Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

характеристики и описание принципа действия, использование схем сравнения напряжения

В электронных приборах часто можно встретить различные интегральные микросхемы. Одной из них является компаратор. Его применение очень обширно: начиная от сигнализационных датчиков и заканчивая промышленной и автомобильной электроникой. Зная, как работает компаратор, можно самостоятельно собрать различные интересные схемы, например, зарядное устройство, индикаторный узел или даже генератор.

  • Описание и схемотехника
    • Характеристики прибора
    • Устройство и принцип работы
  • Простые конструкции
    • Фотореле контроля
    • Зарядный блок
    • Кварцевый генератор

Описание и схемотехника

Несмотря на кажущуюся простоту, компаратор — куда более интересное устройство, чем может показаться на первый взгляд. В электронике им называют логическую микросхему, предназначенную для сравнения между собой двух электрических сигналов, подающихся на его вход. В зависимости от результатов этого измерения изменяется режим работы прибора.

Термин «компаратор» произошёл от латинского слова «comparare», что дословно переводится на русский язык как сравнивать. Конструктивно устройство может выпускаться в различных корпусах, например, DIP, SOIC, SSOP. Простейшего вида сравнивающий элемент имеет два аналоговых входа и один цифровой выход. В основе его работы лежит дифференциальный каскад, имеющий высокий коэффициент усиления. Поэтому компараторы широко используются в оборудовании, предназначенном для измерения или преобразования аналогового сигнала в цифровой (АЦП).

На схемах и в технической литературе графически устройство обозначается в виде равнобедренного треугольника с тремя выводами. С одной стороны выводы подписываются знаками «+» и «», соответственно обозначающими неинвертирующий вход и инвертирующий, а с другой — изображается выход, который маркируется символом Uout.

Когда на прямом входе («+»

) микросхемы уровень сигнала будет больше, чем на инверсном («»), то на её выходе образуется устойчивое значение. В зависимости от схемотехнического решения компаратора это значение может принимать вид логического ноля или единицы. В цифровой электронике за единицу считается сигнал, уровень напряжения которого составляет пять вольт, а за ноль принимается его отсутствие. То есть состояние выхода устройства определяется как высокое или низкое. Но на практике же за логический ноль принимается значение разности потенциалов до 2,7 В.

Один из входных сигналов, подаваемых на прибор, называется опорным или пороговым напряжением. Именно с этим значением и сравнивается величина сигнала на втором входе. Опорное напряжение может подаваться как на инверсный, так и прямой вход. В зависимости от этого компараторы называются инвертирующими или неинвертирующими. Когда прибор работает с одним опорным напряжением, его называют однопороговым, а если с разным — многовходовым.

Характеристики прибора

По сути, устройство можно рассматривать как простой вольтметр или АЦП. Компаратор, как и любой электронный прибор, имеет ряд технических характеристик, которые можно разделить на два вида: статические и динамические.

К статическим параметрам относятся следующие характеристики:

  1. Предельная чувствительность обозначает пороговые величины сигнала, которые прибор идентифицирует на входе и изменяет потенциал своего выхода на логический ноль или единицу.
  2. Величина смещения определяется передаточным моментом устройства относительно идеального положения.
  3. Входной ток — максимальное его значение, которое может пройти через любой вывод, не повредив устройства.
  4. Выходной ток — значение тока, появляющееся на выходе при переходе устройства в состояние единицы.
  5. Разность токов — это величина, находимая при вычитании значений токов, протекающих при закороченных входах.
  6. Гистерезис — разность уровней входного сигнала, приводящая к изменению устойчивого состояния на выходе.
  7. Коэффициент снижения синфазного сигнала определяется отношением синфазного и дифференциального сигнала, приводящим к переключению режима работы компаратора.
  8. Входной импеданс — полное сопротивление входа.
  9. Минимальная и максимальная рабочая температура — диапазон, в котором технические параметры устройства не изменяются.

Важной же динамической характеристикой является время переключения tn. Она определяется интервалом времени от начала сравнения входного сигнала до момента, при котором на выходе компаратора наступает противоположное устойчивое состояние. Это время определяется при одном значении порогового напряжения и его скачке на противоположном входе. Этот интервал времени разделяется на две части — задержки и нарастания.

Все значимые параметры компаратора представляются в виде переходной характеристики. Это график в декартовой плоской системе координат, в которой по оси Х указывается время в наносекундах, а Y — входное и выходное напряжение в вольтах.

Устройство и принцип работы

Схемотехника устройства построена на базе дифференциального операционника с довольно большим коэффициентом усиления. Её различия с простым линейным усилителем заключаются в выполнении входного и выходного каскада.

Вход устройства выдерживает сигнал в широком диапазоне до значений источника питания и полный интервал синфазных напряжений. Выход компаратора совместим с технологиями ТТЛ и ЭСЛ из-за возможности выполнения этого каскада на транзисторе с открытым коллектором. При работе устройства не используется отрицательная обратная связь как в операционном усилителе, а, наоборот, выход охватывается положительной связью, формирующей гистерезисную передаточную характеристику.

Двухпороговый компаратор называется триггером Шмита или троичным. Для сравнения в нём используется два напряжения. Сигналы в двоичном компараторе разделяются на три диапазона:

  1. Urf2 > Urf1;
  2. Uout1 = 0 при Uin < Uref1 или Uout1 = 1, если Uin > Uref1;
  3. Uout2 = 0 при Uin < Uref2 или Uout1 = 1, если Uin > Uref2.

Uref — напряжение нижнего и верхнего порогов переключения, Uout — уровень выходного сигнала, Uin — напряжение на входе прибора.

Внутренняя схема устройства представляет собой усилитель, собранный на транзисторах VT1-VT2, который нагружен каскадом VT5-VT6, включённым по схеме с общим эмиттером. Через дополнительный ключ VT4 происходит управление коллекторным режимом работы входного сигнала. А через транзистор VT7, работающий в диодном режиме, контролируется уровень сигнала на VT8, что позволяет добиваться его независимости от изменений напряжения питания. Ключи VT5 и VT6 соединяются со стабилитроном VD1. Поэтому через повторитель VT8 входной сигнал поступает на выход с коллекторного вывода VT6.

Если входной сигнал не превышает один вольт, то транзистор VT6 закрыт, а VT5 находится в режиме насыщения. Выходной сигнал не сможет превысить четырёх вольт, так как при большей величине откроется диод. При обратном знаке VT6 насытится, и напряжение на выходе станет равным нулю. В современных устройствах используется стробирующий выход или триггеры-защелки, то есть элементы, контролирующие выход компаратора при обнаружении синхроимпульса.

Результаты сравнения могут появляться в двух видах: во время строба или в паузах между импульсами.

Простые конструкции

На практике компараторы напряжения нашли широкое применение в радиоэлектронных схемах различного направления. В радиомагазинах можно встретить довольно большое количество различных микросхем. Но наиболее часто используемыми микросхемами среди радиолюбителей являются:

  • LM311;
  • К554СА3;
  • LM339;
  • MAX934.

Они доступны в продаже, а их стоимость более чем демократична. Такие компараторы отличаются широким диапазоном входного напряжения и могут работать при однополярном и двуполярном питании.

К выходу устройства может подключаться любая нагрузка с током потребления, обычно не превышающим 50 мА. Это может быть реле, резистор, светодиод, оптрон или любые исполнительные устройства, но с ограничивающими ток элементами.

А также возможно подключить и индуктивную нагрузку, но она обычно в этом случае шунтируется диодами. Для работы устройства применяются источники питания с выходным напряжение 5−36 вольт.

Фотореле контроля

Такое реле собирается навесным монтажом. Его можно использовать в охранной системе или для контроля уровня освещённости. Работа схемы заключается в следующем. Входное напряжение поступает на делитель, состоящий из R1 и фотодиода VD3. Их общая точка соединения через ограничительные диоды VD1 и VD2 подключается к входам компаратора DA1. В результате этого разница потенциалов на входе устройства отсутствует, а значит, и чувствительность прибора максимальная.

Для того чтобы сигнал на выходе инвертировался, понадобится создать разницу на входе всего в один милливольт. Из-за того, что к инверсному входу подключён конденсатор С1 и резистор R1, величина напряжения на нём будет возрастать с небольшой задержкой, равной времени заряда конденсатора.

Но этого времени хватит, чтобы на выходе появилась логическая единица, которая перестроит режим работы реле подключённого в качестве нагрузки. Как только освещение опять поменяется, ситуация повторится. Таким образом, направив фотореле на какое-то место, в случае изменения его освещённости на входах компаратора появится разность напряжения. Соответственно будет изменяться и работа реле, к которому может подключаться различного рода нагрузка.

Зарядный блок

Выполненный блок питания из исправных элементов начинает работать сразу. Его настройки сводятся лишь к установке номинального тока заряда и порогов срабатывания компаратора. При включении устройства загорается зелёный светодиод, обозначающий подачу питания. Во время зарядки должен же постоянно светиться красный светодиод, который потухнет, как только аккумулятор зарядится.

Подаваемое напряжение от блока питания регулируется R2, а ток зарядки выставляется R4. Настройка происходит с помощью резистора на 150 Ом, включающегося параллельно контактам держателя батарейки. Сам аккумулятор в него не ставится. Транзистор VT1 устанавливается на радиатор, вместо него можно использовать аналог КТ814Б.

Такую схему придётся собирать на печатной плате, но в итоге её размер не должен превысить 50 х 50 мм.

Можно собрать схему попроще, используя принцип работы стабилизатора тока. Подача опорного напряжения на вход LM358 происходит через стабилитрон. Второй вход микросхемы подключается после датчика тока. Если к выходу компаратора подключить разряженный аккумулятор, то в цепи начнёт возрастать ток, а часть напряжения упадёт на низкоомном резисторе.

Между двумя входами микросхемы возникнет разность напряжения. Схема начнёт компенсировать это различие, увеличивая силу тока на выходе. В процессе заряда аккумулятора напряжение на входе начнёт уменьшаться, что приведёт к снижению тока в цепи. Как только батарея зарядится, транзистор VT1 закроется и нагрузка отключится. Ток заряда же ограничивается с помощью изменения сопротивления R1.

Кварцевый генератор

Такой генератор прямоугольных импульсов, собранный по схеме на отечественном компараторе K544C3, работает на тактовой частоте 32768 Гц. Схема будет работоспособной в диапазоне входного напряжения от 7 до 11 вольт. Частота задаётся кварцем ZQ1, но для работы устройства свыше 50 кГц понадобится уменьшить сопротивление R5 и R6.

При замыкании второго вывода с нулевым проводом выход компаратора оказывается включённым по схеме с открытым коллектором, в которой R7 является нагрузкой. Подстройка частоты выполняется с помощью C1. За счёт резистора R4 происходит автозапуск генератора. Изменяя сопротивление R2, меняется скважность импульсов.

Подбирая ёмкости С1 и С2, генератор можно использовать как бесконтактный датчик жидкости. В качестве детектора для этого понадобится использовать микроконтроллер с программным обеспечением. Хотя можно применить и ещё один компаратор, который будет регистрировать изменения, выпрямленного диодами напряжения.

Таким образом, компаратор напряжения предназначен для сравнения уровней сигналов на своих входах. Если они начинают различаться, то в зависимости от этой разности выход устройства изменяет своё состояние. Этим их свойством и пользуются разработчики, конструируя различные электроприборы.

UC3843AN, Токовый ШИМ-контроллер DIP-8, Texas Instruments

Артикул 100862

нет отзывов

15 р. / шт.

сопутствующие товары

Заказать

Нет в наличии

В избранное Сравнить

В наличии на 1 складе

  • О товаре
  • Отзывы 0
  • Наличие

UC3843 ШИМ контроллер с входами обратной связи по току и напряжению, выход микросхемы специально адаптирован для управления силовым N канальным mosfet или IGBT транзистором. Контроллер специально разработан для работы в блоках питания с круглосуточным рабочим циклом, а продуманная схема позволяет изготовить устройство с минимальной обвязкой.

Отличительные особенности UC3843: точное управление рабочим циклом,  температурная компенсация, возможность работы в диапазоне до 100% рабочего цикла. Модули и блоки питания, изготовленные с применением ШИМ контроллера UC3842 отличаются высокой надежностью и простой схемой изготовления.

Частота работы микросхемы выбирается RC цепочкой на выводе 4. Чип может работать в широком диапазоне частот, но для построения блока питания рекомендуется выбирать частоту 35 – 85кГц, этот диапазон обеспечивает наибольший полезный коэффициент передачи энергии при параметрах современных импульсных трансформаторов.

Питание микросхемы от 16 до 34В. Встроенная схема защиты отключает ядро микросхемы при понижении питания до 10В и повышении более 36В. Нужно учесть, что микросхема включается при напряжении питания от 16В.

Схема включения:​

Адрес магазина

Режим работы

Наличие

село Калинино

Нет в наличии

с 9:00 до 18:00

Подробнее о складе

Разработка цепи SMPS 12 В 27 Вт с ИС контроллера UC3843

Импульсный источник питания или просто SMPS — это тип блока питания (PSU), в котором используется переключающее устройство (например, транзистор или полевой МОП-транзистор) для преобразования источник, который может быть переменного или постоянного тока, к постоянному напряжению постоянного тока. Схемы импульсного источника питания (SMPS) чаще всего требуются во многих электронных конструкциях для преобразования сетевого напряжения переменного тока в постоянный уровень напряжения, подходящий для работы устройства. Этот тип преобразователя переменного тока в постоянный принимает сетевое напряжение 230 В/110 В переменного тока в качестве входного сигнала и преобразует его в низкоуровневое постоянное напряжение с помощью процесса переключения, отсюда и название импульсного источника питания. Ранее мы уже построили несколько цепей SMPS, таких как 5V 2A SMPS и 12V 1A TNY268 SMPS. Мы даже сделали проект по созданию собственного трансформатора SMPS, который можно было бы использовать в наших конструкциях SMPS вместе с микросхемой драйвера. В этом проекте мы построим еще одну схему 12V 2.2A SMPS, используя UC3843 Текущий режим ШИМ-контроллера IC , который является популярным недорогим драйвером SMPS. В этом учебном пособии вы познакомитесь со всей схемой, а также объясните, как собрать трансформатор для схемы UC3843. Интересно, давай начнем.

Спецификация проекта источника питания на основе UC3843

UC3843 — это ШИМ-контроллер с фиксированной частотой , специально разработанный для автономных приложений и преобразователей постоянного тока с минимальным количеством внешних компонентов. Эти интегральные схемы оснащены подстроечным генератором для точного управления рабочим циклом, эталоном с температурной компенсацией, усилителем ошибки с высоким коэффициентом усиления, компаратором измерения тока и сильноточный выход тотемного полюса для управления мощным полевым МОП-транзистором . Как мы увидим, это делает его пригодным для многих различных приложений.

Входная спецификация: Наш SMPS будет работать в домене преобразования переменного тока в постоянный. Итак, на вход подается переменный ток. В этом проекте входное напряжение фиксировано. Это соответствует европейскому стандарту номинального напряжения. Таким образом, входное переменное напряжение этого ИИП будет составлять 220-240 В переменного тока. Это также стандартное номинальное напряжение в Индии.

Выходная спецификация: Мы установим выходное напряжение 12В с 2,2А номинальным током . Таким образом, на выходе будет 27 Вт. Этот SMPS будет обеспечивать постоянное напряжение независимо от тока нагрузки, он будет работать в режиме CV (постоянное напряжение) . Кроме того, выходное напряжение будет зафиксировано на уровне 12 В.

Цепи защиты:  Существуют различные схемы защиты, которые можно использовать для разработки цепи SMPS, чтобы сделать работу безопасной и надежной. Схема защиты защищает SMPS, а также связанную с ним нагрузку. В зависимости от типа схема защиты может быть подключена ко входу или выходу. Для этого SMPS будет использоваться защита от перенапряжения на входе с максимальным рабочим входным напряжением 275 В переменного тока. Кроме того, для устранения проблем с электромагнитными помехами будет использоваться синфазный фильтр для гашения сгенерированных электромагнитных помех. На стороне вывода мы включим защита от короткого замыкания , защита от перенапряжения и защита от перегрузки по току . Помимо этого, для уменьшения электромагнитных помех и шума мы можем использовать искровые промежутки или

ИС UC3843, работающую

Как мы обсуждали ранее, мы будем использовать популярную ИС UC3843 для разработки нашего ИП, но прежде мы делаем это, нам нужно понять основную работу IC. В этом разделе мы разъясним некоторые его аспекты. Если вы хотите узнать больше, вы можете ознакомиться с техническим описанием микросхемы UC3843.

Блокировка при пониженном напряжении:  Когда входное напряжение источника питания падает ниже номинального/настроенного напряжения, срабатывает напряжение обнаружения UVLO, UVLO переводит внутреннюю схему в полудежурное состояние, чтобы предотвратить любое изготовление схемы. . Когда напряжение источника питания повышается и становится выше напряжения отключения UVLO, а нормальная работа продолжается во время блокировки при пониженном напряжении, выходной драйвер смещается в состояние с высоким импедансом. Вывод 6 должен быть зашунтирован на землю с помощью продувочного резистора, чтобы предотвратить срабатывание силового выключателя выходным током утечки.

Конфигурация усилителя ошибки: В этой цепи два усилителя ошибки. Эти два могут быть настроены для измерения напряжения и тока, для настройки тока вы можете использовать формулу.

Пиковый ток (IS) определяется по формуле.

Для подавления переходных процессов переключения может потребоваться небольшой RC-фильтр.

Формы сигналов генератора и максимальный рабочий цикл: Конденсатор времени генератора, CT, заряжается VREF через RT и разряжается внутренним источником тока. Во время разрядки внутренний тактовый сигнал переводит выход в низкое состояние. Таким образом, выбор RT и CT определяет как частоту генератора, так и максимальный рабочий цикл. Время заряда и разряда определяется по формулам:

Теперь мы знаем микросхему UC3843 немного лучше, поэтому мы можем перейти к разработке SMPS с ее помощью.

Компоненты, необходимые для сборки схемы 27 Вт SMPS на базе UC3843

Компоненты, необходимые для сборки схемы SMPS на базе UC3843 27 Вт, перечислены ниже. Мы разработали эту схему с очень общими компонентами, что делает процесс репликации очень простым.

  • Разъем питания -1
  • 1A Предохранитель TR5-370 -1
  • МОВ 275В-1
  • 1N4007 Диод -4
  • Конденсатор 100 мкФ/450 В -2
  • Синфазный дроссель -1
  • 18К,2Вт-2
  • FR107 Диод -2
  • 10K Резистор -4
  • Конденсатор 22 пФ/100 пФ -10 или 2
  • Резистор 150К – 1
  • 104 пФ -1
  • 4.7K Резистор -2
  • 224 пФ -1
  • 100 мкФ, 25 В – 2
  • 223 пФ -2
  • 22Р-1
  • 1K Резистор -1
  • 0.5R, 3Вт Резистор -1
  • SR360 Диод – 2
  • Катушка индуктивности 3,3 мкФ – 2
  • Конденсатор 100 мкФ -2
  • Сердечник и шпулька EL-35 — 1 (извлечено из блока питания ATX)

Проектирование и изготовление цепи 27 Вт SMPS на базе UC3843

Схема, показанная ниже, разработана с использованием рекомендаций по применению от полупроводника, и я изменил значения некоторых компонентов в соответствии со своими потребностями, поскольку они уже были в моем запасе.

Прежде чем мы построим схему, лучше понять работу схемы, в этом разделе мы будем делать именно это.

Защита от перенапряжения на входе и защиты от сбоев SMPS:

Этот раздел состоит из двух компонентов: F1 и MOV. F1 представляет собой плавкий предохранитель на 1 А 250 В переменного тока с задержкой срабатывания, а MOV представляет собой 7-мм MOV на 275 В (металлооксидный варистор ). Во время скачка высокого напряжения (более 275 В переменного тока) MOV замыкается накоротко и перегорает входной предохранитель. Однако, благодаря функции медленного срабатывания, предохранитель выдерживает пусковой ток через SMPS.

Преобразование переменного тока в постоянный:

Преобразование переменного тока в постоянный выполняется с помощью четырех диодов 1N4007, которые составляют полный мостовой выпрямитель, 1N4007 представляет собой выпрямительный диод на 1000 В 1 А. Фильтрация осуществляется с помощью конденсатора 100 мкФ 400 В. Однако для такой схемы на 25 Вт достаточно 22 мкФ 400 В.

Фильтр PI:

В разных штатах действуют разные стандарты подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3, а фильтр PI разработан таким образом, чтобы уменьшить подавление синфазных электромагнитных помех. Этот раздел создан с использованием C1, C2 и L1. C1 и C2 – 10 мкФ, 400 В

Схема драйвера или схема переключения:

Для этой конструкции UC3843 вместе с полевым МОП-транзистором IRF840 образует схему драйвера, чтобы при первоначальном запуске для начала работы требовалось некоторое количество энергии, и два резистора R1 и R2 входят в те, которые называются Пусковые резисторы Эти пусковые резисторы обеспечивают начальный пусковой ток для запуска цепи, а когда цепь переключается и она находится на вспомогательной обмотке, обеспечивает необходимую мощность.

Цепь зажима:

Трансформатор представляет собой катушку индуктивности на полевом МОП-транзисторе. Поэтому, когда трансформатор выключается, возникает огромный скачок напряжения. Если не компенсировать правильно, это может легко убить МОП-транзистор, поэтому становится необходимой схема фиксации. Таким образом, C7, R11 и D5 составляют схему фиксатора.

Вспомогательная обмотка:

Вспомогательная обмотка обеспечивает питание микросхемы, пока она находится в рабочем состоянии. Мощность вспомогательной обмотки преобразуется и фильтруется в постоянный ток с помощью D6, D7, C8, C9, C10 и R12.

Цепь вторичного выпрямителя и демпфера:

Нам необходимо преобразовать выход трансформатора в постоянный ток, прежде чем мы сможем подключить схемы наших приложений. Выпрямительный диод Шоттки SR360 используется, поскольку выходной ток составляет 2 А, SR360 представляет собой диод Шоттки с номиналом 3 А, 60 В.

Секция фильтра:

C6 — конденсатор фильтра. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, используется постфильтр LC, где L2 и C7 обеспечивают лучшее подавление пульсаций на выходе.

Выбор частоты генератора:

Частоту микросхемы UC3843 можно регулировать в соответствии с потребностями, в нашем случае частота микросхемы устанавливается на 80 кГц с помощью резистора R6 и конденсатора C4. А для фильтрации питания используется дополнительный конденсатор С5.

Конструкция импульсного трансформатора для UC3843 на основе 27-ваттной схемы SMPS

Теперь давайте соберем импульсный трансформатор , для этого мы будем использовать информацию, предоставленную в Руководстве по применению UC3843.

Сердечник основан на бобине и сердечнике EL35 с воздушным зазором 0,5 мм. Первичная индуктивность 1 мГн. Для сборки этого трансформатора необходимы следующие материалы.

  1. Полиэфирная лента
  2. EL35 Пары жил с воздушным зазором 0,5 мм.
  3. Медный провод 26 AWG
  4. Медный провод 30 AWG
  5. Горизонтальная шпулька (снята с блока питания ATX)
  6. Измеритель индуктивности

Шаг 1:  Держите сердечник одной рукой и начните с провода 26AWG с контакта 1, сделайте 45 оборотов по часовой стрелке вокруг бобины и закончите на контакте 7, наконец, нанесите слой ленты.

Шаг 2: Начните обмотку смещения проводом 30AWG с контакта 3, сделайте 10 витков по часовой стрелке и закончите на контакте 5. После этого нанесите три слоя полиэфирной метки.

Шаг 3: Начать вторичную обмотку с противоположной стороны шпульки от вывода 1 и сделать 9 витков по часовой стрелке, и закончить ее на выводе 3. И наклейте 3 слоя скотча.

Шаг 4:  Закрепите трансформатор с помощью суперклея/изоленты, чтобы уменьшить вибрации и шум в трансформаторе.

Шаг 5:  После этого измерьте первичную индуктивность трансформатора, и если она близка к 1 мГн, сборка трансформатора завершена.

Сборка цепи 27 Вт SMPS на основе UC3843

С помощью импульсного трансформатора мы построили схему на специальной плате в соответствии с данной принципиальной схемой. После того, как весь процесс пайки завершен, плата выглядит так, как показано на рисунке ниже.

UC3843 Тестирование схемы на базе импульсных источников питания

Чтобы протестировать схему, мы подключаем вход к источнику переменного тока, а выход подключаем к мультиметру, как вы можете видеть, у нас есть 243 В на входе и 12,43 В на выходе.

Выходное напряжение чуть больше 12В из-за допусков, но при подключении нагрузки напряжение стабильное и рабочее. Весь процесс тестирования показан внизу страницы. Надеюсь, вы поняли статью и узнали что-то новое. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже.

UC3842AN UC3842A/UC3843A UC3843A UC3842A UC3843AN Лист данных

UC3842AN

UC3842AN Техническое описание

UC3842A/UC3843A

Часть Лист данных
UC3842AN UC3842AN (pdf)
Сопутствующие детали Информация
UC3843ADX UC3843ADX
UC3843AD UC3843AD
UC3842ADX UC3842ADX
UC3842AD UC3842AD
Предварительный просмотр технического описания в формате PDF
UC3842A/UC3843A

Контроллер SMPS
• Низкий пусковой ток 0,2 мА, тип.
• Рабочий диапазон до 500 кГц
• Поцикловое ограничение тока
• Блокировка при пониженном напряжении с гистерезисом
• Короткое время задержки выключения, тип.

6ns • Сильноточный выход с тотемным полюсом
• Ограничение размаха выхода 22 В

UC3842A/UC3843A — это фиксированные ШИМ-контроллеры для автономных приложений и преобразователей постоянного тока в постоянный. Внутренние цепи включают в себя UVLO, цепь с малым пусковым током, источник опорного напряжения с температурной компенсацией, усилитель ошибки с высоким коэффициентом усиления, компаратор с измерением тока и сильноточный выход тотемного полюса для управления МОЩНЫМ МОП-транзистором. Кроме того, UC3842A/UC3843A обеспечивают низкий пусковой ток (менее 0,3 мА) и короткое время задержки выключения (тип. 100 нс. UC3842A имеет порог UVLO 16 В при включении и 10 В при выключении. UC3843A имеет 8,4 В во включенном состоянии и 7,6 В в выключенном состоянии. UC3842A и UC3843A могут работать в пределах 100% рабочего цикла.
8-DIP

Внутренняя блочная диаграмма
1 8-Sop

VREF 8

Внутренний смещение
5V VREF

SET/ RESET

GOOD LOGIC

UVLO

VFB 2 Comp 10336 1000 2VREF

6261/ 2VREF

96261/ 2VLE

VFB 2. Ампер + –
1/3 1 В

C.S PWM Comp. ЗАЩЕЛКА

C.S 3

RT/CT 4

ГЕНЕРАТОР
7 VCC 29V
5 GND

PWR VC
22V 6 OUTPUT

6 GND 2033PWR Semiconductor International0009

UC3842A/UC3843A

Абсолютные максимальные рейтинги

Параметр

Значение

Блок

Напряжение питания

Выходные текущие

Аналоговые входные выводы 2, 3

VI ANA

ARMP AMP. Выходной стоковой ток

ISINK EA

Рассеиваемая мощность

Электрические характеристики

VCC = 15 В, RT = CT = 3,3 нФ, TA = от 0°C до +70°C, если не указано иное
Информация для заказа

Номер продукта ANUC2 824 UC3842AD UC3843AN UC3843AD

Пакет 8 DIP 8 SOP 8 DIP 8 SOP

Рабочая температура 0 ~ + 70 ° C

UC3842A/UC3843A

UC3842A/UC3843A

Политика жизнеобеспечения

Fairchild’ ПОДДЕРЖИВАТЬ УСТРОЙСТВА ИЛИ СИСТЕМЫ БЕЗ ЯВНОГО ПИСЬМЕННОГО УТВЕРЖДЕНИЯ ПРЕЗИДЕНТА FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *