Схемы блоков питания и не только.
Утилиты и справочники.
cables.zip – Разводка кабелей – Справочник в формате .chm. Автор данного файла – Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru – краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.
Конденсатор 1.0 – Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).
Transistors.rar – База данных по транзисторам в формате Access.
Блоки питания.
Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:
Таблица контактов 24-контактного разъема блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов
Конт | Обозн | Цвет | Описание | |
---|---|---|---|---|
1 | 3. 3V | Оранжевый | +3.3 VDC | |
2 | 3.3V | Оранжевый | +3.3 VDC | |
3 | COM | Черный | Земля | |
4 | 5V | Красный | +5 VDC | |
5 | COM | Черный | Земля | |
6 | 5V | Красный | +5 VDC | |
7 | COM | Черный | Земля | |
8 | PWR_OK | Серый | Power Ok – Все напряжения в пределах нормы. Это сигнал формируется при включении БП и используется для сброса системной платы. | |
9 | 5VSB | Фиолетовый | +5 VDC Дежурное напряжение | |
10 | 12V | Желтый | +12 VDC | |
11 | 12V | Желтый | +12 VDC | |
12 | 3.3V | Оранжевый | +3.3 VDC | |
13 | 3.3V | Оранжевый | +3. 3 VDC | |
14 | -12V | Синий | -12 VDC | |
15 | COM | Черный | Земля | |
16 | /PS_ON | Зеленый | Power Supply On. Для включения блока питания нужно закоротить этот контакт на землю ( с проводом черного цвета). | |
17 | COM | Черный | Земля | |
18 | COM | Черный | Земля | |
19 | COM | Черный | Земля | |
20 | -5V | Белый | -5 VDC (это напряжение используется очень редко, в основном, для питания старых плат расширения. ) | |
21 | +5V | Красный | +5 VDC | |
22 | +5V | Красный | +5 VDC | |
23 | +5V | Красный | +5 VDC | |
24 | COM | Черный | Земля |
typical-450.gif – типовая схема блока питания на 450W с реализацией active power factor correction (PFC) современных компьютеров.
ATX 300w .png – типовая схема блока питания на 300W с пометками о функциональном назначении отдельных частей схемы.
ATX-450P-DNSS.zip – Схема блока питания API3PCD2-Y01 450w производства ACBEL ELECTRONIC (DONGGUAN) CO. LTD.
AcBel_400w.zip – Схема блока питания API4PC01-000 400w производства Acbel Politech Ink.
Alim ATX 250W (.png) – Схема блока питания Alim ATX 250Watt SMEV J.M. 2002.
atx-300p4-pfc.png – Схема блока питания ATX-300P4-PFC ( ATX-310T 2.03 ).
ATX-P6.gif – Схема блока питания ATX-P6.
ATXPower.rar – Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.
GPS-350EB-101A.pdf – Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350EB-101A.
GPS-350FB-101A.pdf – Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350FB-101A.
ctg-350-500.png – Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P
ctg-350-500.pdf – Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P
cft-370_430_460. pdf – Схема блоков питания Chieftec CFT-370-P12S, CFT-430-P12S, CFT-460-P12S
gpa-400.png – Схема блоков питания Chieftec 400W iArena GPA-400S8
GPS-500AB-A.pdf – Схема БП Chieftec 500W GPS-500AB-A.
GPA500S.pdf – Схема БП CHIEFTEC TECHNOLOGY GPA500S 500W Model GPAxY-ZZ SERIES.
cft500-cft560-cft620.pdf – Схема блоков питания Chieftec CFT-500A-12S, CFT-560A-12S, CFT-620A-12S
aps-550s.png – Схема блоков питания Chieftec 550W APS-550S
gps-650_cft-650.pdf – Схема блоков питания Chieftec 650W GPS-650AB-A и Chieftec 650W CFT-650A-12B
ctb-650.pdf – Схема блоков питания Chieftec 650W CTB-650S
ctb-650_no720.pdf – Схема блоков питания Chieftec 650W CTB-650S Маркировка платы: NO-720A REV-A1
aps-750.pdf – Схема блоков питания Chieftec 750W APS-750C
ctg-750.pdf – Схема блоков питания Chieftec 750W CTG-750C
cft-600_850. pdf – Схема блоков питания Chieftec CFT-600-14CS, CFT-650-14CS, CFT-700-14CS, CFT-750-14CS
cft-850g.pdf – Схема блока питания Chieftec 850W CFT-850G-DF
cft-1000_cft-1200.pdf – Схема блоков питания Chieftec 1000W CFT-1000G-DF и Chieftec 1200W CFT-1200G-DF
colors_it_330u_sg6105.gif – Схема БП NUITEK (COLORS iT) 330U (sg6105).
330U (.png) – Схема БП NUITEK (COLORS iT) 330U на микросхеме SG6105 .
350U.pdf – Схема БП NUITEK (COLORS iT) 350U SCH .
350T.pdf – Схема БП NUITEK (COLORS iT) 350T .
400U.pdf – Схема БП NUITEK (COLORS iT) 400U .
500T.pdf – Схема БП NUITEK (COLORS iT) 500T .
600T.pdf – Схема БП NUITEK (COLORS iT) ATX12V-13 600T (COLORS-IT – 600T – PSU, 720W, SILENT, ATX)
codegen_250.djvu – Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.
codegen_300x.gif – Схема БП Codegen 300w mod. 300X.
PUh500W.pdf – Схема БП CWT Model PUh500W .
Dell-145W-SA145-3436.png – Схема блока питания Dell 145W SA145-3436
Dell-160W-PS-5161-7DS.pdf – Схема блока питания Dell 160W PS-5161-7DS
Dell_PS-5231-2DS-LF.pdf – Схема блока питания Dell 230W PS-5231-2DS-LF (Liteon Electronics L230N-00)
Dell_PS-5251-2DFS.pdf – Схема блока питания Dell 250W PS-5251-2DFS
Dell_PS-5281-5DF-LF.pdf – Схема блока питания Dell 280W PS-5281-5DF-LF модель L280P-01
Dell_PS-6311-2DF2-LF.pdf – Схема блока питания Dell 305W PS-6311-2DF2-LF модель L305-00
Dell_L350P-00.pdf – Схема блока питания Dell 350W PS-6351-1DFS модель L350P-00
Dell_L350P-00_Parts_List.pdf – Перечень деталей блока питания Dell 350W PS-6351-1DFS модель L350P-00
deltadps260.ARJ – Схема БП Delta Electronics Inc. модель DPS-260-2A.
delta-450AA-101A.pdf – Схема блока питания Delta 450W GPS-450AA-101A
delta500w. zip – Схема блока питания Delta DPS-470 AB A 500W
DTK-PTP-1358.pdf – Схема блока питания DTK PTP-1358.
DTK-PTP-1503.pdf – Схема блока питания DTK PTP-1503 150W
DTK-PTP-1508.pdf – Схема блока питания DTK PTP-1508 150W
DTK-PTP-1568.pdf – Схема БП DTK PTP-1568 .
DTK-PTP-2001.pdf – Схема БП DTK PTP-2001 200W.
DTK-PTP-2005.pdf – Схема БП DTK PTP-2005 200W.
DTK PTP-2007 .png – Схема БП DTK Computer модель PTP-2007 (она же – MACRON Power Co. модель ATX 9912)
DTK-PTP-2007.pdf – Схема БП DTK PTP-2007 200W.
DTK-PTP-2008.pdf – Схема БП DTK PTP-2008 200W.
DTK-PTP-2028.pdf – Схема БП DTK PTP-2028 230W.
DTK_PTP_2038.gif – Схема БП DTK PTP-2038 200W.
DTK-PTP-2068.pdf – Схема блока питания DTK PTP-2068 200W
DTK-PTP-3518.pdf – Схема БП DTK Computer model 3518 200W.
DTK-PTP-3018. pdf – Схема БП DTK DTK PTP-3018 230W.
DTK-PTP-2538.pdf – Схема блока питания DTK PTP-2538 250W
DTK-PTP-2518.pdf – Схема блока питания DTK PTP-2518 250W
DTK-PTP-2508.pdf – Схема блока питания DTK PTP-2508 250W
DTK-PTP-2505.pdf – Схема блока питания DTK PTP-2505 250W
EC mod 200x (.png) – Схема БП EC model 200X.
FSP145-60SP.GIF – Схема БП FSP Group Inc. модель FSP145-60SP.
fsp_atx-300gtf_dezhurka.gif – Схема источника дежурного питания БП FSP Group Inc. модель ATX-300GTF.
fsp_600_epsilon_fx600gln_dezhurka.png – Схема источника дежурного питания БП FSP Group Inc. модель FSP Epsilon FX 600 GLN.
green_tech_300.gif – Схема БП Green Tech. модель MAV-300W-P4.
HIPER_HPU-4K580.zip – Схемы блока питания HIPER HPU-4K580 . В архиве – файл в формате SPL (для программы sPlan) и 3 файла в формате GIF – упрощенные принципиальные схемы: Power Factor Corrector, ШИМ и силовой цепи, автогенератора. Если у вас нечем просматривать файлы .spl , используйте схемы в виде рисунков в формате .gif – они одинаковые.
iwp300a2.gif – Схемы блока питания INWIN IW-P300A2-0 R1.2.
IW-ISP300AX.gif –
Схемы блока питания INWIN IW-P300A3-1 Powerman.
Наиболее распространенная неисправность блоков питания Inwin, схемы которых приведены
выше – выход из строя схемы формирования дежурного напряжения +5VSB ( дежурки ).
Как правило, требуется замена электролитического конденсатора C34 10мкФ x 50В и
защитного стабилитрона D14 (6-6.3 V ). В худшем случае, к неисправным элементам
добавляются R54, R9, R37, микросхема U3 ( SG6105 или IW1688 (полный аналог SG6105) )
Для эксперимента, пробовал ставить C34 емкостью 22-47 мкФ – возможно, это повысит надежность работы дежурки.
IP-P550DJ2-0.pdf – схема блока питания Powerman IP-P550DJ2-0 (плата IP-DJ Rev:1.51). Имеющаяся в документе схема формирования дежурного напряжения используется во многих других моделях блоков питания Power Man (для многих блоков питания мощностью 350W и 550W отличия только в номиналах элементов ).
JNC_LC-B250ATX.gif – JNC Computer Co. LTD LC-B250ATX
JNC_SY-300ATX.pdf – JNC Computer Co. LTD. Схема блока питания SY-300ATX
JNC_SY-300ATX.rar – предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.
KME_pm-230.GIF – Схемы блока питания Key Mouse Electroniks Co Ltd модель PM-230W
L & C A250ATX (.png) – Схемы блока питания L & C Technology Co. модель LC-A250ATX
LiteOn_PE-5161-1.pdf – Схема блоков питания LiteOn PE-5161-1 135W.
LiteOn-PA-1201-1.pdf – Схема блоков питания LiteOn PA-1201-1 200W (полный комплект документации к БП)
LiteOn_model_PS-5281-7VW.pdf – Схема блоков питания LiteOn PS-5281-7VW 280W (полный комплект документации к БП)
LiteOn_model_PS-5281-7VR1.pdf – Схема блоков питания LiteOn PS-5281-7VR1 280W (полный комплект документации к БП)
LiteOn_model_PS-5281-7VR. pdf – Схема блоков питания LiteOn PS-5281-7VR 280W (полный комплект документации к БП)
LWT2005 (.png) – Схемы блока питания LWT2005 на микросхеме KA7500B и LM339N
M-tech SG6105 (.png) – Схема БП M-tech KOB AP4450XA.
Macrom Power ATX 9912 .png – Схема БП MACRON Power Co. модель ATX 9912 (она же – DTK Computer модель PTP-2007)
Maxpower 230W (.png) – Схема БП Maxpower PX-300W
MaxpowerPX-300W.GIF – Схема БП Maxpower PC ATX SMPS PX-230W ver.2.03
PowerLink LP-J2-18 (.png) – Схемы блока питания PowerLink модель LP-J2-18 300W.
Power_Master_LP-8_AP5E.gif – Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).
Power_Master_FA_5_2_v3-2.gif – Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.
microlab350w.pdf – Схема БП Microlab 350W
microlab_400w.pdf – Схема БП Microlab 400W
linkworld_LPJ2-18. GIF – Схема БП Powerlink LPJ2-18 300W
Linkword_LPK_LPQ.gif – Схема БП Powerlink LPK, LPQ
PE-050187 – Схема БП Power Efficiency Electronic Co LTD модель PE-050187
ATX-230.pdf – Схема БП Rolsen ATX-230
SevenTeam_ST-200HRK.gif – Схема БП SevenTeam ST-200HRK
SevenTeam_ST-230WHF (.png) – Схема БП SevenTeam ST-230WHF 230Watt
SevenTeam ATX2 V2 на TL494 (.png) – Схема БП SevenTeam ATX2 V2
hpc-360-302.zip – Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0 заархивированный документ в формате .PDF
hpc-420-302.pdf – Схема блока питания Sirtec HighPower HPC-420-302 420W
HP-500-G14C.pdf – Схема БП Sirtec HighPower HP-500-G14C 500W
cft-850g-df_141.pdf – Схема БП SIRTEC INTERNATIONAL CO. LTD. NO-672S. 850W. Блоки питания линейки Sirtec HighPower RockSolid продавались под маркой CHIEFTEC CFT-850G-DF.
SHIDO_ATX-250.gif – Схемы блока питания SHIDO модель LP-6100 250W.
SUNNY_ATX-230.png – Схема БП SUNNY TECHNOLOGIES CO. LTD ATX-230
s_atx06f.png – Схема блока питания Utiek ATX12V-13 600T
Wintech 235w (.png) – Схема блока питания Wintech PC ATX SMPS модель Win-235PE ver.2.03
Схемы блоков питания для ноутбуков.
EWAD70W_LD7552.png – Схема универсального блока питания 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W на микросхеме LD7552.
KM60-8M_UC3843.png – Схема блока питания 60W 19V 3.42A для ноутбуков, плата KM60-8M на микросхеме UC3843.
ADP-36EH_DAP6A_DAS001.png – Схема блока питания Delta ADP-36EH для ноутбуков 12V 3A на микросхеме DAP6A и DAS001.
LSE0202A2090_L6561_NCP1203_TSM101.png – Схема блока питания Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A на микросхеме NCP1203 и TSM101, АККМ на L6561.
ADP-30JH_DAP018B_TL431.png – Схема блока питания ADP-30JH 30W для ноутбуков 19V 1. 58A на микросхеме DAP018B и TL431.
ADP-40PH_2PIN.jpg – Схема блока питания Delta ADP-40PH ABW
Delta-ADP-40MH-BDA-OUT-20V-2A.pdf – Ещё один вариант схемы блока питания Delta ADP-40MH BDA на чипах DAS01A и DAP8A.
PPP009H-DC359A_3842_358_431.png – Схема блока питания HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A на микросхемах UC3842 и LM358.
NB-90B19-AAA.jpg – Схема блока питания NB-90B19-AAA 90W для ноутбуков 19V 4.74A на TEA1750.
PA-1121-04.jpg – Схема блока питания LiteOn PA-1121-04CP на микросхеме LTA702.
Delta_ADP-40MH_BDA.jpg – Схема блока питания Delta ADP-40MH BDA (Part No:S93-0408120-D04) на микросхеме DAS01A, DAP008ADR2G.
LiteOn_LTA301P_Acer.jpg – Схема блока питания LiteOn 19V 4.74A на LTA301P, 103AI, PFC на микросхемах TDA4863G/FAN7530/L6561D/L6562D.
ADP-90SB_BB_230512_v3.jpg – Схема блока питания Delta ADP-90SB BB AC:110-240v DC:19V 4.7A на микросхеме DAP6A, DSA001 или TSM103A
Delta-ADP-90FB-EK-rev. 01.pdf – Схема блоков питания Delta ADP-90FB AC:100-240v DC:19V 4.74A на микросхеме L6561D013TR, DAP002TR и DAS01A.
PA-1211-1.pdf – Схема блока питания LiteOn PA-1211-1 на LM339N, L6561, UC3845BN, LM358N.
Li-Shin-LSE0202A2090.pdf – Схема блоков питания Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W на микросхемах L6561, NCP1203-60 и TSM101.
GEMBIRD-model-NPA-AC1.pdf – Схема универсального блока питания Gembird NPA-AC1 AC:100-240v DC:15V/16V/18V/19V/19.5V/20V 4.5A 90W на микросхеме LD7575 и полевом транзисторе MDF9N60.
ADP-60DP-19V-3.16A.pdf – Схема блоков питания Delta ADP-60DP AC:100-240v DC:19V 3.16A на микросхеме TSM103W (он же M103A) и I6561D.
Delta-ADP-40PH-BB-19V-2.1A.jpg – Схема блоков питания Delta ADP-40PH BB AC:100-240v DC:19V 2.1A на микросхеме DAP018ADR2G и полевом транзисторе STP6NK60ZFP.
Asus_SADP-65KB_B.jpg – Схема блоков питания Asus SADP-65KB B AC:100-240v DC:19V 3.42A на микросхеме DAP006 (DAP6A или NCP1200) и DAS001 (TSM103AI).
Asus_PA-1900-36_19V_4. 74A.jpg – Схема блоков питания Asus PA-1900-36 AC:100-240v DC:19V 4.74A на микросхеме LTA804N и LTA806N.
Asus_ADP-90CD_DB.jpg – Схема блоков питания Asus ADP-90CD DB AC:100-240v DC:19V 4.74A на микросхеме DAP013D и полевике 11N65C3.
PA-1211-1.pdf – Схема блоков питания Asus ADP-90SB BB AC:100-240v DC:19V 4.74A на микросхеме DAP006 (она же DAP6A) и DAS001 (она же TSM103AI).
LiteOn-PA-1900-05.pdf – Схема блока питания LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A на LTA301P и 103AI, транзистор PFC 2SK3561, транзистор силовой 2SK3569.
LiteOn-PA-1121-04.pdf – Схема блока питания LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A на LTA702, транзистор PFC 2SK3934, транзистор силовой SPA11N65C3.
Прочее оборудование.
monpsu1.gif – типовая схема блоков питания мониторов SVGA с диагональю 14-15 дюймов.
sch_A10x.pdf – Схема планшетного компьютера (“планшетника”) Acer Iconia Tab A100 (A101).
HDD SAMSUNG. rar – архив с обширной подборкой документации к HDD Samsung
HDD SAMSUNG M40S – документация к HDD Samsung серии M40S на английскомязыке.
sonyps3.jpg – схема блока питания к Sony Playstation 3.
APC_Smart-UPS_450-1500_Back-UPS_250-600.pdf – инструкции по ремонту источников бесперебойного питания производства APC на русском языке. Принципиальные схемы многих моделей Smart и Back UPS.
Silcon_DP300E.zip – эксплуатационная документация на UPS Silcon DP300E производства компании APC
symmetra-re.pdf – руководство по эксплуатации UPS Symmetra RM компании APC.
symmetrar.pdf – общие сведения и руководство по монтажу UPS Symmetra RM компании APC (на русском языке).
manuals_symmetra80.pdf – эксплуатационная документация на Symmetra RM UPS 80KW, высокоэффективную систему бесперебойного питания блочной конфигурации, конструкция которой обеспечивает питание серверов высокой готовности и другого ответственного электронного оборудования.
APC-Symmetra.zip – архив с эксплуатационной документацией на Symmetra Power Array компании APC
Smart Power Pro 2000.pdf – схема ИБП Smart Power Pro 2000.
BNT-400A500A600A.pdf – Схема UPS Powercom BNT-400A/500A/600A.
ml-1630.zip – Документация к принтеру Samsung ML-1630
splitter.arj – 2 принципиальные схемы ADSL – сплиттеров.
KS3A.djvu – Документация и схемы для 29″ телевизоров на шасси KS3A.
Если вы желаете поделиться ссылкой на эту страницу в своей социальной сети, пользуйтесь кнопкой “Поделиться”
В начало страницы | На главную страницу
Блок питания ПК – схема, ремонт своими руками
Блок питания в компьютере (БП) – это самостоятельное импульсное электронное устройство, предназначенное для преобразования напряжения переменного тока в ряд постоянных напряжений (+3,3 / +5 / +12 и -12) для питания материнской платы, видеокарты, винчестера и других блоков компьютера.
Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами.
Фотография внешнего вида классического блока питания АТХ стационарного компьютера (десктопа).
Где находится БП в системном блоке и как его разобрать
Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.
Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.
Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.
После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.
Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.
Структурная схема БП компьютера АТХ
Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.
Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.
Питающее напряжение с помощью сетевого шнура подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.
Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.
Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.
Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.
Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.
Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.
В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.
Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.
Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых ненадежных узлов блока питания и ремонтировать его сложно.
Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством проводов с разъемами подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.
Ремонт БП компьютера АТХ
Внимание! Во избежание вывода компьютера из строя расстыковка и подключение разъемов блока питания и других узлов внутри системного блока необходимо выполнять только после полного отключения компьютера от питающей сети (вынуть вилку из розетки или выключить выключатель в «Пилоте»).
Первое, что необходимо сделать, это проверить наличие напряжения в розетке и исправность удлинителя типа «Пилот» по свечению клавиши его выключателя. Далее нужно проверить, что шнур питания компьютера надежно вставлен в «Пилот» и системный блок и включен выключатель (при его наличии) на задней стенке системного блока.
Как найти неисправность БП нажимая кнопку «Пуск»
Если питание на компьютер подается, то на следующем шаге нужно глядя на кулер блока питания (виден за решеткой на задней стенке системного блока) нажать кнопку «Пуск» компьютера. Если лопасти кулера, хоть немного сдвинуться, значит, исправны фильтр, предохранитель, диодный мост и конденсаторы левой части структурной схемы, а также самостоятельный маломощный источник питания +5 B_SB.
В некоторых моделях БП кулер находится на плоской стороне и чтобы его увидеть, нужно снять левую боковую стенку системного блока.
Поворот на маленький угол и остановка крыльчатки кулера при нажатии на кнопку «Пуск» свидетельствует о том, что на мгновенье на выходе БП появляются выходные напряжения, после чего срабатывает защита, останавливающая работу БП. Защита настроена таким образом, что если величина тока по одному из выходных напряжений превысит заданный порог, то отключаются все напряжения.
Причиной перегрузки обычно является короткое замыкание в низковольтных цепях самого БП или в одном из блоков компьютера. Короткое замыкание обычно появляется при пробое в полупроводниковых приборах или изоляции в конденсаторах.
Для определения узла, в котором возникло короткое замыкание нужно отсоединить все разъемы БП от блоков компьютера, оставив только подключенные к материнской плате. После чего подключить компьютер к питающей сети и нажать кнопку «Пуск». Если кулер в БП завращался, значит, неисправен один из отключенных узлов. Для определения неисправного узла нужно их последовательно подключать к блоку питания.
Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.
Проверка БП компьютера
измерением величины сопротивления выходных цепей
При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.
Перед началом измерений БП должен быть отключен от питающей сети, и все его разъемы отсоединены от узлов системного блока. Мультиметр или тестер нужно включить в режим измерения сопротивления и выбрать предел 200 Ом. Общий провод прибора подключить к контакту разъема, к которому подходит черный провод. Концом второго щупа по очереди прикасаются к контактам, в соответствии с таблицей.
В таблице приведены обобщенные данные, полученные в результате измерения величины сопротивления выходных цепей 20 исправных БП компьютеров разных мощностей, производителей и годов выпуска.
Для возможности подключения БП для проверки без нагрузки внутри блока на некоторых выходах устанавливают нагрузочные резисторы, номинал которых зависит от мощности блока питания и решения производителя. Поэтому измеренное сопротивление может колебаться в большом диапазоне, но не должно быть ниже допустимого.
Если нагрузочный резистор в цепи не установлен, то показания омметра будут изменяться от малой величины до бесконечности. Это связано с зарядкой фильтрующего электролитического конденсатора от омметра и свидетельствует о том, что конденсатор исправный. Если поменять местами щупы, то будет наблюдаться аналогичная картина. Если сопротивление велико и не изменяется, то возможно в обрыве находится конденсатор.
Сопротивление меньше допустимого свидетельствует о наличии короткого замыкания, которое может быть вызвано пробоем изоляции в электролитическом конденсаторе или выпрямляющего диода. Для определения неисправной детали придется вскрыть блок питания и отпаять от схемы один конец фильтрующего дросселя этой цепи. Далее проверить сопротивление до и после дросселя. Если после него, то замыкание в конденсаторе, проводах, между дорожками печатной платы, а если до него, то пробит выпрямительный диод.
Поиск неисправности БП внешним осмотром
Первоначально следует внимательно осмотреть все детали, обратив особое внимание на целостность геометрии электролитических конденсаторов. Как правило, из-за тяжелого температурного режима электролитические конденсаторы, выходят из строя чаще всего. Около 50% отказов блоков питания связано именно с неисправностью конденсаторов. Зачастую вздутие конденсаторов является следствием плохой работы кулера. Смазка подшипников кулера вырабатывается и обороты падают. Эффективность охлаждения деталей блока питания снижается, и они перегреваются. Поэтому при первых признаках неисправности кулера блока питания, обычно появляется дополнительный акустический шум, нужно почистить от пыли и смазать кулер.
Если корпус конденсатора вздулся или видны следы вытекшего электролита, то отказ конденсатора очевиден и его следует заменить исправным. Вздувается конденсатор в случае пробоя изоляции. Но бывает, внешних признаков отказа нет, а уровень пульсаций выходного напряжения большей. В таких случаях конденсатор неисправен по причине отсутствия контакта между его выводом и обкладки внутри него, как говорят, конденсатор в обрыве. Проверить конденсатор на обрыв можно с помощью любого тестера в режиме измерения сопротивления. Технология проверки конденсаторов представлена в статье сайта «Измерение сопротивления».
Далее осматриваются остальные элементы, предохранитель, резисторы и полупроводниковые приборы. В предохранителе внутри вдоль по центру должна проходить тонкая металлическая проволочка, иногда с утолщением в середине. Если проволочки не видно, то, скорее всего она перегорела. Для точной проверки предохранителя нужно его прозвонить омметром. Если предохранитель перегорел, то его нужно заменить новым или отремонтировать. Прежде, чем производить замену, для проверки блока питания можно перегоревший предохранитель не выпаивать из платы, а припаять к его выводам жилку медного провода диаметром 0,18 мм. Если при включении блока питания в сеть проводок не перегорит, то тогда уже есть смысл заменять предохранитель исправным.
Как проверить исправность БП замыканием контактов PG и GND
Если материнскую плату можно проверить только подключив к заведомо исправному БП, то блок питания можно проверить отдельно с помощью блока нагрузок или запустить с помощью соединения контактов +5 В PG и GND между собой.
От блока питания на материнскую плату питающие напряжения подаются с помощью 20 или 24 контактного разъема и 4 или 6 контактного. Для надежности разъемы имеют защелки. Для того, чтобы вынуть разъемы из материнской платы нужно пальцем нажать наверх защелки одновременно, прилагая довольно большое усилие, покачивая из стороны в сторону, вытащить ответную часть.
Далее нужно закоротить между собой, отрезком провода, можно и металлической канцелярской скрепкой, два вывода в разъеме, снятой с материнской платы. Провода расположены со стороны защелки. На фотографиях место установки перемычки обозначено желтым цветом.
Если разъем имеет 20 контактов, то соединять между собой нужно вывод 14 (провод зеленого цвета, в некоторых блоках питания может быть серый, POWER ON) и вывод 15 (провод черного цвета, GND).
Если разъем имеет 24 контакта, то соединять между собой нужно вывод 16 (зеленого зеленого, в некоторых блоках питания провод может быть серого цвета, POWER ON) и вывод 17 (черный провод GND).
Если крыльчатка в кулере блока питания завращается, то блок питания АТХ можно считать работоспособным, и, следовательно, причина неработящего компьютера находится в других блоках. Но такая проверка не гарантирует стабильную работу компьютера в целом, так как отклонения выходных напряжений могут быть больше допустимых.
Проверка БП компьютера
измерением напряжений и уровня пульсаций
После ремонта БП или в случае нестабильной работы компьютера для полной уверенности в исправности блока питания, необходимо его подключить к блоку нагрузок и измерять уровень выходных напряжений и размах пульсаций. Отклонение величин напряжений и размаха пульсаций на выходе блока питания не должны превышать значений, приведенных в таблице.
Можно обойтись и без блока нагрузок измеряв напряжение и уровень пульсаций непосредственно на выводах разъемов БП в работающем компьютере.
При измерении напряжений мультиметром «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» к нужным контактам разъема.
Напряжение +5 В SB (Stand-by), фиолетовый провод – вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.
Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.
Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современных компьютерах отсутствует. Поэтому в блоках питания последних моделей этого напряжения может не быть.
Как заменить предохранитель в БП компьютера
Обычно в компьютерных блоках питания устанавливается трубчатый стеклянный плавкий предохранитель, рассчитанный на ток защиты 6,3 А. Для надежности и компактности предохранитель впаивают непосредственно в печатную плату. Для этого применяются специальные предохранители, имеющие выводы для запайки. Предохранитель обычно устанавливают в горизонтальном положении рядом с сетевым фильтром и его легко обнаружить по внешнему виду.
Но иногда встречаются блоки питания, в которых предохранитель установлен в вертикальном положении и на него надета термоусаживаемая трубка, как на фотографии выше. В результате обнаружить его затруднительно. Но помогает надпись, нанесенная на печатной плате рядом с предохранителем: F1 – так обозначается предохранитель на электрических схемах. Рядом с предохранителем может быть также указан ток, на который он рассчитан, на представленной плате указан ток 6,3 А.
При ремонте блока питания и проверке вертикально установленного предохранителя с помощью мультиметра был обнаружен его обрыв. После выпаивания предохранителя и снятия термоусаживаемой трубки стало очевидно, что он перегорел. Стеклянная трубка изнутри вся была покрыта черным налетом от перегоревшей проволоки.
Предохранители с проволочными выводами встречается редко, но их можно с успехом заменить обычными 6,3 амперными, припаяв к чашечкам с торцов одножильные кусочки медного провода диаметром 0,5-0,7 мм.
Останется только запаять подготовленный предохранитель в печатную плату блока питания и проверить его на работоспособность.
Если при включении блока питания предохранитель сгорел повторно, то значит, имеет место отказ других радиоэлементов, обычно пробой переходов в ключевых транзисторах. Ремонтировать блок питания с такой неисправностью требует высокой квалификации и экономически не целесообразен. Замена предохранителя, рассчитанного на больший ток защиты, чем 6,3 А не приведет к положительному результату. Предохранитель все равно перегорит.
Поиск в БП неисправных электролитических конденсаторов
Очень часто отказ блока питания, и как результат нестабильная работа компьютера в целом, происходит по причине вздутия корпусов электролитических конденсаторов. Для защиты от взрыва, на торце электролитических конденсаторов делаются надсечки. При возрастании давления внутри конденсатора происходит вздутие или разрыв корпуса в месте надсечки и по этому признаку легко найти отказавший конденсатор. Основной причиной выхода из строя конденсаторов является их перегрев из-за неисправности кулера или превышения допустимого напряжения.
На фотографии видно, что у конденсатора, находящегося с левой стороны, торец плоский, а у правого – вздутый, со следами подтекшего электролита. Такой конденсатор вышел из строя и подлежит замене. В блоке питания обычно выходят из строя электролитические конденсаторы по шине питания +5 В, так как устанавливаются с малым запасом по напряжению, всего на 6,3 В. Встречал случаи, когда все конденсаторы в блоке питания по цепи +5 В были вздутые.
При замене конденсаторов по цепи питания 5 В рекомендую устанавливаю конденсаторы, которые рассчитаны на напряжение не мене, чем на 10 В. Чем на большее напряжение рассчитан конденсатор, тем лучше, главное, чтобы по габаритам вписался в место установки. В случае, если конденсатор с большим напряжение не вмещается из-за размеров, можно установить конденсатор меньшей емкости, но рассчитанный на большее напряжение. Все равно емкость установленных на заводе конденсаторов имеет большой запас и такая замена не ухудшит работу блока питания и компьютера в целом.
Чем емкость устанавливаемого конденсатора больше, тем лучше. Так что при замене лучше выбирать конденсатор, рассчитанный на большее напряжение и емкость, чем у вышедшего из строя. Заменить вышедший из строя конденсатор в блоке питания не сложно, при наличии навыков работы с паяльником. Технике пайки посвящена статья сайта «Как паять паяльником».
Нет смысла заменять электролитические конденсаторы в блоке питания, если они все вспучились. Это значит, что вышла из строя схема стабилизации выходного напряжения, и на конденсаторы было подано напряжение, превышающее допустимое. Такой блок питания можно отремонтировать, только имея профессиональное образование и измерительные приборы, но экономически такой ремонт не целесообразен.
Главное при ремонте БП не забывать, что электролитические конденсаторы имеют полярность. Со стороны отрицательного вывода на корпусе конденсатора имеется маркировка, в виде широкой светлой вертикальной полосы, как показано на фото выше. На печатной плате отверстие для отрицательного вывода конденсатора расположено в зоне маркировки белого (черного) полукруга или отверстие для положительного вывода обозначается знаком «+».
Проверка дросселя групповой стабилизации БП АТХ
Если из системного блока компьютера вдруг запахло гарью, то одной из причин может быть перегрев дросселя групповой стабилизации в БП или подгоревшая обмотка одного из кулеров. При этом компьютер обычно продолжает нормально работать. Если после вскрытия системного блока и осмотра все кулеры вращаются, то значит, неисправен дроссель. Компьютер необходимо сразу выключить и заняться ремонтом.
На фотографии показан БП компьютера со снятой крышкой, в центре которой виден дроссель, покрытый изоляцией зеленого цвета, подгоревшей сверху. Когда я подключил этот БП к нагрузке и подал на него питающее напряжение, то через пару минут из дросселя пошла тонкая струйка дыма. Проверка показала, что все выходные напряжения в допуске и размах пульсаций не превышает допустимый.
Через дроссель проходит ток всех питающих компьютер напряжений и очевидно, что произошло нарушение изоляции проводов обмоток вследствие чего, они закоротили между собой.
Обмотки можно перемотать на этот же сердечник, но в результате сильного нагрева магнитодиэлектрик сердечника может потерять добротность, в результате из-за больших токов Фуко будет нагреваться даже при целых обмотках. Поэтому рекомендую установить новый дроссель. Если аналога нет, то нужно посчитать витки обмоток, сматывая их на сгоревшем дросселе, и намотать изолированным проводом такого же сечения на новом сердечнике. При этом нужно соблюдать направление обмоток.
Проверка других элементов БП
Резисторы и простые конденсаторы не должны иметь потемнений и нагаров. Корпуса полупроводниковых приборов должны быть целыми, без сколов и трещин. При самостоятельном ремонте целесообразно выполнить замену только элементов, отображенных на структурной схеме. Если потемнела краска на резисторе, или развалился транзистор, то менять их бессмысленно, так как, скорее всего это следствие выхода из строя других элементов, которые без приборов не обнаружить. Потемневший корпус резистора не всегда свидетельствует о его неисправности. Вполне возможно просто потемнела только краска, а сопротивление резистора в норме.
Павел 02.07.2017
Здравствуйте.
У меня такой вопрос. Я заменил в блоке питания компьютера (Hiper 630Вт) электролитические конденсаторы, но не уверен, что всё правильно сделал в плане выбора конденсаторов.
Пару лет назад в нём вздулся один конденсатор и засвистел (издавал писк при включении ПК). Я заменил его на точно такой же, и по напряжению, и по ёмкости, и по градусам, а именно [10V 2200µF 105°С].
Спустя примерно 2 года заменённый мной конденсатор опять вышел из строя. ПК перестал запускаться, в Б/П появились щелчки при включении.
Разобрав Б/П я увидел, что опять вздулся замененный мной конденсатор и ещё один поменьше на [10V 1000µF 105С°] , расположенный рядом. Я их оба заменил на такие: [10V 3300µF 105°], взяв со старой ненужной донорской материнки. После процедуры замены Б/П сразу же заработал, всё пока что нормально.
В момент написания письма ПК работает на этом самом Б/П, но меня всё же беспокоит следующее:
– нормально такое увеличение ёмкости (более чем на 20%) сразу на двух конденсаторах, или посоветуете перепаять на такие же значения, как были с завода, и опять быть готовым к планируемой поломке?
– или переделать наоборот: купить конденсаторы с более высоким напряжением, а ёмкость оставить 2200 µF? Я в интернете искал по этому вопросу, и люди делятся 50/50. Кто-то говорит увеличивать ёмкость можно, а напряжение нельзя, кто-то говорит наоборот. Также советы меняются в зависимости от того, где именно перегорели конденсаторы: на материнской плате, в цепи питания процессора, либо в блоке питания ПК. Я уже не знаю кого слушать… Где правда? Заранее спасибо.
С уважением, Павел.
Здравствуйте, Павел.
При замене фильтрующих конденсаторов в любых блоках питания и материнских платах нужно руководствоваться тремя правилами:
– чем емкость больше, тем лучше будет фильтрация питающего напряжения;
– чем рабочее напряжение конденсатора выше, тем надежнее;
– чем рабочая температура конденсатора выше, тем надежнее.
Таким образом для Вашего случая лучше установить конденсатор такой же емкости, но рассчитанный на большее напряжение. Как раз конденсаторы и вспучивается из-за пробоя изоляции между его обкладками внутри. А если позволяет место, то и на большую емкость.
Дело в том, что со временем емкость электролитических конденсаторов уменьшается и как раз запас по емкости обеспечит стабильную работу на более длительный срок службы изделия в целом.
Я, например, на материнках и блоках питания при замене конденсаторов всегда устанавливаю вместо 6,3 В на 10 или 15 В, а если позволяет место, то и на большую емкость. Притом ограничений нет, можно вместо 1000 µF установить даже 4000 µF, будет только лучше.
ATX БЛОК ПИТАНИЯ – СХЕМА
ATX БЛОК ПИТАНИЯ, СХЕМА
С каждым днём всё более популярны среди радиолюбителей компьютерные блоки питания ATX. При относительно небольшой цене, они представляют собой мощный, компактный источник напряжения 5 и 12 В 250 – 500 ватт. БП ATX можно использовать и в зарядных устройствах для автомобильных аккумуляторов, и в лабораторных блоках питания, и в сварочных инверторах, и ещё массу применений можно найти для них при определённой фантазии. Причём если схема БП ATX и подвергается переделке, то минимальной.
Схемотехника этих блоков питания примерно одинакова практически у всех производителей. Небольшое отличие касается лишь БП AT и ATX. Главное различие между ними заключается в том, что БП в AT не поддерживает программно стандарт расширенного управления питанием. Отключить данный БП можно, лишь прекратив подачу напряжение на его вход, а в блоках питания формата ATX есть возможность программного отключения сигналом управления с материнской платы. Как правило плата ATX имеет большие размеры чем AT и вытянута по вертикали.
В любом компьютерном БП, напряжение +12 В предназначено для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Это напряжение также подается на вентиляторы. Они потребляют ток до 0.3 А, но в новых компьютерах это значение ниже 0.1 А. Питание +5 вольт подаётся на все узлы компьютера, поэтому имеет очень большую мощность и ток, до 20 А, а напряжение +3.3 вольта предназначено исключительно для запитки процессора. Зная что современные многоядерные процессоры имеют мощность до 150 ватт, нетрудно подсчитать ток этой цепи: 100 ватт/3.3 вольт=30 А! Отрицательные напряжения -5 и -12 В раз в десять слабее основных плюсовых, поэтому там стоят простые 2-х амперные диоды без радиаторов.
В задачи БП входит и приостановка функционирования системы до тех пор, пока величина входного напряжения не достигнет значения, достаточного для нормальной работы. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power Good. Если этот сигнал не поступил, компьютер работать не будет.
Сигнал Power Good можно использовать для сброса вручную если подать его на микросхему тактового генератора. При заземлении сигнальной цепи Power Good, генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала – выполняется аппаратная перезагрузка компьютера. В компьютерных БП типа ATX, предусмотрен сигнал, называемый PS ON, он может использоваться программой для отключения источника питания.
Здесь можно скачать сборник схем компьютерных блоков питания, а тут очень полезная книга по описанию, видам и принципу действия БП AT и ATX. Для проверки работоспособности блока питания, следует нагрузить БП лампами для автомобильных фар и замерять все выходные напряжения тестером. Если напряжения в пределах нормы. Также стоит проверить изменение выдаваемое БП напряжение с изменением нагрузки.
Работа этих блоков питания очень стабильна и надёжна, но в случае сгорания, чаще всего выходят из строя мощные транзисторы, низкоомные резисторы, выпрямительные диоды на радиаторе, варисторы, трансформатор и предохранитель.
ФОРУМ по компьютерным БП
принцип работы, принципиальная схема и проверка его работоспособности
Сегодня комплектующие для десктопного ПК устаревают очень быстро. Единственным исключением является блок питания (БП). Конструкция этого устройства не претерпела серьезных изменений за последние 15 лет, когда на рынке появились БП форм-фактора ATX. Принцип работы и принципиальная схема блока питания для компьютера мало чем отличаются у всех производителей.
Структура и принцип работы
Типовая схема компьютерного блока питания стандарта ATX показана ниже. По своей конструкции это классический БП импульсного типа, основанный на ШИМ-контроллере TL 494. Сигнал к началу работы этого элемента поступает с материнской платы. До формирования управляющего импульса активным остается лишь источник дежурного питания, выдающий напряжение в 5 В.
Выпрямитель и ШИМ-контроллер
Чтобы было проще разобраться с устройством блока питания компьютера и принципом его работы, нужно рассмотреть отдельные структурные элементы. Начать стоит с сетевого выпрямителя.
Основная задача этого блока заключается в преобразовании переменного сетевого электротока в постоянный, который необходим для функционирования ШИМ-контроллера, а также дежурного источника питания. В состав блока входит несколько основных деталей:
- Предохранитель F1 – необходим для защиты БП от перегрузки.
- Терморезистор – он расположен в магистрали «нейтраль» и призван снижать скачки электротока, возникающие в момент включения ПК.
- Фильтр помех – в его состав входят дроссели L1 и L2, конденсаторы C1- C4, а также Tr1, имеющие встречную обмотку. Этот фильтр позволяет подавлять помехи, неизбежно возникающие при работе импульсного БП, могут негативно воздействовать на работу теле- и радиоаппаратуры.
- Диодный мостик – находится сразу за фильтром помех и позволяет преобразовать переменный электроток в постоянный пульсирующий. Для сглаживания пульсаций предусмотрен емкостно-индукционный фильтр.
На выходе из сетевого выпрямителя напряжение присутствует до того момента, пока БП не будет отключен от розетки. При этом ток поступает на дежурный источник питания и ШИМ-контроллер. Именно первый структурный элемент схемы представлен на рисунке.
Он представляет собой преобразователь малой мощности импульсного типа. В его основе лежит транзистор Т11, задачей которого является генерация питающих импульсов для микросхемы 7805.
После транзистора ток сначала проходит через разделительный трансформатор и выпрямитель, основанный на диоде D 24. Используемая в этом БП микросхема обладает одним довольно серьезным недостатком – высоким падением напряжения, что при больших нагрузках может вызвать перегрев элемента.
Основой любого преобразователя импульсного типа является ШИМ-контроллер. В рассматриваемом примере он реализован с помощью микросхемы TL 494. Основная задача модуля ШИМ (широтно-импульсная модуляция) заключается в изменении длительности импульсов напряжении при сохранении их амплитуды и частоты. Полученное выходное напряжение на импульсном преобразователе стабилизируется с помощью настройки длительности импульсов, которые генерирует ШИМ-контроллер.
Выходные каскады преобразователя
Именно на этот элемент конструкции ложится основная нагрузка. Это приводит к серьезному нагреву коммутирующих транзисторов Т2 и Т4. По этой причине они установлены на массивные радиаторы. Однако пассивное охлаждение не всегда позволяет справляться с сильным тепловыделением, все БП оснащены кулером. Схема выходного каскада изображена на рисунке.
Перед выходным каскадом расположена цепь включения БП, основанная на транзисторе Т9. При пуске блока питания на этот элемент конструкции напряжение в 5 В подается через сопротивление R 8. Это происходит после формирования сигнала к пуску ПК на материнской плате. Если возникли проблемы с работой источника дежурного питания, то БП может после пуска сразу отключиться.
Сейчас все производители используют практически аналогичные схемы блоков питания компьютеров. Вносимые ими изменения не оказывают серьезного влияния на принцип работы устройства.
Распиновка главного коннектора
Сначала БП форм-фактора ATX для соединения с системной платой оснащались разъемом на 20 пин. Однако совершенствование вычислительной техники привело к необходимости использовать дополнительно еще 4 контакта. Современные блоки питания могут оснащаться 24-пиновым разъемом в одном корпусе или иметь 20+4 пин. Все контакты коннекторов стандартизованы и вот основные из них:
- +3,3 В – питание материнской платы и центрального процессора.
- +5 В – напряжение необходимо для работы некоторых узлов системной платы, винчестеров и внешних устройств, подключенных к портам USB.
- +12 В – управляемое напряжение, используемое HDD и кулерами.
- -5 В – начиная с версии ATX 1.3 не используется.
- -12 В – сегодня применяется крайне редко.
- Ground – масса.
Распределение нагрузки и возможные неисправности
Напряжение, выдаваемое источником питания, предназначено для различных нагрузок. Таким образом, в зависимости от конфигурации конкретного ПК, потребление энергии в каждой цепи источника питания может меняться. Именно поэтому в технических характеристиках БП указывается не только общая мощность устройства, но и максимальное потребление электротока для каждого типа выходного напряжения.
При апгрейде «железа» ПК следует помнить об этом факте. Например, установка мощного современного видеоускорителя приводит к резкому повышению нагрузки в цепи 12 В. Чтобы ПК работал корректно, возможно потребуется и замена блока питания. Чаще всего неполадки с работой БП связаны со старением элементов его конструкции либо существенным недостатком мощности.
Не стоит забывать и о том, что перегрев выходного каскада может быть связан с накоплением большого количества пыли внутри блока питания. Электролитические конденсаторы, установленные в сетевом выпрямителе и выходных каскадах, больше других деталей склонны к старению.
В первую очередь это касается продукции малоизвестных брендов, использующих дешевые комплектующие. По сути, именно элементная база и качество деталей отличает хорошие устройства от дешевых. Провести ремонт БП самостоятельно может только человек, имеющий определенный набор знаний в области электроники. Однако современные устройства, изготовленные известными брендами, отличаются высокой надежностью. При соблюдении правил обслуживания ПК, проблемы с ними возникают очень редко.
Принципиальная Схема Компьютерного Блока Питания
Через переходные конденсаторы С5, С6 и ограничительные резисторы R5, R7 в базу ключевых транзисторов поступают управляющие сигналы, режекторная цепь R4C4 предотвращает проникновение импульсных помех в переменную электрическую сеть. Расположение элементов на плате Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.
Структурная схема блока питания компьютера Схема блока питания компьютера кликните для увеличения. Управляющие импульсы на транзисторы преобразователя поступают через согласующий трансформатор Т2.
В случае их наличия заменить микросхему U4.
Зарядное устройство из компьютерного блока питания (ПОДРОБНО).
Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя. Конечно, блоки питания современной аппаратуры хоть и имеют общие принципы работы, но схемотехнически отличаются достаточно сильно.
Проверить наличие на контакте PS-ON потенциала корпуса нуля , исправность микросхемы U4 и элементов ее обвязки.
Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста; Дисковый термистор обозначен красным тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ.
В этих БП используют специальный дроссель с индуктивностью выше чем на входе.
Это быстродействующие диоды с малым падением напряжения. Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.
Автомобильное зарядное из компьютерного блока питания ATX DELUX без схемы
Отзывы о сервисе
Работа источника питания. Отказ выходных транзисторов импульсного преобразователя чаще всего является следствием их длительного перегрева, вызванного перегрузкой или недостаточным охлаждением. Варисторы V3, V4 ограничивают выпрямленное напряжение при бросках сетевого напряжения выше принятых пределов. Схема выходного каскада изображена на рисунке.
Если напряжения в пределах нормы.
Понятное дело, что каждый день появляются все более новые и актуальные варианты, поэтому постараемся оперативно пополнять сборник схем более новыми вариантами.
Именно первый структурный элемент схемы представлен на рисунке.
Возможные неисправности БП Использование в течение многих лет отработанной схемы импульсного преобразователя позволило сделать ее крайне надежной. Этот фильтр позволяет подавлять помехи, неизбежно возникающие при работе импульсного БП, могут негативно воздействовать на работу теле- и радиоаппаратуры.
Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. PS-ON Включение блока питания при замыкании вывода на массу.
Начальный ток затвора транзистора Q1 создается резистором R11R
переделка однотактного блока питания компьютера подробно
Распределение нагрузки и возможные неисправности
Проверка БП компьютера измерением величины сопротивления выходных цепей При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.
Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании. Кроме основного контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.
Этот блок отвечает за управление силовыми транзисторами 4 блок , стабилизацию напряжения с помощью обратной связи , защиту от КЗ. Стабилизация выходных параметров устройства осуществляется с помощью широтно-импульсной модуляции управляющих сигналов. Если возникли проблемы с работой источника дежурного питания, то БП может после пуска сразу отключиться.
Вторая половина моста образована конденсаторами С1, С2, создающими делитель выпрямленного напряжения. Поэтому большинство неисправностей БП персональных компьютеров связаны либо со старением его компонентов, либо со значительными отклонениями питания или нагрузки от номинальных параметров. Двухзвенный фильтр выходного напряжения состоит из конденсатора С15, дросселя L3 и конденсатора С Это один из самых не надежных узлов блока питания и ремонтировать его сложно.
Установка компьютерного блока питания в корпус системного блока Для этого засовываете его в верхнюю часть системного блока, и затем фиксируете тремя или четырьмя винтами к тыловой панели системного блока. Возможные неисправности БП Использование в течение многих лет отработанной схемы импульсного преобразователя позволило сделать ее крайне надежной. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.
Резистор R67 — нагрузка делителя. Диодный мостик — находится сразу за фильтром помех и позволяет преобразовать переменный электроток в постоянный пульсирующий. Такая упрощенная схема БП с использованием контроллера широтно-импульсной модуляции показана на следующем рисунке. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями.
Если же отсутствует напряжение только на одном из управляемых силовых выходов, стоит в первую очередь обратить внимание на выпрямительный диод и фильтрующий конденсатор этой цепи. Неисправности компьютерного блока питания и способы их диагностирования и ремонта Приступая к поиску неисправности рекомендуется ознакомится со схемой компьютерного БП. Ground Масса. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода. Но, из-за дороговизны, эти комплектующие могут отсутствовать.
Отрицательные напряжения -5 и В раз в десять слабее основных плюсовых, поэтому там стоят простые 2-х амперные диоды без радиаторов. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП. Кроме основного контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода.
как сделать лабораторный блок питания и зарядник из компьютерного блока питания АТХ ч.1
Что это такое
При этом на микросхеме U3 выв. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения.
Не стоит забывать и о том, что перегрев выходного каскада может быть связан с накоплением большого количества пыли внутри блока питания. Подайте на блок сетевое питание.
Выходные каскады преобразователя Именно на этот элемент конструкции ложится основная нагрузка.
Проверка работоспособности К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов. Неисправности компьютерного блока питания и способы их диагностирования и ремонта Приступая к поиску неисправности рекомендуется ознакомится со схемой компьютерного БП.
Структурная схема
Как правило, их неисправность может быть обнаружена путем визуального осмотра. Плюс кулера к желтому проводу, а минус к красному. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. В случае исправности элементов обвязки заменить U4.
На противоположный вход усилителя выв. Проверка блока питания Хотя импульсный БП и не относится к числу радиоэлектронных схем начального уровня, его диагностика и ремонт своими руками доступны многим людям, имеющим базовые знания и навыки в области радиоэлектроники. PS-ON Включение блока питания при замыкании вывода на массу. Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы.
Cхемы компьютерных блоков питания ATX
При этом через диод D5, подключенный к этой обмотке, заряжается конденсатор С7, и происходит намагничивание трансформатора. Ground Масса. При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных если блок всё же не исправен.
Фильтры этих источников -L6. В случае их выхода за эти пределы более чем на мкс на выходе 3 микросхемы U4 устанавливается высокий уровень напряжения, и источник питания выключается по входу 4 микросхемы U3. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках. Аналогичная ситуация возникает в условиях аварийной эксплуатации блока питания, связанной с короткими замыканиями в нагрузке, контроль которых осуществляется специальной схемой контроля.
КАК СДЕЛАТЬ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ СВОИМИ РУКАМИ
Наименование | Формат | Размер, кБ |
Схема блока питания LC-250 ATX ch. 200-ATX ver. 2.02B фирмы JNC Computer Co. Основной источник: ШИМ DBL494, супервайзер LM339N, 3,3 В – A431 и магнитный стабилизатор Источник дежурного питания +5V SB (дежурка): Высоковольтный ключ KSC5027 и стабилизатор 7805 |
GIF | 110 |
Схема блока питания LC-B250ATX ch. Y-B200-ATX ver. 2.9 фирмы JNC Computer Co. Основной: ШИМ и супервайзер 2003, 3,3 В – магнитный стабилизатор Дежурка: Высоковольтный ключ – SSS2N60A, оптрон 1010, стабилизатор AZ431 |
GIF | 103 |
Схема блоков питания 200XA1 и 250XA1 ch. CG-07A и CG-11 фирмы Codegen Основной: ШИМ KA7500B, супервайзер A6393D или KIA393P, 3,3 В – отдельный выпрямитель Дежурка: Высоковольтный ключ и стабилизатор 7805 |
GIF | 103 |
Схема источника +5V SB блока питания SY-300ATX ch. Y-B2002 ATX ver 1,0 Основной: Дежурка: Высоковольтный ключ – BV-1 501, оптрон 817, стабилизатор 431 |
GIF | 30 |
Схема источника +5V SB блока питания KME PX-230W ATX ch. KME-08-3A1 Основной: Дежурка: Высоковольтный ключ – 2SC5353, стабилизатор 7805 |
GIF | 24 |
Схема платы RD-DW-P009B источника +5V SB блока питания EN-8156901 model SFX-2015 (150W) Основной: Дежурка: Высоковольтный ключ – TFK617 BUF640, оптрон PC817, стабилизатор 431P |
GIF | 21 |
Схема источника +5V SB блока питания 300X ch. CG-13c фирмы Codegen Основной: Дежурка: Высоковольтный ключ – SSS2N60B, оптрон PC817, стабилизатор TL431-A |
GIF | 72 |
Статья о ремонте компьютерных блоков питания ATX (Ver.1.0) | HTML | 18 |
Транзисторы, применяемые в компьютерных блоках питания | HTML | 28 |
Микросхемы, применяемые в компьютерных блоках питания | HTML | 23 |
Импульсные блоки питания для IBM PC В книге рассматриваются вопросы схемотехники, принципа работы, методика диагностики и ремонта компьютерных источников питания ATX |
DJVU | 2910 |
Блоки питания для системных модулей IBM PC XT AT В книге освещаются вопросы схемотехники, принципа работы компьютерных источников питания на микросхеме TL494. Особое внимание уделяется вопросам поиска неисправностей и регулировке компьютерных блоков питания. |
DJVU | 900 |
Источники питания ПК и периферии (часть 1) Подробно разобраны принципы работы отдельных узлов источников питания, алгоритмы и методики поиска неисправностей, типовые неисправности блоков питания компьютеров, мониторов и др. Рассматриваются вопросы построения качественных и энергоэффективных систем электропитания вычислительной техники. |
RAR+DJVU | 4000 |
Источники питания ПК и периферии (часть 2) | RAR+DJVU | 4000 |
Источники питания ПК и периферии (часть 3) | RAR+DJVU | 3627 |
Статья о методике доработки компьютерных блоков питания ATX, модернизация, повышение надежности, способы снижения помех и пульсаций | HTML | 25 |
Схемы блоков питания ATX | ||
Классическая схема блока питания ATX на TL494 и LM393, использованная фирмой Rolsen Основной: ШИМ TL494, супервайзер LM393, 3,3 В – TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ – 2SC3457, стабилизатор 7805 |
GIF | 57 |
Схема PowerMaster модель LP-8 v. 2.03 230W (AP-5-E v. 1.1), и FA-5-2 PCB FA_5-F v. 3.2 Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В – линейный регулятор на SPF36N03 или 45N03L и SP431 Дежурка: Высоковольтный ключ – KSC5027, стабилизатор 7805 |
GIF | 159 |
Схема PowerMaster FA-5-2 v. 3.2 250W Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В – линейный регулятор на SPF36N03 или 45N03L и SP431 Дежурка: Высоковольтный ключ – KSC5027, оптрон PC817, стабилизатор TL431 |
GIF | 158 |
Схема блока питания ATX фирмы Microlab мощностью 350W Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В – KA431 и магнитный стабилизатор Дежурка: Высоковольтный ключ – KSC5027, оптрон LTV817, стабилизатор KA431 |
44 | |
Схема БП Microlab ATX-5400X мощностью 400W Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В – KA431 и магнитный стабилизатор Дежурка: Высоковольтный ключ – KSC5027, оптрон LTV817, стабилизатор KA431 |
43 | |
Схема SevenTeam ST-200HRK Основной: ШИМ UTC51494, супервайзер LM339, 3,3 V формируется на отдельной плате ST-DD33 A60320 из источника +12V: ШИМ UC3843AN, полевой ключ 2SK1388 Дежурка: Высоковольтный ключ – 2SC4020, стабилизатор MC78L05ACP |
GIF | 184 |
Схема DTK PTP-2038 мощностью 250 Вт Основной: ШИМ TL494, супервайзер LM393, 3,3 V – TL431C и магнитный стабилизатор Дежурка: Высоковольтный ключ – 2SC3457, стабилизатор 78L05 |
PNG | 25 |
Схема Codegen ATX300W мощностью 300 Вт Основной: ШИМ KA7500B, супервайзер на дискретных транзисторах, 3,3 V линейный параметрический стабилизатор на 40N03P и TL431 Дежурка: Высоковольтный ключ – полевой SSP2N60B, оптрон 817B, стабилизатор TL431 |
GIF | 229 |
Схема блока питания 330U фирмы Nuitek (COLORS iT) Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V – стабилизатор линейный параметрический на полевике 7030 Дежурка: Высоковольтный ключ – полевой SSS2N60, ШИМ на TDA865, оптрон PC817B |
GIF | 319 |
Схема блока питания 350T Фирмы Nuitek (COLORS iT) Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK2648, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе. Дежурка: ШИМ + высоковольтный полевой ключ – M605, оптрон KPC817, стабилизатор IC431 |
62 | |
Схема блока питания 350U фирмы Nuitek (COLORS iT) Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи MJE13009, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе. Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817 |
63 | |
Схема блока питания 400T Фирмы Nuitek (COLORS iT) Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK1940, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе. Дежурка: ШИМ + высоковольтный полевой ключ – M605, оптрон KPC817, стабилизатор IC431 |
62 | |
Схема блока питания 400U фирмы Nuitek (COLORS iT) Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи 2SC2625, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе. Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817 |
63 | |
Схема блока питания 500T фирмы Nuitek (COLORS iT) Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе. Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817 |
64 | |
Схема блока питания 600T фирмы Nuitek (COLORS iT) Основной: ШИМ на UC3843, супервайзер – WT7525, силовые ключи 2SK2082, оптрон PC817, 3,3 V на источнике опорного напряжения TL431, регуляторе 2SB772, магнитный стабилизатор на дросселе Дежурка: ШИМ и высоковольтный ключ на ICE3B0365, оптрон KPC817, источник опорного напряжения TL431 |
49 | |
Схема FSP145-60SP от Fortron Source Основной: ШИМ и супервайзер на KA3511 на отдельной плате, 3,3 V – KA431 и магнитный стабилизатор Дежурка: ШИМ с высоковольтным ключом на KA1H0165R, оптрон 817, стабилизатор KA431 |
GIF | 48 |
Схема БП ATX-200W, ATX-250W, ATX-300W от Alim Основной: ШИМ на TL494C, супервайзер на дискретных элементах, 3,3 V – источник опорного напряжения на TL431, регулятор 2SA1015 и магнитный стабилизатор на дросселе Дежурка: Преобразователь на высоковольтном ключе на 2SC3150, стабилизатор 7805 |
395 | |
Схема InWin IW-ISP300A3-1 PowerMan с корректором фактора мощности Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V – магнитный стабилизатор, noise killer (регулятор скорости вращения вентилятора) на отдельной плате GDD-002 на LM358 Дежурка: Высоковольтный ключ – полевой 02N60P, оптрон PC817C |
GIF | 218 |
Схема InWin IW-P300A2-0 R1.2 Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V – магнитный стабилизатор Дежурка: Высоковольтный ключ – полевой SSS2N60B или SPU02N60P, оптрон CT324 или EL817 |
GIF | 51 |
Схема Sirtec HPC-360-302DF rev.C0 с активным корректором фактора мощности на отдельной плате Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V – магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339 Дежурка: Высоковольтный ключ – полевой SSP2N60B, оптрон LIV817BY Активный корректор фактора мощности (АКФМ): Контроллер – UCC3818N, высоковольтный ключ – полевой 2 x FQP9N50 |
176 | |
Схема Sirtec HPC-420-302DF rev.C0 с активным корректором фактора мощности на отдельной плате Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V – магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339 Дежурка: Высоковольтный ключ – полевой SSP2N60B, оптрон LIV817 Активный корректор фактора мощности (АКФМ): Контроллер – UCC3818N, высоковольтный ключ – полевой 2 x SPP11N60C3 |
182 | |
Схема БП Delta Electronics DPS-200PB-59 Основной: ШИМ TL494, супервайзер на отдельной платеLM339D, 3,3 V на отдельной плате A431 и магнитный стабилизатор Дежурка: Высоковольтный ключ – 2SC3457, стабилизатор 78L05 |
GIF | 236 |
Схема БП Delta Electronics DPS-260-2A c активным корректором фактора мощности, схемотехнически необычная, достаточно высокого уровня качества Основной: ШИМ и АКФМ на отдельной плате DC-988 2960095601 на NE556 и ML4824-1, супервайзер на отдельной плате DC-989 2960095700 на LM339D, 2-х LM358 и TL431, однотактный инвертор на полевом ключе 2SK2611, 3,3 V на отдельной плате DC-986 2960095401 TL431 и магнитный стабилизатор Дежурка: ШИМ + высоковольтный полевой ключ – TOP200, стабилизатор PQ05RF11 АКФМ: Высоковольтный ключ – полевой 2 x IRFP450 |
RAR+GIF | 454 |
Фирменная схема JNC SY-300ATX на микросхеме AT2005 Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V – магнитный стабилизатор Дежурка: Высоковольтный ключ – полевой KSC5027, KSC5027-1, или BV-1 501 в корпусе TO-126, оптрон 817, стабилизатор 431 |
55 | |
Фирменная схема JNC LC-B250ATX на микросхеме 2003 Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме 2003, 3,3 V – магнитный стабилизатор Дежурка: Высоковольтный ключ – полевой SSS2N60B, оптрон 817, стабилизатор 431 |
GIF | 53 |
Схема БП фирмы JNC Основной: ШИМ TL494, супервайзер LM339, 3,3 V – TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ – KSC5027, стабилизатор MC7805 |
GIF | 123 |
Фирменная схема блока питания KME PM-230W Основной: ШИМ TL494, супервайзер LM393, 3,3 V линейный параметрический стабилизатор на STP40NE03L и SP431 Дежурка: Высоковольтный ключ – KSC5027, стабилизатор PJ7805 |
GIF | 63 |
Фирменная оригинальная схема Sunny ATX-230. Схема сильно отличается от других блоков питания! Основной: ШИМ однотактный на UC3843, высоковольтный ключ – 2SK2545, оптрон TCET1109, стабилизатор TL431, супервайзер TPS5510P, цепь стабилизации напряжения питания ШИМ включает оптрон 817C, управляет которым супервайзер, 3,3 V – линейный параметрический стабилизатор на полевом транзисторе P3020L и TL431 Дежурка: Высоковольтный ключ – полевой 2SK3067, оптрон 817C, стабилизатор TL431 |
GIF | 53 |
Фирменная схема Shido ATX-250W LP-6100 Основной: ШИМ TL494, супервайзер LM339, 3,3 V – отдельный выпрямитель Дежурка: Высоковольтный ключ – 2SC3150, оптрон 817, стабилизатор TL431 |
PNG | 37 |
Схема PowerLink LPJ2-18 мощностью 300W Основной: ШИМ и супервайзер на LPG-899, 3,3 V – TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ – KSC5027, оптрон 817, стабилизатор 431 |
GIF | 54 |
Схема Maxpower PX-300W Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V – линейный параметрический стабилизатор на полевом транзисторе P40NF03 Дежурка: Высоковольтный ключ – KSC5027, стабилизатор 7805 |
GIF | 51 |
Вариант схемы на SG6105 мощностью 250 Вт Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V – линейный параметрический стабилизатор на полевом транзисторе P40NE0 Дежурка: Высоковольтный ключ – KSC5027, стабилизатор 7805 |
GIF | 47 |
Схема блока питания AcBel API4PC01 мощностью 400W Основной: без номиналов Дежурка: без номиналов |
PNG | 96 |
Схема блока питания AcBel API3PCD2 ATX-450P-DNSS мощностью 450W Основной: без номиналов Дежурка: без номиналов |
PNG | 46 |
Схема БП Green Tech MAV-300W-P4 Основной: ШИМ TL494, супервайзер WT7510, 3,3 V линейный параметрический стабилизатор на полевом транзисторе P45N03L Дежурка: Высоковольтный полевой ключ – PFB2N60, оптрон COSMO1010, стабилизатор TL431 |
GIF | 203 |
Схема БП ATX-300P4 PFC ATX-310T v. 2.03. Корректор фактора питания пассивный Основной: ШИМ TL494, супервайзер LM339, 3,3 V – TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ – 2SC3866, оптрон ???, стабилизатор TL431 |
PNG | 37 |
Схема БП ShenZhon мощностью 350 Вт на микросхеме – супервайзере AT2005 Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V – магнитный стабилизатор Дежурка: Высоковольтный ключ – полевой KSC5027, оптрон 817, стабилизатор 431 |
PNG | 332 |
Схема серии БП фирмы Linkworld мощностью 200W, 250W и 300W Основной: ШИМ TL494C, супервайзер ???, 3,3 V – TL431 и магнитный стабилизатор Дежурка: Высоковольтный ключ – 2SC3150, оптрон ???, стабилизатор 7805 |
395 | |
ШИМ и высоковольтные полевые ключи БП Hiper HPU-4K580 Основной: ШИМ TL3842P, однотактный инвертор на 2-х полевых ключах 2SK2607 Дежурка: |
PNG | 136 |
Часть схемы БП IP-P350AJ2-0 мощностью 350 Вт, включающая источник дежурного напряжения +5VSB Основной: ШИМ AIC3843, супервайзер WT751002, 2 оптрона 817, однотактный инвертор на полевом ключе W12NK90Z Дежурка: ШИМ и высоковольтный ключ – ICE2A0565Z, оптрон 817, стабилизатор TL431 |
PNG | 24 |
Фрагмент схемы блока питания ATX Enlight HPC-250 и HPC-350 Основной: ШИМ TL494C, супервайзер LM339, опорное – TL431 Дежурка: |
GIF | 266 |
Источник дежурного напряжения +5VSB Codegen-300W model 300X v2.03 Основной: Дежурка: ШИМ и высоковольтный ключ – 5H0165R, оптрон LF311 |
GIF | 40 |
Источник дежурного напряжения +5VSB Espada KPY-350ATX Основной: Дежурка: Высоковольтный полевой ключ – 02N60, оптрон |
GIF | 8 |
Источник дежурного напряжения +5VSB FSP ATX-300GTF Основной: Дежурка: Высоковольтный полевой ключ – 02N60, оптрон |
GIF | 8 |
Источник дежурного напряжения +5VSB FSP600 Epsilon FX600 GLN Основной: Дежурка: ШИМ и высоковольтный ключ – FSDM0265R, оптрон PC817, стабилизатор TL431 |
PNG | 66 |
Часть схемы БП LEC971 мощностью 250 Вт, включающая источник дежурного напряжения +5VSB Основной: Дежурка: Высоковольтный ключ – KSC5027, стабилизатор 7805 |
GIF | 29 |
Еще одна схема БП ATX Основной: ШИМ TL494 Дежурка: |
BMP | 391 |
Схемы блоков питания AT | ||
Схема БП на TL494 и LM339 мощностью 200W | GIF | 44 |
Схема на TL494, KA34063F и LM393 | GIF | 369 |
Схема на mPC494C и HA17339 | GIF | 71 |
Схема на TL494C | PNG | 70 |
Схема на DBL494 | PNG | 177 |
Схема на TL494C и LM339 | PNG | 72 |
Схема Sunny CWT9200C-1 на KA7500(TL494) | PNG | 50 |
Схема Enermax мощностью 200W | GIF | 51 |
Схема AUVA VIP P200B мощностью 200W без номиналов | PNG | 45 |
Схема PE-050187 от Power Efficiency Electronic Co Ltd без номиналов | PNG | 51 |
Схема на mPC494C | GIF | 89 |
Еще одна схема БП AT | GIF | 65 |
Схема БП мощностью 200W | PNG | 36 |
Схема БП мощностью 200W без номиналов | GIF | 33 |
Схема БП без номиналов | GIF | 33 |
Схема БП без номиналов | GIF | 135 |
Еще одна схема БП без номиналов | GIF | 31 |
схемы переделки в лабораторный или регулируемый, в зарядное устройство
Автор Акум Эксперт На чтение 13 мин Просмотров 60.8к. Опубликовано
Достать бывший в употреблении блок питания компьютера сегодня несложно, а стоит он сущие копейки. Но как его можно использовать без самого компьютера? В этой статье мы это выясним, а заодно сделаем своими руками зарядное устройство и лабораторный блок питания (ЛБП) из компьютерного блока питания.
Как включить блок питания (БП) от компьютера без компьютера
Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.
На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.
Для подачи напряжения на этот БП служит механический выключательВажно. В большинстве блоков питания ATX предусмотрен дополнительный служебный механический выключатель, расположенный на задней стенке ПК. Напряжение сети на БП этих моделей подается после включения этого тумблера.
Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on, и БП, а значит, и сам компьютер включаются.
Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается – это слышно даже по шуму вентилятора.
Перемычка имитирует команду процессора “включить БП”Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой
Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.
Расцветка и назначение проводов блока питания ATXЦвет | Назначение | Примечание |
черный | GND | провод общий минус |
красный | +5 В | основная шина питания |
желтый | +12 В | основная шина питания |
синий | -12 В | основная шина питания (может отсутствовать) |
оранжевый | +3.3 В | основная шина питания |
белый | -5 В | основная шина питания |
фиолетовый | +5 VSB | дежурное питание |
серый | Power good | питание в норме |
зеленый | Power on | команда запустить БП |
Табличка особых пояснений не требует. С зеленым проводом (Power on) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.
Фиолетовый провод (+5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу (Power good) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.
Переделка БП ATX в регулируемый или лабораторный блок питания
А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопросСразу оговоримся – хотя типовые схемы включения этих микросхем одинаковы, некоторые отличия в зависимости от модели БП все же есть. Поэтому универсального решения для переделки всех БП не существует.
Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.
Схема блока питания ATX, переделкой которого мы займемсяРазбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.
Лишние провода нужно выпаятьТакже выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.
Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.
Назначение выводов интегральной микросхемы TL494 и ее аналоговИзменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.
Эти дорожки надо перерезатьТеперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.
Доработанная схема ШИМ контроллера теперь уже лабораторного блока питанияКак видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.
Приборы могут быть любого типа, важен лишь предел измеренияМнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопросПервое включение нашего лабораторного блока питания производим через лампу накаливания 220 В мощностью 60 Вт. Это поможет избежать проблем, если мы наделали ошибок в монтаже. Если лампа не светится или светится вполнакала, а блок питания запустился, то все в порядке. Если лампа горит в полный накал, а блок питания молчит, то придется искать ошибки.
Включение блока питания через балластную лампуВсе в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку – 2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.
Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.
Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.
Как сделать зарядное устройство
Теперь займемся переделкой компьютерного блока питания в автомобильное зарядное устройство.
Прибор для зарядки постоянным напряжением
Это устройство заряжает аккумулятор постоянным фиксированным напряжением 14 В. По мере зарядки батареи зарядный ток будет падать. Как только напряжение на клеммах батареи достигнет 14 В, ток станет равным нулю, а зарядка прекратится.
Благодаря такому алгоритму аккумуляторную батарею невозможно перезарядить, даже если оставить ее на зарядке на неделю. Это полезно при обслуживании AGM и GEL автомобильных аккумуляторов, которые очень не любят перезарядки.
А теперь за дело, тем более, что схема доработки простая. Дорабатывать будем БП ATX на контроллере TL494 или его аналогах (см. раздел выше). Наша задача – повысить выходное напряжение по шине +12 В до 14 вольт. Сделать это несложно. Вскрываем блок питания, вынимаем плату и отпаиваем все провода питания, оставив лишь желтый, черный и зеленый.
Оставляем только те провода, которые нам нужны, остальные выпаиваем или просто откусываемВпаиваем зеленый провод на место любого черного – подаем команду БП на безусловное включение при подключении к сети (см. раздел выше). Выпаиваем электролитические сглаживающие конденсаторы со всех линий питания. На место, где стоял конденсатор по шине +12 В устанавливаем конденсатор той же емкости, но на рабочее напряжение 35 В. Переходим к доработке контроллера. Находим резистор, который соединяет первый вывод микросхемы с шиной +12 В. На схеме ниже он обозначен стрелкой.
Этот резистор отвечает за величину выходного напряженияНам нужно сменить его номинал. Но на какой? Выпаиваем, измеряем его сопротивление. В нашем случае его номинал – 27 кОм, но в зависимости от модели БП значение может меняться. На место выпаянного устанавливаем переменный резистор номиналом примерно вдвое большим. Движок резистора устанавливаем в среднее положение.
Установленный переменный резистор вместо постоянногоВключаем блок питания и, измеряя напряжение на шине +12 В (желтый провод относительно черного), вращаем ползунок. Напряжение легко уменьшается, но увеличить его не получается – мешает защита от перенапряжения. Для того чтобы поднять напряжение до необходимых нам 14 В, ее нужно отключить. Находим на схеме резистор и диод, обозначенные на рисунке ниже стрелками, и выпаиваем их.
Эти детали нужно выпаятьСнова включаем БП, выставляем напряжение между черным и желтым проводами величиной 14 В. Выключаем, выпаиваем резистор, не трогая его движок, измеряем сопротивление. На место переменного устанавливаем постоянный того же номинала. Устанавливаем на корпус две клеммы, подпаиваем к ним черный и желтый провода, помечаем, где плюс и минус (желтый – плюс, черный – минус).
Снова включаем БП, теперь уже переделанное в зарядку для аккумуляторов устройство. К клеммам подключаем нагрузку – лампу дальнего света автомобиля. Измеряем на клеммах напряжение: если оно не снизилось более чем на 0.2 В, то доработка окончена. Собираем прибор и пользуемся.
Важно! Конечным напряжением зарядки AGM и GEL аккумуляторов является значение 13.8 В, поэтому выходное напряжение имеет смысл снизить с 14 В до 13.8 В.
Единственный, пожалуй, недостаток этой самодельной конструкции – она не имеет защиты от короткого замыкания и переполюсовки (мы ее отключили). Поэтому пользоваться прибором нужно внимательно.
Зарядник с регулировкой тока и напряжения
Теперь попробуем переделать компьютерный БП так, чтобы можно было плавно регулировать напряжение и ток зарядки. Это позволит обслуживать батареи любой емкости и на любое напряжение. Кроме того, это зарядное устройство имеет защиту от короткого замыкания, перегрузки и перегрева. С его помощью можно изменять зарядное напряжение от 0 до 25 В и ток от 0 до 8 А.
В первую очередь производим манипуляции, которые подробно описаны в пункте «Прибор для зарядки постоянным напряжением». Выпаиваем лишние провода, оставив желтый, черный и зеленый. Меняем сглаживающий конденсатор на шине +12 В на прибор с напряжением 35 В. Подключаем зеленый провод на общую шину.
Теперь надо поднять напряжение на шине +12 В до величины 28 В. Для этого удаляем резисторы, соединяющие первый вывод ШИМ контроллера с шинами +5 и +12 В. На схеме ниже они обозначены стрелками.
Отключаем стабилизацию напряженияТеперь ШИМ контроллер будет работать «на всю», а напряжение на шине +12 В поднимется до максимума – 28 В. Но опять сработает защита по перенапряжению. Отключаем ее так же, как и в конструкции выше: выпаиваем диод, помеченный на схеме ниже стрелкой.
Отключаем узел защиты по перенапряжениюВключаем блок питания и измеряем напряжение между желтым и черным проводами – оно должно увеличиться до указанных значений. С блоком питания все. Теперь перейдем к сборке узла регулировки напряжения и тока, представленного на схеме ниже.
Схема узла регулировки напряжения и токаНа транзисторах VT1 и VT2 собран простейший узел регулировки напряжения. Сама регулировка осуществляется при помощи потенциометра R14. В узле управления током используются микросхемы DA2 и DA4, представляющие собой интегральные регулируемые стабилизаторы напряжения/тока. Каждая из микросхем способна выдать ток до 5 А. Включив их параллельно, мы удвоили это значение. Регулировка тока производится потенциометром R17. Резисторы R7 и R8 – токовыравнивающие. Далее напряжение через амперметр PA1 подается на клеммы, к которым подключается заряжаемая батарея. Напряжение на батарее контролируется при помощи вольтметра PV1.
Вольтметр и амперметр можно использовать любые – хоть цифровые, хоть стрелочные. Первый должен иметь предел измерения 30 В, второй – 10 А. В качестве токовыравнивающих резисторов используются отрезки монтажного провода длиной 20 см и сечением 1 мм. кв. Если блок выполнен навесным монтажом, то в их качестве будут выступать монтажные провода.
Мощный полевой транзистор, который можно взять из неисправного компьютерного БП, и микросхемы стабилизатора устанавливаются на общий радиатор через слюдяные прокладки. Очень удобно использовать для этих целей радиатор от процессора ПК. Ниже представлен один из возможных вариантов монтажа блока регулировок.
Здесь транзистор и стабилизаторы размещены на радиаторе от процессораЕсли все готово, то включаем зарядное устройство, нагружаем его лампой дальнего света и проверяем работу, регулируя выходные ток и напряжение и контролируя их по приборам.
Что касается защиты, то она уже встроена в микросхемы DA2 и DA4. Эти приборы имеют внутреннюю защиту от перегрузки, короткого замыкания и перегрева.
Вот мы и разобрались с тонкостями доработки компьютерных блоков питания. Теперь нам не составит труда переделать их в зарядное устройство для автомобильного аккумулятора или лабораторный блок питания.
5 Схема блока питания ПК для вас
Хорошая схема импульсного блока питания постоянного тока от старого компьютера, который не используется. Он мощный, прочный и отлично работает.
В настоящее время компьютер становится электроприбором, необходимым для каждого дома, потому что они очень полезны.
Но срок службы и очень быстро устаревают. Есть новая программа. Желаемая машина с высоким КПД. Всегда можно поменять на новый. (К современному).
-Где старые компы? Скорее всего, он будет отброшен как спам.Это может быть очень ценно для многих, в том числе и для меня. Многие соседи всегда давали мне старый компьютер для работы над проектами.
-Первое, что мне нравится использовать, это мощность, пусть даже старая, но мощная, долговечная и отлично работает. Но это всегда должно быть правильно заземлено. Для предотвращения утечки тока или поражения электрическим током. Нормальное напряжение составляет 3,3 В, 5 В, 12 В и многое другое.
5V 12V 15A max Цепь питания с коммутационным режимом
Это цепь питания с импульсным режимом 5V 12V, макс 15A.Это старая схема блока питания ПК мощностью 200Вт . Эта схема подходит для ремонта. Я использую популярную микросхему TL494 в качестве основной. В схеме имеется сдвоенный выход на 2 части.
- 5V 15A и -5V 1A
- 12V 10A и -12V 1A
TL494, популярная микросхема PWM
Источник: я не знаю источник.
Я надеюсь, что эта схема может в рядах проверять медитацию на ремонте компьютера у друзей. Думаю, снова используйте номер интегральной схемы TL494.И по-прежнему использовать транзисторную мощность.
Ремонт компьютера Dell GX620 с собой
Я давно пользуюсь компьютером Dell GX620, потому что он хорош и долговечен. Я потерял его несколько дней назад. Мой друг, который занимается ремонтом компьютеров, сказал, что проблема с блоком питания. Он сказал мне купить его на amazon.com, они очень хорошие, у него невысокая стоимость, и его тоже можно доставить бесплатно.
Иногда замена цепей питания компьютера серии может оказаться нецелесообразной.Потому что покупать его не было или могло быть слишком дорого.
Отремонтировать блок питания ЭБУ до поиска неисправности. Это хорошее решение. Какие нормальные цепи таким образом питаются. Часто сначала разрабатывается как дешевое оборудование. Например, резисторы-предохранители. Маленькие транзисторы. Или конденсаторный тип, дружественный к электролизу, часто проблема, решение для выхода из строя, особенно на старых компьютерах около 10 лет.
Для простоты ремонта нам нужна схема. Я предлагаю следующие схемы…
-Иногда вам, возможно, придется использовать старый компьютер.Дети будут изучать основы или играть в простые игры. Цепь питания повреждена. Что делать?
– Основные моменты Девятого автодрома – это старая технология, это самая простая часть. Но иногда бывает сложно найти схемы. Собираю старую, планирую руководство ремонтом или модификацией не ограничивается. Имеется 5 схем, как показано ниже. (см. ниже!)
200W PC блок питания переключения схемы 110V-220V
Это будет блок питания ПК для компьютера снова интересная схема.Может быть полезным с друзьями по занятию можно починить компьютер? Подумайте, как быть персонажем Импульсный источник питания 200 Вт, размер источника переменного напряжения 2, уровень 110 В и 220 В можно использовать не спеша. И все же используйте напряжение во многих группах + 5В, + 12В, -12В, которого достаточно для питания малогабаритного компьютера или AT. Когда вы увидите схему, вы подумаете, что использовать интегральную схему IC TL494, источник питания, будет опорным оборудованием. Сделайте так, чтобы схема была несложной или легко ремонтировалась. Детали другие, пожалуйста, посмотрите в схеме лучше.
Compaq блок питания ПК 200 Вт
Сегодня в гости к другу приезжает мастер по ремонту компьютеров. Он думает, что я делаю итоги круга на сайте. Тогда дайте Compaq блок питания 200Watt Circuit, продолжайте анонсировать на сайте. Судя по тому, что он принес с другого сайта, уже не может вспомнить название. Как я вижу, не уверен, что да, схема Compaq Computer или нет. Но поблагодари своего друга. Мне хорошо часто давай всегда. По крайней мере, надеюсь, что эта трасса может быть полезна друзьям.
Старый компьютер Схема питания ПК на TL494
Мой старший брат занимается ремонтом компьютера. Однажды встретившись с проблемой переключения блока питания, компьютер потерял. Это старая схема. Затем я помогаю искать отдачу. Получите эту схему думаю можете не согласиться. Но достаточное использование может заменить. Если друзья встретят такую же проблему, попробуйте, пожалуйста. Он может выдавать выходное напряжение 5 В, + 12 В, -12 В. Использование интегральной схемы TL494 быть основным оборудованием легко найти хорошее.
При подаче напряжения 110В и 220В выбираем включенный виток SW1.Это еще одна деталь, которую друг видит в схеме.
Схема питания компьютера 230Вт 220В
Здесь схема питания компьютера 230Вт 220В.
он использует IC-TL494 и транзистор.
Out put 5V, 12V
250W china Схема блока питания компьютера
Мой друг спрашивает о схеме переключения блока питания. Которые производят от модели Китайской Народной Республики схема все. Быть китайцам сложно искать много схем. Затем я пытаюсь найти много схем.Познакомьтесь с этой схемой. Думаю, может да. Потому что здесь китайцы контролируют все детали оборудования. Но должен просить прощения, друзья. С этой моделью схема не ясна, но может ли хватить в рядах прибыли? Несколько то немного, когда видят хорошее, в результате видят положение оборудования понимает не очень сложно. Существует интегральная схема TL494 с выходным напряжением +12 В, -12 В и + 5 В.
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Блок питания компьютера – схема и работа
Все электронные системы и оборудование, независимо от их размера или функции, имеют одну общую черту: всем им нужен блок питания (БП), который преобразует входное напряжение в напряжение или напряжения, подходящие для их цепей. . Наиболее распространенным типом современных блоков питания является импульсный блок питания ( SMPS, ). Существует множество топологий SMPS и их практических реализаций, используемых производителями блоков питания. Однако все они используют одни и те же базовые концепции.На этой странице объясняются принципы работы импульсного источника питания и рассматриваются его основные части и функции. Это руководство может быть полезно системным интеграторам, любителям и тем, кто не обязательно является экспертом в области силовой электроники.Это концептуальная принципиальная схема силовой передачи типичного компьютерного блока питания ATX. На этой схеме не показана схема управления, поэтому вы видите, что все затворы MOSFET и базы транзисторов открыты. Для ясности, части, отвечающие за различные вспомогательные функции, такие как ограничение тока, управление вентилятором и защиту от перенапряжения, которые не являются существенными для изучения основных концепций преобразования мощности, также не показаны.Для полной схемы см., Например, эту аннотированную схему блока питания ATX.
Обратите внимание, что в отличие от генераторов, которые преобразуют энергию, накопленную в различных видах топлива, в электричество, блоки питания преобразуют электрическую энергию из одной формы в другую. Входная розетка переменного тока на ПК относится к типу IEC 320 или аналогичному. За предохранителем «F» следует фильтр EMI . Фильтр обычно состоит из комбинации дросселей и конденсаторов дифференциального и синфазного режимов. Его основная цель – уменьшить кондуктивный радиочастотный шум, излучаемый источником питания, обратно во входную линию в соответствии с нормативными требованиями.Снижение кондуктивного шума также снижает излучаемые излучения от входных линий электропередачи, которые действуют как антенны. Входная секция обычно также включает в себя компоненты ограничения пускового тока и защиты от перенапряжения. За фильтром электромагнитных помех в большинстве автономных блоков питания SMPS следует выпрямительный мост (RB) и ступень коррекции коэффициента мощности ( PFC ). Этот каскад отсутствовал в старых ИИП, в которых за выпрямителем следовал большой накопительный конденсатор. Производители источников питания начали внедрять технику PFC в конце 80-х годов, когда европейцы ввели норму EN61000-3-2.В этом документе указывается максимальная амплитуда гармоник линейной частоты для различных категорий оборудования. На нашей схеме показан типичный каскад PFC, который состоит из двухполупериодного выпрямителя и повышающего преобразователя с накопительным конденсатором C1. Обратите внимание, что в этой схеме ток всегда протекает через два диода выпрямительного моста. Существуют также так называемые «безмостовые PFC», которые исключают один диод из прохождения тока. Накопительный конденсатор предназначен для подачи энергии на выход при кратковременных перебоях в подаче питания.На практике может быть несколько параллельных ограничений хранилища. Блоки питания компьютеров, а также коммерческие блоки обычно должны пройти по крайней мере один цикл входной синусоидальной волны, которая составляет 16 мс в США и 20 мс в Европе. Повышение PFC обеспечивает напряжение промежуточного контура (Vdc), которое выше пикового значения входного переменного тока. В современных компьютерных блоках питания это напряжение обычно составляет 375-400 В постоянного тока. Если вы пытаетесь устранить неисправность устройства и измеряете около 160 В постоянного тока на C1 – это означает, что ступень повышения не работает.Выходной каскад DC-DC в любом SMPS всегда содержит одно или несколько коммутационных устройств, которые периодически коммутируют сети LC.
Главный выключатель Q2 периодически подает напряжение Vdc на первичную обмотку силового трансформатора T1. Когда Q2 находится во включенном состоянии, на верхних выводах вторичных обмоток T2 появляется положительное напряжение.В результате выпрямительные диоды D2, D4, D7 и D9 проводят ток, и энергия от входного источника подается на нагрузки. В то же время некоторая энергия также накапливается в сердечниках Т2 и катушках индуктивности L2, L4, L5 и L6. Когда Q2 находится в состоянии «выключено», напряжения на вторичных обмотках T2 меняют полярность, и выпрямительные диоды становятся смещенными в обратном направлении. Поскольку выходные катушки индуктивности по-прежнему пытаются поддерживать ток, полярность напряжений на них меняется в соответствии с законом Фарадея. В результате катушки индуктивности продолжают проводить ток через диоды свободного хода D3, D5, D8 и D10, таким образом поддерживая замкнутые контуры тока через их соответствующие нагрузки.В течение этого временного интервала вспомогательный переключатель Q3 обеспечивает фиксацию и активный сброс сердечника трансформатора. Когда Q3 отключается, Q2 при правильной конструкции схемы включается при нулевом напряжении, что снижает его коммутационные потери. Такой прямой преобразователь с активным зажимом был первоначально запатентован Vicor Corp. Насколько мне известно, этот патент истек в мире в 2002 году. Конечно, вам следует консультироваться со своим патентным поверенным для принятия любых решений.
Схема управления регулирует выходное напряжение 5 В с помощью широтно-импульсной модуляции ( PWM, ).Шина 3,3 В выводится из той же вторичной обмотки, что и 5 В. Вы можете видеть, что есть дополнительная катушка индуктивности L3, пропускающая ток 3,3 В. Это индуктор magamp . Он используется для блокировки части импульса, чтобы снизить регулируемое напряжение до 3,3 В. Вспомогательный транзистор Q4 устанавливает ток сброса катушки индуктивности L3. Этот ток определяет вольт-секунды, заблокированные L3. Усилитель ошибки +3,3 В постоянного тока (не показан на схеме) часто использует дистанционное зондирование для компенсации чрезмерного падения напряжения в кабеле.
Выходы № 3 и 4 (+/- 12 В) в описанном источнике питания полурегулируемые . Они не регулируются отдельным замкнутым контуром управления, а частично стабилизируются ШИМ, воздействующим на основную шину 5 В.
Затем все выходы постоянного тока подключаются к стандартным разъемам жгута проводов. Распиновка основного разъема ATX. Также см. Наше полное руководство по всем разъемам для блоков питания. Обратите внимание, что современные системы ATX имеют как минимум две шины 12 В: + 12V1 и + 12V2. Однако в большинстве случаев оба выходят на один и тот же физический выход 12 В.
Отдельный обратноходовой преобразователь состоит из силового полевого МОП-транзистора Q5, трансформатора T2, выпрямителя D11 и фильтрующего конденсатора C7. Он служит двум целям – обеспечивать смещение для схемы управления и обеспечивать резервное напряжение 5 В (5 ВSB). Это напряжение должно присутствовать всякий раз, когда к источнику питания подается переменный ток. Он питает цепи, которые остаются в рабочем состоянии, когда основные выходные шины постоянного тока отключены. См. Пример конструкции простого обратного хода на 12 В.
Как работают блоки питания ПК
Если есть какой-либо один компонент, который абсолютно жизненно важен для работы компьютера, то это блок питания.Без него компьютер – это просто инертный ящик из пластика и металла. Блок питания преобразует линию переменного тока (AC), идущую из вашего дома, в постоянный ток (DC), необходимый для персонального компьютера. В этой статье мы узнаем, как работают блоки питания для ПК и что означают номинальные мощности.
В персональном компьютере (ПК) источником питания является металлический ящик, который обычно находится в углу корпуса. Блок питания виден сзади многих систем, поскольку он содержит розетку для кабеля питания и охлаждающий вентилятор.
Источники питания, часто называемые «импульсными источниками питания», используют технологию переключения для преобразования входного переменного тока в более низкие напряжения постоянного тока. Типичные поставляемые напряжения:
3,3 и 5 В обычно используются в цифровых схемах, в то время как 12 В используется для запуска двигателей в дисководах и вентиляторах. Основная спецификация блока питания – Вт . Ватт – это произведение напряжения , в вольтах и тока , в амперах или амперах. Если вы работали с ПК в течение многих лет, вы, вероятно, помните, что на исходных ПК были большие красные тумблеры, которые имели большой вес.Когда вы включали или выключали компьютер, вы знали, что делаете это. Эти переключатели фактически контролировали подачу 120-вольтного питания к источнику питания.
Сегодня вы включаете питание небольшой кнопкой и выключаете машину с помощью пункта меню. Эти возможности были добавлены к стандартным источникам питания несколько лет назад. Операционная система может отправить сигнал блоку питания, чтобы он отключился. Кнопка посылает 5-вольтовый сигнал источнику питания, чтобы сообщить ему, когда нужно включить.В блоке питания также есть цепь, которая подает 5 вольт, называемая VSB для «напряжения ожидания», даже когда она официально «выключена», так что кнопка будет работать. См. Следующую страницу, чтобы узнать больше о технологии переключателя.
Как выбрать блок питания ПК
Один из наименее интересных, но наиболее важных компонентов ПК – это блок питания. Конечно, компьютеры работают на электричестве, и оно не подается напрямую от стены к каждому компоненту в корпусе ПК. Вместо этого электричество переходит от переменного тока (AC), поставляемого энергокомпанией, в постоянный ток (DC), используемый компонентами ПК, с требуемым напряжением.
Заманчиво купить любой блок питания для работы вашего ПК, но это не лучший выбор. Источник питания, который не обеспечивает надежное или чистое питание, может вызвать множество проблем, в том числе нестабильность, которую трудно определить. Фактически, отказ источника питания часто может вызывать другие проблемы, такие как случайные перезагрузки и зависания, которые в противном случае могут оставаться загадочными.
Таким образом, вы захотите уделить выбору источника питания столько же времени и внимания, сколько вашему ЦП, графическому процессору, оперативной памяти и вариантам хранения.Правильный выбор блока питания обеспечит наилучшую производительность и поможет продлить срок службы.
Обсуждаемые цены и доступность продуктов действительны на момент публикации, но могут быть изменены.
Выходная мощность: сколько вам нужно?Несмотря на то, что при выборе источника питания следует учитывать несколько важных факторов – как и в случае с любым другим компонентом ПК, – определить один из наиболее важных факторов невероятно просто.Вам не нужно проводить тесты или читать обзоры, чтобы узнать, какая мощность вам нужна. Вместо этого вы можете использовать такой инструмент, как калькулятор блоков питания Newegg , чтобы точно определить, сколько мощности требуется для вывода вашего нового блока питания.
Чтобы использовать инструмент, вам необходимо выбрать компоненты из раскрывающихся списков для каждой категории. Приведенный выше инструмент обновлен с использованием новейших опций для центрального процессора (ЦП), материнской платы, графического процессора (ГП), оперативной памяти (ОЗУ) и многого другого.Хотя инструмент не детализирует детали каждого компонента, он делает это там, где это необходимо, и исключает догадки при принятии решения о том, сколько энергии вам нужно.
Например, если вы собираете (или покупаете) ПК с процессором серии Ryzen7, графическим процессором Nvidia GeForce RTX 2060, 16 гигабайт (ГБ) оперативной памяти, состоящей из двух флешек по 8 ГБ, твердотельного накопителя емкостью 256 ГБ (SSD) ) и жесткий диск (HDD) емкостью 1 ТБ 7200 об / мин, тогда рекомендуется мощность 576 Вт. В целях безопасности вы можете выбрать блок питания на 600 Вт, а покупка подходящего варианта осуществляется одним нажатием кнопки.
Предвидеть обновления при покупке блока питания
Конечно, вы можете запустить несколько сценариев, чтобы убедиться, что вы справитесь со своими долгосрочными потребностями. Например, при обновлении до Nvidia GeForce RTX 2080 рекомендуемая мощность повышается до 631 Вт, в то время как удвоение ОЗУ увеличивает рекомендацию до 582 Вт. Если со временем вы сможете сделать и то, и другое, то вам понадобится как минимум 637 Вт.
Вы поняли. Не планируйте просто сегодня, чтобы удовлетворить свои потребности, вместо этого немного загляните в будущее и подумайте, какие изменения вы, возможно, захотите внести позже.А если вы покупаете предварительно собранный ПК, вам нужно знать, какой блок питания он использует, чтобы убедиться, что он может справиться со всем, что вы можете добавить, или что его достаточно легко заменить в какой-то момент. .
Важное замечание относительно мощности: длительная мощность и пиковая мощность – это разные вещи. Как правило, «максимальная мощность» блока питания относится к непрерывной (стабильной) мощности, которую блок питания будет постоянно выдавать, в то время как пиковая мощность относится к повышенной максимальной (импульсной) мощности, которую может выдавать блок питания, хотя и за очень короткое время. времени (напр.г., 15 секунд). При покупке блока питания убедитесь, что его постоянная мощность соответствует вашим потребностям, иначе у вас могут возникнуть проблемы, когда ваш компьютер будет работать с полной нагрузкой.
Наконец, не беспокойтесь о том, что покупка блока питания с более высоким номиналом означает, что вы обязательно будете использовать больше энергии. Блок питания будет потреблять только электроэнергию, требуемую компонентами вашего ПК, и поэтому, хотя покупка блока питания большего размера, чем вам нужно, может быть пустой тратой денег, вам не придется больше платить за работу с ПК из-за того, что Это.
Защита
Некоторые производители блоков питания встраивают средства защиты, чтобы защитить ваши компоненты от проблем, связанных с питанием. Эти средства защиты часто увеличивают стоимость источника питания, но они также могут обеспечить некоторое дополнительное спокойствие.
Первый – защита от перенапряжения, которая относится к схеме или механизму, отключающим блок питания, если выходное напряжение превышает указанный предел напряжения, который часто превышает номинальное выходное напряжение.Эта защита важна, поскольку высокое выходное напряжение может вызвать повреждение компонентов компьютера, подключенных к источнику питания.
Вторая – защита от перегрузки и сверхтока. Это схемы, которые защищают блок питания и компьютер путем отключения блока питания при обнаружении чрезмерного тока или силовой нагрузки, включая токи короткого замыкания.
Эффективность имеет значение с блоком питанияВаттность – это лишь мера производительности источника питания.Другой – это его рейтинг эффективности, который является мерой того, сколько мощности постоянного тока он посылает на ПК и сколько теряется в основном на тепло. Эффективность важна, потому что она влияет на то, сколько вы потратите на поддержание вашего ПК в рабочем состоянии.
В качестве примера рассмотрим ПК, которому требуется мощность 300 Вт. Если вы используете блок питания с рейтингом эффективности 85%, ваш компьютер будет потреблять около 353 Вт входной мощности от вашей энергетической компании. С другой стороны, блок питания с КПД всего 70% потребляет от сети 428 Вт мощности.Выбор более эффективного источника питания сэкономит немного денег на ежемесячном счете за электроэнергию.
В то же время, блок питания с более высоким рейтингом эффективности позволит вашему ПК также работать с меньшим охлаждением. Каждый компонент ПК выделяет некоторое количество тепла, что, как правило, снижает производительность. Более эффективный источник питания будет рассеивать меньше тепла, что будет означать более тихую систему благодаря вентиляторам, которым не нужно работать так же быстро или долго, большей надежности и более длительному сроку службы.
Что такое сертификация 80 PLUS?
Когда вы будете искать блоки питания, вы увидите многие из них с этикетками сертификации 80 PLUS.80 Plus – это программа сертификации, которую производители могут использовать, чтобы гарантировать, что их блоки питания будут соответствовать определенным требованиям к эффективности. 80 PLUS имеет различные уровни, от базовой сертификации до Titanium, а источники питания оцениваются независимыми лабораториями, чтобы обеспечить следующие уровни эффективности для потребительских систем питания 115 В:
Когда вы покупаете блок питания в Newegg, вы можете выбрать фильтрацию по уровню сертификации 80 PLUS. Это упрощает достижение именно того уровня эффективности, которого вы хотите достичь на своем новом ПК.
Рельсы не только для поездов Однако мощность– не единственный показатель способности источника питания поддерживать все ваши компоненты. Питание компонентов осуществляется по шинам, и, хотя каждая шина напряжения требует внимания, наибольшее внимание следует уделять шине (-ам) +12 В, которые обеспечивают питание наиболее энергоемких компонентов, поскольку процессор и видеокарты PCIe получают питание. их сила от них.
Современный источник питания должен выдавать не менее 18 А (ампер) на шине (ах) +12 В для современного компьютера массового потребления, более 24 А для системы с одной видеокартой класса энтузиастов и не менее 34A, когда речь идет о высококачественной системе SLI / CrossFire.Значение выходной силы тока, о котором мы здесь говорим, является совокупным значением для блоков питания с более чем одной шиной +12 В.
Конечно, вам следует искать это суммарное общее количество выходных сигналов, и вы не всегда можете сложить шины +12 В для расчета объединенного выхода. Например, блок питания с маркировкой + 12V1 @ 18A и + 12V2 @ 16A может иметь суммарную выходную мощность только 30A вместо 34A. Ищите эту информацию в подробных технических характеристиках элемента или на информационной этикетке блока питания.
Если вы собираетесь использовать конфигурацию SLI / Crossfire, вы должны убедиться, что шина (и) +12 В обеспечивает не менее 34 А. Разные источники питания обозначены по-разному – некоторые показывают максимальную силу тока, обеспечиваемую каждой шиной, а некоторые обеспечивают максимальную комбинированную максимальную мощность, например, 396 Вт, что равняется 396 Вт / 12 В = 33 А.
Еще одно важное соображение – это количество шин, по которым блок питания питает свои компоненты. Проще говоря, источник питания может обеспечивать только одну шину +12 В для обеспечения всего питания компонентов вашего ПК, или он может иметь несколько шин.Использование одной шины означает, что вся мощность доступна для всех подключенных к ней компонентов – это упрощает настройку, поскольку вам не нужно беспокоиться о согласовании компонентов с направляющими, но это также означает, что сбой источника питания, такой как скачок напряжения, повлияет на все компоненты. И наоборот, наличие нескольких направляющих дает некоторую защиту от катастрофического отказа, но требует большей осторожности при настройке.
Форм-фактор – Подойдет ли ваш блок питания?Следующее соображение простое – вам нужно выбрать форм-фактор, который, как вы уверены, физически впишется в ваш корпус.К счастью, в отношении блоков питания есть стандарты, как и в отношении корпусов и материнских плат.
Эта тема может оказаться довольно сложной, но важно помнить, что вам нужно согласовать свой блок питания с корпусом и материнской платой. Ниже приводится общий обзор наиболее важных на сегодняшний день форм-факторов источников питания.
ATX
Несмотря на то, что блоки питания с форм-фактором AT все еще доступны для покупки, блоки питания с форм-фактором AT, несомненно, являются устаревшими продуктами, которые скоро исчезнут.Даже более поздние блоки питания форм-фактора ATX (ATX 2.03 и более ранние версии) теряют популярность. Основные различия между форм-факторами блоков питания ATX и AT:
Блоки питания- ATX обеспечивают дополнительную шину напряжения + 3,3 В. Блоки питания
- ATX используют один 20-контактный разъем в качестве основного разъема питания. Блоки питания
- ATX поддерживают функцию мягкого выключения, позволяющую программно отключать питание.
ATX12V
Форм-фактор ATX12V сейчас является наиболее распространенным выбором.Существует несколько различных версий форм-фактора ATX12V, и они могут сильно отличаться друг от друга. Спецификация ATX12V v1.0 добавила к оригинальному форм-фактору ATX 4-контактный разъем +12 В для подачи питания исключительно на процессор, а также 6-контактный вспомогательный разъем питания, обеспечивающий напряжение + 3,3 В и + 5 В. В следующей спецификации ATX12V v1.3, помимо всего прочего, был добавлен 15-контактный разъем питания SATA.
Существенное изменение произошло в спецификации ATX12V v2.0, которая изменила формат основного разъема питания с 20-контактного на 24-контактный, удалив 6-контактный вспомогательный разъем питания.Кроме того, спецификация ATX12V v2.0 также изолировала ограничение тока на 4-контактном разъеме питания процессора для шины 12 В 2 (ток + 12 В разделяется на шины 12 В 1 и 12 В 2). Позже спецификации ATX12V v2.1 и v2.2 также повысили требования к эффективности и потребовали различных других улучшений.
Все блоки питания ATX12V имеют такую же физическую форму и размер, что и форм-фактор ATX.
EPS12V, SFX12V и другие
В форм-факторе блока питания EPS12V используется 8-контактный разъем питания процессора в дополнение к 4-контактному разъему форм-фактора ATX12V (это не единственное различие между этими двумя форм-факторами, но для большинства пользователей настольных компьютеров, знающих этого должно быть достаточно).Форм-фактор EPS12V изначально был разработан для серверов начального уровня, но все больше и больше материнских плат для настольных ПК высокого класса теперь оснащены 8-контактным разъемом питания процессора EPS12V, который позволяет пользователям выбрать блок питания EPS12V.
Обозначение малого форм-фактора (SFF) используется для описания ряда меньших блоков питания, таких как SFX12V (SFX означает малый форм-фактор), CFX12V (CFX означает компактный форм-фактор), LFX12V (LFX означает низкопрофильный Форм-фактор) и TFX12V (TFX означает тонкий форм-фактор).Все они меньше стандартных блоков питания форм-фактора ATX12V с точки зрения физических размеров, и блоки питания малого форм-фактора необходимо устанавливать в соответствующие компьютерные корпуса малого форм-фактора.
РазъемыБлок питания бесполезен, если он не подключается к каждому компоненту вашего ПК и не питает его. Это означает, что он должен иметь все необходимые типы разъемов.
Первый разъем, который следует рассмотреть, – это главный разъем, питающий материнскую плату.Этот разъем бывает двух типов: 20-контактный и 24-контактный. Последний становится все более популярным, и вполне вероятно, что ваш блок питания предоставит оба варианта. Просто проверьте, чтобы убедиться.
Далее идет разъем питания процессора, который выпускается в 4-контактном и 8-контактном вариантах. Как и в случае с основным разъемом питания, многие современные материнские платы перешли на больший формат. Опять же, убедитесь, что ваш блок питания совместим.
Наиболее часто используемый разъем питания – это 4-контактный разъем Molex.Он используется для множества компонентов, включая старые жесткие диски, оптические приводы, вентиляторы и некоторые другие устройства. Новые компоненты SATA имеют собственный разъем питания SATA, и вы также можете использовать адаптеры Molex для SATA, если они у вас закончились. И вы даже можете использовать кабели-разветвители, чтобы увеличить количество подключаемых компонентов, но помните о верхних пределах вашего источника питания.
Шум вентилятора и удобство кабеляТеперь, когда мы рассмотрели наиболее важные факторы, связанные с мощностью, есть еще пара вещей, которые следует учитывать при выборе источника питания.Это не так важно, но они могут повлиять на то, насколько приятным будет источник питания в течение всего срока службы вашего ПК.
Шум вентилятора
Как мы уже говорили, источники питания вырабатывают тепло. Это означает, что они требуют, чтобы вентиляторы оставались прохладными и работали эффективно. Вы должны подумать о том, насколько тихо вы хотите, чтобы ваш компьютер работал, что во многом будет зависеть от вашей среды. Если ваш компьютер работает в тихом месте, то более крупные вентиляторы, которые вращаются медленнее для перемещения того же количества воздуха, скорее всего, приведут к более тихому ПК.
Нет никаких реальных стандартов в отношении охлаждения блоков питания, поэтому вам нужно будет сравнить маркетинговые материалы для ваших вариантов блоков питания. Это одна из областей, где подробные обзоры будут особенно полезны, поскольку они, как правило, измеряют, насколько громким является источник питания на разных уровнях работы, и поэтому предлагают некоторые рекомендации относительно того, насколько громко вы можете рассчитывать на работу вашего ПК.
Кабельная проводка
Наконец, существует три основных типа кабелей питания. Независимо от того, выберете ли вы проводную, модульную или гибридную систему, будет зависеть, насколько чистым будет внутри вашего корпуса и сколько работы вам потребуется, чтобы ваш компьютер оставался чистым и организованным.
Жесткая разводка кабелей означает, что каждый разъем напрямую подключен к источнику питания и поэтому будет присутствовать независимо от того, нужен он или нет. Преимущество проводных систем – и оно невелико при использовании современных источников питания – состоит в том, что они проще и не требуют дополнительного сопротивления из-за дополнительных разъемов.
Модульная кабельная разводка означает, что каждый разъем может быть добавлен по мере необходимости. Это упрощает поддержание чистоты и лаконичности вашего корпуса, но также вносит некоторую дополнительную сложность – и цену – и некоторое дополнительное сопротивление благодаря дополнительным физическим соединениям.Однако для большинства пользователей это, скорее всего, не имеет значения.
В гибридных системахнекоторые кабели, такие как подключение к основному источнику питания, подключены физически, а другие являются дополнительными. Гибридная система может представлять собой хороший компромисс, поскольку требуются определенные кабели, и даже если дополнительное сопротивление модульных соединений минимально, этого достаточно легко избежать.
Время включенияОчевидно, что нужно многое выбрать для выбора блока питания, и это важное решение при сборке нового ПК.Но потратив немного времени на то, чтобы убедиться, что ваш источник питания обеспечивает компоненты вашего ПК надежным, стабильным и безопасным питанием, вы сэкономите огромное количество времени в долгосрочной перспективе и поможет сделать ваш компьютер лучше и эффективнее. машина.
Компьютерный блок питания– Распиновка ATX, схема, отзывы
Излишне говорить, что напряжение, доступное в сетевой розетке, представляет собой плохо регулируемый переменный ток, который во всем мире находится в диапазоне от 90 до 240 В, в то время как электронные схемы требуют хорошо стабилизированного низкого напряжения постоянного тока.Вот почему все электронное оборудование, очевидно, нуждается в каком-либо преобразовании и регулировании мощности. В ПК эти функции выполняются блоком питания ( PSU ) – внутренним устройством, которое преобразует входное переменное напряжение в набор регулируемых постоянных напряжений, необходимых для персонального компьютера.При этом блок питания также обеспечивает безопасную изоляцию между первичными и вторичными цепями. С момента появления IBM PC / XT было выпущено около десятка различных типов настольных ПК. Они различаются по своей конструкции, форм-факторам, разъемам и номинальным значениям напряжения / ампер.Выходная мощность современного компьютерного блока питания колеблется от 185 Вт до нескольких киловатт. Блоки мощностью более 400 Вт используются в основном для серверов, промышленных ПК и для питания настольных компьютеров с высокопроизводительными видеоприложениями.
Традиционный стандартный блок питания ATX генерирует как минимум следующие напряжения постоянного тока: + 5 В, + 3,3 В, + 12 В 1, + 12 В 2. , -12В и в режиме ожидания 5В. Некоторые очень старые модели также могут иметь минус 5 В. Дополнительные понижающие преобразователи «точки нагрузки» (POL) на материнских платах понижают 12 В до напряжения ядра процессора и других низких потенциалов, необходимых для внутренних компонентов.Каждая шина блока питания теоретически должна иметь индивидуальное ограничение по току. Это необходимо для соответствия требованиям безопасности 240 ВА стандартов IEC 60950 и UL 60950-1. Однако на практике все шины 12 В часто имеют единый комбинированный предел тока. Чтобы соответствовать требованиям PCI Express, в компьютерах ATX2 прежний основной разъем питания 2×10 был заменен на разъем 2×12. Для второй шины 12 В используется дополнительный силовой кабель 2×2. Он поддерживает регулятор напряжения процессора. Также имеются разъемы для периферийных устройств, дисковода гибких дисков и последовательного интерфейса ATA.Блок питания для дискретных видеокарт высокого класса имеет дополнительные разъемы 2×3 или 2×4 для подачи дополнительной мощности на графику, которая требует более 75 Вт. Подробную информацию см. В нашем руководстве по распиновке блока питания ATX. Обратите внимание, что некоторые фирменные компьютеры имеют собственные распиновки для своих блоков питания, которые отличаются от обычных ATX.
Для повышения эффективности блока питания ПК и соответствия требованиям так называемого альтернативного режима ожидания Intel представила в 2019 году принципиально другой стандарт одинарной шины ATX12VO. Спецификация ATX12VO заменяет 24-контактный разъем на 10-контактную часть, обеспечивающую один выход 12 В.Все остальные напряжения, включая 5 В и 3,3 В, будут выдаваться на материнской плате регуляторами POL. Эта архитектура также значительно снизила стоимость блока питания, но увеличила стоимость материнских плат, которые теперь должны обеспечивать дополнительные функции преобразования мощности.
В современных источниках питания для компьютеров используется технология переключения (подробнее о SMPS). Современные устройства обычно включают в себя усиление «переднего конца» PFC, за которым следует нисходящий полумост или прямой преобразователь (см. Топологии SMPS).Большинство современных моделей соответствуют требованиям ENERGY STAR®. В прошлом это просто означало, что они потребляли
. Программа стимулирования под названием 80 PLUS® требовала от ПК и серверов блоков питания, чтобы продемонстрировать эффективность> 80% при 20% – 100% номинальной нагрузке с коэффициентом мощности> 0,9. Позже они добавили метки Bronze, Silver, Gold и Platinum для более высокого уровня эффективности (до 92%) с коэффициентом мощности до 0,95. Обновленная спецификация настольного компьютера ENERGY STAR версии 5.0 устанавливает аналогичные требования для внутреннего блока питания.Несмотря на новые правила, блоки питания для ПК остаются недорогими: вы можете купить стандартную серийную модель примерно по 0,10 доллара за ватт. При покупке блока на замену убедитесь, что он соответствует не только его форм-фактору и полезной мощности, но и индивидуальным номинальным токам всех выходов.
Поиск и устранение неисправностей
. Первое, что нужно проверить, перестал ли работать ваш компьютер, – это его блок питания. Основные причины выхода из строя БП – перегрев, скачки напряжения во входной линии и высыхание электролитических конденсаторов.Все это может привести к катастрофическому отказу одного или нескольких транзисторов или выпрямителей. Это, в свою очередь, обычно открывает входной предохранитель (блок-схему и теорию работы см. В этом руководстве). Чтобы проверить устройство, прежде всего, вам нужно отсоединить шнур питания и подождать 5 минут, чтобы все конденсаторы разрядились, прежде чем снимать крышку ПК. Затем отключите все кабели, выходящие из блока питания. Чтобы включить автономный блок питания, вам необходимо заземлить контакт PS_ON # (см. Схему подключения слева для настройки тестирования).В модели, совместимой с ATX-2, это означает замыкание контактов 15 и 16 на 24-контактном разъеме. Вы можете сделать это с помощью небольшого отрезка медной проволоки. В более старом 20-контактном блоке вам необходимо замкнуть контакты 13 и 14. Обратите внимание, что некоторые производители, такие как Apple, HP и Dell, использовали нестандартные размеры и распиновку разъемов собственной разработки: подробнее см. Здесь. После включения устройства вы можете поочередно включать входное питание и проверять выходные напряжения. Для измерения любого напряжения подключите вольтметр между соответствующим контактом и любым общим.Вы можете использовать готовый тестер, чтобы упростить этот процесс. Если вы решили открыть блок питания, всегда сначала отключайте его, а затем подождите не менее пяти минут, чтобы все конденсаторы разрядились. Излишне говорить, что вам не следует, , устранять неисправности, если у вас нет надлежащего обучения электронике и не знаете, как безопасно работать с цепями высокого напряжения.Ниже вы найдете принципиальные схемы, обзоры, распиновку, характеристики и другую полезную информацию для ремонтных и электронных проектов.
ИСТОЧНИК ПИТАНИЯ ATX для ПК, 200 Вт
Введение
Предлагаю вашему вниманию электрические схемы блока питания компьютеров компании ДТК. Этот блок питания имеет дизайн ATX и мощность 200 Вт. Нарисовали схему, когда я ремонтировал этот блок питания.
Принципиальная схема
Описание схемы
В этой схеме питания используется микросхема TL494. Подобная схема используется в большинстве блоков питания с выходной мощностью около 200 Вт. В устройстве используется двухтактная транзисторная схема с регулировкой выходного напряжения.
Входная часть резервного питания
Сетевое напряжение проходит через цепь входного фильтра (C1, R1, T1, C4, T5) на мостовой выпрямитель. При переключении напряжения с 230 В на 115 В выпрямитель работает как дублер. Варисторы Z1 и Z2 имеют функцию защиты от перенапряжения. на линейном входе. Термистор NTCR1 ограничивает входной ток до конденсаторов C5. и C6 заряжены. R2 и R3 предназначены только для разрядных конденсаторов после отключение питания. Когда источник питания подключен к линейному напряжению, затем сначала заряжаются конденсаторы C5 и C6 вместе примерно на 300 В.Затем включите вторичный источник питания, управляемый транзистором Q12 и на его на выходе будет напряжение. За регулятором напряжения IC3 будет напряжение 5В, который входит в материнскую плату и необходим для логики включения и для Функция “Просыпаться по чему-нибудь”. Следующее нестабилизированное напряжение проходит через диод D30. к основной управляющей микросхеме IC1 и управляющим транзисторам Q3 и Q4. Когда основная мощность питание подается, то это напряжение идет с выхода +12 В через диод D.
Режим ожидания
В режиме ожидания основной источник питания заблокирован положительным напряжением на PS-ON. вывод через резистор R23 от вторичного источника питания.Из-за этого напряжения открывается транзистор Q10, который открывает Q1, на который подается опорное напряжение + 5В. от контакта 14 IO1 к контакту 4 IO1. Коммутируемая цепь полностью заблокирована. Транзисторы Q3 и Q4 являются как разомкнутыми, так и короткозамкнутыми обмотками вспомогательного трансформатора T2. Из-за короткого замыкания в силовой цепи отсутствует напряжение. По напряжению на выводе 4 мы можем установить максимальную ширину импульса на выходе IO1. Нулевое напряжение означает самая высокая ширина импульса. + 5В означает, что пульс пропал.
Начало поставки
Кто-то нажимает кнопку питания на компьютере.Логика материнской платы заземлена входной контакт PS-ON. Транзистор Q10 закрывается, а следующий Q1 закрывается. Конденсатор С15 начинает свою зарядку через R15 и на выводе 4 начинается IC1. снизить напряжение до нуля благодаря R17. Благодаря этому напряжение максимально ширина импульса постоянно увеличивается, и основной источник питания плавно работает.
Нормальная работа
В нормальном режиме питание контролируется IC1. Когда транзисторы Q1 и Q2 закрываются, затем Q3 и Q4 открываются. Когда мы хотим открыть один из силовых транзисторов (Q1, Q2), мы должны закрыть его возбуждающий транзистор (Q3, Q4).Ток идет через R46 и D14 и одну обмотку. Т2. Этот ток возбуждает напряжение на базе силового транзистора и из-за положительного Транзистор обратной связи быстро переходит в насыщение. По окончании импульса оба возбуждающих транзистора открываются. Положительная обратная связь исчезает и быстро выходит за пределы возбуждающей обмотки закрывает силовой транзистор. После этого процесс повторяется со вторым транзистором. Транзисторы Q1 и Q2 поочередно подключают один конец первичной обмотки к положительное или отрицательное напряжение.Силовая ветвь идет от эмиттера Q1 (коллектора Q2) через третью обмотку возбуждающий трансформатор Т2. Далее через первичную обмотку главного трансформатора Т3 и конденсатор С7 к виртуальному центру напряжения питания.
Регулировка выходного напряжения
Выходные напряжения + 5В и + 12В измеряются R25 и R26, и их выход к IC1. Остальные напряжения не стабилизируются и оправдываются обмоткой. номер и полярность диода. На выходе необходима катушка реактивного сопротивления из-за высокочастотные помехи.Это напряжение рассчитывается исходя из напряжения перед катушкой, длительности импульса и продолжительности цикла. На выходе за выпрямительными диодами находится общая катушка для всех напряжений. Когда мы сохраняем направление обмоток и номер обмотки, соответствующие выходу напряжения, тогда катушка работает как трансформатор, и у нас есть компенсация неравномерная нагрузка отдельных напряжений. Обычной практикой являются отклонения напряжения до 10% от номинального значения. От внутреннего регулятора опорного напряжения 5 В (вывод 14 IC1) идет опорное напряжение. через делитель напряжения R24 / R19 на инвертирующий вход (вывод 2) ошибки усилитель звука.С выхода блока питания через делитель поступает напряжение. R25, R26 / R20, R21 на неинвертирующий вход (контакт 1). Обратная связь C1, R18 обеспечивает стабильность регулятора. Напряжение от усилителя ошибки сравнивается с линейным нарастанием. напряжение на конденсаторе C11. Когда выходное напряжение уменьшается, тогда напряжение на усилителе ошибки слишком велико. уменьшилось. Возбуждающий импульс длиннее, силовые транзисторы Q1 и Q2 длиннее разомкнут, ширина импульса перед выходной катушкой больше, а выходная мощность выросла. Второй усилитель ошибки блокируется напряжением на выводе 15 IC1.
PowerGood
Системной плате необходим сигнал PowerGood. Когда все выходные напряжения станут стабильными, тогда сигнал PowerGood переходит на + 5В (логическая единица). Сигнал PowerGood обычно подключен к сигналу СБРОС.
Регулировка напряжения + 3,3 В
Посмотрите на схему, подключенную к выходному напряжению +3,3 В. Эта схема делает дополнительные стабилизация напряжения из-за пропадания напряжения на кабелях. Есть один вспомогательный провод от разъема для измерения напряжения 3,3 В. на материнской плате.
Цепь повышенного напряжения
Эта схема состоит из Q5, Q6 и множества дискретных компонентов.
Схема защищает все выходные напряжения, и при превышении некоторого предела мощность
поставка остановлена.
Например, когда я по ошибке закорачиваю -5В на + 5В, тогда положительное напряжение
проходит через D10, R28, D9 до базового Q6. Этот транзистор теперь открыт и открывается
Q5. + 5В с вывода 14 IC1 через диод D11 на вывод 4 IC1 и источник питания
заблокирован. После этого напряжение снова поступает на базу Q6.Блок питания по-прежнему
заблокирован, пока он не будет отключен от входа линии питания.
Ссылки
Разъем питания ATX
Штифт | Сигнал | Цвет 1 | Цвет 2 | Штифт | Сигнал | Цвет 1 | Цвет 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3,3 В 3,3 Воранжевый | Vоранжевый | фиолетовый | |||||||||||||
2 | 3.3V | оранжевый | фиолетовый | 12 | -12V | синий | синий | |||||||||
3 | GND | черный | черный | 13ND | черный | 13ND | черный13ND | GND 45V | красный | красный | 14 | PS_ON | зеленый | серый | ||
5 | GND | черный | черный | черный | черный | черный | ||||||||||
6 | 5V | красный | красный | 16 | GND | черный | черный | |||||||||
7 | GND | черный | черный | черный 9038NDчерный | черныйчерный | |||||||||||
8 | PW_OK | серый | оранжевый | 18 | -5V | белый | белый | |||||||||
9 | 5V_SB | фиолетовый | коричневый | 19 | красный | красный | красный | желтый | желтый | 20 | 5V | красный | красный |
БАЗОВЫЕ БЛОКИ ПИТАНИЯ – Электроника с длиной волны
Теория нерегулируемого источника питания
Поскольку нерегулируемые источники питания не имеют встроенных регуляторов напряжения, они обычно предназначены для выработки определенного напряжения при определенном максимальном выходном токе нагрузки.Обычно это блочные настенные зарядные устройства, которые превращают переменный ток в небольшую струйку постоянного тока и часто используются для питания таких устройств, как бытовая электроника. Они являются наиболее распространенными адаптерами питания и получили прозвище «настенная бородавка».
Выходное напряжение постоянного тока зависит от внутреннего понижающего трансформатора напряжения и должно быть максимально приближено к току, необходимому для нагрузки. Обычно выходное напряжение уменьшается по мере увеличения тока, подаваемого на нагрузку.
При использовании нерегулируемого источника питания постоянного тока выходное напряжение зависит от размера нагрузки.Обычно он состоит из выпрямителя и конденсатора сглаживания, но без регулятора для стабилизации напряжения. Он может иметь цепи безопасности и лучше всего подходит для приложений, не требующих точности.
Рисунок 4: Блок-схема – нерегулируемая линейная подача
Преимущества нерегулируемых источников питания в том, что они долговечны и могут стоить недорого. Однако их лучше всего использовать, когда точность не является требованием. Они имеют остаточную пульсацию, аналогичную показанной на рисунке 3.
ПРИМЕЧАНИЕ: Wavelength не рекомендует использовать нерегулируемые источники питания с какими-либо из наших продуктов.
Теория регулируемых источников питания
Стабилизированный источник питания постоянного тока – это, по сути, нерегулируемый источник питания с добавлением регулятора напряжения. Это позволяет напряжению оставаться стабильным независимо от величины тока, потребляемого нагрузкой, при условии, что предварительно определенные пределы не превышаются.
Рисунок 5: Блок-схема – Регулируемая поставка
В регулируемых источниках питания схема непрерывно производит выборку части выходного напряжения и регулирует систему, чтобы поддерживать выходное напряжение на требуемом уровне.Во многих случаях включается дополнительная схема для обеспечения ограничений по току или напряжению, фильтрации шума и регулировки выхода.
Линейный, переключаемый или аккумуляторный?
Существует три подгруппы регулируемых источников питания: линейные, переключаемые и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная является наименее сложной системой, но переключаемое и аккумуляторное питание имеет свои преимущества.
Линейный источник питания
Линейный источник питания используется, когда наиболее важным является точное регулирование и устранение шума.Хотя они не являются наиболее эффективными источниками питания, они обеспечивают лучшую производительность. Название происходит от того факта, что они не используют переключатель для регулирования выходного напряжения.
Линейные источники питания доступны в течение многих лет, и их использование широко распространено и надежно. Они также относительно бесшумны и коммерчески доступны. Недостатком линейных источников питания является то, что они требуют более крупных компонентов, следовательно, они больше и рассеивают больше тепла, чем импульсные источники питания.По сравнению с импульсными источниками питания и батареями они также менее эффективны, иногда демонстрируя лишь 50% эффективности.
Импульсный источник питания
Импульсный источник питания (SMPS) сложнее сконструировать, но он имеет большую гибкость в полярности и при правильной конструкции может иметь КПД 80% и более. Хотя в них больше компонентов, они меньше и дешевле, чем линейные источники питания.
Рисунок 6: Блок-схема – Регулируемое импульсное питание
Одно из преимуществ коммутируемого режима – меньшие потери на коммутаторе.Поскольку SMPS работают на более высоких частотах, они могут излучать шум и создавать помехи для других цепей. Необходимо принять меры по подавлению помех, такие как экранирование и соблюдение протоколов компоновки.
Преимущества импульсных источников питания заключаются в том, что они, как правило, небольшие и легкие, имеют широкий диапазон входного напряжения и более высокий диапазон выходного напряжения и намного более эффективны, чем линейные источники питания. Однако SMPS имеет сложную схему, может загрязнять сеть переменного тока, является более шумным и работает на высоких частотах, требующих уменьшения помех.
Аккумуляторный
Аккумуляторный источник питания – это третий тип источника питания, по сути, мобильный накопитель энергии. Питание от батарей производит незначительный шум, мешающий работе электроники, но теряет емкость и не обеспечивает постоянное напряжение по мере разряда батарей. В большинстве случаев, когда используются лазерные диоды, батареи являются наименее эффективным методом питания оборудования. Для большинства аккумуляторов трудно подобрать правильное напряжение для нагрузки. Использование аккумулятора, мощность которого может превышать внутреннюю рассеиваемую мощность драйвера или контроллера, может повредить ваше устройство.
Выбор источника питания
- При выборе блока питания необходимо учитывать несколько требований.
- Требования к мощности нагрузки или цепи, включая
- Функции безопасности, такие как ограничения по напряжению и току для защиты нагрузки.