Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

LM358N(P) / LM358D – ОУ и Компараторы – МИКРОСХЕМЫ – Электронные компоненты (каталог)

Корпус: DIP-8 (LM358N)

 

Корпус: SO-8 (LM358D)

 

LM358N/LM358D – двухканальный операционный усилитель широкого применения для работы в бытовом диапазоне температур (0..+70°С).

Микросхема ОУ LM358 по функциональному назначению и расположению выводов аналогична таким микросхемам как LM158, LM258, LM2904, но отличается от них температурным диапазоном работы и незначительно другими параметрами.

Аналоги: КР1040УД1 / КФ1040УД1.

 

Микросхема LM358N также может поставляться с маркировкой LM358P.

Предельные режимы LM358N/LM358D:

Напряжение питания

+32V

или

±16V

Входное напряжение

-0,3..+32V

Дифференциальное

входное напряжение

32V

Выходной ток40mA *

Диапазон температур

0..+70°С


* Выходной ток короткого замыкания ограничен внутренне.

Основные характеристики LM358N/LM358D:

Параметр

Мин.

Тип.

Макс.

Напряжение смещения

 

±2mV

±7mV

Синфазный входной ток 20nA150nA

Дифференциальный входной ток

 

±2nA

±30nA

Выходной ток

20mA

40mA

60mA

Коэффициент ослабления синфазных помех

70dB

85dB

 

Коэффициент усиления по напряжению 50V/mV100V/mV

Коэффициент гармонических искажений

 

0,02%

 

Ток потребления

 

0,7mA

2,0mA

Скорость нарастания

 

0,3V/µS

Граничная частота 0,7MHz1,1MHz

tec.org.ru

Схема простого терморегулятора на LM358

Данный терморегулятор построен на операционном усилителе LM358, который выполняет роль компаратора. В качестве датчика температуры использован термистор сопротивлением 10к. Температура устанавливается с помощью потенциометра на 10к, и ее можно установить в довольно широком диапазоне.

Как было сказано выше, LM358 работает в качестве компаратора, и поэтому аналоговый сигнал будет преобразован в цифровой, и на выходе мы получим сигнал нуля или единицы. Выходной сигнал операционного усилителя управляет транзистором BC547B, который, в свою очередь, управляет катушкой реле, а та управляет нагрузкой с номинальным напряжением 220 вольт.

В схеме использована только одна часть операционного усилителя LM358, и, следовательно, на одном таком ОУ можно сделать два независимых термостата.  Диапазон рабочей температуры составляет приблизительно от 0°C до 60°C. Изменить его можно путем подбора резистор R3. За гистерезис в этой системе отвечает резистор R1. Схема терморегулятора питается постоянным напряжением 12В. Резистор R7 служит для изменения чувствительности потенциометра.

Стоит еще обратить внимание на резистор, обозначенный на схеме как R6. Его отсутствие приведет к некорректной работе терморегулятора при высоких температурах — термистор под влиянием увеличения температуры уменьшает свое сопротивление, что в крайних случаях (при высокой температуре) может привести к снижению сопротивления до такого значения, что ток, протекающий через термистор, начинает его нагревать, а это приведет к бесконечным переключениям реле.

Гистерезис также претерпевает изменения после замены термистора на термистор бОльшего сопротивления, например, 22к. Сама микросхема LM358 потребляет очень маленький ток ок. 5-10 мА. Из-за отсутствия линейности термистора, установка точной температуры может быть затруднительна в крайних положениях потенциометра.

Плата терморегулятора выполнена по технологии ЛУТ. Размеры печатной платы: длина около 9 см, ширина около 2 см. Она разделена на две зоны, слева — это логика — безопасное напряжение, а реле, управляющее нагрузкой 220 вольт расположено справа. Диодный мост находится на отдельной плате вместе с трансформатором.

Для лучшего контроля над заданной температурой можно использовать аналоговый датчик температуры LM35. У него показание температуры линейное, но на практике схема, конечно же, будет иной.

Источник

www.joyta.ru

Лабораторный блок питания на lm358n CAVR.ru

 Для налаживания различных электронных устройств необходим источник питания, в котором предусмотрена регулировка не только выходного напряжения, но и порога срабатывания защиты от токовой перегрузки. Во многих простых устройствах аналогичного назначения защита лишь ограничивает максимальный ток нагрузки, причем возможность его регулирования отсутствует или затруднена. Такая защита больше предназначена для самого блока питания, чем для его нагрузки. Для безопасной работы как источника, так и подключенного к нему устройства необходима возможность регулирования уровня срабатывания токовой защиты в широких пределах. При ее срабатывании нагрузка должна быть автоматически отключена. Предлагаемое устройство удовлетворяет всем перечисленным требованиям.

Основные технические характеристики
Входное напряжение, В ……26…29
Выходное напряжение, В……1…20
Ток срабатывания защиты, А………………….0.03…2

      Схема устройствапоказана на рисунке. Регулируемый стабилизатор напряжения собран на ОУ DA1.1. На его неинвертирующий вход (вывод 3) с движка переменного резистора R2 поступает образцовое напряжение, стабильность которого обеспечивает стабилитрон VD1, а на инвертирующий вход (вывод 2) — напряжение отрицательной обратной связи (ООС) с эмиттера транзистора VT2 через делитель напряжения R11R7 ООС поддерживает равенство напряжений на входах ОУ, компенсируя влияние дестабилизирующих факторов. Перемещая движок переменного резистора R2, можно регулировать выходное напряжение.

      Узел защиты от перегрузки по току собран на ОУ DA1.2, который включен как компаратор, сравнивающий напряжения на инвертирующем и неинвертирующем входах. На неинвертирующий вход через резистор R14 поступает напряжение с датчика тока нагрузки — резистора R13, на инвертирующий — образцовое напряжение, стабильность которого обеспечивает диод VD2, выполняющий функцию стабистора с напряжением стабилизации около 0,6 В. Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю.

      Если ток нагрузки превысит допустимый, напряжение на выходе ОУ DA1.2 увеличится почти до напряжения питания. Через резистор R9 потечет ток, который включит светодиод HL1 и откроет транзистор VT1. Диод VD3 открывается и через резистор R8 замыкает цепь положительной обратной связи (ПОС). Открытый транзистор VT1 подключает параллельно стабилитрону VD1 резистор малого сопротивления R12, в результате чего выходное напряжение уменьшится практически до нуля, поскольку регулирующий транзистор VT2 закроется и отключит нагрузку. Несмотря на то что напряжение на датчике тока нагрузки упадет до нуля, благодаря действию ПОС нагрузка останется отключенной, что показывает светящийся индикатор HL1. Повторно включить нагрузку можно кратковременным отключением питания или нажатием на кнопку SB1. Диод VD4 защищает эмиттерный переход транзистора VT2 от обратного напряжения с конденсатора С5 при отключении нагрузки, а также обеспечивает разрядку этого конденсатора через резистор R10 и выход ОУ DA1.1.

      Детали. Транзистор КТ315А (VT1) можно заменить на КТ315Б—КТ315Е. Транзистор VT2 — любой из серий КТ827, КТ829. Стабилитрон (VD1) может быть любым с напряжением стабилизации У 3 В при токе 3…8 мА. Диоды КД521В (VD2—VD4) могут быть другими из этой серии или КД522Б Конденсаторы СЗ, С4 — любые пленочные или керамические. Оксидные конденсаторы: С1 — К50-18 или аналогичный импортный, остальные — из серии К50-35. Номинальное напряжение конденсаторов не должно быть меньше указанного на схеме. Постоянные резисторы — МЛТ, переменные — СПЗ-9а. Резистор R13 можно составить из трех параллельно соединенных МЛТ-1 сопротивлением по 1 Ом. Кнопка (SB1) — П2К без фиксации или аналогичная.

      Налаживание устройства начинают с измерения напряжения питания на выводах конденсатора С1, которое, с учетом пульсаций, должно находиться в пределах, указанных на схеме. После этого перемещают движок переменного резистора R2 в верхнее по схеме положение и, измеряя максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R11. Затем подключают к выходу эквивалент нагрузки, например, такой, как описан в статье И. Нечаева “Универсальный эквивалент нагрузки” в “Радио”, 2005, № 1, с. 35. Измеряют минимальный и максимальный ток срабатывания защиты. Чтобы снизить минимальный уровень срабатывания защиты, необходимо уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты нужно уменьшить сопротивление резистора R13 — датчика тока нагрузки.

П. ВЫСОЧАНСКИЙ, г. Рыбница, Приднестровье, Молдавия

www.cavr.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *