Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Hyundai Elantra когда-то была GL 😉 › Бортжурнал › Перегорают светодиоды? Делаем простейший драйвер своими руками.

…оооооочень много раз мне пришлось столкнуться с проблемой перегоревших светодиодов, установленных где-либо в машине…началось всё это с лампочек в габаритах, потом постоянно горела подсветка приборки, потом подсветка блока отопителя, багажника и т.д…

И вот как-то раз это явление достало меня окончательно и я, бегло пробежавшись глазами по записям в блогах одноклубников, решил сделать подсветку приборки "вечной" линейным стабилизатором напряжения L7812CV, +12в, что, естественно, никакого толка не дало и лента сгорела, как ни в чем не бывало 🙂

Вот он, виновник торжества.

…хотя…его вины тут нет. Виноваты тут далекие от электроники люди и я, человек который слишком мало копал, прежде, чем что-то сделать…Все мы ошибаемся, что поделать, потому и половина бортового журнала — это работа над ошибками… 🙂

Начнем с того, что светодиоды сгорают от скачков тока, а не напряжения.

Цитата:

"Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.

Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо."

Теперь понятно, почему с долбанными линейными стабами типа L7812CV постоянно все перегорает?
Да, стабилизация нужна по току, а не по напряжению и делается это резисторами!

Ладно, поехали дальше.
В связи с тем, что сейчас у меня висит 4 проекта по фарам, которые будут делаться на очень дорогостоящих COB кольцах (которые ещё дороже стали с учетом долбанного курса валют) стабилизация таковых просто жизненно необходима…

Вот как оно выглядит

Вы спросите сейчас, а нафига драйвер, если вон он, уже висит и все стабилизирует.
Ну да, я тоже так думал, а на деле оказалось, что там те же самые стабилизаторы напряжения стоят (у одного из клиентов одно кольцо уже начало моросить). Ну кто ж знал, что Китайцы в плане драйверов решили сэкономить.

Итак, делаем простейший драйвер.

Берем идеальную автомобильную сеть 12 Вольт и считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.

Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания.
Потребляемый ток равен мощности деленной на напряжение в сети.
COB кольцо потребляет 5 Вт. Напряжение в идеальном автомобиле 12 Вольт.
Если считать не умеете, то можно посчитать тут
ydoma.info/electricity-zakon-oma.html
Получаем 420 милиампер потребляемого тока таким колечком.
дальше идем сюда
ledcalc.ru/lm317
вводим требуемый ток 420 милиампер и получаем:
Расчетное сопротивление: 2.98 Ом
Ближайшее стандартное: 3.30 Ом
Ток при стандартном резисторе: 379 мА

www.drive2.ru

LIS8514 LIS8514D DIP8|integrated circuit|circuit led|circuit integre

О нас

Мы обещаем:

1: производство только лучших потребительских товаров и обеспечение высочайшего качества.

2: доставка товаров нашим клиентам по всему миру со скоростью и точностью

Клиент Услуги политики

Мы будем рады ответить на любые ваши вопросы, пожалуйста, свяжитесь с

1: Заказы обрабатываются своевременно после подтверждения оплаты.

2: Мы отправляем только по подтвержденным адресам заказа. Адрес Вашего заказа должен совпадать с адресом доставки.

3: Если вы не получили ваш груз в течение 30 дней с момента оплаты, пожалуйста, свяжитесь с нами. Мы отследим отправку и свяжемся с вами как можно скорее. Наша цель – удовлетворение клиентов!

4: из-за наличия на складе и разницы во времени, мы выберем для быстрой доставки ваш товар с нашего первого доступного склада.

Наши преимущества

1: Мы все имеем собственный запас, с достаточным запасом

2: качество продукта достигло серии сертификации

3: Мы поддерживаем различные перевозки, Гонконг и китайские почтовые пакеты, EMS. DHL. UPS и TNT, могут полностью удовлетворить различные потребности покупателя.

Я твердо верим

Мы будем вашим лучшим партнером

Отзывы

Ваше удовлетворение и положительные отзывы очень важны для нас, пожалуйста, оставьте положительный и 5 звезд, если вы удовлетворены нашими товарами и услугами.

Если у вас есть какие-либо проблемы с нашими товарами или услугами, пожалуйста, не стесняйтесь связаться с нами, прежде чем вы оставите отзывы nagetive. Мы сделаем все возможное, чтобы решить любую проблему и предоставить Вам лучшее обслуживание клиентов.

 

ru.aliexpress.com

Схема "энергосберегайки" и переделка драйвера в светодиодный

В предыдущих обзорах уже переделывал драйвер от «энергосберегайки» под светодиодный. Думал, что рассмотрел все варианты. Но нет, есть ещё более простой и надёжный, кардинально упрощающий реализацию. Да, он не лишён недостатков. Возможно, для кого-то эти недостатки очень существенны, кому-то пофиг. Если интересно, заходим.
Вот запасы, я их уже показывал.

Нет, это не моё. Просто набрал на работе списанных лампочек на эксперименты.
В первом своём обзоре заказал на пробу только одну «светоматку». После её удачного опробования заказал ещё три (10 Вт и две по 100 Вт холодного и тёплого цвета свечения). Заказал в декабре 2016 года. Через месяц пришли. На дворе 2018-ый год.

Доставка с предысторией.


Трек типа LP00062014671739 отслеживается только до границы.
На тот момент стоваттную матрицу покупал у продавца за US $1.77. За ту цену, что рисует сейчас, покупать не стоит.

Заказал ещё не из-за того, что они такие хорошие, а из-за того, что дешёвые и удобные в использовании. На самом деле «светоматки» ПОСРЕДСТВЕННОГО качества на АЛЮМИНИЕВОЙ подложке. Но если использовать не на всю мощность, то послужат долго.
Стандартный пакет с пупыркой внутри, кинули прямо в ящик. Почта Грузии, однако. Наверное, так удобнее.
Метки маркером это я поставил. Там где заводские метки прицепляться и подпаиваться не очень удобно.

Прозвонил мультиметром и нарисовал.
Все характеристики (размеры в том числе) написаны на странице продавца (магазина).

Извините, что так подробно напоминаю, но многим читателям не нравится, когда я делаю ссылки на свои предыдущие обзоры. Очень неудобно перелистывать туда-сюда. Проще читать последовательным текстом.
Размеры можно «заценить» на фоне более понятных предметов.

Кстати, паяются исключительно.
Вот только радиатор алюминиевый.

А вот и схема «энергосберегайки». Она под номером 1. Схемы у разных производителей несущественно отличаются. Присутствуют упрощения или наоборот добавляются элементы для лучшей и более долговечной работы. Но суть одна.

На первом рисунке (схема №1) собственно схема с элементами (красного цвета), которые нужно убрать. На втором, третьем и четвёртом варианты переделки оконечной части под светодиодный драйвер (схема «допилинга»).
У всех этих схем свои недостатки и достоинства. Но у всех есть одно общее преимущество – ничего сверху дросселя МОТАТЬ НЕ НУЖНО, и один существенный недостаток – НЕТ ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКИ с электрической сетью.
В схеме №4 пульсации самые минимальные и для глаз и для живучести «светокристаллов», но самые большие потери на выпрямительных диодах.
Схема №2 более экономична в этом плане (потери на выпрямительных диодах в два раза меньше), но требует наличия уже двух «светоматок».
Схема №3 самая простая. Никаких выпрямительных диодов, просто подключаем пару «светоматок» встречно параллельно вместо люминесцентной нагрузки. У этой схемы больше всего побочных эффектов, хотя она самая простая в исполнении и у неё наименьшие потери. Ещё один недостаток этой схемы — в случае порчи одной матрицы, вторая выгорает автоматически из-за высокого обратного напряжения.
Кстати, одновременное использование светодиодов холодного и тёплого свечения позволяет добиться более приятного оттенка.
Уже писал, что поверх обмотки дросселя «энергосберегайки» ничего мотать не нужно. Соответственно не нужно подбирать драйвера с большим окном дросселя. Просто подключаемся к освободившимся контактам на плате драйвера.
В качестве донора использую неисправные люминесцентные лампочки («энергосберегайки»).
Для экспериментов у меня осталось несколько 20-тиваттных драйверов.

Размер окна не позволяет ничего подмотать, использую как есть.

Все драйверы от неисправных лампочек, и не факт, что работают.
Но дефект оказался стандартным – вспухший конденсатор сетевого выпрямителя. Именно поэтому я их давно выпаял у всех четырёх. Ставить лучше заведомо бОльшую ёмкость. Чем больше ёмкость, тем меньше пульсации. Я поставил на 10 мкФ.

Собрал макетку.

Выпрямительный мостик я использовал из позапрошлой лабораторки. Он на КД226-ых. Диоды Шоттки здесь не рулят. Слишком большое обратное напряжение. А они, как правило, низковольтные. У меня есть SR5100, но они только на 100 В.
Включил. Работает.

Проверка на пульсации.

Достал осциллограф. Некоторые моменты лучше отсеять сразу. Посмотрю пульсации. Только факты.
Эта информация чисто ознакомительная, хотя для многих и интересная.
На самих диодах смотреть пульсации бессмысленно.

Проверял по методике из ГОСТа.

Эти пульсации считать бессмысленно, они слишком малы. В данном случае я ловил пульсации частотой 100 Гц. Это НЕ последствия преобразования, там другая частота порядка нескольких десятком кГц. Это результат сглаживания по входу выпрямителя 220 В «энергосберегайки». Не зря поставил такую ёмкость.

Решил глянуть на помехи от преобразователя. Подключил уже другой прибор.

Чисто ознакомительно. Пульсации частотой почти 40 кГц на утомляемость глаз не влияют.


С пульсациями разобрались.
Продолжая традиции своих обзоров, измерил КПД получившейся конструкции.
Для его определения необходимо знать, сколько потребляет от сети, и сколько потребляет «светоматки» по постоянному току. Ничего сложного. Мультиметр и ваттметр мне в помощь.
При напряжении 232 В мощность потребления от сети всего 9,8 Вт. Светильник нагружен лишь на половину своей номинальной мощности. Именно поэтому пульсации оказались настолько малы. Я проверил и других драйверах, других фирм. Приблизительно всё тоже самое.
Я не знаю, как правильно назвать – это свойство или особенность подобных драйверов. Номинальную мощность они отдают при падении напряжения в нагрузке ближе к 100 В. Например, при подключении последовательно двух «светоматок» (падение напряжения около 60 В) мощность возрастает до 14 Вт. Для полноценного использования драйвера с максимальным КПД необходима светодиодная сборка на напряжение никак не менее 100 В.
Продолжаю. Ток через матрицу 0,251 А. Напряжение на «светоматках» я тоже измерил. Оно составило 28,28 В.

Мощность по постоянному току (чисто светодиодная) Р=28,28В*0,251А=7,1Вт.
Ƞ=7,1Вт/9,8Вт*100%=72%
Для самоделки очень даже неплохо. Большая часть полезной энергии теряется на выпрямительных диодах, до 10 %.
По яркости соответствует лампе накаливания 75 Вт. Недогруженные светодиоды поражают своим КПД (об этом напомню чуть позже).
После экспериментирования пощупал самые проблемные места. Транзисторы и дроссель/трансформатор были еле тёплые. За них больше не переживаю. Самым нагретым местом была сама матрица. Но и она не была горячей, рука спокойно терпит. Не мудрено при такой мощности…
Кстати, теплоотводящая подложка светодиодов НЕ соединена ни с каким выводом. Это хорошо с учётом отсутствия гальванической развязкой с сетью.
Повторю ещё один эксперимент. Я его уже проделывал и не один раз.

Зависимость «энергоэффективности» матрицы от мощности (тока).

Принцип прост. Я подаю на матрицу ток через калиброванные промежутки (для удобства восприятия) с блока питания, при этом не забываю про напряжение на матрице (т. к. при увеличении тока, хоть и не намного, оно тоже будет увеличиваться) и освещённость. Все данные свёл в таблицу. Остальные данные в таблице – получены путём расчета (перемножением и делением измеренных величин). Это необходимо для получения более наглядных цифр. Ещё раз повторю, показания люксметра сняты для построения графика, не более того.

Экспериментировал в режиме отсечки по току. Блок питания имеет ограничение по напряжению (30В) и току (10А). В данном случае не хватило напряжения для раскачки матрицы на полную. При этом ток ограничился на величине 0,84А. Напряжение больше не росло. Но динамику понятно и по тем цифрам, что имею.
С помощью полученной таблицы и построю график зависимости «энергоэффективности» матрицы от той мощности (тока), которую через неё пропустил.

Как видно из графика, чем выше мощность, проходящая через матрицу, тем ниже «энергоэффективность». Если постараться сказать проще, чем меньше мощность от номинала, тем бОльшая мощность переходит в свет, а не в тепло.
На этом лабораторную работу можно считать оконченной. Работа проведена, вывод сделан. Перехожу к практическим занятиям.
Напомню, что есть у меня светильник на балконе.

Корпус из жести (сталь), будет служить дополнительным теплоотводом.

Всё лишнее убрал.

Я уже вживлял самодельные светильники. После последней лабораторки даже на место уже повесил. Но вот пришла новая идея, и пришлось всё снова демонтировать.
В качестве радиатора использовать алюминиевый лист (толщиной 2мм) от списанной аппаратуры.

Место крепления матрицы к радиатору необходимо очистить от краски и смазать теплопроводящей смазкой.
Особая красота не требуется. Всё будет скрыто плафоном.
Кроме самого драйвера где-то нужно разместить выпрямитель. Затем подключить всё это через клеммник на балконе. А пока всё выглядит так.

Светит обычно, ничего особенного.

И в сборе.

В заключение немного напомню: паять и клепать лампочки — занятие неблагодарное, хотя и интересное. Заводская пайка конечно же надёжней. Гораздо проще пристроить какую-нибудь готовую светодиодную лампочку. Но самоделки работают намного надёжнее. А если руки чешутся – вообще никто не остановит!
Ещё хотел бы предостеречь. Схема не имеет гальванической развязки с электрической сетью.
В целях безопасности корпус светильника должен быть обязательно заземлён, а все эксперименты должны проводиться с особым вниманием и осторожностью.
Как правильно распорядиться сведениями из моего обзора, каждый решает сам в меру своей испорченности :). Я же при написании своего обзора руководствовался только благими намерениями.
Надеюсь, что хоть кому-то помог. Кому что-то неясно по поводу этой самоделки, задавайте вопросы. С остальным – кидайте в личку, обязательно отвечу.
На этом ВСЁ!
Удачи!

mysku.ru

О драйверах светодиодных светильников - sxemy-podnial.net

Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.

Светодиодные светильники. Фото 1.Драйвер светодиодного светильника на CL1502. Рис. 1.

В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в [1]. Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.

В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.

В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.

Драйвер светодиодного светильника на B77CI. Рис. 2.

Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».

Фонарь светодиодного светильника. Рис. 3.Внешний вид платы драйвера на B77CI. Фото 2.

Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.

И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.

Литература:
1. https://www.dianyuan.com/upload/community/2014/04/10/1397117125-79110.pdf

sxemy-podnial.net

Микросхемы драйверов сверхъярких светодиодов - RadioRadar

Светотехника

Главная  Радиолюбителю  Светотехника



Зажечь светодиод несложно, для этого достаточно подключить его в прямом включении через ограничивающий резистор к источнику питания. Но этот способ крайне неэкономичен, так как на ограничивающем резисторе создается большое падение напряжения, а значит, и большие потери. Кроме того, ток через светодиод и яркость его свечения при подобном включении будут крайне нестабильны. Для повышения КПД и стабильности свечения светодиодов используются драйверы на специализированных микросхемах. О некоторых из них пойдет речь в настоящей статье. Автор рассматривает ряд микросхем-драйверов фирмы Monolithic Power Systems (MPS).

Классификация микросхем драйверов на основе DC/DC-преобразователей

Микросхемы драйверов для питания сверхъярких светодиодов можно найти в устройствах разной сложности от светодиодных фонариков до мобильных телефонов, цифровых фотоаппаратов, компьютеров и т.д. Одно из самых распространенных применений светодиодов - это схемы светодиодной подсветки ЖК дисплеев. Драйверы для устройств с автономным питанием имеют, как правило, высокий КПД (более 90%). Они представляют собой регулируемые импульсные повышающие или повышающе-понижающие DC/DC-преобразователи. Можно встретить так называемые емкостные драйверы со схемой вольтодо-бавки и индуктивные драйверы. В них обычно применяется стабилизация выходного тока (то есть тока светодиодов), что обеспечивает стабильную яркость свечения светодиодов. Реже для этого используется стабилизация напряжения на светодиодах.

Емкостные преобразователи со схемой вольтодобавки называют также преобразователями с подкачкой заряда. Это буквальный перевод английского термина Charge Pump, которым обозначают эти схемы в иностранной технической литературе и документации. Они могут работать как повышающе-понижающие преобразователи. Бесспорными достоинствами драйверов Charge Pump являются их простота и низкая себестоимость.

В качестве повышающе-понижающих DC/DC-преобразователей в драйверах также применяют индуктивные преобразователи SEPIC-архитектуры (Single-ended primary-inductor converter - одновыводной первичный преобразователь на индуктивности), преимуществами которых являются несколько большие выходной ток и КПД, чем у преобразователей со схемой вольтодобавки. Повышающие преобразователи также нашли основное применение в устройствах с низковольтным питанием. Они имеют высокий КПД и большой выходной ток при остальных средних показателях. Особенности драйверов на DC/DC-преобразователях, приведенных в [1], сведены в таблицу 1.

Таблица 1. Особенности драйверов на основе DC/DC-преобразователей

Тип преобразователя

Сложность

Стоимость

Размеры

КПД

Выходной ток

Преобразователь со схемой вольтодобавки (Charge Pump)

Низкая

Низкая

Малые

Средний

Малый

Преобразователь типа SEPIC

Высокая

Высокая

Большие

Выше среднего

Выше среднего

Повышающий преобразователь

Средняя

Средняя

Средние

Высокий

Большой

Понижающий преобразователь

Средняя

Средняя

Средние

Высокий

Средний

Понижающие преобразователи в бытовой технике применяются в качестве драйверов светодиодов довольно редко. Поэтому рассмотрим особенности схемотехники драйверов остальных трех типов на микросхемах фирмы Monolithic Power Systems подробнее.

Драйверы для питания сверхярких светодиодов со схемой вольтодобавки (Charge Pump) от MPS

Микросхема MP1519 представляет собой драйвер для питания четырех белых светодиодов со схемой вольтодобавки (Charge Pump) с питанием от источника 2,5...5,5 В (см. рис. 1).

Рис. 1. Функциональная схема микросхемы MP1519

Микросхема изготавливается в миниатюрном 16-выводном корпусе QFN16 размером 3x3 мм. Назначение выводов этой микросхемы приведено в таблице 2.

Таблица 2. Назначение выводов микросхемы MP1519

№ вывода

Обозначение

Назначение

1

LED4

Выход на анод светодиода 4

2

NC

Не используется

3, 10

GND

"Земля"

4

C1A

На положительный вывод конденсатора вольтодобавки С1

5, 13

BATT

Вход напряжения питания 2,5...5,5 В

6

C2A

На положительный вывод конденсатора вольтодобавки С2

7

C1B

На отрицательный вывод конденсатора вольтодобавки С1

8

LEDC

Выход на катоды светодиодов (общий)

9

C2B

На отрицательный вывод конденсатора вольтодобавки С2

12

EN

Вход разрешения включения и регулировки яркости (димминга) светодиодов

14

LED1

Выход на анод светодиода 1

15

LED2

Выход на анод светодиода 2

16

LED3

Выход на анод светодиода 3

ИМС MP1519 содержит датчик напряжения батареи, контроллер управления, генератор тока, источник опорного напряжения (ИОН) запретной зоны, четыре источника тока (стабилизатора) светодиодов и схему вольтодобавки.

Последовательно с каждым светодиодом внутри микросхемы включен стабилизатор тока (Current Source - источник тока), причем генератор тока управляет режимом всех четырех источников тока. Контроллер управления обеспечивает автоматический выбор режима вольтодобавки, "мягкий" старт и т.п. Схема вольтодобавки преобразует напряжение питания в импульсы частотой 1,3 МГц, которые выпрямляются и заряжают накопительные конденсаторы С1 и С2. При использовании схемы вольтодобавки для питания светодиодов напряжение батареи суммируется с напряжениями на этих конденсаторах. Для правильной работы схемы вольтодобавки конденсаторы С1 и С2 должны иметь одинаковую емкость. Одной из особенностей микросхемы MP1519 является автоматическое переключение кратности вольтодобавки: 1x, 1,5x и 2x. Это обеспечивает оптимально-эффективную стабилизацию токов, а, значит и яркости светодиодов при изменении напряжения питания (например, при старении или замене батареи). Для этого при работе микросхема непрерывно контролирует ток светодиодов и напряжение батареи.

Чтобы предотвратить перегрузку батареи, в микросхеме MP1519 используется "мягкий" запуск и "мягкое" переключение режимов вольтодобавки.

Ток светодиодов задается резистором R1, сопротивление которого можно рассчитать по формуле:

R1(кОм) = 31,25/ILED(мА)

При наличии напряжения питания 2,5...5,5 В на выв. 5 и 13 ИМС включение драйвера обеспечивается подачей высокого уровня напряжения на вход разрешения EN (выв. 12) этой микросхемы. При включении контроллер микросхемы MP1519 анализирует величину напряжения питания, ток светодиодов и включает тот или иной режим кратности вольтодобавки. Драйвер выключается (гашение светодиодов) низким уровнем на выв. 12 с задержкой 30 мкс.

По входу EN может осуществляться как аналоговый, так и ШИМ димминг светодиодов. Именно для ШИМ димминга необходима задержка выключения микросхемы. Для этого на вход разрешения EN подается внешний управляющий ШИМ сигнал частотой 50 Гц...50 кГц. Когда импульс управляющего сигнала заканчивается, ток светодиодов и их яркость плавно уменьшаются до нуля в течение 30 мкс. Чем больше скважность импульсов управления, тем меньше средняя яркость свечения светодиодов. При частоте сигнала управления более 50 кГ ц яркость регулируется неэффективно, а при частоте ниже 50 Гц становится заметным моргание светодиодов.

Для аналогового димминга на выв. 11 MP1519 подается постоянное напряжение регулировки через делитель напряжения R2 R1 (см. рис. 2). Изменением этого напряжения от 0 до 3 В на входе делителя R2 R1 можно изменять ток светодиодов от 0 до 15 мА.

Рис. 2. Цепь регулировки яркости постоянным напряжением

Компания MPS выпускает еще две микросхемы близких по схемотехнике и цоколевке к MP1519 - это MP1519L и MP3011.

Микросхема MP1519L рассчитана на работу с тремя белыми светодиодами и отличается от MP1519 тем, что у MP1519L выв. 1 не используется. Она изготавливается в корпусах QFN16 (3x3 мм) и TQFN16 (3x3 мм). Микросхема MP3011 рассчитана на работу только с двумя белыми светодиодами. У этой микросхемы также не используется выв. 14. Эта микросхема выпускается в корпусе QFN16 (3x3 мм).

Драйверы для питания сверхъярких светодиодов на основе повышающих (Boost, Step-Up) DC/DC-преобразователей от MPS

Подробное описание микросхемы MP2481 можно найти в [2], поэтому рассмотрим следующие микросхемы: MP3204, MP3205, MP1518, MP1523, MP1528, MP1521, MP1529 и MP1517.

Микросхема MP3204 представляет собой классический повышающий DC/DC-преобразователь, который при входном напряжении 2,5...6 В позволяет получить на последовательно соединенных светодиодах постоянное напряжение до 21 В. Максимально к MP3204 можно подключить до пяти светодиодов, но для оптимального управления изготовитель рекомендует подключать к выходу микросхемы три белых светодиода (см. рис. 3).

Рис. 3. Схема включения микросхемы MP3204

Микросхема содержит генератор 1,3 МГц, ШИМ, усилитель сигнала обратной связи, усилитель сигнала от датчика тока и выходной ключ на полевом транзисторе. Она изготавливается в миниатюрном корпусе TSOT23-6. Назначение выводов этой микросхемы приведено в таблице 3.

Таблица 3. Назначение выводов микросхемы MP3204

№ вывода

Обозначение

Назначение

1

SW

Вывод стока выходного ключа

2

GND

"Земля"

3

FB

Вход цепи обратной связи

4

EN

Вход разрешения (включения). Активный уровень - высокий

5

OV

Вход защиты по превышению выходного напряжения

6

IN

Напряжение питания

Драйвер на MP3204 (рис. 3) работает следующим образом. Микросхема включается подачей высокого уровня на вход разрешения EN (выв. 4). Когда выходной ключ (выв. 1 и 2) замкнут, через дроссель L1 идет нарастающий ток от источника питания и в сердечнике дросселя создается магнитное поле. Когда выходной ключ размыкается, в дросселе возникает ЭДС самоиндукции ("+" справа на рис. 4 и "-" слева), которая складывается с напряжением питания схемы. Этим суммарным напряжением через диод D1 заряжается накопительный конденсатор С2. Напряжение с этого конденсатора используется для питания последовательно соединенных светодиодов.

В качестве конденсатора входного фильтра С1 и накопительного конденсатора на выходе С2 обычно используются керамические конденсаторы. Емкость накопительного конденсатора С2 0,22 мкФ достаточна для большинства применений, но ее допустимо увеличить до 1 мкФ. Дроссель L1 должен иметь небольшое сопротивление постоянному току. В позиции D1 устанавливается диод Шоттки с прямым током 100...200 мА. Резистор R1, включенный последовательно со светодиодами, используется как датчик тока светодиодов. Для стабилизации тока светодиодов напряжение с R1, пропорциональное этому току, поступает на вход обратной связи FB микросхемы. Сопротивлением резистора R1 задается ток светодиодов.

Зависимость тока светодиодов от сопротивления резистора R1 приведена в таблице 4.

Таблица 4. Зависимость тока светодиодов от R1

Ток светодиодов, мА

Резистор R1, Ом

1

104

5

20,8

10

10,4

15

6,93

20

5,2

Для защиты источника питания от перегрузки при включении микросхема имеет встроенную схему "мягкого" запуска (soft start).

В микросхеме предусмотрены аналоговый и ШИМ димминг, причем, существуют три различных способа регулировки яркости. Для аналоговой регулировки используется цепь, показанная на рис. 4.

Рис. 4. Цепь аналогового димминга

При изменении регулирующего напряжения от 2 до 0 В ток светодиодов изменяется от 0 до 20 мА.

Кроме аналогового димминга могут использоваться два способа ШИМ димминга.

Суть первого способа заключается в том, что сигнал ШИМ с частотой до 1 кГц подается непосредственно на вход EN (выв. 4). Ток и яркость свечения светодиодов обратно пропорциональны скважности управляющих ШИМ импульсов, то есть прямо пропорциональны длительности этих импульсов.

При втором способе сигнал ШИМ частотой более 1 кГц подают на вход обратной связи FB (выв. 3) через развязывающий фильтр (см. рис. 5).

Рис. 5. Цепь ШИМ димминга по входу FB

Микросхема имеет защиту от перегрузки при уменьшении входного напряжения (Under Voltage Lockout) с порогом срабатывания 2,25 В и гистерезисом 92 мВ и защиту от перегрузки по превышению выходного напряжения, например при обрыве одного из светодиодов. Для этого выходное напряжение преобразователя подается на вход схемы защиты OV (выв. 5). Эта защита срабатывает при значении выходного напряжения 28 В и выключает преобразователь. Для повторной попытки его включения необходимо выключить, а затем опять включить питание схемы.

В микросхеме MP3205, в отличие от MP3204, отсутствует защита по выходному напряжению и вход OV Микросхема MP3205 изготавливается в 5-выводном корпусе TSOT23-5. Выв. 5 корпуса TSOT23-5 этой микросхемы по расположению и по назначению соответствует выв. 6 микросхемы MP3204 в корпусе TSOT23-6.

Очень близки по параметрам и схемотехнике к микросхемам MP3204 и MP3205 микросхемы MP1518 и MP1523, которые рассчитаны на управление до 6-ти светодиодами. MP1518 изготавливается в корпусах TSOT23-6 и QFN-8. Микросхема MP1518 в корпусе TSOT23-6 по выводам полностью совпадает с MP3204.

Микросхема MP1523 изготавливается только в корпусе TSOT23-6 и имеет ряд отличий от MP1518.

Цоколевка микросхемы MP1523 практически совпадает с MP3205, но отличается от нее тем, что выв. 5 (BIAS) MP1523 может подключаться или к плюсу источника питания (2,7...25 В) - почти как выв. 5 (IN) микросхемы MP3205, или к выходу схемы (к катоду D1). В последнем случае в микросхеме MP1523 будет работать схема защиты от перегрузки по превышению выходного напряжения с порогом срабатывания 28 В. Резистор-датчик тока, включенный последовательно со светодиодами, для этой микросхемы должен иметь сопротивление 20 Ом. Микросхема MP1523 не имеет схемы регулировки яркости светодиодов.

Еще один повышающий драйвер для питания 9-ти светодиодов выполняется на микросхеме MP1528 (корпус QFN6 размером 3x3 мм или MSOP8, в нем микросхема в маркируется как MP1528DK). Назначение выводов MP1528 приведено в таблице 5.

Таблица 5. Назначение выводов микросхемы

№ вывода

Обозначение

Назначение

QFN6

MSOP8

1

2

FB

Вход цепи обратной связи

2

3

GND

"Земля"

3

4

SW

Вывод стока выходного ключа

4

5

BIAS

Вход напряжения питания (смещения) ИМС. При использовании защиты OV он подключен к катоду D1, в другом случае подключен к источнику питания

5

6

EN

Вход разрешения (включения). Активный уровень - высокий

6

7

BRT

Вход аналогового и/или ШИМ димминга

-

1, 8

NC

Не используются

Типовая схема включения микросхемы MP1528 незначительно отличается от остальных рассмотренных выше драйверов (см. рис. 6).

Рис. 6. Схема включения микросхемы MP1528DQ (в корпусе QFN6)

Для обеспечения максимальной яркости свечения светодиодов на вход BRT надо подать напряжение более 1,2 В. Ток светодиодов при максимальной яркости определяется резистором R1, сопротивление которого можно рассчитать по формуле:

R1(кОм) = UВАТТ/(3·ILED(мА))

Аналоговый димминг осуществляется изменением постоянного напряжения на выводе BRT от 0,27 до 1,2 В.

Для обеспечения ШИМ димминга на вход BRT подается ШИМ сигнал частотой от 100 до 400 Гц, низкий уровень которого не должен превышать 0,18 В, а высокий должен быть не менее 1,2 В.

Микросхема имеет защиту от превышения выходного напряжения, с порогом срабатывания 40 В, а также защиту от понижения входного напряжения (порог срабатывания 2,1...2,65 В) и температурную защиту с порогом 160°С.

Один из самых мощных драйверов на DC-DC преобразователях от фирмы MPS - это микросхема MP1529 (мощнее из рассматриваемых ИМС только MP1517). Микросхема MP1529 должна быть особенно интересна читателям, так как она применятся в цифровых фотоаппаратах, видеокамерах и мобильных телефонах со встроенной цифровой фотокамерой. Она может управлять тремя цепями (линиями) последовательно включенных белых сверхъярких светодиодов.

Две из этих линий (LED1 и LED2) из шести светодиодов каждая, используются для задней подсветки жидкокристаллических (ЖК) индикаторов, а третья (LED3) из четырех светодиодов - для фотовспышки и для освещения объектов в темное время (режим Preview).

Напряжение питания микросхемы MP1529 составляет 2,7...5,5 В, а выходное напряжение - 25 В. Она имеет защиту от превышения выходного напряжения с порогом срабатывания 28 В, а также защиту от понижения входного напряжения с порогом срабатывания 2...2,6 В и гистерезисом 210 мВ. MP1529 имеет также температурную защиту (160°С) и изготавливается в корпусе QFN16 размером 4x4 мм. Назначение выводов MP1529 приведено в таблице 6, а типовая схема включения - на рис. 7.

Таблица 6. Назначение выводов микросхемы MP1529

№ вывода

Обозначение

Назначение

1

EN1

Входы разрешения 1 и 2 (см. таблицу 8). Имеют внутренние подтягивающие резисторы

2

EN2

3

COMP

Выход компаратора на накопительный конденсатор на входе каскада ШИМ

4

SS

На конденсатор схемы "мягкого" запуска (ШИМ таймера)

5

LED3

Выход на цепь 4-х светодиодов 3 (вспышки)

6

GND

"Земля"

7

LED2

Выход на цепь 6-ти светодиодов 2 (задней подсветки дисплея)

8

LED1

Выход на цепь 6-ти светодиодов 1 (задней подсветки дисплея)

9

ISET1

Выводы подключения резисторов, задающих токи цепей светодиодов LED1/LED2/LED3 соответственно до 30, 150 и 150 мА

10

ISET2

11

ISET3

12

OUT

Вход схемы защиты от перегрузки

14

SW

Вывод стока выходного ключа

16

IN

Вход напряжения питания

13,15

PGND

"Земля" силовой части


Рис. 7. Схема включения микросхемы MP1529

Входы разрешения EN1 и EN2 используются для включения различных режимов. Если на обоих входах низкий логический уровень L (0,3 В), то все 16 светодиодов будут погашены. Если на входе EN2 сохранить низкий уровень, а на EN1 установить высокий уровень H (1,4 В), то светодиоды вспышки (LED3) останутся выключенными, а 12 светодиодов подсветки (цепочки LED1 и LED2) будут светиться максимально ярко. Максимальная яркость и ток светодиодов подсветки задаются сопротивлением резистора RS1 (подключен к выв. 9). Если же при этом на вход EN1 подать управляющий ШИМ сигнал частотой 1...50 кГц, то в зависимости от скважности этого сигнала будет меняться яркость свечения светодиодов подсветки. Если на входе разрешения EN2 установить низкий логический уровень, дополнительно включится цепь из четырех светодиодов (LED3) в режиме освещения (preview). При этом ток светодиодов LED3 будет определяться сопротивлением резистора RS2 (выв. 10). Если на вход EN1 подать низкий уровень, а на EN2 высокий то светодиоды подсветки LED1 и LED2 погаснут, а светодиоды LED3 засветятся максимально ярко (режим вспышки). В этом режиме ток светодиодов LED3 задается сопротивлением резистора RS3 (выв. 11).

Сопротивление резисторов RS1, RS2 и RS3 (в кОм) рассчитывается по формулам:

RS1 = (950·USET)/ILED_BL

RS1 = (1100·USET)/ILED_PV

RS1 = (1000·USET)/ILED_FL

где USET - внутреннее опорное напряжение 1,216 В, ILED_BL - ток (в мА) одной из цепей светодиодов задней подсветки LED1 или LED2, ILED_PV - ток (в мА) светодиодов LED3 в режиме освещения, ILED_FL - ток (в мА) светодиодов LED3 в режиме вспышки.

Информация о режимах работы микросхемы MP1529 в зависимости от логических уровней на входах разрешения EN1 и EN2 сведена в таблицу 7.

Таблица 7. Режимы работы микросхемы MP1529 в зависимости от сигналов на входах EN1 и EN2

Режим

Вход

Цепочки светодиодов

EN1

EN2

LED1 и LED 2

LED3 (Flash)

Выключено

L*

L

Выключено

Выключено

Задняя подсветка

H* (ШИМ)

L

Включено (режим ШИМ)

Выключено

Задняя подсветка и освещение

H (ШИМ)

H

Включено (режим ШИМ)

Ток освещения

Вспышка

L

H

Выключено

Ток вспышки

* L - низкий уровень, H - высокий уровень

Конденсаторы С1 и С2 - это накопительные конденсаторы фильтров на входе и выходе схемы соответственно, С3 - накопительный конденсатор фильтра управляющего напряжения на входе каскада ШИМ (этот ШИМ обеспечивает стабилизацию выходного напряжения), С4 - конденсатор схемы "мягкого" запуска (ШИМ таймера).

Микросхема MP1521 при напряжении питания 2,7 В позволяет подключать к ней до 9-ти, а при напряжении питания 5 В - до 15-ти сверхъярких светодиодов. Максимальное напряжение питания ИМС равно 25 В. MP1521 выпускается в корпусах MSOP10 (MP1521EK) и QFN16 (MP1521EQ). Назначение выводов этой микросхемы приведено в таблице 8, а схема включения для питания 9-ти светодиодов - на рис. 8.

Таблица 8. Назначение выводов микросхемы MP1521 в корпусах MSOP10, QFN16 (3x3 мм)

№ вывода

Обозначение

Назначение

MSOP

QFN

1

16

IN

Вход напряжения питания. Если UBATT

2

2

EN

Вход разрешения (включения). Активный уровень - высокий (1...10 В)

3

4

REF

Вывод опорного напряжения 1,23 В с нагрузочной способностью 200 мкА

4

5

BRT

Вход аналоговой и/или ШИМ регулировки яркости

5

7

FB3

Входы обратной связи для 3-х последовательных цепей светодиодов. При подключении одной или двух цепей светодиодов неиспользуемые входы надо подключать к любому используемому

6

8

FB2

7

9

FB1

8

10

OLS

Вход защиты от повышенного выходного напряжения при обрыве нагрузки (Open Load Shutdown)

9

11, 12

GND

"Земля"

10

14

SW

Вывод стока выходного ключа

-

1, 3, 6, 13, 15

N/C

Не используются

Рис. 8. Схема включения микросхемы MP1521 в корпусе MSOP10

Резисторы R1, R2 и R3 (рис. 8) - датчики тока светодиодов.

При аналоговом димминге на вход EN подают напряжение в пределах 0,3...1,2 В, а при ШИМ диммминге - сигнал ШИМ частотой 100...400 Гц с низким уровнем не более 0,18 В и высоким не более 1,2 В.

Повышающий преобразователь и преобразователь типа SEPIC на микросхеме MP1517

Микросхему MP1517 изготовитель рекомендует использовать не только как повышающий DC/DC-преобразователь, но и как преобразователь типа SEPIC (Single-Ended Primary Inductance Converter - одновыводной первичный преобразователь на индуктивности). Напряжение питания этой микросхемы лежит в пределах 2,6...25 В. Она изготавливается в корпусе QFN16 размером 4x4 мм. Назначение выводов микросхемы MP1517 приведено в таблице 9, а типовая схема включения - на рис. 9.

Таблица 9. Назначение выводов микросхемы MP1517

№ вывода

Обозначение

Назначение

1

COMP

Выход усилителя ошибки схемы стабилизации на RC-фильтр

2, 6, 14

NC

Не используются

3

BP

Вывод подключения конденсатора развязки внутреннего источника 2,4 В

4

EN

Вход разрешения (включения). Активный уровень - высокий (более 1,5 В)

5, 13

SGND

"Земля" сигнальной части

7

OLS

Вход защиты от повышенного выходного напряжения при обрыве нагрузки (Open Load Shutdown)

8

IN

Вход напряжения питания. Если UBATT мало, то IN подключается к выходу

9, 10

SW

Вывод стока выходного ключа

11, 12

PGND

"Земля" силовой части

15

SS

На конденсатор схемы "мягкого" запуска

16

FB

Вход цепи обратной связи

Рис. 9. Типовая схема включения микросхемы MP1517 для питания 18-ти светодиодов

Эта схема отличается от предыдущих (см. рис. 6 или 8) только тем, что для стабилизации тока светодиодов используется датчик тока одной последовательной цепи светодиодов из трех. Поэтому остановимся подробнее только на описании схемы DC/DC-преобразователя типа SEPIC на MP1517 (см. рис. 10).

Рис. 10. DC/DC-преобразователь типа SEPIC на микросхеме MP1517

Особенностью преобразователя SEPIC является то, что напряжение на его выходе может быть как больше, так и меньше входного, что обеспечивается наличием разделительного конденсатора С8 (см. [3, 4]). Схема на рис. 10 вырабатывает напряжение 3,3 В на выходе при изменении входного напряжения от 3 до 4,2 В. Всякий преобразователь типа SEPIC собирается на основе импульсного повышающего преобразователя, что легко заметить и на приведенной схеме. Кроме того, этот повышающий преобразователь (на L1, D2) используется для питания самой микросхемы.

Рассмотрим, как работает преобразователь SEPIC на MP1517 в устойчивом режиме.

В результате предыдущей работы к моменту отпирания внутреннего ключа МС на полевом транзисторе конденсатор С8 будет заряжен ("+" - слева на рис. 10, "-" - справа). При открывании этого ключа С8 будет разряжаться через дроссель L2, в котором будет накапливаться энергия видеизменяю-щегося магнитного поля. Кроме того, магнитную энергию будет накапливать и дроссель L1, по которому будет протекать нарастающий ток от источника питания через этот же внутренний ключ микросхемы. При запирании ключа в дросселе L1 возникает ЭДС ("+" - справа, "-" - слева), которая складывается с напряжением источника питания и заряжает С8 ("+" - слева, "-" - справа) через D1 и конденсатор С2. Помимо этого, в L2 возникает ЭДС ("+" - вверху, "-" - внизу), заряжающая С2 через D1. При следующем отпирании внутреннего ключа микросхемы процесс повторится.

Величина напряжения на выходе преобразователя (на С2) зависит в первую очередь от скважности импульсов управления ключом и от тока нагрузки.

R1 R2 - делитель напряжения обратной связи, которая обеспечивает стабилизацию выходного напряжения, С6 - конденсатор фильтра напряжения ошибки. С5 - развязывающий резистор, а С4 - конденсатор схемы "мягкого" запуска.

Литература

1. Денг К. "Сравнение емкостных и индуктивных преобразователей постоянного тока". "Электронные компоненты". №8. 2007.

2. Цветков Д. "Новый регулируемый DC/DC-преобразователь для питания мощных светодиодов". "Современная Электроника". № 9. 2008.

3. Иоффе Д. "Разработка преобразователей импульсного напряжения с топологией SEPIC". "Компоненты и технологии". №9. 2006.

4. Ридли Р. "Анализ преобразователя SEPIC". "Компоненты и технологии". №5. 2008.

Автор: Игорь Безверхний (г. Киев)

Источник: Ремонт и сервис

Дата публикации: 19.08.2016

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Схема драйвера для светодиода от сети 220В

Современные мощные светодиоды отлично походят для организации яркого и эффективного освещения. Некоторую сложность составляет питание таких светодиодов – требуются мощные источники постоянного тока и токостабилизирующие драйвера. Вместе с тем, в любом помещении имеется розетка с переменным напряжением в 220В. И, конечно же, очень хотелось бы организовать работу мощных светодиодов от сети с минимальными затратами. Нет ничего невозможного – давайте рассмотрим схему драйвера для светодиода от сети 220В.

Прежде чем начнем обсуждать конкретные схемы, хотелось бы напомнить, что работа будет вестись с потенциально опасным для жизни переменным напряжением 220В. Разработка и расчет схемы потребуют хотя бы общего понимания происходящих электрических процессов, вероятность того, что при совершении ошибки вы можете получить ущерб или повреждения, очень высока. Мы категорически не одобряем проведение работ с высоким напряжением, если вы чувствуете себя неуверенно и не несем ответственности за возможный ущерб и повреждения, которые вы можете получить в процессе работы над предлагаемыми схемами. На самом деле, вполне возможно, что проще и дешевле будет приобрести и использовать уже готовый драйвер или даже светильник целиком. Выбор за вами.

Обычно падение напряжения на светодиоде составляет от 3 до 30В. Разница с сетевым напряжением в 220В очень большая, поэтому понижающий драйвер, безусловно, будет импульсным. Имеется несколько специализированных микросхем для изготовления таких драйверов – HV9901, HV9961, CPC9909. Все они очень похожи и от других микросхем отличаются тем, что имеют очень широкий диапазон допустимого входного напряжения – от 8 до 550В – и очень высокий КПД – до 85-90%. Тем не менее, предполагается, что общее падение напряжения на светодиодах в готовом устройстве будет составлять не менее 10-20% от напряжения источника питания. Не стоит пробовать запитать от 220В, например, один-два 3-6-ти вольтовых светодиода. Даже если они не сгорят сразу, КПД схемы будет низким.

Рассмотрим драйвер на базе микросхемы CPC9909, поскольку она новее остальных и вполне доступна. Вообще, все указанные микросхемы взаимозаменяемы и совместимы попиново (но потребуется пересчитать параметры дросселя и резисторов).

Базовая схема драйвера следующая:

Схема драйвера для светодиодов на базе микросхемы CPC9909

Переменное сетевое напряжение необходимо предварительно выпрямить, для этого используется диодный мост. C1 и C2 – сглаживающие конденсаторы. C1 – электролит емкостью 22мкФ и напряжением 400В (при использовании сети 220В), C2 – керамический конденсатор емкостью 0,1мкФ, 400В. Конденсатор С1 – керамика 0,1мкФ, 25В. Микросхема CPC9909 в процессе работы генерирует импульсы, которые открывают и закрывают силовой транзистор Q1, тем самым управляя течением тока через светодиоды. Частота переключения, индуктивность дросселя L, параметры мосфета Q1 и диода D1 тесно взаимосвязаны и зависят от требуемого падения напряжения на светодиодах, их рабочем токе. Давайте попробуем рассчитать нужные параметры ключевых деталей схемы на конкретном примере.

У меня есть могучий светодиод. 50 ватт мощности, напряжение 30-36В, рабочий ток до 1.4А. 4-5 ТЫСЯЧ люменов! Мощность света неплохого прожектора.

COB cветодиод 50 ватт

Для охлаждения я посредством термопасты и суперклея посадил его на кулер от видеокарты.

Максимальный ток светодиода ограничим 1А. Значит

ILED = 1А

Падение напряжения на светодиодах –

VLED = 30В

Пульсацию тока примем равной +-15%:

ID = 1 * 0.15 * 2 = 0.3A

При напряжении сети переменного тока в 220В напряжение после выпрямительного моста и сглаживающих конденсаторов составит

VIN = 310В

Ток драйвера регулируется резистором Rs, сопротивление которого рассчитывается по формуле

Rs = 0.25 / ILED = 0.25 / 1 = 0.25 Ом.

Используем резистор 0.5W 0.22 Ом в SMD-корпусе 2512:

Rs = 0.22 Ом,

что даст ток 1.1А. При таком токе резистор будут рассеивать примерно 0.2Вт тепла и особо греться не будет.

Микросхема CPC9909 генерирует управляющие импульсы. Общая продолжительность импульса складывается из времени "высокого уровня", когда мосфет открыт и продолжительности паузы, когда транзистор закрыт. Жестко зафиксировать мы можем только продолжительность паузы. За нее отвечает резистор Rt. Его сопротивление рассчитывается по формуле:

Rt = (tp - 0.8) * 66, где tp - пауза в микросекундах. Сопротивление Rt получается в килоомах.

Продолжительность "высокого уровня" - это время, за которое рабочий ток достигнет требуемого значения - регулируется микросхемой CPC9909. Штатный диапазон частот находится в пределах 30-120КГц. Причем, чем выше будет частота, тем меньшая индуктивность дросселя в итоге потребуется. Но тем больше будет греться силовой транзистор. Поскольку индуктивность дросселя (и связанные с ней его габариты) для нас важнее, будем стараться держаться верхней части допустимого диапазона частот.

Давайте рассчитаем допустимое время паузы. Отношение продолжительности "высокого уровня" к общей продолжительности импульса - скважность импульса - рассчитывается по формуле:

D = VLED / VIN = 30 / 310 = 0.097

Частота переключений рассчитывается так:

F = (1 - D) / tp, а значит tp = (1 - D) / F

Пусть частота будет равна 90КГц. В этом случае

tp = (1 - 0.097) / 90 000 = 10мкс

Соответственно, потребуется сопротивление резистора Rt

Rt = (10 - 0.8) * 66 = 607.2КОм

Ближайший доступный номинал - 620КОм. Подойдет любой резистор с таким сопротивлением, желательно с точностью 1%. Уточняем время паузы с резистором номиналом 620КОм:

tp = Rt / 66 + 0.8 = 620 / 66 + 0.8 = 10.19мкс

Минимальная индуктивность дросселя L рассчитывается по формуле

Lmin = (VLED * tp) / ID

Используя уточненное значения tp, получаем

Lmin = (30 * 10.19) / 0.3 = 1мГн

Рабочий ток дросселя, при котором он гарантированно не должен входить в насыщение - 1.1 + 15% = 1.3А. Лучше взять с полуторным запасом. Т.е. не менее 2А.

Готового дросселя с такими параметрами в продаже я не нашел. Нужно делать самому. Вообще расчет катушек индуктивности - это большая отдельная тема. Здесь же я лишь оставлю ссылку на основательный труд Кузнецова А. "Трансформаторы и дроссели для импульсных источников питания".

Я использовал дроссель, выпаянный из нерабочего балласта обычной энергосберегающей лампы. Его индуктивность 2мГн, в сердечнике оказался зазор около 1мм. Считаем рабочий ток, получаем до 1.3 - 1.5А. Маловато, но для тестовой сборки пойдет.

Остались силовой транзистор и диод. Здесь проще - оба должны быть рассчитаны на напряжение не менее 400В и ток от 4-5А. Быстрый диод Шоттки может быть, например, таким - STTH5R06. Мосфет должен быть N-канальным. Для него крайне важно минимальное сопротивление в открытом состоянии и минимальный заряд затвора - менее 25нКл. Прекрасный выбор на нужный нам ток - FDD7N60NZ. В корпусе DPAK и с током до 1А греться он особо не будет. Можно будет обойтись без радиатора.

При разводке печатной платы нужно уделить внимание длине проводников и правильному расположению «земли». Проводник между CPC9909 и затвором полевого транзистора должен быть как можно короче. Это же относится и к проводнику от сенсорного резистора. Площадь «земли» должна быть как можно больше. Очень желательно один слой печатной платы полностью развести на землю. Резистор Rt нужно подальше от индуктивности и других проводников, работающих на высоких частотах.

Вывод LD микросхемы может быть использован для плавной регулировки яркости свечения светодиода, вывод PWMD – для димирования посредством ШИМ.

Вот примеры из технической документации, которые это реализуют.

Схема плавного регулирования яркости светодиодов.

На этой схеме сила тока, а соответственно, и яркость светодиодов плавно регулируется от нуля до 350мА переменным резистором RA1. Также на схеме присутствуют номиналы и названия ключевых элементов для питания линейки ярких светодиодов током до 350мА.

Схема, предполагающее управление яркостью посредством ШИМ, выглядит так:

Схема регулирования яркости светодиодов посредством ШИМ

Допустимая частота диммирования - до 500Гц. Обратите внимание на очень желательную электрическую развязку генератора регулирующих импульсов (обычно, это микроконтроллер) и силовой части схемы. Развязка выполнена посредством использования оптопары.

Я собрал схему с плавной регулировкой переменным резистором. Получилась плата 60х30мм.

Плата драйвера для светодиода от сети 220В

Драйвер заработал сразу и так как нужно. Переменным резистором ток регулируется от 0.1 до расчетных 1.1А. Вентилятор кулера где установлен светодиод запитан от 3-х вольт. Вращается совершенно без звука, при этом радиатор греется слабо. На плате после 5-ти тестовых минут работы на максимальном токе градусов до 50С нагрелся дроссель. Его рабочего тока, как и ожидалось, оказалось маловато. Также заметно греется полевой транзистор. Остальные детали греются незначительно.

Сердце будущего мощного светильника в тестовом запуске

Разводку платы в программе Sprint-Layout 6.0 можно взять здесь.

Спустя какое-то время светодиод с драйвером заняли свое рабочее место в освещении аквариума. Работают по 15 часов в день при токе 0.7А. Света для аквариума объемом в 140 литров, на мой взгляд, вполне достаточно. Радиатор снабдил термистором и простенькой схемой - кулер включается автоматически и охлаждает всю конструкцию.

Драйвер для светодиода от сети 220В требует внимания при проектировании и сборке. Повторюсь - напряжение 220В опасно для жизни, а на схеме драйвера практически все детали находятся под этим и большим напряжением.

Тем не менее, при аккуратной сборке получится достаточно миниатюрный и эффективный драйвер, способный запитать от сети бытовой сети 220В один или несколько мощных светодиодов.

Больше о схемах драйверов для светодиодов читайте в статье "Самодельный драйвер для мощных светодиодов".

www.flashled.com.ua

Отправить ответ

avatar
  Подписаться  
Уведомление о