых, нам нужно ввести звук в эту схему усилителя. Мы подключаем кабель заземления аудиовхода 3,5 мм к заземляющей ножке схемы усилителя, а кабель L/R подключаем к отрицательной ножке конденсатора 1 мкФ/50 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *