Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Подключение теплового реле. Основная функция и принцип работы

Автор newwebpower На чтение 7 мин. Просмотров 992 Опубликовано Обновлено

Для защиты электродвигателя от недопустимых длительных токовых перегрузок, которые могут возникнуть при увеличении нагрузки на вал или потери одной из фаз применяется тепловое защитное реле. Также защитное реле защитит обмотки от дальнейшего разрушения при возникшем междувитковом замыкании.

Тепловым данное реле (сокращенно ТР) называют из-за принципа действия, который схож с работой автоматического выключателя, в котором изгибающиеся при нагреве электрическим током биметаллические пластины разрывают электрическую цепь, надавливая на спусковой механизм.

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает

цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый.

При срабатывании устройства данные контакты одновременно меняют свое состояние.

Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

  • Номинальный ток защиты;
  • Предел регулировки уставки тока срабатывания;
  • Напряжение силовой цепи;
  • Количество и тип вспомогательных контактов управления;
  • Мощность коммутации контактов управления;
  • Порог срабатывания (коэффициент отношения к номинальному току)
  • Чувствительность к асимметричности фаз;
  • Класс отключения;

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).

Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».

Тепловое реле в схеме реверсивного подключения контакторов
Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.

Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения

перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.

Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,

Защита настроек и маркировка

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

  • Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).

    Реле РТТ, подключенное при помощи жестких пластинчатых перемычек

  • Монтируемые непосредственно на контактор магнитного пускателя (современные модели).

    Реле устанавливается непосредственно на контакторе

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового релеСпециальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Система рычагов

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала

найти причину срабатывания защиты.


на 220В, 380В, с тепловым реле и кнопками управления

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки.

У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим.

Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже). Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Задать вопрос

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Как подключить магнитный пускатель и тепловое реле

Магнитным пускателем называют специальную установку, с помощью которой производится дистанционный запуск и управление работой асинхронного электрического двигателя. Данное приспособление характеризуется простотой конструкции, что позволяет произвести подключение мастеру без соответствующего опыта.

Проведение подготовительных работ

Перед подключением теплового реле и магнитного участка необходимо помнить, что вы работаете с электрическим прибором. Именно поэтому, чтобы обезопасить себя от поражения электрическим током, нужно произвести обесточивание участка и проверить его. С этой целью, наиболее часто, используется специальная индикаторная отвертка.

Следующим этапом подготовительных работ является определение величины рабочего напряжения катушки. В зависимости от производителя приспособления увидеть показатели можно на корпусе или на самой катушке.

Важно! Величина рабочего напряжения катушки может быть 220 или 380 Вольт. При наличии первого показателя необходимо знать, что на ее контакты осуществляется подача фазы и ноля. Во втором случае это обозначает о наличии двух разноименных фаз.

Этап правильного определения катушки достаточно важен при подключении магнитного пускателя. В противном случае она может перегореть во время работы устройства.

Для подключения данного оборудования необходимо использовать две кнопки:

Первая из них, может иметь черный или зеленый цвет. Эта кнопка характеризуется постоянно разомкнутыми контактами. Вторая кнопка имеет красный цвет и постоянно замкнутые контакты.

Во время подключения теплового реле необходимо помнить о том, что с помощью силовых контактов производится включение и выключение фаз. Нули, которые подходят и отходят, а также проводники, которые заземляют, между собой необходимо соединять в области клеммника. При этом, в обязательном порядке, пускатель необходимо отходить. Коммутация этих приспособлений не производится.

Для того чтобы произвести подключение катушки, величина рабочего напряжения которой составляет 220 Вольт, необходимо взять ноль с клеммника и подсоединить его к схеме, которая предназначается для работы пускателя.

Особенности подключения магнитных пускателей

Схема магнитного пускателя характеризуется наличием:

  • трех пар контактов, с помощью которых производится подача питания на электрическое оборудование;
  • Схемы управления, в состав которой входит катушка, дополнительные контакты и кнопки. С помощью дополнительных контактов производится поддержка работоспособности катушки, а также блокировка ошибочных включений.

Внимание. Наиболее часто используют схему, которая требует использования одного пускателя. Это объясняется ее простотой, что позволяет с ней справиться даже малоопытному мастеру.

Для сборки магнитного пускателя требуется использование трехжильного кабеля, который подводится к кнопкам, а также одной пары контактов, которые хорошо разомкнуты.

При использовании катушки в 220 Вольт необходимо произвести подключение проводов красного или черного цветов. При использовании катушки 380 Вольт используется разноименная фаза. Четвертую свободную пару в этой схеме используют как блок-контакт. Три пары силовых контактов включаются наряду с этой свободной парой. Расположение всех проводников производится сверху. В том случае, если есть два дополнительных проводника, то их размещают сбоку.

Силовые контакты пускателя характеризуются наличием трех фаз. Для их включения во время нажатия кнопки Пуск, необходимо произвести подачу на катушку напряжения. Это позволит цепи замкнуться. Для размыкания цепи необходимо произвести отключение катушки. Для сборки цепи управления зеленая фаза напрямую подключается к катушке.

Важно. При этом необходимо к кнопке Пуск подключить провод, который идет с контакта катушки. С него также делают перемычку, которая идет к замкнутому контакту кнопки Стоп.

Включение работы магнитного пускателя производится с помощью кнопки Пуск, которая смыкает цепь, а отключение – с помощью кнопки Стоп, которая производит расцепление цепи.

Особенности подключения теплового реле

Между магнитным пускателем и электрическим двигателем располагается тепловое реле. Его подключение осуществляется к выходу магнитного пускателя. Через данное приспособление осуществляется прохождение электрического тока. Тепловое реле характеризуется наличием дополнительных контактов. Их необходимо соединить последовательно с катушкой пускателя.

Тепловое реле характеризуется наличием специальных нагревателей, через которые может проходить электрический ток определенной величины. При возникновении опасных ситуаций (возрастание тока выше указанных пределов), благодаря наличию биметаллических контактов, производится разрыв цепи и впоследствии отключения пускателя. Для того чтобы запустить работу механизма, необходимо включить биметаллические контакты с помощью кнопки.

Внимание. При подключении теплового реле, необходимо учитывать наличие на нем регулятора тока, который срабатывает в небольших пределах.

Подключение электромагнитного пускателя и теплового реле производится достаточно просто. Для этого необходимо всего лишь придерживаться схемы.

принцип работы, устройство, как выбрать


Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность. Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.

Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.

Содержание статьи:

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Состоит прибор из корпуса, нихромового нагревателя, биметаллической пластины, защелки, винта, рычага, подвижного контакта и кнопки возврата (+)

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Тепловое реле ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.

Принцип работы приспособления

Выполняя защитную функцию,  разъединяет силовые питающие цепи. Тепловое реле отличается от него тем, что при превышении нагрузки просто выдает управляющий сигнал. При такой защите токи небольшой величины коммутируются в одной цепи управления.

В схеме перед термореле находится . Когда цепи размыкаются в аварийном порядке, отпадает надобность в дублировании работы контактора. Следовательно, не расходуется материал для изготовления силовых контактных групп.

Наиболее популярными являются приборы, оснащенные биметаллическими пластинами. Собственно пластина состоит из двух аналогичных элементов.

Один из них обладает значительным температурным коэффициентом, а другой — несколько меньшим. Эти две составляющие плотно прилегают друг к другу.

Так как составные части биметаллической пластины выполнены из пары разнородных металлов, имеющих неодинаковые коэффициенты расширения, нагрев заставляет ее изгибаться и взаимодействовать с контактами

Обеспечивается такое жесткое скрепление путем сваривания или прокаткой в горячем виде. За счет того, что пластина закреплена неподвижно, при нагреве наблюдается ее изгиб в сторону элемента с меньшим температурным коэффициентом. Этот принцип взят за основу при создании .

При их производстве применяют хромоникелевую сталь и немагнитную, обладающие большим значением температурного коэффициента. Как материал с малым значением этого параметра используют инвар — соединение никеля с железом.

По такой схеме функционирует тепловое реле. Незакрепленный конец биметаллической пластины при ее прогибе воздействует на контакты термореле (+)

Пластину из биметалла прогревают токи нагрузки. Протекают они чаще всего по специальному нагревателю. Существует и комбинированный нагрев, при котором, кроме тепла, отдаваемого нагревателем, биметалл прогревает еще и ток, проходящий через него.

Как подключить тепловое реле

Замкнутый контакт (normal connected), при помощи которого производят подключение теплового модуля к магнитному пускателю, обозначают NC или НЗ, что расшифровывается, как нормально замкнутый. Буквенным сочетанием NO обозначают нормально разомкнутый контакт.

В несложной схеме он применяется для подачи сигнала, свидетельствующего о срабатывании защиты двигателя из-за превышения пороговой температуры.

При внедрении в сложные схемы управления он способен формировать в аварийном порядке сигнал выведения из рабочего состояния конвейера.

Тепловое реле размещают за контакторами, но перед электродвигателем. Подсоединение контакта normal connectde к кнопке «Стоп» на пульте управления осуществляют по последовательной схеме (+)

Обозначение клемм контакторов диктует ГОСТ: нормально замкнутый — 95-96, нормально разомкнутый — 97-98. К первой паре подключают пускатель, вторую используют для схем сигнализации. Так как двигатель и тепловое реле нужно защищать от КЗ, цепь должна содержать автомат защиты.

Схема прибора включает кнопки «Тест» и «Стоп» или «Сброс». С помощью первой проверяют работоспособность, а второй — отключают защиту вручную.

При помощи переключателя поворотного взвода после включения защиты вновь запускают электродвигатель. На стеклянную крышку изделия наносят маркировку и пломбируют.

Если исходить из типа подключения, можно выделить две большие группы термореле:

  • первая группа – устройства, монтируемые за магнитным пускателем и те, что подключаются с использованием перемычек;
  • вторая группа – приборы, устанавливаемые на контактор пускателя непосредственно.

В последнем случае при запуске основная нагрузка приходится на контактор. Здесь тепловой модуль оснащен медными контактами, подключенными к входам пускателя непосредственно.

Схема теплового реле. На нее нанесены обозначения управляющих элементов и выводов. У разных моделей эти обозначения могут отличаться (+)

К ТР подключают провода от двигателя. Само реле в такой схеме представляет промежуточный узел, анализирующий ток, протекающий транзитом к двигателю от магнитного пускателя.

Нюансы при установке прибора

На скорость срабатывания теплового модуля могут повлиять не только токовые перегрузки, но и показатели внешней температуры. Защита сработает даже в условиях отсутствия перегрузок.

Бывает и так, что под воздействием принудительной вентиляции двигатель подвержен тепловой перегрузке, но защита не срабатывает.

Чтобы избежать таких явлений, нужно следовать рекомендациям специалистов:

  1. При выборе реле ориентироваться на максимально допустимую температуру срабатывания.
  2. Защиту монтировать в одном помещении с защищаемым объектом.
  3. Для установки выбирать места, где нет источников тепла или вентиляционных устройств.
  4. Нужно настраивать тепловой модуль, ориентируясь на реальную температуру окружения.
  5. Лучший вариант — наличие в конструкции реле встроенной термокомпенсации.

Дополнительной опцией термореле является защита при обрыве фазы или полностью питающей сети. Для трехфазных моторов этот момент особо актуален.

Ток в тепловом реле движется последовательно через его нагревательный модуль и дальше к двигателю . С обмоткой пускателя прибор соединяют дополнительные контакты (+)

При неполадках в одной фазе две остальные принимают на себя ток большей величины. В результате быстро происходит перегрев, а далее — отключение. При неэффективной работе реле может выйти из строя и двигатель, и проводка.

Существующие типы устройств

Класс тепловых реле включает несколько видов: ТРН,РТЛ, ТРП, РТИ, РТТ. Применение каждого обусловлено особенностями конструкции.

Токовое реле двухфазное (ТРН), используют в основном для электрозащиты двигателей асинхронных, имеющих короткозамкнутый ротор. Как правило, они работают от сети с номиналом до 500 В, частотой 50 Гц.

Оснащено реле ручным механизмом управления контактами. Габариты ТРН дают возможность встраивать их в комплектные устройства как закрытого, так и открытого типа станций, координирующих работу приводов. Функцию защиты от КЗ они не выполняют и сами нуждаются в ней.

Реле ТРП имеют механизм, устойчивый к вибрациям, ударопрочный корпус. Разработаны для охраны асинхронных трехфазных двигателей, функционирующих в условиях больших механических нагрузок.

Рассчитаны они на максимальный ток 600 А и напряжение максимум 500 В, а в цепях с постоянным током — 440 В. Автоматика нечувствительна к внешней температуре и срабатывает тогда, когда показатель превышает 200°C.

Устройства РТЛ — трехфазные, кроме защиты двигателя от перегрузок, предохраняют от заклинивания ротор. Они страхуют его от поломок в случае перекоса фаз, при затяжном пуске.

Работают автономно с клеммниками КРЛ и в модификации с магнитным пускателем ПМЛ. Токовый рабочий промежуток — от 0,10 до 86 А.

Контактор в паре с тепловым реле. Когда устройство срабатывает, нормально замкнутый и нормально разомкнутый контакт синхронно меняют свое положение

РТТ – приспособление защищает асинхронные двигатели от токовых бросков, перекоса фаз, заклинивания и других нештатных ситуаций. Используется и как самостоятельный прибор, и в виде встройки в пускатели ПМА, ПМЕ.

Изделие трехфазное РТИ наделено теми же функциями, что и предыдущее, но используется в модификации с пускателями КТМ и КМИ.

Как выбрать тепловое реле

Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.

Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.

Базовые характеристики приспособлений

Базовыми данными устройства, защищающего двигатель, являются:

  1. Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
  2. Рабочий ток, при котором ТП срабатывает.
  3. Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
  4. Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
  5. Токовый диапазон, в котором срабатывает реле.

Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.

Контактор в паре с тепловым реле. Когда устройство срабатывает, нормально замкнутый и нормально разомкнутый контакт синхронно меняют свое положение (+)

Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.

Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.

Выбор устройства по правилам

Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.

Время-токовые характеристики ТР и защищаемого двигателя. При токах КЗ нагревательные элементы реле становятся термически неустойчивыми (+)

Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния.

Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.

В таблице приведены технические характеристики термореле типа РТЛ. По ней можно подобрать защитное устройство с необходимыми параметрами по мощности двигателя (+)

Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток. Его значение связано с номинальным током нагрузки электродвигателя.

Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле.

Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.

Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.

Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.

В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.

Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2*2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.

При срабатывании защиты сначала устраняют первопричину остановки, а затем возвращают «теплушку» в исходное состояние при помощи клавиши возврата

Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.

Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов.

При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.

Выводы и полезное видео по теме

Схема эффективной защиты двигателя:

Составные части теплового реле:

Принцип взаимодействия различных приборов в разных вариантах подключения теплового реле одинаков. Для лучшей ориентации в схемах надо уметь “читать” маркировку устройств. В идеале все работы по подключению должен выполнять мастер, имеющий допуск к работе в условиях высокого напряжения.

Есть, что дополнить, или возникли вопросы по выбору и применению теплового реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования устройств. Форма для связи находится в нижнем блоке.

принцип работы, виды, схема подключения + регулировка и маркировка


Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов. Однако в значительной мере на срок службы мотора влияют токовые перегрузки. Чтобы их предупредить подключают тепловое реле, защищающее основной рабочий орган электромашины.

Мы расскажем, как подобрать устройство, предсказывающее назревание аварийных ситуаций с превышением максимально допустимых показателей тока. В представленной нами статье описан принцип действия, приведены разновидности и их характеристики. Даны советы по подключению и грамотной настройке.

Содержание статьи:

Зачем нужны защитные аппараты?

Даже если электропривод грамотно спроектирован и используется без нарушения базовых правил эксплуатации, всегда остается вероятность возникновения неисправностей.

К аварийным режимам работы относят однофазные и многофазные КЗ, тепловые перегрузки электрооборудования, заклинивание ротора и разрушение подшипникового узла, обрыв фазы.

Функционируя в режиме повышенных нагрузок, электрический двигатель расходует огромное количество электроэнергии. А при регулярном превышении показателей номинального напряжения оборудование интенсивно нагревается.

В результате быстро изнашивается изоляция, что приводит к значительному снижению эксплуатационного срока электромеханических установок. Чтобы исключить подобные ситуации, в цепи электрического тока подключают реле тепловой защиты. Их основная функция – обеспечить нормальный режим работы потребителей.

Они отключают мотор с определенной выдержкой времени, а в некоторых случаях – мгновенно, чтобы предотвратить разрушение изоляции или повреждение отдельных частей электроустановки.

Токовое реле постоянно защищает электрический двигатель от обрыва фазы и технологических перегрузок, а также торможения ротора. Это главные причины, из-за которых возникают аварийные режимы

С целью не допустить понижение сопротивления изоляции задействуют устройства защитного отключения, ну а если поставлена задача предотвратить нарушение охлаждения, подключают специальные аппараты встроенной тепловой защиты.

Устройство и принцип работы ТР

Конструктивно стандартное электротепловое реле представляет собой небольшой аппарат, который состоит из чувствительной биметаллической пластины, нагревательной спирали, рычажно-пружинной системы и электрических контактов.

Биметаллическую пластину изготовляют из двух разнородных металлов, как правило, инвара и хромоникелевой стали, прочно соединенных вместе в процессе сварки. Один металл обладает большим температурным коэффициентом расширения, чем другой, поэтому нагреваются они с разной скоростью.

При токовой перегрузке незафиксированная часть пластины прогибается к материалу с меньшим значением коэффициента теплового расширения. Это оказывает силовое воздействие на систему контактов в защитном устройстве и активирует отключение электроустановки при перегреве.

В большинстве моделей механических тепловых реле есть две группы контактов. Одна пара – нормально разомкнутые, другая – замкнутые постоянно. Когда срабатывает защитное устройство, в контактах меняется состояние. Первые замыкаются, а вторые становятся разомкнутыми.

В электронных ТР задействуют специальные датчики и чувствительные зонды, реагирующие на повышение тока. В микропроцессоре таких защитных устройств запрограммированы параметры, определяющие ситуации, когда необходимо отключать подачу электропитания

Ток детектирует интегрированный трансформатор, после чего электроника обрабатывает полученные данные. Если значение тока в настоящий момент времени больше, чем уставка, импульс мгновенно передается прямо на выключатель.

Размыкая внешний контактор, реле с электронным механизмом блокирует нагрузку. Само устанавливается на контактор.

Биметаллическая пластина может быть нагрета непосредственно – за счет воздействия пикового тока нагрузки на металлическую полосу или косвенно, при помощи отдельного термоэлемента. Нередко эти принципы объединяют в одном аппарате тепловой защиты. При комбинированном нагреве прибор имеет лучшие рабочие характеристики.

После остывания пластина возвращается в исходное состояние. Коммутирующие контакты автоматически замыкаются либо нужно принудительно приводить их в замкнутое состояние

Базовые характеристики токового реле

Основной характеристикой коммутатора тепловой защиты является выраженная зависимость времени срабатывания от протекающего по нему тока — чем больше величина, тем быстрее он сработает. Это свидетельствует об определенной инерционности релейного элемента.

Направленное перемещение частиц-носителей заряда через любой электроприбор, и электрокотел, генерирует тепло. При номинальном токе его допустимая длительность стремится к бесконечности.

А при значениях, превышающих номинальные показатели, в оборудовании повышается температура, что приводит к преждевременному износу изоляции.

Обрыв цепи мгновенно блокирует дальнейший рост температурных показателей. Это дает возможность предупредить перегрев двигателя и предотвратить аварийный выход из строя электрической установки

Номинальная нагрузка самого мотора – ключевой фактор, определяющий выбор прибора. Показатель в интервале 1,2-1,3 обозначает успешное срабатывание при токовой перегрузке в 30% на временном отрезке в 1200 секунд.

Продолжительность перегрузки может негативно сказаться на состоянии электрооборудования — при кратковременном воздействии в 5-10 минут нагревается только обмотка мотора, которая имеет небольшую массу. А при длительных нагревается весь двигатель, что чревато серьезными поломками. Или вовсе может потребоваться замена сгоревшего оборудования новым.

Чтобы максимально уберечь объект от перегрузки, следует конкретно под него использовать реле тепловой защиты, время срабатывания которого будет соответствовать максимально допустимым показателям перегрузки конкретного электродвигателя.

На практике собирать под каждый тип мотора нецелесообразно. Один релейный элемент задействуют для защиты двигателей различного конструктивного исполнения. При этом гарантировать надежную защиту в полном рабочем интервале, ограниченном минимальной и максимальной нагрузкой, невозможно.

Повышение показателей тока не сразу приводит к опасному аварийному состоянию оборудования. Прежде чем ротор и статор нагреются до предельной температуры, пройдет некоторое время

Поэтому нет крайней необходимости в том, чтобы защитное устройство реагировало на каждое, даже незначительное повышение тока. Реле должно отключать электродвигатель только в тех случаях, когда есть опасность быстрого износа изоляционного слоя.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок. Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания.

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

Подключение, регулировка и маркировка

Коммутационный прибор перегрузки, в отличие от электрического автомата, не разрывает силовую цепь непосредственно, а лишь подает сигнал на временное отключение объекта при аварийном режиме. Нормально включенный контакт у него работает как кнопка «стоп» контактора и подсоединяется по последовательной схеме.

Схема подключения устройств

В конструкции реле не нужно повторять абсолютно все функции силовых контактов при успешном срабатывании, поскольку оно подключается непосредственно к МП. Такое исполнение позволяет существенно сэкономить материалы для силовых контактов. Намного легче в управляющей цепи подключить малый ток, чем сразу отключать три фазы с большим.

Во многих схемах подключения теплового реле к объекту используют постоянно замкнутый контакт. Его последовательно соединяют с клавишей «стоп» пульта управления и обозначают НЗ – нормально замкнутый, или NC – normal connected.

Разомкнутый контакт при такой схеме может быть использован для инициализации срабатывания тепловой защиты. Схемы подсоединения электромоторов, в которых подключено реле тепловой защиты, могут значительно отличаться в зависимости от наличия дополнительных устройств или технических особенностей.

В стандартной простой схеме ТР подключают к выходу низковольтного пускателя на электрический двигатель. Дополнительные контакты прибора в обязательном порядке соединяют последовательно с катушкой пускателя

Это обеспечит надежную защиту от перегрузок электрооборудования. В случае недопустимого превышения предельных значений тока релейный элемент разомкнет цепь, моментально отключая МП и двигатель от электропитания.

Подключение и установку теплового реле, как правило, производят вместе с магнитным пускателем, предназначенным для коммутации и запуска электрического привода. Однако есть виды, которые монтируют на DIN-рейку или специальную панель.

Тонкости регулировки релейных элементов

Одним из главных требований к устройствам защиты электродвигателей является четкое действие аппаратов при возникновении аварийных режимов работы мотора. Очень важно правильно его подобрать и отрегулировать настройки, поскольку ложные срабатывания абсолютно недопустимы.

Электротепловое реле, которое оптимально подходит к конкретному типу двигателя по всем техническим параметрам, способно обеспечить надежную защиту от перегрузок по каждой фазе, предотвратить затяжной старт установки, не допустить аварийных ситуаций с заклиниванием ротора

Среди преимуществ использования токовых элементов защиты также следует отметить довольно высокую скорость и широкий диапазон срабатывания, удобство монтажа. Чтобы обеспечить своевременное отключение электромотора при перегрузке, реле тепловой защиты необходимо настраивать на специальной платформе/стенде.

В таком случае исключается неточность из-за естественного неравномерного разброса номинальных токов в НЭ. Для проверки защитного устройства на стенде применяется метод фиктивных нагрузок.

Через термоэлемент пропускают электрический ток пониженного напряжения, чтобы смоделировать реальную тепловую нагрузку. После этого по таймеру безошибочно определяют точное время срабатывания.

Настраивая базовые параметры, следует стремиться к таким показателям:

  • при 1,5-кратном токе устройство должно отключать двигатель через 150 с;
  • при 5…6-кратном токе оно должно отключать мотор через 10 с.

Если время срабатывания не соответствует норме, релейный элемент необходимо отрегулировать посредством контрольного винта.

Для корректной работы обязательно нужно настроить прибор на наибольший допустимый электрический ток двигателя и температуру воздуха

Это делают в тех случаях, когда значения номинального тока НЭ и мотора отличаются, а также если температура окружающей среды ниже номинальной (+40 ºC) более, чем на 10 градусов по шкале Цельсия.

Ток срабатывания электротеплового коммутатора уменьшается с повышением температуры вокруг рассматриваемого объекта, так как нагрев биметаллической полосы зависит от этого параметра. При существенных отличиях необходимо дополнительно отрегулировать ТР или подобрать более подходящий термоэлемент.

Резкие колебания температурных показателей сильно влияют на работоспособность токового реле. Поэтому очень важно выбирать НЭ, способный эффективно выполнять основные функции с учетом реальных значений.

ТР рекомендовано размещать в одном помещении с защищаемой электроустановкой. Их нельзя монтировать близко к теплогенераторам, нагревательным печам и другим источникам тепла

К реле с температурной компенсацией эти ограничения не относятся. Токовую уставку защитного аппарата можно регулировать в диапазоне 0,75-1,25х от значений номинального тока термоэлемента. Настройку выполняют поэтапно.

В первую очередь вычисляют поправку E1 без температурной компенсации:

E1=(Iном-Iнэ)/c×Iнэ,

Где

  • Iном – номинальный ток нагрузки двигателя,
  • Iнэ – номинальный ток рабочего нагревательного элемента в реле,
  • c – цена деления шкалы, то есть эксцентрика (c=0,055 для защищенных пускателей, c=0,05 для открытых).

Следующий шаг – определение поправки E2 на температуру окружающего воздуха:

E2=(ta-30)/10,

Где ta (ambient temperature) – температура внешней среды в градусах Цельсия.

Последний этап – нахождение суммарной поправки:

E=E1+E2.

Суммарная поправка E может быть со знаком «+» или «-». Если в результате получается дробная величина, ее обязательно нужно округлить до целого в меньшую/большую по модулю сторону, в зависимости от характера токовой нагрузки.

Чтобы настроить реле, эксцентрик переводят на полученное значение суммарной поправки. Высокая температура срабатывания уменьшает зависимость работы защитного аппарата от внешних показателей.

Реле тепловой защиты допускает ручную плавную регулировку величины тока срабатывания устройства в пределах ±25% от значения номинального тока электромеханической установки

Регулировка этих показателей осуществляется специальным рычагом, перемещение которого изменяет первоначальный изгиб биметаллической пластины. Настройка тока срабатывания в более широком диапазоне осуществляется заменой термоэлементов.

В современных коммутационных аппаратах защиты от перегрузки есть тестовая кнопка, которая позволяет проверить исправность устройства без специального стенда. Также есть клавиша для сброса всех настроек. Обнулить их можно автоматически или вручную. Кроме того, изделие комплектуют индикатором текущего состояния электроприбора.

Маркировка электротепловых реле

Защитные аппараты подбирают в зависимости от величины мощности электрического двигателя. Основная часть ключевых характеристик скрыта в условном обозначении.

Так выглядит маркировка тепловых реле завода КЭАЗ. Важно при выборе обратить внимание на значение номинального тока рассматриваемой модели, чтобы оно было достаточным

Акцентировать внимание следует на отдельных моментах:

  1. Диапазон значений токов уставки (указан в скобках) у разных производителей отличается минимально.
  2. Буквенные обозначения конкретного типа исполнения могут различаться.
  3. Климатическое исполнение нередко подается в виде диапазона. К примеру, УХЛ3О4 нужно читать так: УХЛ3-О4.

Сегодня можно купить самые разные вариации прибора: реле для переменного и постоянного тока, моностабильные и бистабильные, аппараты с замедлением при включении/отключении, реле тепловой защиты с ускоряющими элементами, ТР без удерживающей обмотки, с одной обмоткой или несколькими.

Эти параметры не всегда отображены в маркировке устройств, но обязательно должны быть указаны в техпаспорте электротехнических изделий.

С устройством, разновидностями и маркировкой электромагнитного реле ознакомит , с которой мы рекомендуем ознакомиться.

Выводы и полезное видео по теме

Устройство и принцип функционирования токового реле для эффективной защиты электродвигателя на примере устройства РТТ 32П:

Правильная защита от перегрузки и обрыва фаз – залог длительной безотказной работы электрического мотора. Видео о том, как реагирует релейный элемент в случае нештатной работы механизма:

Как подсоединить устройство тепловой защиты к МП, принципиальные схемы электротеплового реле:

Реле тепловой защиты от перегрузок – обязательный функциональный элемент любой системы управления электроприводом. Оно реагирует на ток, который проходит на двигатель, и активируется, когда температура электромеханической установки достигает предельных значений. Это дает возможность максимально продлить срок эксплуатации экологически безопасных электродвигателей.

Пишите, пожалуйста, комментарии в находящемся ниже блоке. Расскажите, как вы выбирали и настраивали тепловое реле для собственного электромотора. Делитесь полезными сведениями, задавайте вопросы, размещайте фотоснимки по теме статьи.

Подключить тепловое реле к контактору

Схема подключения магнитного пускателя (малогабаритного контактора «КМ») не представляет сложности для опытных электриков, но для новичков может вызвать немало трудностей. Поэтому это статья для них.

Цель статьи максимально просто и наглядно показать сам принцип действия (работы) магнитного пускателя (далее МП) и малогабаритного контактора (далее КМ). Поехали.

МП и КМ являются коммутационными аппаратами, которые осуществляют управление и распределение рабочих токов по подключенным к ним цепям.

МП и КМ в основном используются для подключения и отключения асинхронных электродвигателей, а также их реверсивного переключения используя дистанционное управление. Они применяются для дистанционного управления группами освещения, нагревательными цепями и другими нагрузками.

Компрессоры, насосы и кондиционеры, тепловые печи, ленточные конвейера, цепи освещения вот где и не только можно встретить МП и КМ в системах их управления.

Чем отличаются магнитный пускатель и малогабаритный контактор, по принципу действия — ничем. По сути, это электромагнитные реле.

Найденное различие у контактора – мощность — определяется габаритами, а у пускателя величинами, а предельная мощность МП бывает больше чем у контактора.

Наглядные схемы МП и КМ

Условно МП (или КМ) можно разделить на две части.

В одной части силовые контакты, которые выполняют свою работу, а в другой части электромагнитная катушка, которая включает и отключает эти контакты.

  1. В первой части находятся силовые контакты (подвижные на диэлектрической траверсе и неподвижные на диэлектрическом корпусе), они то и осуществляют подключение силовых линий.

Траверса с силовыми контактами прикреплена к подвижному сердечнику (якорю).

В нормальном состояние эти контакты разомкнуты и по ним не протекает ток, нагрузка (в данном случае лампы) находится в состоянии покоя.

Удерживает их в таком состоянии возвратная пружина. Которая изображена змейкой во второй части ( 2 )

  1. Во второй части мы видим электромагнитную катушку, на которую не подается ее рабочее напряжение, вследствие чего, она находится в состоянии покоя.

При подаче напряжения на обмотку катушки в ее контуре создается электромагнитное поле, образуя ЭДС (электродвижущую силу), которая притягивает к себе подвижный сердечник (подвижная часть магнитопровода — якорь) с закреплёнными на нем силовыми контактами. Они, соответственно, замыкают подключенные через них цепи, включая нагрузку (рис. 2).

Естественно, если прекратить подачу напряжения на катушку, то пропадет электромагнитное поле (ЭДС), якорь перестаёт удерживаться и под действием пружины (вместе с закрепленными к нему подвижными контактами) возвращается в исходное состояние, размыкая цепи силовых контактов (рис. 1).

Из этого видно, что пускатель (и контактор) управляются подачей и отключением напряжения на их электромагнитной катушке.

Схема МП

  • Силовые контакты МП
  • Катушка, возвратная пружина, дополнительные контакты МП
  • Кнопочный пост (кнопки пуск и стоп)

к оглавлению ↑

Принципиальная схема подключения МП

Схема привязки основных элементов принципиальной схемы с МП

Как видно из рисунка 5 со схемой в состав МП входят и дополнительные блок контакты, которые бывают нормально разомкнутыми и нормально замкнутыми они могут использоваться для управления подачи напряжения на катушку, а также для других действий. Например, включать (или выключать) схему сигнальной индикации, которая будет показывать режим работы МП в целом.

Схема подключения по факту с привязкой контактных групп к принципиальной схеме МП

Рис. 6 Увеличить рис. 6 Фазное подключение (220 В; ноль — фаза)

На схеме (рис. 6) через перемычки мы берем напряжение, подаваемое на силовые контакты МП для дальнейшего его использования в управлении катушкой через кнопочный пост.

Данный кнопочный пост имеет две клавиши: «Пуск» (контакты которой нормально разомкнуты) и клавиши «Стоп» (контакты которой нормально замкнуты).

При нажатии кнопки «Пуск» питание попадает на катушку напрямую, при этом она срабатывает, притягивая якорь с траверсой, на котором расположены силовые контакты, цепи силовых контактов замыкаются.

А также замыкается дополнительный блок контакт, к которому подключена катушка.

На другой стороне дополнительного контакта подключен провод, который соединен с контактом кнопки «Стоп» (контакты которой нормально замкнуты).

После возвращения кнопки «Пуск» в исходное положение (нормально разомкнутая), через нее перестает подаваться напряжение на катушку, но оно (это же напряжение) начинает дублироваться через замкнутый дополнительный контакт и подключенный нему провод, который подключен к кнопке «Стоп».

И только после нажатия кнопки «Стоп» цепь с питающим напряжением на катушку МП разрывается и полностью обесточивает катушку. Вследствие чего пропадает её электромагнитное поле, якорь перестает удерживаться и под воздействием возвратной пружины размыкает силовые контакты, а также дополнительный (нормально разомкнутый) контакт.

Схема КМ

  • Силовые контакты МП
  • Катушка, возвратная пружина, дополнительные контакты МП
  • Кнопочный пост (кнопки пуск и стоп)

к оглавлению ↑

Принципиальная схема подключения КМ

Схема привязки основных элементов принципиальной схемы с КМ

Схема подключения по факту с привязкой контактных групп к принципиальной схеме КМ

Рис. 10 Увеличить рис. 10 Фазное подключение (220 В; ноль — фаза)

Принцип действия КМ и его катушки (на данной схеме рис. 10) аналогичный описанному выше. Одно из конструктивных отличий то, что дополнительный контакт расположен на траверсе в одном ряду с силовыми контактами.

Обратите внимание, что напряжение катушек на схемах — 220 и 380 вольт. Это значит, что катушки должны быть подключены согласно их номинальному напряжению.

Фазное подключение (фаза, нейтраль — проще ноль) соответствует 220 В, линейное подключение (фаза, фаза) 380 В.

Есть также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

Наглядные электрические схемы подключения электродвигателя с использованием магнитного пускателя (либо малогабаритного контактора)

Схема подключения МП (или КМ) с катушкой на 380 В

  • Кн «СТОП» – кнопка «Стоп»
  • Кн «ПУСК» – кнопка «Пуск»
  • КМП – катушка МП (магнитного пускателя)
  • Кн МП – силовые контакты МП
  • БК – блок контакт МП
  • Тр – нагревательный элемент теплового реле
  • КТР – контакт теплового реле
  • М – электродвигатель

к оглавлению ↑

Схемы подключения МП (или КМ) с катушкой на 220 В

  • Кн «СТОП» – кнопка «Стоп»
  • Кн «ПУСК» – кнопка «Пуск»
  • КМП – катушка МП (магнитного пускателя)
  • Кн МП – силовые контакты МП
  • БК – блок контакт МП
  • Тр – нагревательный элемент теплового реле
  • КТР – контакт теплового реле
  • М – электродвигатель

Схема подключения электродвигателя (рекомендуемый тип подключения обмоток треугольник) на 220 В

Обозначение элементов аналогично на сх. Выше

Обратите внимание, в схеме участвует тепловое реле, которое через свой дополнительный контакт (нормально замкнутый) дублирует функцию кнопки «Стоп» в кнопочном посте.

Принцип действия магнитного пускателя и малогабаритного контактора + Видео пояснение

Важно , на схемах для наглядности магнитный пускатель показан без дугогасящей крышки, без которой его эксплуатация – запрещена!

Иногда возникает вопрос, зачем вообще использовать МП или КМ, почему просто не использовать трехполюсной автомат?

  1. Автомат рассчитан до 10 тысяч отключений – включений, а у МП и КМ этот показатель измеряется миллионами
  2. При скачках напряжений МП (КМ) отключит линию, сыграв роль защиты
  3. Автоматом невозможно управлять, дистанционно применяя небольшое напряжение
  4. Автомат не сможет выполнять дополнительные функции включения и отключения дополнительных цепей (например, сигнальных) из–за отсутствия у него дополнительных контактов

Одним словом автомат отлично справляется со своей основной функцией защиты от коротких замыканий и перенапряжений, а МП и ПМ со своей.

На этом все, думаю, что принцип действия МП и КМ понятен, более наглядное пояснение смотрите в видео.

Удачного и безопасного вам монтажа!

В дополнение к статье прилагаю техническую документацию контакторов серии КМИ

Контакторы серии КМИ

Нормативная и техническая документация

По своим конструктивным и техническим характеристикам контакторы серии КМИ соответствуют требованиям российских и международных стандартов ГОСТ Р 50030.4.1,2002, МЭК60947,4,1,2000 и имеют сертификат соответствия РОСС CN.ME86.B00144. Контакторам серии КМИ по Обще- российскому классификатору продукции присвоен код 342600.

Условия эксплуатации

Категории применения: АС,1, АС,3, АС,4. Температура окружающей среды
– при эксплуатации: от –25 до +50 °С (нижняя предельная температура –40 °С) ;
– при хранении: от –45 до +50 °С .
Высота над уровнем моря, не более: 3000 м .
Рабочее положение: вертикальное, с отклонением ±30° .
Вид климатического исполнения по ГОСТ 15150,96: УХЛ4 .
Степень защиты по ГОСТ 14254,96: IP20 .

Структура обозначения

При подборе контакторов КМИ обращайте внимание на структуру условного обозначения

Основные технические характеристики

Технические характеристики силовой цепи

Технические характеристики цепи управления

Присоединение силовой цепи

Присоединение цепи управления

ПараметрыЗначения
Гибкий кабель, мм21—4
Жесткий кабель, мм21—4
Крутящий момент при затягивании, Нм1,2

Технические характеристики встроенных дополнительных контактов

ПараметрыЗначения
Номинальное напряжение Uе , Вперем. токадо 660
пост. тока
Номинальное напряжение изоляции Ui , В660
Ток термической стойкости (t°≤40°) Ith , А10
Минимальная включающая способностьUmin , В24
Imin , мА10
Защита от сверхтоков — предохранитель gG, А10
Максимальная кратковременная нагрузка (t ≤1 с), А100
Сопротивление изоляции, не менее, МОм10

к оглавлению ↑

Электрические схемы

Типовые электрические схемы

Контакторы серии КМИ могут применяться для создания типовых электрических схем.

Электрическая схема реверсирования

Данная схема собирается из двух контакторов и механизма блокировки МБ 09,32 или МБ 40,95 (в зависимости от типоисполнения), предназначенного для исключения одновременного включения контакторов.

Электрическая схема «звезда — треугольник»

Данный способ пуска предназначен для двигателей, номинальное напряжение которых соответствует соединению обмоток в «треугольник». Пуск «звезда — треугольник» может быть использован для двигателей, пускающихся без нагрузки, или с пониженным моментом нагрузки (не более 50% от номинального момента). При этом пусковой ток при соединении в «звезду» составит 1,8–2,6 А от номинального тока. Переключение со «звезды» на «треугольник» должно производиться после того, как двигатель выйдет на номинальную частоту вращения.

Особенности конструкции и монтажа

Присоединительные зажимы обеспечивают надежное фиксирование проводников:
– для габаритов 1 и 2 – с закаленными тарельчатыми шайбами;
– для габаритов 3 и 4 – с зажимной скобой, позволяющей подсоединить контакт большего сечения.

Существуют два способа монтажа контакторов:

  1. Быстрая установка на DIN,рейку:

КМИ от 9 до 32 А (габариты 1 и 2) – 35 мм;
КМИ от 40 до 95 А (габариты 3 и 4) – 35 и 75 мм.

  1. Монтаж при помощи винтов.

Контакторы серии КМИ 3,го и 4,го габарита позволяют осуществлять крепление на 75 мм DIN рейку.

Контакторы серии КМИ 3,го и 4,го габарита снабжены отверстием для заземляющего болта.

Габаритные размеры

ТипоисполнениеРазмер, мм
ВСD
КМИ 10910. КМИ 10911747945
КМИ 11210, КМИ 11211748145
КМИ 11810, КМИ 11811748145
КМИ 22510, КМИ 22511749355

КМИ 23210, КМИ 23211

КМИ 34010, МИ 34011, КМИ 35012, КМИ 46512

КМИ 48012, КМИ 49512

Установочные размеры

Габаритные и установочные размеры контакторов КМИ при монтаже на 35 мм DIN рейку

ТипоисполнениеРазмер, мм
СBD
КМИ 10910, КМИ 10911827445
КМИ 11210, КМИ 11211827445
КМИ 11810, КМИ 11811877445
КМИ 22510, КМИ 22511957455
КМИ 23210, КМИ 232111008355

ТипоисполнениеРазмер, ммСDКМИ 34010, КМИ 3401113174КМИ 3501213174КМИ 4651213174КМИ 4801214284КМИ 4951214284

Габаритные и установочные размеры контакторов КМИ при установке на монтажную панель или монтажный профиль

2016-07-01 Статьи 3 комментария

Тепловое реле, или как его еще называют реле перегрузки — это коммутационное устройство, предназначенное для защиты электродвигателей от токовой перегрузки и в случае обрыва фазы. При превышении потребляемого двигателем тока нагрузки тепловое реле разомкнет цепь, отключит магнитный пускатель, тем самым защитив двигатель.

Тепловое реле не предназначено для защиты от короткого замыкания, поэтому в цепь питания перед магнитным пускателем устанавливают автоматический выключатель.

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух пластин, которые сварены из металлов с разными коэффициентами теплового расширения. При воздействии высокой температуры биметаллическая пластина изгибается в сторону металла с меньшим коэффициентом расширения. Достигнув определённой температуры, пластина давит на защёлку расцепителя и под действием пружины происходит размыкание подвижных контактов реле и следовательно размыкание всей электрической цепи.

Если реле находится в режиме автоматического включения, то после остывания биметаллического элемента исполнительный механизм и подвижные контакты реле вернутся в исходное положение. При этом электрическая цепь восстановится и контактор будет готов к работе. Если же реле находится в ручном режиме, то после каждого срабатывания перевод реле в исходное положение должен осуществляться ручным воздействием.

Выбирая тепловое реле, надо исходить из номинального тока нагрузки плюс небольшой запас. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока. Например, если на шильде электродвигателя указан ток 16А, то выбираем тепловое реле с запасом примерно на 18-20А.

Таблица по выбору тепловых реле РТИ

На примере РТИ 1312 покажу устройство теплового реле.

РТИ1312 подключается к контактору непосредственно своими штыревыми контактами.

В зависимости от величины и типа пускателей первый и второй контакты теплового реле могут регулироваться вправо-влево. Сбоку на наклейке указано, какой тип контакторов подходит для данного реле.

В зависимости от величины протекающего тока в реле предусмотрена регулировка уставки срабатывания по току с помощью поворотного регулятора, расположенного на передней панели реле. Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.

Также на панели управления расположена кнопка «TEST»,имитирующая срабатывание защиты реле и проверки его работоспособности. Выступающая красная кнопка «STOP»предназначена для принудительного размыкания нормально-замкнутого контакта NC. При этом питание на катушке контактора пропадает и нагрузка отключается.

Электротепловое реле может работать в ручном или автоматическом режиме. Режим работы реле задается поворотным переключателем «RESET». При автоматическом режиме переключатель утоплен и при срабатывании теплового реле оно автоматически включится после остывания биметаллической пластины. Для перевода реле в ручной режим необходимо повернуть переключатель против часовой стрелки.

После того, как тепловое реле настроено, его можно закрыть прозрачной защитной крышкой и при необходимости опломбировать. Для этого на передней панели и крышке имеются специальные проушины.

Входное напряжение подходит на контакты 1,3,5, а выходное напряжение на нагрузку поступает с контактов 2, 4, 6. Кнопки «TEST» и «RESET» меняют положение подвижных контактов реле, а кнопкой «STOP» меняется положение только нормально-замкнутого контакта (95 — 96).

Нормально-замкнутые контакты применяются в схемах управления электродвигателями через магнитный пускатель, а нормально-разомкнутые контакты — в основном в цепях сигнализации, например для вывода световой индикации на панель оператора.

Типичная схема подключения нереверсивного пускателя с тепловым реле выглядит так:

Подробнее о работе данной схемы вы можете прочитать в статье Магнитный пускатель, здесь же я хочу остановиться только на подключении теплового реле. Как видно из схемы на силовые контакты теплового реле подключаются только две фазы, а третья идет напрямую на двигатель. В современных тепловых реле задействованы все три фазы. Также используется дополнительный нормально-замкнутый контакт реле. При перегрузки двигателя он разомкнется и разорвет цепь питания катушки контактора.

При срабатывании теплового реле не стоит сразу же пытаться включать его снова, необходимо выждать время пока биметаллические пластины не остынут. Кроме того стоит определить причину срабатывания — проверить всю схему подключения, подтянуть контакты, проверить температуру двигателя, потребление тока по каждой фазе двигателя.

Магнитный пускатель (контактор) — это устройство, предназначенное для коммутации силовых электрических цепей. Чаще всего применяется для запуска/останова электродвигателей, но так же может использоваться для управления освещением и другими силовыми нагрузками.

Чем отличается контактор от магнитного пускателя?

Многих читателей могло покоробить от данного нами определения, в котором мы (сознательно) смешали понятия «магнитный пускатель» и «контактор», потому что в данной статье мы постараемся сделать упор на практику, нежели на строгую теорию. А на практике эти два понятия обычно сливаются в одно. Немногие инженеры смогут дать вразумительный ответ, чем же они действительно отличаются. Ответы различных специалистов могут в чём-то сходиться, а в чём-то противоречить друг другу. Представляем Вашему вниманию нашу версию ответа на этот вопрос.

Контактор — это законченное устройство, не предполагающее установки дополнительных модулей. Магнитный пускатель может быть оборудован дополнительными устройствами, например тепловым реле и дополнительными контактными группами. Магнитный пускателем может называться бокс с двумя кнопками «Пуск» и «Стоп». Внутри может находится один или два связанных между собой контактора (или пускателя), реализующими взаимную блокировку и реверс.

Магнитный пускатель предназначен для управления трёхфазным двигателем, поэтому всегда имеет три контакта для коммутации силовых линий. Контактор же в общем случае может иметь другое количество силовых контактов.

Устройства на этих рисунках правильнее называть магнитными пускателями. Устройство под цифрой один предполагает возможность установку дополнительных модулей, например теплового реле (рисунок 2). На третьем рисунке блок «пуск-стоп» для управления двигателем с защитой от перегрева и схемой автоподхвата. Это блочное устройство — тоже называют магнитным пускателем.

А вот устройства на следующих рисунках правильнее называть контакторами:

Они не предполагают установку на них дополнительных модулей. Устройство под цифрой 1 имеет 4 силовых контакта, второе устройство имеет два силовых контакта, а третье -три.

В заключение скажем: обо всех названных выше отличиях контактора и магнитного пускателя полезно знать для общего развития и помнить на всякий случай, однако придётся привыкнуть к тому, что на практике эти устройства никто обычно не разделяет.

Устройство и принцип работы магнитного пускателя

Устройство контактора чем-то похоже на — оно так же имеет катушку и группу контактов. Однако контакты магнитного пускателя — разные. Силовые контакты предназначены для коммутации той нагрузки, которой управляет этот контактор, они всегда нормально открытые. Существуют еще дополнительные контакты, предназначенные для реализации управления пускателем (об этом речь пойдёт ниже). Дополнительные контакты могут быть нормально открытыми (NO) и нормально закрытыми (NC).

В общем случае устройство магнитного пускателя выглядит так:

Когда на катушку пускателя подаётся управляющее напряжение (обычно контакты катушки обозначаются А1 и А2), подвижная часть якоря притягивается к неподвижной и это приводит к замыканию силовых контактов. Дополнительные контакты (при наличии) механически связаны с силовыми, поэтому в момент срабатывания контактора они также меняют своё состояние: нормально открытые — замыкаются, а нормально закрытые, наоборот, размыкаются.

Схема подключения магнитного пускателя

Так выглядит простейшая схема подключения двигателя через пускатель. Силовые контакты магнитного пускателя KM1 подключены к клеммам электродвигателя. Перед контактором установлен автоматический выключатель QF1 для защиты от перегрузки. Катушка реле (А1-А2) запитана через нормально разомкнутую кнопку «Пуск» и нормально замкнутую кнопку «Стоп». При нажатии кнопки «Пуск» на катушку приходит напряжение, контактор срабатывает, запуская электродвигатель. Для остановки двигателя нужно нажать «Стоп» — цепь катушки разорвётся и контактор «расцепит» силовые линии.

Эта схема будет работать только если кнопки «пуск» и «стоп» — с фиксацией.

Вместо кнопок может быть контакт другого реле или дискретный выход контроллера:

Контактор можно включить и выключить с помощью ПЛК. Один дискретный выход контроллера заменит кнопки «пуск» и «стоп» — они будут реализованы логикой контроллера.

Схема «самоподхвата» магнитного пускателя

Как уже было сказано, предыдущая схема с двумя кнопками работает только если кнопки с фиксацией. В реальной жизни её не используют из-за её неудобства и небезопасности. Вместо неё используют схему с автоподхватом (самоподхватом).

На этой схеме используется дополнительный нормально открытый контакт пускателя. При нажатии на кнопку «пуск» и сработки магнитного пускателя дополнительный контакт КМ1.1 замыкается одновременно с силовыми контактами. Теперь кнопку «пуск» можно отпустить — её «подхватит» контакт КМ1.1.

Нажатие кнопки «стоп» разорвёт цепь катушки и вместе с этим разомкнётся доп. контакт КМ1.1.

Подключение двигателя через пускатель с тепловым реле

На рисунке изображён магнитный пускатель с установленным на него тепловым реле. При нагревании электродвигатель начинает потреблять больший ток — его и фиксирует тепловое реле. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.

Нормально закрытый контакт теплового реле использует в цепи питания катушки пускателя и рвёт её при сработке теплового реле, обеспечивая аварийное отключение двигателя. Нормально открытый контакт теплового реле может быть использован в сигнальной цепи, например для того, чтобы зажечь лампу «авария» при отключении электродвигателя по перегреву.

Реверсивный магнитный пускатель — устройство, с помощью которого можно запускать вращение двигателя в прямом и обратном направлениях. Это достигается за счёт смены чередования фаз на клеммах электродвигателя. Устройство состоит из двух взаимоблокирующихся контакторов. Один из контакторов коммутирует фазы в порядке А-В-С, а другой, например, А-С-В.

Взаимная блокировка нужна, чтобы нельзя было случайно одновременно включить оба контактора и устроить межфазное замыкание.

Схема реверсивного магнитного пускателя выглядит так:

Реверсивный пускатель может изменить чередование фаз на двигателе, коммутируя питающее двигатель напряжение через контактор КМ1 или КМ2. Обратите внимание, что порядок следования фаз на этих контакторов различается.

При нажатии Кнопки «Прямой пуск» двигатель запускается через контактор КМ1. При этом размыкается дополнительный контакт этого пускателя КМ1.2. Он блокирует запуск второго контактора КМ2, поэтому нажатие кнопки «Реверсивный пуск» ни к чему не приведёт. Для того чтобы запустить двигатель в обратном (реверсивном) направлении, нужно сначала остановить его кнопкой «Стоп».

При нажатии кнопки «Реверсивный пуск» срабатывает контактор КМ2, а его дополнительный контакт КМ2.2 блокирует контактор КМ1.

Автоподхват контакторов КМ1 и КМ2 осуществляется с помощью нормально открытых контактов КМ1.1 и КМ2.1 соответственно (см. раздел «Схема самоподхвата магнитного пускателя»).

Для тех, кто нормально относился к изучению школьного курса физики, не составит особого труда разобраться в схемах подключения различного электрооборудования, включая трехфазные электродвигатели. Они подключаются через контакторы или магнитные пускатели. Зарубежная классификация не делает разницы между этими аппаратами, поскольку пускатель является тем же контактором, но укомплектованным дополнительными устройствами для безопасной работы потребителя тока.

Другими словами, пускатель – это своего рода электротехнический шкаф в миниатюре, в котором помимо контактора установлена тепловая защита и от короткого замыкания. Пускатели имеют 8 величин от «0» до «7», каждая из которых рассчитана на электродвигатели с определенным диапазоном мощности (номинального тока). Благодаря закрытому исполнению (в корпусе), пускатели могут устанавливаться в любом месте. При подключении электромоторов через контактор защитные устройства подбираются отдельно.

Система контактов на контакторе

Вне зависимости от типоразмера и производителя электротехники любой трехфазный контактор имеет стандартную схему контактов и их подключения. Для удобства монтажа все контакты имеют маркировку, указывающую на их предназначение. Маркировка наносится на корпус аппарата и выглядит следующим образом:

  • А1 (ноль) и А2 (фаза) – контакты для управления включением и отключением контактора;
  • Нечетные цифры 1, 3, 5 и маркировка L1, L2, L3 указывают на места ввода трехфазного питания;
  • Четные цифры 2, 4, 6 и маркировка T1, T2, T3 указывают на места подключения проводов, идущих к потребителю тока;
  • 13NO и 14NO это пара блок-контакта для обеспечения функции самоподхвата.

Контакт А2 продублирован в верхней и нижней части корпуса аппарата для удобства коммутации. С этой же целью верхнюю и нижнюю (нечетную и четную) группу силовых контактов также можно использовать для ввода или вывода питания. При монтаже контактора надо быть внимательным, иначе схема не будет работать.

Нельзя допускать неправильное подключение фаз. Если их перепутать при монтаже контактора, вы получите обратное вращение двигателя. Для этого предусмотрены два способа маркировки на изоляции жил кабеля – цифрами и цветом. Числам 1, 2 и 3 соответствуют цвета – желтый, зеленый и красный. Нулевой проводник имеет белый цвет или маркировку цифрой «0». Подключение силовых контактов не представляет никакой сложности. Главное – это правильное подключение управляющего напряжения через кнопочный пост.

Подключение кнопочного поста

Рассмотрим 2 схемы подключения контактора к сети 380 В: для катушки с напряжением питания 380 В и 220 В.

Кнопочный пост имеет две кнопки. «Пуск» с нормально-открытыми и «Стоп» с нормально-закрытыми контактами. Питание к нему (фаза) подается через контакт №4 кнопки «Стоп». Между клеммами №3 «Стоп» и №2 «Пуск» устанавливаем перемычку, продлевая тем самым линию «фаза». Клемма А1 (фаза) контактора соединяется с контактом №1 «Пуск». Нулевая жила управляющего провода подключается на клемму А2. Между дублем контакта А1 и клеммой 14NO устанавливается перемычка. Клемма 13NO соединяется с контактом №2 «Пуск».

В случае, если схему управления необходимо запитать от одной фазы (фаза-ноль), при номинале катушки пускателя 220 В, схема подключения будет выглядеть следующим образом.

При нажатии кнопки «Пуск» происходит срабатывание силовых контактов и подается напряжение на блок-контакт, который обеспечивает рабочее (закрытое) положение силовых контактов, после того, как кнопка будет отпущена. Нажатием кнопки «Стоп» цепь на блок-контакте разрывается, и силовые контакты переходят в нормально-открытое положение. Более подробные описания подключения контакторов с иллюстрациями и видеороликами можно найти в интернете. Сделав эту работу несколько раз, в последующем вы будете выполнять ее автоматически.

Схема подключения магнитного пускателя на первый взгляд кажется сложной, однако справиться с таким устройством не составит труда, если придерживаться правил и рекомендаций по установке.
По своей сути, магнитный пускатель (кнопочный или бесконтактный) – это аппарат, который можно отнести к типу электромагнитных контактов, позволяющий справляться с нагрузками тока.

Он работает во время постоянных включений и выключений цепей.

С подключением магнитного пускателя становится реальным дистанционно управлять пуском, остановкой и общей работой трехфазного электродвигателя.

Однако подобное реле настолько неприхотливое, что позволяет управлять и другими механизмами: освещением, компрессорами, насосами, кранами, тепловым обогревателем или печью, кондиционерами.

Покупая подобный механизм, обращайте внимание: ведь кнопочный магнитный пускатель мало чем отличается от современного контактора.

Функции у них практически одинаковые, так что особых трудностей при подключении возникнуть не должно.

Принцип работы схемы довольно прост. Напряжение подается на катушку пускателя, после чего в ней возникает магнитное поле.

Именно за счет него внутрь катушки как бы втягивается сердечник из металла.

К сердечнику мы прикрепляет силовые контакты, при активации замыкающиеся, что позволяет току свободно протекать через провода.

Схема магнитного пускателя содержит пост, где установлены кнопки, активирующие пусковые и остановочные механизмы.

Как устроен механизм пускателя?

Прежде чем заниматься подключением магнитного пускателя, нужно понимать его схему комплектации: в нее входит сам прибор и пост (блок) с важнейшими контактами.

Хотя он не входит в основную часть схемы реле, при работе в схеме с дополнительными проводными элементами, например, с реверсом электродвигателя, нужно обеспечить разветвление проводов.

Здесь и необходим блок, который еще называют приставкой контактного типа к схеме.

Внутри такой приставки подключена контактная схема, которая плотно соединена с обычной контактной системой магнитного пускателя.

Такой механизм для трехфазного двигателя, например, состоит из двух пар замкнутых и двух пар разомкнутых контактов.

Чтобы снять блокирующую составляющую (при ремонте или подключении) достаточно отодвинуть специальные полозья, удерживающие крышку.

Схема состоит из двух частей: верхней и нижней. Кнопочный механизм для трехфазного двигателя легко различать по цвету. Например, кнопка «Стоп» имеет красный цвет.

В ней подключен размыкающий контакт, через который пройдет напряжение в схему. Кнопку, которая будет отвечать за запускание, окрашивают в зеленый.

В ней применяется замыкающий контакт, который при подключении проводит через схему электрический ток.

Схема подключения реверсивного магнитного пускателя имеет обычно защиту от случайных нажатий.

Для этого устанавливают дополнительные боковые контакты, где при срабатывании одного — второй будет блокироваться.

Монтажная схема выполняется в пару действий, зато на практике получается удобный кнопочный механизм.

Схема подключения устройства

Перед тем, как схема магнитного пускателя будет подключена, необходимо:

  • Обеспечить обесточивание на всем фронте нашей работы (обесточивание двигателя, части проводки). Проверить отсутствие напряжения можно специальными индикаторными инструментами, самое простое из них – отвертка, продается в любом строительном магазине;
  • Выяснить рабочее напряжение, особенно это актуально для элемента катушки. Оно пишется не на самой упаковке пускателя, а непосредственно на устройстве. Варианта тут только два: 380в или 220 вольт. Когда выбираем 220 вольт,а не 380в, то при подключении фотореле на катушку подаются фаза и ноль. Если речь идет о 380в, а не о 229, то используем две разноименные фазы. Если не разобраться между 220 и 380 вольтовыми реле, то схема просто может перегореть от разности напряжений;
  • Подбираем подходящие кнопки соответствующих цветов;
  • Для реле все нули, которые являются приходящими и отходящими, а также элементы, позволяющие достигнуть заземления, соединяются в схеме на клеммнике через устройство, не задевая его. Для катушки в 220 вольт берется ноль во время подсоединения, чего не следует делать для 380 вольт.

Последовательность подключения состоит из таких частей:

  • трех пар силовых элементов, которые будут отвечать за подачу электропитания, будь это схема электродвигателя или любого прибора;
  • схемы управления, включающей катушку, дополнительные провода и кнопки.

Самым простым считается процесс подключения реверсивного магнитного пускателя в количестве одной единицы. Это самая простая схема (на 220 или 380 вольт), чаще всего ее используют в работе двигателя.

Для фотореле нам понадобиться трехжильный кабель, который мы подключим к кнопкам, а также пара разомкнутых контактов.

Рассмотрим типичную схему подключения на 220 вольт. Если же Вы выбрали схему подключения на 380 вольт, то вместо синего ноля важно подключить другую разноименную фазу.

Пост контакта фотореле – это четвертая свободная фаза. На силовые контакты через схему идут три фазы.

Чтобы их можно было нормально подключить, на катушку подаем 220 вольт (или 380, а зависимости от выбора реле). Цепь замкнется — и мы сможем управлять работой электродвигателя.

Подключаем тепловое реле

Между магнитным пускателем и устройством двигателя можно пустить тепловое реле, которое может понадобиться для безопасной подачи тока к устройству двигателя.

Для чего нужно подключать тепловое реле? Неважно, какое напряжение идет в нашей схеме, 220 или 380 вольт: при скачках любой мотор может сгореть. Именно поэтому стоит поставить пост для защиты.

Фотореле позволяет схеме работать, даже если перегорела одна из фаз.

Подключают фотореле у выхода магнитного пускателя на устройство двигателя. Тогда ток напряжением 220 или 380 вольт проходит через пост с нагревателя фотореле и попадает внутрь двигателя.

На самом фотореле можно найти контакты, которые следует подключать к катушке.

Нагреватели теплового реле (фотореле) не вечны и имеют свой предел работы.

Так, пост такого магнитного пускателя сможет пропустить через себя только определенный показатель тока, который может иметь максимальный предел.

В противном случае последствия работы фотореле для двигателя будут плачевными – несмотря на защитный пост, он сгорит.

Если возникает неприятная ситуация, когда через пост пропускается ток выше заданных пределов, то нагреватели начинают воздействовать на контакты, нарушая общую цепь в приборе.

Как итог, пускатель выключается.

Выбирая фотореле для двигателя, обращайте внимание на его характеристики. Ток механизма должен подходить мощности двигателя (быть рассчитанным на 220 или 380 вольт).

Ставить такой защитный пост на обычные приборы не рекомендуется – только на моторы.

Как правильно выбрать магнитный пускатель?

Чтобы устройство не сгорело после подключения через пару недель, нужно внимательно относиться к выбору. Самые популярные серии пускателя ПМЛ и ПМ12.

Они поставляются как отечественными, так и зарубежными фирмами.

Каждая цифра величины указывается на тот ток, который пост сможет провести через схему без поломок и возгораний. Если ток нагрузки выше 63 А, то лучше покупать для подключения в схему контакторы.

Важная характеристика при подключении – класс износостойкости. Она показывает, сколько раз устройство сможет без затруднений срабатывать на нажатие.

Важный показатель, если механизм предстоит часто включать и выключать. Если в час предстоит много нажатий, то выбирают бесконтактные пускатели.

Кроме того, устройства могут продаваться с реверсами и без них. Применяют для реверсивных двигателей, где вращение идет сразу в две стороны.

Пускатель такого типа имеет сразу две катушки и две пары силовых контактов. К дополнительным элементам относят защитный механизм, лампочку, кнопки.

Всё о тепловых реле, расчет и выбор теплового реле для защиты двигателя

Всё о тепловых реле, расчет и выбор теплового реле для защиты двигателя

Тепловое реле – реле, которое реагирует на изменение тепловых величин (температуры, теплового потока и т.п.).

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

На реле РТИ эти контакты размещены на передней панели:

  • NO – нормально-открытый – на индикацию;
  • NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Iреле=IН*1.2…1.3

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Iреле=1.94*1.3=2.522

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

  • РТЛ-1007, с токовым диапазоном 1.5-2.6 А;
  • РТЛ-1008, токовый диапазон 2,4-4 А;
  • РТИ-1307, токовый диапазон 1,6…2,5 А;
  • РТИ-1308, токовый диапазон 2,5…4 А;
  • ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн – номинальный ток нагрузки электродвигателя, Iнэ – номинальный ток нагревательного элемента теплового реле, с – коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

N2 = (T – 30)/10

где Т – температура окружающей среды, °С.

Шаг третий:

N = N1 + N2

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Ранее ЭлектроВести писали, что компания Schneider Electric, мировой эксперт в управлении энергией и автоматизации, представляет обновление линейки термомагнитных автоматических выключателей электродвигателей TeSys GV3 – TeSys GV3P73 и GV3P80, рассчитанных на токи 73 A и 80 A соответственно, которые дополнят серию GV3P и полностью заменят серию GV3ME80, снимаемую с производства.

По материалам: electrik.info.

Принцип работы теплового реле

Конструкция теплового реле перегрузки

Коэффициент расширения – одно из основных свойств любого материала. Два разных металла всегда имеют разную степень линейного расширения. Биметаллическая полоса всегда изгибается при нагревании из-за неравенства линейного расширения двух разных металлов.

Принцип работы теплового реле

Тепловое реле работает в зависимости от вышеупомянутых свойств металлов.Основной принцип работы теплового реле заключается в том, что, когда биметаллическая полоса нагревается нагревательной катушкой, протекающей по току системы, она изгибается и замыкает нормально разомкнутые контакты.

Конструкция теплового реле

Конструкция теплового реле довольно проста. Как показано на рисунке выше, биметаллическая полоса состоит из двух металлов – металла A и металла B. Металл A имеет более низкий коэффициент расширения, а металл B имеет более высокий коэффициент расширения.

Когда через нагревательную спираль протекает сверхток, он нагревает биметаллическую ленту.
Из-за тепла, выделяемого змеевиком, оба металла расширяются. Но расширение металла B больше, чем расширение металла A. Из-за такого разного расширения биметаллическая полоса изгибается в сторону металла A, как показано на рисунке ниже.


Полоса изгибается, замыкающий контакт замыкается, что в конечном итоге приводит в действие катушку отключения автоматического выключателя.
Эффект нагрева не мгновенный. Согласно закону нагрева Джоуля, количество выделяемого тепла составляет

Где, I – ток перегрузки, протекающий через нагревательную катушку теплового реле.
R – электрическое сопротивление нагревательной спирали, t – время, в течение которого ток I течет через нагревательную спираль. Следовательно, из приведенного выше уравнения ясно, что теплогенератор у катушки прямо пропорционален времени, в течение которого через катушку протекает сверхток. Следовательно, существует длительная задержка срабатывания теплового реле.

Вот почему этот тип реле обычно используется там, где перегрузка может протекать в течение заранее определенного периода времени, прежде чем она сработает.Если перегрузка или перегрузка по току упадут до нормального значения до этого заданного времени, реле не сработает для отключения защищенного оборудования.
Типичное применение теплового реле – защита электродвигателя от перегрузки.

Что такое тепловые реле перегрузки и какие компоненты они защищают?

Тепло является основным фактором в работе и сроке службы двигателя, и одним из основных источников нагрева двигателя является ток, протекающий через обмотки двигателя. Поскольку нагрев является неизбежным условием работы двигателя, важно защитить двигатель от перегрева или тепловой перегрузки.

В предыдущем посте мы описали несколько типов датчиков, которые могут напрямую измерять температуру обмоток двигателя. Но в некоторых случаях – особенно для асинхронных двигателей переменного тока – нагрев двигателя можно измерить косвенно с помощью тепловых реле перегрузки, которые определяют температуру двигателя, контролируя величину тока, подаваемого на двигатель.


Тепловые реле перегрузки подключены последовательно с двигателем, поэтому ток, протекающий к двигателю, также проходит через реле перегрузки.Когда ток достигает или превышает заданный предел в течение определенного времени, реле активирует механизм, который размыкает один или несколько контактов, чтобы прервать прохождение тока к двигателю. Реле тепловой перегрузки классифицируются по классу срабатывания, который определяет время, в течение которого может произойти перегрузка, прежде чем реле сработает или отключится. Обычные классы поездки – 5, 10, 20 и 30 секунд.

Учет времени, а также тока важен для асинхронных двигателей переменного тока, потому что они потребляют значительно больше, чем их полный номинальный ток (часто 600 процентов или более) во время запуска.Таким образом, если реле немедленно сработает при превышении тока перегрузки, двигатель будет испытывать трудности с запуском.


Существует три типа тепловых реле перегрузки – биметаллические, эвтектические и электронные.

Биметаллические тепловые реле перегрузки (иногда называемые нагревательными элементами) изготовлены из двух металлов с разными коэффициентами теплового расширения, которые скреплены или соединены вместе. Обмотка, намотанная на биметаллическую полосу или размещенная рядом с ней, проводит ток.

В биметаллическом тепловом реле перегрузки нагрев из-за протекания тока заставляет биметаллическую полосу изгибаться в одну сторону, активируя механизм отключения.
Изображение предоставлено: Siemens

Поскольку ток, протекающий через реле (и, следовательно, через двигатель), нагревает биметаллическую полосу, два металла расширяются с разной скоростью, заставляя полосу изгибаться в сторону с более низким коэффициентом тепловое расширение. Когда полоса изгибается, она приводит в действие нормально замкнутый (NC) контактор, заставляя его размыкаться и прекращая прохождение тока к двигателю.Как только биметаллическое реле остынет и металлические полосы вернутся в свое нормальное состояние, цепь автоматически сбрасывается, и двигатель можно перезапустить.

Эвтектические тепловые реле перегрузки используют эвтектический сплав (комбинация металлов, плавящихся и затвердевающих при определенной температуре), помещенные в трубку и подключенные к обмотке нагревателя. Ток питания двигателя протекает через обмотку нагревателя и нагревает сплав. Когда сплав достигает достаточной температуры, он быстро превращается в жидкость.

В эвтектическом реле тепловой перегрузки нагрев из-за протекания тока вызывает быстрое разжижение эвтектического сплава, активируя механическое устройство, которое размыкает реле.
Изображение предоставлено: Rockwell Automation

В твердом состоянии сплав удерживает на месте механическое устройство, например пружину или трещотку. Но когда сплав плавится, механическое устройство срабатывает, размыкая контакты перегрузки. Подобно биметаллической конструкции, эвтектическое реле тепловой перегрузки не может быть сброшено до тех пор, пока сплав не остынет и не вернется в исходное твердое состояние.

Электронные тепловые реле перегрузки более точны и надежны, чем конструкции нагревателей, и могут предоставлять данные для диагностики и профилактического обслуживания.
Изображение предоставлено: ABB

Электронные тепловые реле перегрузки измеряют ток электронным способом, а не полагаются на механизм нагревателя, и поэтому они нечувствительны к изменениям температуры окружающей среды. Они также менее склонны к «неприятным» или ложным срабатываниям. Электронные реле перегрузки могут предоставлять такие данные, как процент использования тепловой мощности (% TCU), процент ампер полной нагрузки (% FLA), время до отключения, текущий среднеквадратичный ток и ток замыкания на землю – информацию, которая может помочь операторам проводить диагностику. и предсказать, когда реле может сработать.

Электронные устройства также могут защищать двигатели от потери фазы (также называемой обрывом фазы), которая возникает, когда ток одной фазы равен нулю ампер, часто из-за короткого замыкания или перегорания предохранителя. Это заставляет двигатель потреблять чрезмерный ток на оставшихся двух фазах и приводит к значительному нагреву двигателя.


Тепловые реле перегрузки обычно являются частью пускателя двигателя, который включает реле перегрузки с контактами. Важно отметить, что тепловые реле перегрузки предназначены только для защиты двигателя от перегрева и не срабатывают при коротком замыкании, поэтому для защиты цепи необходимы дополнительные предохранители или автоматические выключатели.


Реле перегрузки | Что такое защита от перегрузки?

Введение в двигатели

Электродвигатели являются неотъемлемой частью промышленного оборудования, игрушек, транспортных средств и электронных устройств. Они предназначены для преобразования электрической энергии в механическую. Эти устройства могут питаться от источников переменного или постоянного тока. Воздуходувки, вентиляторы, компрессоры, краны, экструдеры и дробилки – это несколько важных устройств, оснащенных электродвигателями.

Что такое асинхронный двигатель?

Асинхронный двигатель, также называемый синхронным двигателем, является одним из основных типов электродвигателей переменного тока, используемых в коммерческих и промышленных средах. Эти двигатели оснащены обмотками Armortisseur и работают по принципу электромагнитной индукции. Электромагнитное поле в роторе создается вращающимся полем статора. Короче говоря, мощность передается на обмотку ротора от статора через индукцию. Существует два основных типа асинхронных двигателей
– однофазные асинхронные двигатели и трехфазные асинхронные двигатели.

Введение в трехфазные асинхронные двигатели

Это один из наиболее широко используемых типов электродвигателей; и является неотъемлемой частью почти 80% промышленных приложений. Его популярность обусловлена ​​прочной конструкцией, отличными рабочими характеристиками, регулировкой скорости и отсутствием коммутатора. Как и любой обычный асинхронный двигатель, этот двигатель также состоит из статора и ротора.

  • Статор: Это неподвижный элемент асинхронного двигателя.Статор представляет собой небольшую цилиндрическую раму, на которой установлен цилиндрический сердечник ротора. Он имеет различные штамповки с прорезями для размещения трехфазных обмоток. Обмотки статора разделены на 120 градусов.
  • Ротор: Это вращающаяся часть двигателя. Ротор имеет многослойные цилиндрические пазы с медными или алюминиевыми проводниками, соединенными концами. Это вал двигателя.

Ротор трехфазного асинхронного двигателя классифицируется как ротор с фазной обмоткой или ротор с контактным кольцом и ротор с короткозамкнутым ротором.Среди этих двух ротор с короткозамкнутым ротором является одним из самых распространенных.

Асинхронные двигатели с короткозамкнутым ротором

Асинхронные двигатели с короткозамкнутым ротором известны как асинхронные двигатели с короткозамкнутым ротором. Они получили свое название, потому что ротор напоминает вращающуюся цилиндрическую «клетку», которую вы можете найти в клетке для домашней белки или хомяка. Эти двигатели доступны в размерах от долей лошадиных сил (л.с.) менее одного киловатта до 10 000 л.с. (десятки мегаватт).Такие факторы, как простота, прочная конструкция и постоянная скорость при различных размерах нагрузки, способствовали их популярности. Как и другие асинхронные двигатели, двигатель с короткозамкнутым ротором состоит из:

  • Ротор: Это элемент цилиндрической формы, установленный на валу. Он содержит продольно организованные токопроводящие шины. Стержни изготовлены из меди или алюминия и вставлены в канавки, которые соединяются на концах, образуя структуру, подобную клетке. Ротор имеет многослойный сердечник, который помогает избежать потерь мощности из-за гистерезиса и вихревых токов.Провода ротора перекошены, что помогает предотвратить зазубрины при запуске оборудования. Кроме того, этот перекос обеспечивает улучшенный коэффициент трансформации между ротором и статором.
  • Статор: Состоит из трехфазной обмотки вдоль сердечника. Статор помещен в металлический корпус. Обмотки статора организованы таким образом, что они расположены на расстоянии 120 градусов друг от друга в пространстве, и установлены на многослойном железном сердечнике. Этот железный сердечник обеспечивает путь сопротивления для потока, создаваемого токами переменного тока.

Что такое защита от перегрузки?

Когда двигатель потребляет избыточный ток, это называется перегрузкой. Это может вызвать перегрев двигателя и повредить обмотки двигателя. В связи с этим важно защитить двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от условий перегрузки. Реле перегрузки защищают двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от чрезмерного нагрева в условиях перегрузки.Реле перегрузки являются частью пускателя двигателя (блок контактора плюс реле перегрузки). Они защищают двигатель, контролируя ток, протекающий в цепи. Если ток поднимается выше определенного предела в течение определенного периода времени
, то реле перегрузки срабатывает, приводя в действие вспомогательный контакт, который прерывает цепь управления двигателем, обесточивая контактор. Это приводит к отключению питания двигателя. Без питания двигатель и его компоненты цепи не перегреваются и не выходят из строя.Реле перегрузки можно сбросить вручную, а некоторые реле перегрузки автоматически сбрасываются через определенный период времени. После этого мотор можно перезапустить.

Как работает реле перегрузки

Реле перегрузки подключено последовательно с двигателем, поэтому ток, который течет к двигателю во время работы двигателя, также проходит через реле перегрузки. Он сработает на определенном уровне, когда через него протекает избыточный ток. Это приводит к размыканию цепи между двигателем и источником питания.Реле перегрузки можно сбросить вручную или автоматически по истечении заданного времени. Двигатель можно перезапустить после выявления и устранения причины перегрузки.

Типы реле перегрузки

Биметаллическое реле перегрузки

Многие реле перегрузки содержат биметаллические элементы или биметаллические полосы, также называемые нагревательными элементами. Биметаллические ленты изготовлены из двух типов металлов: один с низким коэффициентом расширения, а другой с высоким коэффициентом расширения.Эти биметаллические полосы нагреваются за счет намотки на биметаллическую полосу, по которой проходит ток. Обе металлические полоски расширятся из-за тепла. Однако металл с высоким коэффициентом расширения будет расширяться больше по сравнению с металлом с низким коэффициентом расширения. Такое разное расширение биметаллических полос приводит к изгибу биметалла по направлению к металлу с низким коэффициентом расширения. Когда полоса изгибается, он приводит в действие механизм вспомогательных контактов и вызывает размыкание нормально замкнутого контакта реле перегрузки.В результате цепь катушки контактора прерывается. Количество выделяемого тепла можно рассчитать по закону нагрева Джоуля. Он выражается как H ∝ I2Rt.

  • I – ток перегрузки, протекающий через обмотку вокруг биметаллической ленты реле перегрузки.
  • R – электрическое сопротивление обмотки биметаллической ленты.
  • t – период времени, в течение которого ток I протекает через обмотку вокруг биметаллической полосы.

Приведенное выше уравнение определяет, что тепло, выделяемое обмоткой, будет прямо пропорционально периоду времени прохождения максимального тока через обмотку. Другими словами, чем ниже ток, тем больше времени потребуется реле перегрузки для срабатывания, и чем выше ток, тем быстрее сработает реле перегрузки, фактически оно сработает намного быстрее, потому что срабатывание реле является функцией текущий квадрат.

Биметаллические реле перегрузки часто используются, когда требуется автоматический сброс цепи, и происходит потому, что биметалл остыл и вернулся в исходное состояние (форму).Как только это произойдет, двигатель можно будет перезапустить. Если причина перегрузки не устранена, реле снова сработает и сбрасывается с заданными интервалами. При выборе реле перегрузки важно соблюдать осторожность, поскольку повторное отключение и сброс могут сократить механический срок службы реле и вызвать повреждение двигателя.

Во многих случаях электродвигатель устанавливается в месте с постоянной температурой окружающей среды, а реле перегрузки и пускатель электродвигателя могут быть установлены в другом месте, которое подвержено различным температурам окружающей среды.В таких приложениях точка срабатывания реле перегрузки может варьироваться в зависимости от нескольких факторов. Ток, протекающий через двигатель, и температура окружающего воздуха являются двумя факторами, которые могут вызвать преждевременное отключение. В таких случаях используются биметаллические реле перегрузки с компенсацией внешней среды. Реле этого типа имеют два типа биметаллических полос: компенсированная биметаллическая полоса и первичная нескомпенсированная биметаллическая полоса. При температуре окружающей среды обе эти полоски изгибаются одинаково, предотвращая ложное срабатывание реле перегрузки.Однако первичная биметаллическая полоса – единственная полоса, на которую влияет ток, протекающий через нагревательный элемент и двигатель. В случае перегрузки расцепитель будет задействован основной биметаллической полосой.

Реле перегрузки эвтектики

Реле перегрузки этого типа состоит из обмотки нагревателя, механического механизма для активации механизма отключения и эвтектического сплава. Эвтектический сплав – это комбинация двух или более материалов, которые затвердевают или плавятся при определенной известной температуре.

В реле перегрузки эвтектический сплав содержится в трубке, которая часто используется вместе с подпружиненным храповым колесом для активации отключающего механизма во время операций по перегрузке. Ток двигателя проходит через небольшую обмотку нагревателя. Во время перегрузки трубка из эвтектического сплава нагревается обмоткой нагревателя. Сплав плавится под действием тепла, освобождая храповое колесо и позволяя ему вращаться. Это действие инициирует размыкание замкнутых вспомогательных контактов в реле перегрузки.

Реле перегрузки Eutectic можно сбросить вручную только после срабатывания. Этот сброс обычно выполняется с помощью кнопки сброса, которая расположена на крышке реле. Нагреватель, установленный на реле, выбирается исходя из тока полной нагрузки двигателя.

Твердотельное реле перегрузки

Эти реле обычно называют электронными реле перегрузки. В отличие от биметаллических и эвтектических реле перегрузки, эти электронные реле перегрузки измеряют ток электронным способом.Несмотря на то, что они доступны в различных исполнениях, они обладают общими характеристиками и преимуществами. Безнагревная конструкция – одно из главных преимуществ этих реле. Такая конструкция помогает снизить затраты и усилия по установке. Кроме того, конструкция без нагревателя нечувствительна к изменению температуры окружающей среды, что помогает свести к минимуму нежелательные срабатывания. Эти реле также обеспечивают защиту от потери фазы – более эффективно, чем реле перегрузки из биметаллических или эвтектических сплавов. Эти реле могут легко обнаружить обрыв фазы и задействовать вспомогательный контакт для размыкания цепи управления двигателем.Твердотельные реле перегрузки позволяют легко регулировать время срабатывания и уставки.

Срабатывание реле перегрузки

Время срабатывания реле перегрузки будет уменьшаться при увеличении тока. Эта функция нанесена на график обратной зависимости времени ниже и называется классом отключения. Класс отключения также указывает время, необходимое реле для размыкания в состоянии перегрузки.

Классы отключения 5, 10, 20 и 30 являются общими. Эти классы предполагают, что реле перегрузки сработает через 5, 10, 20 и 30 секунд.Это отключение обычно происходит, когда двигатель работает на 720% от своей полной нагрузки. Класс отключения 5 подходит для двигателей, требующих быстрого отключения, тогда как класс 10 обычно предпочтителен для двигателей с низкой тепловой мощностью, таких как погружные насосы. Классы 10 и 20 используются для приложений общего назначения, тогда как класс 30 используется для нагрузок с высокой инерцией. Реле класса 30 помогают избежать ложных срабатываний.

Мы надеемся, что эта короткая статья дала вам хорошее базовое представление о реле перегрузки.Поищите другие информационные документы от c3controls на c3controls.com/blog.

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг. Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты.Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям. Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Руководство по выбору тепловых реле перегрузки

Реле тепловой перегрузки являются защитными устройствами.Они предназначены для отключения электроэнергии, если двигатель потребляет слишком большой ток в течение длительного периода времени. Для этого тепловые реле перегрузки содержат нормально замкнутое (NC) реле. Когда через цепь двигателя протекает чрезмерный ток, реле размыкается из-за повышения температуры двигателя, температуры реле или измеренного тока перегрузки, в зависимости от типа реле.

Тепловые реле перегрузки аналогичны автоматическим выключателям по конструкции и использованию, но большинство автоматических выключателей отличаются тем, что они прерывают цепь, если перегрузка возникает даже на мгновение.Реле тепловой перегрузки, наоборот, предназначены для измерения профиля нагрева двигателя; поэтому перегрузка должна произойти в течение длительного периода, прежде чем цепь будет прервана.

Технические характеристики

База данных GlobalSpec SpecSearch содержит информацию о различных технических характеристиках реле тепловой перегрузки, включая тип, электрические характеристики, характеристики переключателя и его характеристики.

Тип

Покупатели могут выбирать между несколькими типами реле, включая биметаллическое тепловое , твердотельное или реле контроля температуры .

Как следует из названия, биметаллические тепловые реле используют биметаллическую полосу для механического размыкания контактов. Биметаллические полосы состоят из двух соединенных между собой кусков металла, которые расширяются с разной скоростью при нагревании. Эта разница заставляет полосу изгибаться при нагревании. В тепловом реле полоса прикрепляется пружиной к контакту. Когда избыточное тепло от сверхтока заставляет полоску изгибаться и растягивать пружину, контакты размыкаются и цепь разрывается.Когда полоска охлаждается, она возвращается к своей первоначальной форме.

Это видео демонстрирует использование биметаллического переключателя, при этом биметаллическая полоса выделена в середине видео. Когда пламя воздействует на выключатель, полоса изгибается, и выключатель размыкается. Обратите внимание, что когда полоска остывает, полоска возвращается в исходное положение, и переключатель замыкается.

Видео предоставлено: Elektronaut / CC BY-SA 4.0

Твердотельные реле – это электронные устройства, не имеющие движущихся или механических частей.Вместо этого реле вычисляет среднюю температуру двигателя, отслеживая его пусковой и рабочий токи. Твердотельные реле, как правило, быстрее электромеханических, а также имеют регулируемые уставки и время срабатывания. Поскольку они не способны генерировать искру, их можно использовать во взрывоопасных средах.

Реле контроля температуры непосредственно измеряет температуру двигателя с помощью термистора или терморезисторного датчика (RTD), встроенного в обмотку двигателя.Когда достигается номинальная температура зонда, его сопротивление быстро увеличивается. Это увеличение затем обнаруживается пороговой схемой, которая размыкает контакты реле.

Реле перегрузки из плавящегося сплава (или эвтектического) состоит из катушки нагревателя, эвтектического сплава и механического механизма для размыкания цепи. Используя катушку нагревателя, реле измеряет температуру двигателя, контролируя величину потребляемого тока.

Электрические характеристики

Электрические характеристики реле

включают диапазон тока, информацию о срабатывании, фазу и управляющее напряжение.

Отключение используется для описания размыкающего действия реле перегрузки и автоматических выключателей. Реле тепловой перегрузки могут включать в себя несколько спецификаций об этом действии.

Диапазон тока полной нагрузки относится к диапазону значений тока, на который устанавливается реле. Паспортная табличка двигателя будет включать номинальный ток полной нагрузки для этого конкретного двигателя. Для срабатывания теплового реле перегрузки необходимо, чтобы точка тока полной нагрузки реле соответствовала значению, указанному на паспортной табличке.

Диапазон температурного отключения применяется к реле, которые предназначены для измерения температуры вместо тока, например, твердотельные реле или реле контроля температуры.

Класс отключения означает максимальное время в секундах, в течение которого реле может выдержать 6-кратный номинальный ток до отключения. Например, реле класса 10 может выдерживать 600% своего номинального тока в течение 10 секунд, пока не сработает. Класс отключения является важной характеристикой, потому что цепь пуска двигателя увеличивает потребляемый ток на короткие периоды времени при каждом запуске двигателя.Реле перегрузки должно выдерживать эти высокие пусковые токи без отключения. Можно сказать, что синхронизация класса отключения позволяет реле «различать» обычно высокие пусковые токи и аномально высокие токи перегрузки.

Термин «полюс» описывает количество отдельных цепей, управляемых переключателем. Количество цепей определяет количество контактов переключателя, которое, в свою очередь, определяет полюса, необходимые для замыкания или размыкания контактов. Выключатели обычно имеют от одного до четырех полюсов.

Управляющее напряжение – важная спецификация, поскольку напряжение цепи управления часто отличается от заданного напряжения двигателя. Это известно как «раздельное управление». Управляющее напряжение обычно меньше напряжения двигателя, и реле перегрузки следует выбирать в соответствии с этой спецификацией.

Характеристики

Покупатели могут выбрать реле с рядом специальных атрибутов.

  • Реле с автоматическим сбросом вернется в исходное «закрытое» положение через заданный период времени.Если после сброса двигатель все еще будет перегружен, реле снова сработает.
  • Реле с компенсацией температуры окружающей среды эффективно работают в широком диапазоне температур окружающей среды.
  • Некоторые реле имеют различные степени контроля фазы . Эти продукты могут проверять обрыв фазы, реверсирование или дисбаланс. При обнаружении каких-либо проблем с фазами реле срабатывает и отключает питание двигателя. В частности, асимметрия фаз может вызвать опасные колебания напряжения или тока двигателя и привести к его повреждению.

  • Обнаружение недогрузки относится к способности реле обнаруживать падение тока в результате разгрузки. Это может произойти, если, например, насос начинает работать всухую. Эти реле предназначены для обнаружения этих различий и срабатывания, как при обнаружении перегрузки.

  • Реле с визуальными индикаторами – это изделия со светодиодами или другими индикаторами состояния.

Стандарты

BS EN 60255-149 – Функциональные требования к тепловым электрическим реле

Список литературы

Качество электроэнергии и приводы – Класс реле перегрузки с выдержкой времени

Изображение предоставлено:

Eaton Corporation | Benshaw, Inc.| Низковольтная продукция ABB | Enasco | Излишек Skycraft


Реле перегрузки – Принцип действия, типы, подключение

Каждый двигатель должен быть защищен от всех возможных неисправностей, чтобы обеспечить длительную и безопасную работу, а также потерю времени из-за поломки. Почти все отрасли промышленности полагаются на электродвигатель для управления своими процессами и производством. Следовательно, необходимо сделать двигатель отказоустойчивым.

Реле перегрузки

– одно из таких устройств, которое защищает двигатель от повреждений, вызванных перегрузками и токами . Используется с контакторами и может быть найден в центрах управления двигателями и пускателях двигателей.

Изображение: Реле перегрузки

Определение реле перегрузки

Реле перегрузки – это устройство, которое защищает электродвигатель от перегрузок и обрыва фазы.

Он определяет перегрузку двигателя и прерывает поток энергии к двигателю, тем самым защищая его от перегрева и повреждения обмотки. Помимо перегрузок, он также может защитить двигатель от обрыва / пропадания фаз и дисбаланса фаз .Они широко известны как OLR .

Что такое перегрузка?

Перегрузка – это состояние, при котором двигатель потребляет ток, превышающий его номинальное значение, в течение длительного периода.

Это наиболее распространенная неисправность, которая может привести к повышению температуры обмотки двигателя. Следовательно, важно быстрое возвращение к нормальной работе.

Принцип операция

Тепловое реле перегрузки работает по принципу электротермических свойств биметаллической ленты.Он размещен в цепи двигателя таким образом, чтобы ток, подаваемый на двигатель, проходил через его полюса. Биметаллическая полоса прямо или косвенно нагревается током и, когда ток превышает установленное значение, изгибается.

Они всегда работают в сочетании с контакторами. Когда биметаллические полоски нагреваются, срабатывает размыкающий контакт, который, в свою очередь, прерывает подачу питания на катушку контактора, обесточивая ее и прерывая ток, протекающий к двигателю. Это время отключения всегда обратно пропорционально току, протекающему через OLR.Следовательно, чем больше ток, тем быстрее он сработает. Поэтому тепловые реле перегрузки называются реле , зависящими от тока и с обратной выдержкой времени.

A = Биметаллические ленты с косвенным нагревом
B = Шток переключения
C = Рычаг переключения
D = Контактный рычаг
E = Компенсационная биметаллическая лента
Авторы и права: Rockwell

Типы перегрузки реле

Реле перегрузки можно классифицировать следующим образом:

  1. Биметаллические тепловые реле перегрузки
  2. Электронные реле перегрузки

Принцип работы , описанный выше, немного отличается друг от друга.Давайте обсудим это в следующих разделах.

Как объяснено выше, биметаллическое тепловое реле работает на нагревательные свойства биметаллической ленты. В методе прямого нагрева полный ток двигателя протекает через OLR. Следовательно, он нагревается непосредственно током.

Но в случае косвенного нагрева биметаллическая полоса удерживается в тесном контакте с проводником с током внутри OLR. Чрезмерный ток, протекающий к двигателю, нагревает проводник и, следовательно, биметаллическую полосу.Проводник должен быть изолирован, чтобы ток через ленту не протекал.

Работа электронного реле перегрузки

Электронные реле перегрузки не имеют внутри биметаллической планки. Вместо этого он использует датчики температуры или трансформаторы тока, чтобы определять величину тока, протекающего к двигателю. Для защиты используется микропроцессорная технология. Температура измеряется с помощью PTC, и он используется для отключения цепи в случае сбоев из-за перегрузки.Некоторые электронные реле перегрузки поставляются с трансформаторами тока и датчиками Холла, которые напрямую определяют величину протекающего тока.

Основным преимуществом электронного OLR перед тепловым OLR является то, что отсутствие биметаллической ленты приводит к низким тепловым потерям внутри реле. Кроме того, электронные реле более точны, чем тепловые реле. Некоторые производители создают электронные реле с расширенными функциями, такими как защита от замыкания на землю, защита двигателя от опрокидывания и т. Д. Электронные реле перегрузки очень подходят для приложений, требующих частого запуска и остановки двигателей.

Они сконструированы таким образом, чтобы выдерживать пусковой ток (который обычно в 6-10 раз превышает ток полной нагрузки) двигателя в течение ограниченного периода времени (обычно 15-30 секунд в зависимости от порогового значения тока).

Детали теплового реле перегрузки

Помимо биметаллической ленты и контактов, обсуждаемых в Раздел принципа работы, в реле перегрузки есть еще несколько частей это необходимо упомянуть.

Терминал

Клеммы L1, L2, L3 являются входными клеммами.Это может быть прямо установлен на контактор. Питание двигателя может быть подключено к клеммам T1, Т2, Т3.

Установка диапазона ампер

Поворотная ручка присутствует над реле перегрузки. С помощью этой ручки можно установить номинальный ток двигателя. Сила тока может быть установлена ​​между предусмотренными верхним и нижним пределами. В случае электронного реле перегрузки также предусмотрена дополнительная ручка для выбора класса срабатывания.

Кнопка сброса

На реле перегрузки имеется кнопка сброса для сброса реле перегрузки после отключения и устранения неисправности.

Выбор ручного / автоматического сброса

С помощью кнопки выбора ручного / автоматического сброса мы можем выбирать между ручным и автоматическим сбросом этих реле после отключения. Если устройство настроено на автоматический режим, возможен удаленный сброс OLR.

Вспомогательный контакт

Они снабжены двумя вспомогательными контактами – одним нормально разомкнутым (97-98) и другим нормально замкнутым (95-96). НО контакт предназначен для сигнализации срабатывания, а НЗ контакт – для отключения контактора. НЗ-контакты должны обеспечивать прямое переключение катушки контактора.

Тестовая кнопка

Используя кнопку тестирования, можно проверить проводку управления.

Символ реле перегрузки Символ теплового OLR

Здесь 1, 2, 3, 4, 5 и 6 – клеммы питания, 95 и 96 – контакты отключения, а 97 и 98 – контакты сигнализации.

Что такое поездка Класс реле перегрузки?

Время, затрачиваемое ими на размыкание контактора при перегрузках, определяется классом отключения .Обычно он подразделяется на класс 10, класс 20, класс 30 и класс 5. OLR отключается через 10 секунд, 20 секунд, 30 секунд и 5 секунд соответственно при 600% тока полной нагрузки двигателя.

Очень часто используются

Class 10 и Class 20. Реле перегрузки класса 30 используются для защиты двигателей, приводящих в движение высокоинерционные нагрузки, а реле класса 5 используются для двигателей, требующих очень быстрого отключения.

Предоставлено: Шнайдер.

Как пользоваться реле перегрузки в цепи?

Они всегда используются в комбинации с контакторами в цепи.Он подключен к двигателю так, что ток, идущий к двигателю, полностью протекает через него. Ниже представлены различные типы соединений для однофазных и трехфазных двигателей.

Где К1 и К1М – реле перегрузки. Первый и второй рисунки показывают подключение однофазного двигателя, а третий показывает подключение трехфазного двигателя.

Что вызывает отключение OLR?

Как обсуждалось выше, существует трех основных условий отключения по перегрузке :

  1. Перегрузка мотора.
  2. Обрыв входной фазы
  3. Асимметрия фаз.

Помимо этого, может быть доступна дополнительная функция защиты. Это варьируется от одного производителя к другому.

Как реле перегрузки защищает от обрыва фазы?

Во время нормальной работы ток, протекающий через каждый полюс реле перегрузки к двигателю, остается неизменным. Если какая-либо фаза прерывается, ток в двух других фазах возрастает до 1.73 раза больше нормального значения. Следовательно, реле перегрузки нагревается и срабатывает. Обрыв фазы также известен как однофазный двигатель или обрыв фазы.

Может OLR защитить от короткие замыкания?

Реле перегрузки не могут защитить от короткого замыкания. Их всегда следует использовать с устройствами защиты от короткого замыкания. В противном случае короткое замыкание в двигателе может привести к его повреждению. Они могут защитить от перегрузок, потери фазы и дисбаланса фаз, но не от короткого замыкания.

Сводка

Реле перегрузки – это устройство, которое может защитить двигатель от перегрузок, обрыва фазы и дисбаланса фаз. По принципу действия они подразделяются на тепловые и электронные реле перегрузки. Thermal OLR основан на принципе деформации биметаллической ленты при нагревании, а электронное реле перегрузки представляет собой микропроцессорное устройство.

OLR используются в сочетании с контакторами. Он размыкает контактор всякий раз, когда обнаруживает неисправность.Время, затрачиваемое ими на размыкание контактора при перегрузках, определяется его классом отключения. Реле перегрузки не могут защитить от короткого замыкания.

Работа, типы, схема подключения и применение

У всего оборудования есть предел рабочего диапазона, кран, предназначенный для подъема 10 тонн, не может поднять 20 тонн, и если мы попытаемся это сделать, это будет не только небезопасно, но и опасно. повредит сам кран. Эта аналогия в точности применима к электрическому оборудованию. Каждое электрическое оборудование рассчитано на определенную нагрузку (ток), и любая перегрузка постигнет судьбу крана.Тенденция к увеличению производительности неосознанно увеличивает нагрузку, превышающую ее возможности, а производительность системы кормления делает ее небезопасной. Более того, поскольку электрические параметры всегда динамичны и гибки, становится необходимым использовать реле перегрузки с электрооборудованием там, где это возможно. Здесь мы ограничимся реле перегрузки электрического оборудования, такого как двигатели, трансформаторы и т. Д.

Что такое реле перегрузки?

Определение: Реле – это устройство, которое должно работать при определенных условиях, и если оно работает в условиях перегрузки, в электрической терминологии оно известно как реле перегрузки.Реле перегрузки – это устройство, используемое для отключения / индикации состояния перегрузки (перегрузки по току) в электрическом оборудовании и, таким образом, для его защиты. Мы также можем назвать это реле защиты от перегрузки.

Реле перегрузки

Рабочее реле перегрузки

В тепловом реле перегрузки обычно используется полоса, сделанная из двух разнородных металлов (металлов с разным коэффициентом расширения), которые нагреваются через небольшую нагревательную катушку током, идущим в двигатель или любой другой прибор.Нагреватель рассчитан на работу только с допустимым током. Если ток превышает выделяемое тепло, биметаллическая полоса изгибается из-за разницы в расширении. Из-за этого изгиба срабатывает рычаг включения / отключения и генерирует команду отключения на двигатель, тем самым защищая его. Расстояние между рычагом отключения и биметаллической полосой можно регулировать, что позволяет изменять настройки срабатывания.

В трехфазном двигателе эти реле также имеют встроенную функцию, которая приводит в действие рычаг даже при большой разнице между фазными токами, защищающей двигатель также от однофазного режима.

Типы реле перегрузки

У нас может быть много типов реле перегрузки, но наиболее широко используются следующие:

  • Тепловые реле перегрузки.
  • Магнитные реле перегрузки.
  • Электронные реле перегрузки

Разберем каждое по одному.

Тепловое реле перегрузки

Поскольку эти реле являются наиболее распространенными, мы обсудим их подробно.

Тепловой Тип

Прохождение тока в любом проводнике вызывает выделение тепла, и количество выделяемого таким образом тепла зависит от проводимости используемого материала.Мы также знаем, что тепло заставляет каждый материал расширяться в зависимости от их коэффициента расширения. Комбинация этих двух явлений используется в тепловых реле перегрузки.

Магнитное реле перегрузки

Этот тип реле используется в тяжелых условиях перегрузки, которая может возникнуть из-за внутренней неисправности или короткого замыкания, и в таких условиях срабатывание должно быть почти мгновенным, чтобы избежать серьезных повреждений. Принцип действия – магнитное действие тока, которое пропорционально величине тока.

Магнитный тип

Из приведенной выше диаграммы видно, что через магнитный элемент проходит сильный ток, он сильно намагничивается и тянет сердечник к катушке. Сердечник прикреплен к рычагу отключения, который, в свою очередь, прерывает подачу питания на главный подрядчик / автоматический выключатель, тем самым отключая питание устройства.

Кроме того, у нас могут быть реле типа Dashpot, в которых плунжер перемещается в приборной панели, заполненной маслом, или мы могли бы иметь реле типа OL с плавким элементом, которое прилегает к плавкому элементу и использует нагревательный эффект тока.Эти типы реле сейчас устарели.

Электронные реле перегрузки

Электронные реле сейчас в порядке вещей и постепенно заменяют все другие реле. Эти реле представляют собой микропроцессорные или цифровые реле, основанные на цифровой технологии. Такие реле имеют множество дополнительных функций, таких как ограничение количества горячих пусков двигателя и т. Д. Основной принцип состоит в том, чтобы отобрать ток, потребляемый устройством, сравнить его с настройками, а затем сформировать сигнал отключения.Реле перегрузки обозначаются различными символами и не имеют общего обозначения. Однако наиболее часто используются простые, тепловые и магнитные.

Настройка реле перегрузки

Настройка реле перегрузки – сложная часть, так как есть много школ по этому поводу, некоторые говорят, что это следует делать при 70% от полного тока нагрузки двигателя, а некоторые говорят, что это следует делать при ток почти полной нагрузки двигателя. Тем не менее, многие факторы влияют на правильный выбор диапазона и настройку реле перегрузки.Мы будем рассматривать реле перегрузки только в прямой онлайн-конфигурации.

  • Давайте сначала посмотрим, от каких факторов зависит ток, потребляемый двигателем после установки.
  • Механическая нагрузка на двигатель.
  • Качество питания, то есть изменение напряжения, изменение частоты и их совокупный эффект.
  • Эксплуатационный коэффициент мотора.
  • В некоторой степени условия окружающей среды и их содержание.

Механическая нагрузка оказывает прямое и основное влияние на потребляемый ток.Поскольку качество питания оставляет желать лучшего, у нас есть большие колебания напряжения и частоты, которые также влияют на ток, потребляемый двигателем, но это колебание может составлять, скажем, от 10 до 15 процентов. Сервисный коэффициент позволяет нам увеличить нагрузку на двигатель на 15%. Условия окружающей среды и содержание (коэффициент обслуживания) имеют некоторые номинальные эффекты.

Учитывая все вышеперечисленные факторы, необходимо выбрать и настроить реле перегрузки. Эти факторы различны для каждого приложения, и поэтому, на мой взгляд, не может быть никакого правила большого пальца для настройки реле.Реле перегрузки должно быть установлено примерно на 10–15 процентов выше фактической нагрузки, потребляемой двигателем. Цель состоит в том, чтобы полностью защитить двигатель и в то же время избежать неприятных внешних факторов. Диапазон реле должен быть таким, чтобы он позволял установить максимальное значение на 10–20 процентов выше тока полной нагрузки двигателя.

В качестве примера, если нам нужно выбрать диапазон реле перегрузки для двигателя с током полной нагрузки, скажем, 10 ампер, он должен быть от 7 до 12 ампер или как можно ближе к нему.

Схема подключения

На схеме подключения реле перегрузки ниже показана схема подключения питания и управления реле перегрузки в конфигурации прямого подключения для трехфазного двигателя мощностью 2 кВт.

Схема подключения

Схема подключения не требует пояснений, на ней показано реле перегрузки, которое размещено в пускателе DOL и подключено к клеммам двигателя. Схема управляет устройством отключения.

Применение реле перегрузки

Реле перегрузки – это защитное устройство, которое следует использовать с каждым электрическим устройством, но его использование становится очень необходимым с машинами и приборами, которые часто подвергаются условиям перегрузки.Некоторые из них приведены ниже.

  • Двигатели
  • Трансформаторы
  • Генераторы
  • Нагреватели
  • Бытовая техника и т. Д.

Часто задаваемые вопросы

1) Что вызывает отключение при перегрузке?

Перегрузка (перегрузка по току) вызывает срабатывание реле перегрузки.

2) Какие два основных типа реле?

Два основных типа реле – это реле тепловой перегрузки и реле магнитной перегрузки.

3) Как проверить реле перегрузки двигателя?

Реле перегрузки можно проверить, подав в него заданный ток и затем отметив время, необходимое для отключения.Сравнивая его с требуемыми характеристиками.

4) Сколько существует типов реле?

В основном есть три типа реле. Реле тепловой перегрузки, магнитные реле перегрузки и электронные реле перегрузки.

5) Что такое электронное реле перегрузки?

Электронные реле перегрузки – это реле, в которых используются такие электронные устройства, как микропроцессоры и другие полупроводники.

Таким образом, реле перегрузки имеет первостепенное значение для бесперебойной и надежной работы любой электрической машины на устройстве.Доскональное знание этого сделает наши системы технического обслуживания не только надежными, но и безопасными. В этой области происходит множество достижений, которые делают реле перегрузки все более сложными и заслуживающими доверия.

(PDF) Реле тепловой перегрузки с ферромагнитным приводом

Реле тепловой перегрузки с ферромагнитным приводом 65

Сила инерции обеспечивается действием силы тяжести

при потере магнитных свойств. Внезапное увеличение веса на

заставляет опорную плиту опускаться вниз –

под действием силы тяжести.При этом условии вес опорной плиты на

больше, чем сдерживающей силы пружины

(рабочее усилие> Удерживающие силы). Следовательно, пластина основания

толкает подвижный контакт вниз, чтобы закоротить неподвижный контакт

, после чего срабатывает цепь отключения.

Цепь отключения в конечном итоге отключает двигатель от источника питания

путем размыкания нормально замкнутых (NC) переключателей.

Действие этого реле

можно ясно понять из рисунка 4, который показывает его полную работу.Цепь отключения

срабатывает только во время состояния неисправности путем замыкания контактов

. После устранения неисправности на реле подается питание

, а генератор магнитного поля

используется для возврата феррожидкости в исходное положение.

Переводит подвижный контакт в нерабочее положение

.

В этом реле используется полуавтоматический механизм сброса

, так что после опускания феррожидкости она может быть перемещена в исходное положение

с помощью шагового двигателя

, управляемого генератором магнитного поля.Автоматический сброс реле нагрузки

обычно не рекомендуется из-за возможной опасности для персонала

. Неожиданный повторный запуск

машины может привести к возникновению опасной ситуации для оператора или электрика, поскольку предпринимаются попытки выяснить, почему машина остановилась.

5. Преимущества

· Реле повышают безопасность, обеспечивая полную электрическую изоляцию

от сильных токов и напряжений во время сбоя в системе

.Он поставляется во всех формах и размерах

для различных приложений и имеет различные конфигурации контактов переключателя

. В результате его можно использовать для переключения нескольких контактов

одновременно.

· Тепловые реле перегрузки обеспечивают гибкую защиту двигателя

от перегрева, и эти реле имеют

Рисунок 4. Работа феррожидкостного реле.

способность противостоять ударам и вибрации нормального применения.

plication. Он также обеспечивает такие функции, как компенсация температуры окружающей среды

(компенсация температуры окружающей среды

является важным фактором, поскольку при температуре

кожух перегрузки подвергается сильным колебаниям, когда предполагается, что кожух будет работать либо в

более высокая или более низкая температура окружающей среды).

· Это реле может также использоваться для защиты трансформатора

[7]. Необходимо защитить трансформатор от перегрева

. Перегрев трансформатора приведет к повреждению обмотки трансформатора, и, как правило, температура бывшего трансформатора

должна быть ограничена ниже 110 ° C для нормальной работы

. Реле также может быть использовано в защите

генератора. В некоторых случаях обмотка возбуждения

может перегреться из-за протекания через нее большого тока

.Следовательно, очень важно защитить

обмотку возбуждения генератора от перегрева.

· Это реле имеет повышенную точность, поскольку оно отключает цепь

при определенной температуре. Другие типы реле перегрузки

являются чисто механическими и зависят от

температурных характеристик используемого металла

. Здесь феррожидкостное реле имеет очень резкую рабочую характеристику

, поскольку оно размыкает контакт

, когда температура достигает температуры Кюри.

· Он может выдерживать повторяющиеся циклы отключения и сброса без необходимости замены

, поскольку свойство феррожидкости

полностью обратимо. Таким образом, это более выгодно, чем использование предохранителя, который требует частой замены

после срабатывания.

· Это ферромагнитное реле также находит применение в ядерном реакторе

. Очень важно ограничить ядерный реактор

определенной температурой, выше которой он может стать нестабильным.Следовательно, в этом случае это реле может быть использовано для замедления или отключения

реле

, когда температура превышает безопасный предел.

6. Выводы

В этой статье повторно рекомендован новый тип теплового реле перегрузки

, которое обеспечивает точное отключение цепи

, предотвращая перегрев двигателя. Это реле

основано на свойстве феррожидкости, которая ведет себя как

ферромагнитный материал в присутствии магнитного поля

, но теряет это свойство (ведет себя как парамагнитный материал

риал) в отсутствие магнитного поля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *