Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Простейшая электрическая цепь | Электрикам

Что такое электрическая цепь?

Под электрической цепью понимают совокупность взаимосвязанных элементов, образующих путь для протекания электрического тока. Все процессы в электрической цепи подчинятся законам электротехники. Входящие в состав электрической цепи элементы можно условно разделить на 3 группы: генерирующие устройства, приемные устройства и вспомогательные элементы.

Простейшая электрическая цепь включает в себя следующие основные компоненты (рисунок 1):

  1. Источник электрической энергии (Источник тока).
  2. Приемник электрической энергии.
  3. Соединительные провода.

Также в состав простейшей электрической цепи может входить вспомогательное оборудование, например, замыкающее устройство, измерительные приборы (амперметр, вольтметр и пр.), защитные аппараты (предохранители и пр.).

Рис.1 Простейшая электрическая цепь

Источник электрической энергии, потребители, соединительные провода.

Источник электрической энергии

— это устройство преобразующее различные виды энергии в электрическую энергию.

Источником электрической энергии может быть гальванический элемент, аккумулятор, электромеханический или термоэлектрический генератор, фотоэлемент и пр. Все источники электрического тока имеют внутренне сопротивление, но как правило оно мало по сравнению с сопротивлением других элементов цепи. Протекающий в цепи ток может быть как переменным, так и постоянным; его род определяется источником (например, гальванический элемент дает постоянное напряжение, обмотки трансформаторов и генераторов – переменное).

В зависимости от рода тока электрической цепи подразделяют:

  • цепи постоянного тока;
  • цепи переменного тока.

Потребителями в электрической цепи являются элементы, преобразующие электрическую энергию в механическую энергию, тепло, световое излучение и пр.

Примерами потребителей электроэнергии являются лампы накаливания, электронагревательные приборы, электродвигатели и другие элементы, требующие для работы потребление электрического тока.

Соединяющие элементы провода как правило выполняются из алюминия или меди. Это связано с низким удельным сопротивлением этих металлов – это значит, что потери напряжения в них будут незначительным. К недостаткам медных и алюминиевых проводов относят их существенное нагревание при превышении установленных предельных (максимально допустимых) значений тока и напряжения.

В состав любого электротехнического устройства (телефона, компьютера, телевизора и пр.) входят электрические цепи по которым, при наличии источника, может протекать электрический ток. В зависимости от  элементов используемых в электрической цепи, можно подразделить на:

  • линейные или нелинейные цепи;
  • пассивные или активные цепи.

Для удобства расчетов и наглядного представления электрических цепей используют электрические схемы. На них все элементы электрической цепи отображены при помощи условных знаков (графических обозначений). Каждый электрический элемент имеет графическое представление, регламентированное ГОСТом, поэтому составленная одним человеком схема, может быть понятна и корректно интерпретирована другим.

Иногда представление на электрической схеме одного реального элемента, может быть выполнено совокупностью нескольких стандартных элементов.  Схема электрической цепи, представленной на рисунке 1, приведена на рисунке 2.

Рис.2 Схема простейшей электрической цепи

Протекание электрического тока возможно только в замкнутой электрической цепи.

Основными параметрами работы любого элемента, а также всей электроцепи в целом, являются значения тока, мощности и напряжения. Они определяют так называемый режим работы устройства. Для большинства электрических цепей значения тока и напряжения могут непрерывно меняться в широком диапазоне, следовательно режимов работы может быть бесконечное множество.

#1. Что представлено на изображении?

#2. В чем измеряется удельное сопротивление?

#3. Как называется устройство преобразующее различные виды энергии в электрическую энергию?

Результат

Отлично!

Попытайтесь снова(

Электрическая цепь и ее элементы

Электрическая цепь это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Элементами электрической цепи являются: источник тока, нагрузка и проводники. Простейшая электрическая цепь показана на рисунке 1.

Рисунок 1. Простейшая электрическая цепь.

В состав электрической цепи могут входить и другие элементы, таки как устройства коммутации, устройства защиты.

Как известно, для возникновения тока необходимо соединить две точки, одна из которых имеет избыток электронов в сравнении с другой. Другими словами необходимо создать разность потенциалов между этими двумя точками. Как раз для создания разности потенциалов в цепи применяется источник тока. Источником тока в электрической цепи могут быть такие устройства, как генераторы, батареи, химические элементы и т.д.

Нагрузкой в электрической цепи считается любой потребитель электрической энергии. Нагрузка оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока.

Ток от источника тока к нагрузке течет по проводникам. В качестве проводников стараются использовать материалы с наименьшим сопротивлением (медь, серебро, золото).

Важно, что для протекания тока в цепи, цепь должна быть замкнута!

Типы электрических цепей

В электротехники по типу соединения элементов электрической цепи существуют следующие электрические цепи:

  • последовательная электрическая цепь;
  • параллельная электрическая цепь;
  • последовательно-параллельная электрическая цепь.

Последовательная электрическая цепь.

В последовательной электрической цепи (рисунок 2.) все элементы цепи последовательно друг с другом, то есть конец первого с началом второго, конец второго с началом первого и т.д.

Рисунок 2. Последовательная электрическая цепь.

При таком соединении элементов цепи ток имеет только один путь протекания от источника тока к нагрузке.При этом общий ток цепи

Iобщ будет равен току через каждый элемент цепи:

Iобщ=I1=I2=I3

Падение напряжения вдоль всей цепи, то есть на участке А-Б (Uа-б), будет равно приложенному к этому участку напряжению E и равно сумме падений напряжений на всех участках цепи (резисторах):

E=Uа-б=U1+U2+U3

Параллельная электрическая цепь.

В параллельной электрической цепи (рисунок 3.) все элементы соединены таким образом, что их начало соединены в одну общую точку, а концы в другую.

Рисунок 3. Параллельная электрическая цепь.

В этом случае у тока имеется несколько путей протекания от источника к нагрузкам, а общий ток цепи Iобщ будет равен сумме токов параллельных ветвей:

Iобщ=I1+I2+I3

Падение напряжения на всех резисторах будет равно приложенному напряжению к участку с параллельным соединением резисторов:

E=U1=U2=U3

Последовательно-параллельная электрическая цепь.

Последовательно-параллельная электрическая цепь является комбинацией последовательной и параллельной цепи, то есть ее элементы включаются и последовательно и параллельно (рисунок 4).

Рисунок 4. Последовательно-параллельная электрическая цепь.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Урок физики в 8-м классе по теме "Изучение электрических цепей"

Тема: “Изучение электрических цепей”.

Цель урока:

  1. Научить учащихся собирать простейшие электрические цепи.
  2. Развивать технические приемы умственной деятельности.
  3. Выявить наличие навыков, их сформированности.
  4. Воспитать настойчивость в достижении цели, культуру труда.
  5. Применять знания в учебной практике.

Методы обучения:

  • самостоятельной работы и работы под руководством учителя
  • исследовательский
  • проблемно-поисковый
  • практический
  • самоконтроля
  • словесный

Оборудование: лампочка, гальванический элемент, резистор, ключ, амперметр, вольтметр.

Технические средства обучения: кодоскоп.

ХОД УРОКА

I. Организационный момент. Психологическая пауза.

Сядьте поудобней, не напрягая мышц. Не скрещивайте рук, ног. Отдыхайте, дайте вашему телу расслабиться. Глубоко вдохните, втягивая воздух медленно, через нос, пока легкие не наполнятся.

Выдохните плавно, тоже через нос, пока полностью не освободите легкие. Не сжимайтесь и не выдыхайте все разом. “Плавный вдох – плавный выдох. Вдох – выдох…”

Прислушивайтесь к своему дыханию, к тому, как легкие раздуваются, а затем плавно выпускают воздух. Не похоже ли это на волны, мягко набегающие на берег (вдох) и снова откатывающиеся назад (выдох). Постарайтесь вообразить волны, их плеск, запах, вкус морской воды, легкое дуновение ветерка. Вы чувствуете себя легко и свободно. Вы готовы к работе.

II. Проверка знаний и умений.

    Задание 1

Повторяем условные обозначения, применяемые на схемах. Если вы согласны со мной, покажите зеленую карточку, не согласны – красную.

Сигнальные карточки

Согласны ли вы, что это: (учитель показывает карточки с условными обозначениями, применяемыми на схемах)

Рис. 8

            резистор

(Ответы: 1) да; 2) да; 3) да; 4) да; 5) да; 6) да; 7) да; 8) да.)

    Задание 2

Электрические цепи состоят из источников тока, потребителей тока, ключа, соединительных проводов.

Пользуясь сигнальными карточками ответьте, согласны ли вы, что это: (учитель показывает лабораторные приборы)

Лампочка – источник тока?

Гальванический элемент – источник тока?

Резистор – потребитель тока?

Лампочка – потребитель тока?

Ключ – потребитель тока?

(Ответы: 1) нет; 2) да; 3) да; 4) да; 5) нет. )

    Задание 3

На магнитной доске схема

Вопрос 1:

Какие условия должны выполняться, чтобы по цепи пошел ток?

(Ответ: носители тока, источник тока, замкнутая цепь)

Использование занимательной шутки.

…Бегут заряженные частицы,

торопятся,

вздыхают на ходу:

“ой, проводник кончается,

сейчас я пропаду…”

Вопрос 2: Если заряженные частицы “бегут”, почему “я пропаду”?

(Ответ: направленное движение заряженных частиц – это электрический ток)

Вопрос 3: Какое направление приняли условно за направление тока?

(Ответ: направление от положительного полюса источника тока к отрицательному)

Вопрос 4: А как движутся отрицательные частицы – электроны?

(Ответ: от отрицательного полюса источника тока к положительному)

III. Новый материал.

В рабочей тетради записываем тему урока: “Изучение электрической цепи”.

Цель нашего урока: по рисункам, по схемам научиться собирать простейшие электрические цепи, поэтому сегодня от вас, ребята, потребуются внимание, настойчивость в достижении цели. Не забывайте о культуре труда.

Задание 1

Каждый ряд получает по ребусу, в котором зашифрованы слова, означающие то, без чего мы не сможем собрать ни одну электрическую цепь.

Под каждым условным обозначением прибора указан порядковый номер той буквы, которую нужно выделить. Соберите все выделенные буквы и назовите что у вас получилось.

Ребус 1

Ребус 2

Ребус 3

(Ответы:

    Ребус 1: звонок, нагревательный элемент, амперметр, Н, резистор, Я

    Ребус 2: У, вольтметра, резистор, звонок, И, Я

    Ребус 3: нагревательный элемент, амперметр, вольтметр, Ы, ключ.

    Знания, умения, навык)

    Задание 2

На рабочем столе перед вами приборы и карточки с цифрами 0; 2; 6.

Внимательно изучите шкалу амперметра.

Покажите с помощью нужной карточки:

А) верхний предел измерения

Б) нижний предел измерения

(Ответы: 2, 0)

    Задание 3

Изучите шкалу вольтметра.

С помощью нужной карточки покажите:

А) нижний предел измерения

Б) верхний предел измерения

(Ответы: 0, 6)

    Задание 4

Через кодоскоп показываю электрическую цепь.

Начертите схему электрической цепи.

Ответ: Схема 1

Раскрываю доску. Ответ проверяем. Просигнальте зеленой карточкой у кого нет ни одной ошибки.

    Задание 5

Соберите данную электрическую цепь.

1 и 2 ряд – с помощью проводников и лабораторного оборудования.

3 ряд - с помощью условных элементов (цветные нитки – проводники, условные обозначения – лабораторное оборудование).

Проверяют выполненные задания.

1 ряд – проверяет учитель.

2 ряд – лаборант.

3 ряд – ученик 1-го ряда, быстро выполнивший свое задание.

    Задание 6

Через кодоскоп показываю вторую электрическую цепь.

З-ий ряд собирает электрическую цепь по схеме 1 с помощью лабораторного оборудования. 1 и 2 ряд чертит схему данной электрической цепи.

Ответ:

Проверяем (на доске) с помощью сигнальных карточек.

Просигнальте зеленой карточкой у кого нет ни одной ошибки.

IV. Релаксационная пауза (отдых для глаз).

Разотрите ладони до горячего состояния и закройте ими глаза, прикрыв веки. Отдохните 5-10 секунд.

А теперь поводим глазками в направлении стрелки по 3 раза.

Снова разотрите ладони до горячего состояния, закройте ими глаза, прикрыв веки. Отдохните 5-10 секунд. Уберите ладони, откройте глаза. Отдохнули? Продолжаем работать.

V. Загадки.

  1. Параллельно в цепь включают,
  2. напряжение измеряют
    горизонтально располагают
    как этот прибор называют?

    (Ответ: вольтметр)

  3. Без нагрузки не включают
  4. силу тока измеряют
    горизонтально располагают
    как этот прибор называют?

(Ответ: амперметр)

VI. Найди ошибку.

    Задание 1

Найди ошибку на схеме

(Ответ: Нет нагрузки. Амперметр без нагрузки не включают)

    Задание 2

На какой схеме вольтметр включен неправильно? Докажи, объясни.

(Ответ: рис. 1, 3. Вольтметр включается в цепь параллельно)

VII. Закрепление.

Выполнение самостоятельной работы (через копировальную бумагу).

Задание 1

Заполните таблицу (см. приложение 1).

Верхние листы снимаем, сдаем на проверку.

На доске таблица правильных ответов.

Просигнальте зеленой карточкой у кого не было ни одной ошибки.

0 ошибок – оценка “5”
1, 2 ошибки – оценка “4”
3, 4 ошибки – оценка “3”

Поставите себе оценку и сдайте вторые листы на проверку.

Подводим итог урока.

Электрическая цепь и ее элементы

1. Урок 30

На конкурс методических разработок по физике
Урок 30

2. Цель урока:

• ввести понятия « электрическая цепь»,
«электрическая схема»;
• рассмотреть основные части электрической цепи;
• объяснить назначение каждой части цепи;
• ознакомить с условными обозначениями приборов;
• формировать навыки и умения составлять схемы
простейших электрических цепей;
• формировать навыки практической работы при
выполнении работы по сборке простейшей
электрической цепи.
• 1. Какое явление называют электрическим током?
• 2. Каковы условия возникновения электрического
тока?
• 3. Возникнет ли электрический ток в резиновом
шнуре, подсоединенном к
источнику тока?
• 4. А в мотке проволоки, который лежит на столе?
• 5. Для какой цели нужно получать электрический
ток?
Электрическая цепь совокупность устройств,
по которым течет
электрический ток .
Электрическая
цепь
Источник
тока
Соединительные
провода
1) гальванический элемент
2) батарея;
3) аккумулятор;
4) электрофорная машина;
5) термоэлемент;
6) фотоэлемент;
7) генераторы.
Ключ
1)выключатели
2)кнопки,
3)рубильники
Потребитель
1) Лампы,
2) пылесосы,
3) Звонки
4)компьютеры ,
5)утюги,
6)холодильники
2.
1.
Гальванический
элемент
3.
Батарея аккумуляторов
5.
4.
Лампочка
Резистор
6.
Звонок
Ключ
8.
7.
Соединение проводов
9.
Нагревательный элемент
Пересечение проводов

9. Чертежи, на которых показаны способы соединения приборов в цепь, называются схемами.

Схема простейшей электрической цепи
Электрическая цепь
Чтобы в цепи был ток, цепь должна быть замкнутой.

10. ЧУТЬ - ЧУТЬ ПОДУМАЕМ?

1.Составить схему электрической цепи, состоящую
из источника тока, двух лампочек, но включать их
можно только своим выключателем

11. 2.Составить схему цепи, состоящей из источника тока, двух лампочек так, чтобы их можно было включить одним ключом.

12. 3. Нарисуйте схему цепи, состоящей из батареи гальванических элементов, лампочки, звонка и двух ключей, при которой лампочка

загорается при
включении звонка, но может быть включена
и при неработающем звонке.

13. 4.Нарисуйте схему, состоящую из батарейки, двух лампочек и трех ключей, при которой включение и выключение каждой лампочки

производится
своим ключом, а размыкание третьего ключа
позволяет отключить обе лампочки.

14. Разгадаем кроссворд?

11. Материал пластины простейшего
химического источника тока, которая
заряжена отрицательно.
12. Итальянский ученый, в честь
которого названы элементы –
химические источники тока.
13. Источник тока, требующий
предварительной зарядки.
1. Источник тока, в котором внутренняя
энергия нагревателя превращается в
электрическую.
2. Источник тока, в котором световая
энергия превращается в электрическую.
3. Чертеж, на котором показан способ
соединения приборов в цепь.
4. Явление упорядоченного движения
заряженных частиц.
5. Итальянский ученый, построивший
первый источник тока.
6. Часть электрической цепи, служащая
для соединения приборов в цепь.
7. Потребитель электрической энергии, на
котором варят пищу.
8. Часть цепи, служащая для замыкания и
размыкания цепи.
9. Совокупность устройств, по которым
течет ток.
10. Одно из мест на источнике тока, к
которому присоединена клемма для
включения его в электрическую цепь.
А теперь проверим…

контур, схема, расчет, разветвленные и линейные цепи

На чтение 9 мин Просмотров 765 Опубликовано Обновлено

При обустройстве новой квартиры или дома, обновлении или ремонте жилья приходится сталкиваться с элементами, предназначенными для протекания электрического тока. Важно знать, что представляет собой электрическая цепь, из чего она состоит, зачем нужна схема, и какие расчеты необходимо выполнить.

Что такое электрические цепи

Электрической цепью называют совокупность устройств, необходимых для прохождения по ним электрического тока

Электрическая цепь – это комплекс различных элементов, соединенных между собой. Она предназначена для протекания электрического тока, где происходят переходные процессы. Движение электронов обеспечивается наличием разности потенциалов и может быть описано при помощи таких терминов, как напряжение и сила тока.

Внутренняя цепь обеспечивается подключением напряжения, как источника питания. Остальные элементы образуют внешнюю сеть. Для движения зарядов в источнике питания поля потребуется приложение сторонней силы. Это может быть обмотка генератора, трансформатора или гальванический источник.

Чтобы такая система правильно функционировала, ее контур должен быть замкнутый, иначе ток протекать не будет. Это обязательное условие для согласованной работы всех устройств. Не всякий контур может быть электрической цепью. Например, линии заземления или защиты не являются таковыми, поскольку в обычном режиме по ним не проходит ток. Назвать их электрическими можно по принципу действия. В аварийной ситуации по ним проходит ток, а контур замыкается, уходя в грунт.

В зависимости от источника питания напряжение в цепи может быть постоянным или переменным. Батарея элементов дает постоянное напряжение, а обмотки генераторов или трансформаторов – переменное.

Основные компоненты

Инвентор электрического тока

Все составные части в цепи участвуют в одном электромагнитном процессе. Условно их разделяют на три группы.

  • Первичные источники электрической энергии и сигналов могут преобразовывать энергию неэлектромагнитной природы в электрическую. Например, гальванический элемент, аккумулятор, электромеханический генератор.
  • Вторичный тип, как на входе, так и на выходе имеет электрическую энергию. Изменяются только ее параметры – напряжение и ток, их форма, величина и частота. Примером могут быть выпрямители, инверторы, трансформаторы.
  • Потребители активной энергии преобразовывают электрический ток в освещение или тепло. Это электротермические устройства, лампы, резисторы, электродвигатели.
  • К вспомогательным компонентам относят коммутационные устройства, измерительные приборы, соединительные элементы и провод.

Основой электрической сети является схема. Это графический рисунок, который содержит условные изображения и обозначения элементов и их соединение. Они выполняются согласно ГОСТу 2.721-74 – 2.758-81

Схема простейшей линии включает в себя гальванический элемент. С помощью проводов к нему через выключатель подсоединена лампа накаливания. Для измерения силы тока и напряжения в нее включен вольтметр и амперметр.

Классификация цепей

Электроцепи классифицируют по типу сложности: простые (неразветвленные) и сложные (разветвленные). Есть разделение на цепи постоянного тока и переменного, а также синусоидального и несинусоидального. Исходя из характера элементов, они бывают линейные и нелинейные. Линии переменного тока могут быть однофазными и трехфазными.

Разветвленные и неразветвленные

Во всех элементах неразветвленной цепи течет один и тот же ток. Простейшая разветвленная линия включает в себя три ветви и два узла. В каждой ветви течет свой ток. Ветвь определяют как участок цепи, который образован последовательно соединенными элементами, заключенными между двух узлов. Узел – это точка, в которой сходятся три ветви.

Если на схеме при пересечении двух прямых поставлена точка, в этом месте есть электрическое соединение двух линий. Если узел не обозначен – цепь неразветвленная.

Линейные и нелинейные

Электрическая цепь, в которой потребители не зависят от значения напряжения и направления токов, а все компоненты линейные, называется линейной. К элементам такой цепи относятся зависимые и независимые источники токов и напряжений. В линейной сопротивление элемента не зависит от тока, например, электропечь.

В нелинейной, пассивные элементы зависят от значений направления токов и напряжения, имеют хотя бы один нелинейный элемент. Например, сопротивление лампы накаливания зависит от скачков напряжения и силы тока.

Обозначения элементов на схеме

Прежде чем приступить к монтажу оборудования необходимо изучить нормативные сопровождающие документы. Схема позволяет донести до пользователя полную характеристику изделия с помощью буквенных и графических обозначений, занесенных в единый реестр конструкторской документации.

К чертежу прилагаются дополнительные документы. Их перечень может быть указан в алфавитном порядке с цифровой сортировкой на самом чертеже, либо отдельным листом. Классифицируют десять видов схем, в электротехнике обычно используют три основные схемы.

  • Функциональная имеет минимальную детализацию. Основные функции узлов изображают прямоугольником с буквенными обозначениями.
  • Принципиальная схема подробно отображает конструкцию использованных элементов, а также их связи и контакты. Необходимые параметры могут быть отображены непосредственно на схеме или в отдельном документе. Если указана только часть установки, это однолинейная схема, когда указаны все элементы – полная.
  • В монтажной электрической схеме используют позиционные обозначения элементов, их месторасположение, способ монтажа и очередность.

Для чтения электросхем нужно знать условные графические обозначения. Провода, которые соединяют элементы, изображаются линиями. Сплошная линия – это общее обозначение проводки. Над ней могут быть указаны данные о способе прокладки, материале, напряжении, токе. Для однолинейной схемы группа проводников изображается пунктирной линией. В начале и в конце указывают маркировку провода и место его подключения.

Вертикальные засечки на линии проводки говорят о количестве проводников. Если их более трех, выполняют цифровое обозначение. Прерывистой линией обозначают управляющие цепи, сеть охранного, эвакуационного, аварийного освещения.

Выключатель на схеме выглядит как кружок с наклоненной вправо чертой. По виду и количеству черточек определяют параметры устройства.

Кроме основных чертежей есть схемы замещения.

Трехфазные электрические цепи

Трехфазная цепь в рабочем режиме

Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы. Второе – величина, изменяющаяся синусоидально.

Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.

Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:

  • экономичность выработки и транспортировки электроэнергии в сравнении с однофазной системой;
  • простое генерирование магнитного поля, которое необходимо для работы трехфазного асинхронного электродвигателя;
  • одна и та же генераторная установка выдает два эксплуатационных напряжения – линейное и фазное.

Трехфазная система выгодна при передаче электроэнергии на большие расстояния. К тому же материалоемкость значительно ниже, чем однофазных. Основные потребители – трансформаторы, асинхронные электродвигатели, преобразователи, индукционные печи, мощные нагревательные и силовые установки. Среди однофазных маломощных устройств можно отметить электроинструменты, лампы накаливания, бытовые приборы, блоки питания.

Трехфазная схема отличается значительной уравновешенностью системы. Способы соединения фаз получили структуру «звезда» и «треугольник». Обычно «звездой» соединяются фазы генерирующих электромашин, а фазы потребителей «звездой» и «треугольником».

Законы, действующие в электрических цепях

На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:

  1. Закон Ома для прямолинейного участка цепи, который определяет связь между электродвижущей силой, напряжением источника с протекающей в проводнике силой тока и сопротивлением самого проводника.
  2. Чтобы найти все токи и напряжения, используют правила Кирхгофа, которые действуют между токами и напряжениями любого участка электрической цепи.
  3. Закон Джоуля–Ленца дает количественную оценку теплового действия электрического тока.

В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.

В синусоидальных цепях ЭДС, напряжение и ток обозначают, используя полупериод тока, при этом он не изменяет свое направление. Чтобы подчеркнуть разницу потенциалов, их обозначают знаками «+» и «–».

Как производится расчет электрических цепей

Путь вычисления делится на множество способов, которые используются на практике:

  • метод, основанный на законе Ома и правилах Кирхгофа;
  • способ определения контурных токов;
  • прием эквивалентных преобразований;
  • методика измерений сопротивлений защитных проводников;
  • расчет узловых потенциалов;
  • метод идентичного генератора, и другие.

Основа расчета простой электрической цепи по закону Ома – это определение силы тока в отдельном участке при известном сопротивлении проводников и заданном напряжении.

По условию задачи известны сопротивления подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (без учета сопротивления амперметра). Необходимо вычислить силу токов J1, J2…J6.

На схеме есть три последовательных участка. Причем второй и третий имеют разветвления. Сопротивления этих участков обозначим, как R1, R’, R”. Тогда общее сопротивление равно сумме сопротивлений:

R = R1 + R’ + R”, где

R’ – общее сопротивление параллельно подключенных резисторов R2, R3, R4.

R” – общее сопротивление резисторов R5 и R6.

Используя закон параллельного соединения, вычисляем сопротивления R’ и R”.

1/R’ = 1/R2 + 1/R3 + 1/R4

1/R” = 1/R5 + 1/R6

Определить силу тока в неразветвленной цепи, зная общее сопротивление при заданном напряжении, можно по следующей формуле:

I = U/R, тогда I = I1

Для вычисления силы тока в отдельно взятых ветвях, нужно определить напряжение на участках последовательных цепей по закону Ома:

U1 = IR1; U2 = IR’; U3 = IR”;

Зная напряжение конкретных участков, можно вычислить силу тока на отдельных ветвях:

I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6

Иногда необходимо узнать сопротивление участков по известным параметрам напряжения, силы токов, сопротивления других участков или сделать расчет напряжения по имеющимся данным сопротивления и силе тока.

Основная часть методик направлена на упрощение расчетов. Это достигается адаптацией систем уравнений, либо самой схемы. Расчет электрических цепей производится различными способами, в зависимости от класса их сложности.

§ 6. Электрическая цепь и ее элементы

Составные элементы электрической цепи. Электрическую цепь (рис. 12, а) образуют источники электрической энергии 1, ее прием­ники 3 (потребители) и соединительные провода. В электрическую цепь обычно включают также вспомогательное оборудование: аппараты 4, служащие для включения и выключения электри­ческих установок (рубильники, переключатели и др.), электроизме­рительные приборы 2 (амперметры, вольтметры, ваттметры), за­щитные устройства (предохранители, автоматические выключатели).

В качестве источников электрической энергии применяют глав­ным образом, электрические генераторы и гальванические элементы или аккумуляторы. Источники электрической энергии часто назы­вают источниками питания.

В приемниках электрическая энергия преобразуется в другие виды энергии. К приемникам относятся электродвигатели, различ­ные электронагревательные приборы, лампы накаливания, электро­литические ванны и др.

Электрическая цепь может быть разделена на два участка: внешний и внутренний. Внешний участок, или, как говорят, внеш­няя цепь, состоит из одного или нескольких приемников электри-

Рис. 12. Простейшая электрическая цепь постоянного тока (а) и ее принципиальная схема (б)

ческой энергии, соединительных проводов и различных вспомога­тельных устройств, включенных в эту цепь. Внутренний участок, или внутренняя цепь,— это сам источник.

Изображение электрических цепей и их элементов. В схемах реальных электрических устройств (электровозов, тепловозов и др. ) отдельные элементы имеют свои условные обозначения в соответ­ствии с государственными стандартами.

При составлении расчетных схем элементы электрической цепи, имеющие некоторое сопротивление, например электрические лампы, электронагревательные приборы (в том числе и соединительные провода, если их необходимо учитывать при расчете), изобра­жают в виде сосредоточенных в соответствующем месте схемы ре­зисторов с сопротивлением R (рис. 12, б). То же относится к эле­ментам, имеющим индуктивность (обмотки генераторов, электро­двигателей и трансформаторов) и емкость (конденсаторы). На расчетных схемах их изображают в виде сосредоточенных в соот­ветствующем месте катушек индуктивности и конденсаторов. Источ­ники электрической энергии в схеме электрической цепи часто могут быть представлены в виде идеализированных источников, у которых внутреннее сопротивление Ro = 0.

Для того чтобы учесть внутреннее сопротивление реального источника, в схему вводят изображение резистора с сопротивлением Ro или ставят букву Ro возле условного обозначения источника.

Вспомогательные элементы электрических цепей (аппараты для включения и выключения, защитные устройства, некоторые электро­измерительные приборы) в большинстве случаев имеют малые сопротивления и практически не оказывают влияние на значения токов и напряжений, поэтому при расчете электрических цепей их не принимают во внимание и не указывают на схемах.

Направления тока, напряжения и э. д. с. в электрической цепи. В схемах электрических цепей направления тока, напряжения и э. д. с. изображают стрелками. За положительное направление тока принято направление движения положительных зарядов, т. е. ток во внешней цепи изображают стрелкой I, направленной от положительного зажима источника электрической энергии к отрица­тельному его зажиму (см. рис. 12, б), во внутренней цепи ток направлен от отрицательного зажима к положительному. Поло­жительное направление напряжения совпадает с положительным направлением тока. Стрелка U направлена от положительного зажима источника или приемника к отрицательному зажиму. Поло­жительное направление э. д. с. совпадает с положительным на­правлением тока внутри источника (стрелка Е направлена от отрицательного зажима источника к положительному).

В сложных электрических цепях бывает затруднительно пока­зать действительные направления тока и напряжения на отдельных участках цепи. В таких случаях принимают произвольно какие-либо их направления, которые считают условно положительными, и для этих направлений выполняют расчет электрической цепи. Если в ре­зультате расчета выясняется, что какие-то токи и напряжения имеют положительный знак, то это означает, что выбранные для них направления соответствуют действительности. Если же какие-то токи и напряжения получаются отрицательными, то в действи­тельности они имеют направление, противоположное выбранному.

1.1. Основные пояснения и термины

         Электротехника - это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях.
Каждая наука имеет свою терминологию. Запомним термины, понятия электротехники.
Электрическая цепь - это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.
Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы.

Источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).
Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электромеханизмы и т.д.).
Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).
Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I.
Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i.

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток.
Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными - электрические цепи, не содержащие источников энергии.

Электрическую цепь называют линейной, если ни один параметр цепи не зависит от величины или направления тока, или напряжения.
Электрическая цепь является нелинейной, если она содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

Электрическая схема - это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.


Рис. 1.1

       Для облегчения анализа электрическую цепь заменяют схемой замещения.
Схема замещения - это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

На рисунке 1.2 показана схема замещения.


Рис. 1.2

1.2. Пассивные элементы схемы замещения

     Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.
В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление.

Сопротивление проводника определяется по формуле

      (1.1)

     где l - длина проводника;
S - сечение;
r - удельное сопротивление.

Величина, обратная сопротивлению, называется проводимостью.

     Сопротивление измеряется в омах (Ом), а проводимость - в сименсах (См).

Сопротивление пассивного участка цепи в общем случае определяется по формуле

      где P - потребляемая мощность;
I - ток.
Сопротивление в схеме замещения изображается следующим образом:

  Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Полагают, что индуктивностью обладают только индуктивные катушки. Индуктивностью других элементов электрической цепи пренебрегают.

Индуктивность катушки, измеряемая в генри [Гн], определяется по формуле

       где W - число витков катушки;
Ф - магнитный поток катушки, возбуждаемый током i.

На рисунке показано изображение индуктивности в схеме замещения.

      Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Полагают, что емкостью обладают только конденсаторы. Емкостью остальных элементов цепи пренебрегают.

Емкость конденсатора, измеряемая в фарадах (Ф), определяется по формуле:

    где q - заряд на обкладках конденсатора;
Uс - напряжение на конденсаторе.

На рисунке показано изображение емкости в схеме замещения

Активные элементы схемы замещения

     Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС - это источник, характеризующийся электродвижущей силой и внутренним сопротивлением.Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

  На рис. 1.3 изображен источник ЭДС, к зажимам которого подключено сопротивление R.
Ri - внутреннее сопротивление источника ЭДС.
Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом.
Рис. 1.3
              тЙУ. 1.3

Ток     

   (1.2)

     (1.3)

       У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E.
Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе.
Возможен другой путь идеализации источника: представление его в виде источника тока.
Источником тока называется источник энергии, характеризующийся величиной тока и внутренней проводимостью.

Идеальным называется источник тока, внутренняя проводимость которого равна нулю.

Поделим левую и правую части уравнения (1.2) на Ri и получим

,

       где    - ток источника тока;

               - внутренняя проводимость.

      У идеального источника тока gi = 0 и J = I.

Ток идеального источника не зависит от сопротивления внешней части цепи. Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис. 1.4.

     Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.

Рис. 1.4

           Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.

1.4.Основные определения, относящиеся к схемам

       Различают разветвленные и неразветвленные схемы.
На рис. 1.5 изображена неразветвленная схема.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.

  Разветвленная схема - это сложная комбинация соединений пассивных и активных элементов.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.
Рис. 1.5 Участок электрической цепи, по которому проходит один и тот же ток, называется ветвью. Место соединения двух и более ветвей электрической цепи называется узлом. Узел, в котором сходятся две ветви, называется устранимым. Узел является неустранимым, если в нем соединены три и большее число ветвей. Узел в схеме обозначается точкой.

  Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением.
Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром.
Рис. 1.6

 

 

1.5. Режимы работы электрических цепей

    В зависимости от нагрузки различают следующие режимы работы: номинальный, режим холостого хода, короткого замыкания, согласованный режим.
При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя. В нормальных условиях величины тока, напряжения, мощности не превышают указанных значений.
Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки.
Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным.
Согласованный режим - это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.

1.6. Основные законы электрических цепей

        На рис. 1.7 изображен участок цепи с сопротивлением R. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления.

                                     
      Падением напряжения на сопротивлении называется произведение тока, протекающего через сопротивление, на величину этого
Рис. 1.7 сопротивления.

      Основными законами электрических цепей, наряду с законом Ома, являются законы баланса токов в разветвлениях (первый закон Кирхгофа) и баланса напряжений на замкнутых участках цепи (второй закон Кирхгофа). В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:

Возьмем схему на рис. 1.8 и запишем для нее уравнение по первому закону Кирхгофа.

     Токам, направленным к узлу, присвоим знак "плюс", а токам, направленным от узла - знак "минус". Получим следующее уравнение:


 Рис. 1.8

или

        Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре

       Возьмем схему на рис. 1.9 и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа.

    Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком "плюс", если направления их совпадают с направлением обхода контура, и со знаком "минус", если не совпадают.
При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви.

                       Рис. 1.9


Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви (рис. 1.10).

 

 

   Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке.

 

 

Рис.1.10

     

Получим

      Из этого уравнения выведем формулу для тока

      В общем виде:

,

        где ?R - сумма сопротивлений ветви;
?E - алгебраическая сумма ЭДС.

ЭДС в формуле записывается со знаком "плюс", если направление ее совпадает с направлением тока и со знаком "минус", если не совпадает.

10 простых электрических схем со схемами

Повседневная жизнь на Земле практически невозможна без электричества. Все мы, от домов до крупных предприятий, зависим от электричества. Мы знаем, что электрический ток течет по замкнутой цепи. Электрическая цепь представляет собой замкнутый контур, в котором непрерывный электрический ток идет от источника питания к нагрузке. Если вы пытаетесь описать электрическую цепь своему другу или соседу, скорее всего, вам придется провести соединение. Например, если вы хотите объяснить схему освещения, может потребоваться больше времени, чтобы нарисовать лампочку, батарею и провода, потому что разные люди рисуют различные компоненты схемы по-разному, и это может занять много времени, чтобы объяснить.Поэтому лучший способ - научиться показывать простые электрические схемы. В этой статье мы приводим чертежи некоторых простых электрических цепей: цепь освещения переменного тока, цепь зарядки аккумулятора, счетчик энергии, цепь переключателя, цепь кондиционирования воздуха, цепь термопары, цепь освещения постоянного тока, цепь мультиметра, цепь трансформатора тока и цепь однофазного двигателя. .

Цепь переменного тока для лампы

Для лампы нам понадобятся два провода; один - нейтральный провод, а другой - провод под напряжением.Эти два провода подключены от лампы к главной панели питания. Желательно использовать разные цвета для проводов под напряжением и нейтральных проводов. Универсальная практика - использовать красный цвет для проводов под напряжением и черный цвет для нейтрального провода. Для включения и выключения лампы нам понадобится элемент управления, называемый переключателем, который находится в проводе под напряжением между источником питания и лампой. Если переключатель находится в положении ON, электрическая цепь замкнута и лампа светится, а если переключатель находится в положении OFF, он отключает питание лампы.Для безопасной работы эту проводку помещают в коробку, называемую распределительной коробкой. Провод переключателя и провод под напряжением представляют собой одиночный провод; он просто прорезан между ними для подключения переключателя. Если вы хотите заменить лампу, не забудьте выключить лампу и, если возможно, отключить питание от цепи.

Схема зарядки аккумулятора

Зарядка аккумулятора осуществляется с помощью выпрямителя. Основная функция выпрямителя - преобразование переменного (переменного тока) в постоянный (постоянный).Выпрямитель, показанный на схеме, представляет собой мостовой выпрямитель, который имеет четыре диода, соединенных в виде моста. В цепь добавлено сопротивление, чтобы ограничить ток. Когда питание подается на выпрямитель через понижающий трансформатор, он преобразует источник переменного тока в источник постоянного тока, который поступает в аккумулятор, тем самым заряжая его. Обычно эта схема заключена в блок зарядного устройства батареи или инвертор, и только клеммы выходят из блока зарядного устройства для подсоединения к батарее для зарядки.

Электрическая цепь кондиционирования воздуха

Кондиционирование воздуха - это процесс, при котором воздух нагревается, охлаждается, очищается и циркулирует вместе с контролем его влажности. Электрический аспект переменного тока включает в себя силовое оборудование для двигателей и пускателей для компрессоров и вентиляторов конденсатора. Сопутствующее электрическое оборудование включает в себя электромагнитные клапаны, реле высокого и низкого давления, реле высокой и низкой температуры, а также предохранительные устройства для защиты от перегрузки по току, пониженного напряжения и т. Д.

Вентиляторы компрессора и конденсатора приводятся в действие простым трехфазным асинхронным двигателем переменного тока с фиксированной скоростью, каждый со своим стартером и питаемым от распределительного щита. Регулярное электрическое обслуживание и поиск неисправностей двигателя и стартеров включает очистку, проверку соединений, испытания изоляции и т. Д.

Цепь переключателя

Мы задействуем переключатели для освещения, вентиляторов и т. Д. Много раз в день, но обычно мы не пытаемся это сделать. см. соединение внутри переключателя. Функция переключателя состоит в том, чтобы подключить или замкнуть цепь, идущую к нагрузке от источника питания.Он имеет подвижные контакты, которые обычно разомкнуты.

Как показано на схеме, подача питания на нагрузку осуществляется через схему переключения, поэтому подачу питания можно отключить, удерживая переключатель в разомкнутом состоянии.

Схема освещения постоянного тока

Для небольшой светодиодной лампы обычно используется источник постоянного тока (аккумулятор). Эта схема очень проста. Батарея имеет две точки: анодную и катодную. Анод положительный, а катод отрицательный. Лампа имеет два вывода - один положительный, а другой - отрицательный.Положительный вывод лампы соединен с анодом, а отрицательный вывод лампы соединен с катодом батареи. Как только соединение будет установлено, лампа загорится. Чтобы включить или выключить, подключите переключатель (схема выше) между любым одним проводом, который будет отключать или подавать напряжение постоянного тока на светодиодную лампу.

Более простые электрические схемы и простые электрические устройства обсуждаются на следующей странице.

Схема термопары

Предыдущая страница была посвящена работе нескольких простых электрических цепей, здесь мы продолжим эту тему и изучим некоторые более простые электрические устройства и их утилиты.

Когда соединения, образованные из двух разнородных однородных материалов, подвергаются воздействию разницы температур, возникает ЭДС. Это называется эффектом Зеебека. На рисунке показана термопара, состоящая из двух проводов, одна железная, а другая - из константана, с вольтметром. Этот вольтметр будет измерять генерируемую ЭДС, и ее можно откалибровать для измерения температуры. Разница температур между горячим и холодным спаем создает пропорциональную ей ЭДС.Если температура холодного спая поддерживается постоянной, то ЭДС пропорциональна температуре горячего спая.

Счетчик энергии или счетчик двигателя

Энергия - это общая мощность, потребляемая за определенный промежуток времени. Мощность, потребляемая в течение определенного периода времени, может быть измерена счетчиком двигателя или счетчиком энергии. Счетчики энергии используются на всех линиях электроснабжения каждого дома для измерения мощности, потребляемой как в цепях постоянного, так и переменного тока. Он измеряется в ватт-часах или киловатт-часах.Для цепей постоянного тока счетчиком может быть ампер-час или ватт-час.

Есть алюминиевый диск, который непрерывно вращается при потреблении энергии. Скорость вращения пропорциональна мощности, потребляемой нагрузкой (в ватт-часах). Счетчики энергии имеют катушку давления и катушку тока. Когда напряжение подается на катушку давления, ток течет через катушку и создает магнитный поток, который создает крутящий момент на диске. Ток нагрузки протекает через токовую катушку и создает другой магнитный поток, который оказывает противоположный крутящий момент на алюминиевый диск.Результирующий крутящий момент действует на диск и приводит к вращению диска, которое пропорционально используемой энергии и регистрируется в счетчике энергии.

Схема мультиметра

Мультиметр, вероятно, является одним из самых простых электрических устройств, которые могут измерять сопротивление, токи и напряжение. Это незаменимый прибор, который может использоваться для измерения постоянного и переменного напряжения и токов. Он используется для проверки целостности цепи (по шкале омметра, для измерения протока постоянного тока, постоянного напряжения в цепи, а также для измерения переменного напряжения на трансформаторе питания.Он состоит из гальванометра, последовательно подключенного к сопротивлению. Ток, протекающий в цепи, то есть напряжение в цепи, можно измерить, подключив клеммы мультиметра к цепи. В основном он используется для проверки целостности обмоток двигателя.

Схема трансформатора тока

Трансформатор тока используется для измерения тока в цепи с помощью амперметра низкого диапазона. Фактически, он снижает ток до уровня диапазона амперметра.Он имеет первичную обмотку и вторичную обмотку. Первичная обмотка подключается к силовой цепи, так что через нее проходит измеряемый ток. Вторичная обмотка трансформатора подключена к амперметру. Трансформатор снизит ток до значения, которое может быть измерено подключенным амперметром.

Цепь однофазного двигателя

Однофазные двигатели предназначены для работы от однофазного источника питания и могут выполнять широкий спектр полезных услуг в домах, офисах, фабриках и мастерских, а также в других коммерческих учреждениях.

Однофазный двигатель имеет две клеммы в клеммной коробке внешнего корпуса. Одна из этих клемм соединена с токоведущим проводом силовой цепи, а другая - с нулевым проводом. Когда электропитание подается на двигатель, он будет работать до тех пор, пока не будет отключено электропитание.

На этом однофазном двигателе работает даже вентилятор. Иногда вентилятор не запускается, когда мы его включаем. Причина в том, что конденсатор, используемый для самозапуска однофазного двигателя, не работает.Лучший способ решить эту проблему - заменить конденсатор.

Электрические схемы: Урок для детей - Видео и стенограмма урока

Схема электрических цепей

: вопросы для обсуждения

В этом упражнении вас попросят проанализировать данные сценарии и дать письменный ответ на следующие вопросы.

Проблема 1

Джеффу сложно определить тип подключения, показанный на рисунке ниже.Как показано на уроке, схемы делятся на две группы: последовательные и параллельные. В некоторых случаях требуется комбинация таких цепей. Помогите Джеффу классифицировать, является ли каждая из данных цепей последовательным, параллельным или последовательно-параллельным соединением. Объясни свои ответы.

Проблема 2

Схема ниже является примером последовательно-параллельной схемы. Ответьте на следующие вопросы, основываясь на данной схеме.

A) Найдите все элементы на этой принципиальной схеме.

B) Что произойдет с линией B, если элементы в линии A перестанут работать?

C) Что произойдет с линией A, если элемент в строке B перестанет работать?

D) Если первый элемент в строке A выйдет из строя, перестанут ли работать другие элементы в той же строке?

E) Если второй элемент в строке A выйдет из строя, будет ли работать элемент в строке B?

Примеры ответов

Задача 1

A) Параллельное соединение. Если вы перестроите эту схему в прямые линии, вы увидите, что две лампочки расположены параллельно.

B) Параллельное соединение. Если вы перестроите эту схему в прямые линии, вы увидите, что три лампочки расположены параллельно.

C) Последовательно-параллельное соединение. Вторая и третья лампочки включены параллельно, но первая лампочка включена последовательно с этими двумя лампочками.

D) Последовательное соединение. Три лампочки подключены к одному проводу, следовательно, они включены последовательно.

Задача 2

A) В произвольном порядке у нас есть три лампочки, зуммер, замкнутый выключатель, источник питания и провода.

B) Напомним, что линии A и B параллельны. Следовательно, лампочка в линии B не пострадает, когда лампочка в линии A перестает работать.

C) Точно так же элементы в строке A продолжают работать, даже если лампочка в строке B перестает работать.

D) Да. Все остальные элементы в этой строке перестанут работать, потому что они последовательно соединены друг с другом.

E) Да. Линии A и B параллельны, следовательно, они не зависят друг от друга.

Базовая электрическая цепь

: теория, компоненты, работа, схема

Основная электрическая цепь состоит из трех основных компонентов , источника напряжения , нагрузки и проводников .На рисунке 1 проиллюстрирована базовая схема. Эта схема состоит из батареи в качестве источника электроэнергии, лампы в качестве электрической нагрузки и двух проводов в качестве проводников, соединяющих батарею с лампой.

Аккумулятор

В источнике этой цепи, аккумуляторе, происходит химическая реакция, которая приводит к ионизации. Эта ионизация вызывает избыток электронов (отрицательный заряд) и истощение электронов (положительный заряд).

Рисунок 1. Базовая электрическая схема (схема) состоит из трех основных компонентов: источника, нагрузки и проводников.

Аккумулятор имеет две клеммы. Эти клеммы являются точками соединения двух проводов. Один терминал отмечен знаком плюс (+), а другой - знаком минус (-). Эти две маркировки называются маркировкой полярности.

Не все электрические устройства имеют маркировку полярности. Однако, если полярность является критической проблемой, она будет отмечена на устройстве.Соблюдайте правильную полярность, чтобы избежать повреждения оборудования и / или персонала.

Нагрузка

Нагрузка создается, когда электрическая энергия, производимая в цепи, преобразуется в какую-либо другую форму энергии, такую ​​как тепло, свет или магнетизм. Нагрузка в простой электрической схеме на Рисунке 1 - это лампа, излучающая свет.

Источник и нагрузка должны соответствовать номинальному напряжению. Если лампа рассчитана на 6 вольт, тогда батарея также должна быть рассчитана на 6 вольт.

Если батарея рассчитана на более низкое напряжение, лампа будет тусклой или не загорится. Если батарея рассчитана на гораздо более высокое напряжение, лампа будет повреждена из-за избытка электроэнергии.

Проводник

Используемые проводники представляют собой два медных провода, покрытых пластиковым изоляционным покрытием. Медный провод обеспечивает путь, по которому может течь электрическая энергия, в то время как пластиковое покрытие ограничивает электрическую энергию медным проводом.Это делает кабельный проход безопасным для персонала.

Это завершает описание основных компонентов электрической цепи, в которой электрическая энергия передается через электрические проводники через устройство, где она затем преобразуется в некоторую полезную форму.

Напряжение

Ионизация может быть вызвана такими силами, как тепло, свет, магнетизм, химическое воздействие или механическое давление. Это приводит к возникновению электрического напряжения.

Что такое напряжение? Напряжение - это сила за потоком электронов.В только что описанной простой электрической схеме аккумулятор был источником электроэнергии. Эта батарея рассчитана на 6 вольт.

Вольт (В) - это электрическая единица, используемая для выражения величины имеющегося электрического давления или величины электрической силы, создаваемой химическим действием внутри батареи.

Термин «напряжение» используется для выражения величины электрической силы почти так же, как мы используем мощность в лошадиных силах для выражения количества механической силы для автомобиля.

Электрическое давление или напряжение также можно выразить как потенциал, разность потенциалов или электродвижущую силу (ЭДС). Для наших целей эти термины означают одно и то же. Напряжение обычно обозначается заглавной буквой E или V.

Ток

Электрический ток - это поток электронов. Количество электронов, проходящих через любую заданную точку за одну секунду, измеряется в амперах (А).

Ампер обозначается буквой I.Помните, что кулон - это количество электронов.

Ампер описывает скорость потока электронов через любую заданную точку в цепи. Один ампер равен одному кулону заряда, проходящего через точку за одну секунду.

Сравните воздушный шар, наполненный воздухом, с электрической батареей. На рисунке 2 количество молекул воздуха в воздушном шаре представляет собой количество электронов или кулонов. Величина давления воздуха внутри воздушного шара выражается в фунтах на квадратный дюйм (PSI) давления воздуха.

В батарее величина электрического давления внутри батареи выражается как номинальное напряжение батареи.

Скорость потока воздуха из воздушного шара аналогична скорости потока электронов или тока от батареи. Ток от батареи в электрической цепи - это объем потока электронов через заданную точку и измеряется в амперах или амперах.

Так же, как воздух будет продолжать выходить из воздушного шара, пока он не опустеет, поток электронов может продолжаться, пока в батарее присутствует напряжение или электрическое давление.

Рис. 2. Воздушный шар похож на источник электричества. Воздух, выходящий из воздушного шара, подобен электронам, истекающим из источника.

Сопротивление

Все электрические цепи имеют сопротивление. Сопротивление - это противостояние потоку электронов. Сопротивление измеряется в Ом, а электрический символ Ом - Ом (греческая буква омега).

Значения сопротивления элементов и соединений различаются в зависимости от атомной структуры материала.

A хороший проводник электричества - это все, что допускает свободный поток электронов. Плохой проводник электричества - это материал, который не допускает свободного движения электронов. Проводники с очень плохим качеством называются изоляторами.

A полупроводник - это материал, ограничивающий поток свободных электронов. Полупроводник не считается ни хорошим проводником, ни плохим проводником электричества. Полупроводниковые материалы лежат в основе современной электронной техники.Некоторые примеры проводников и изоляторов приведены на рисунке 3.

Рисунок 3. Общие проводники и изоляторы

Обратите внимание, что земля может быть хорошим проводником электричества. Есть много факторов, которые определяют, будет ли земля хорошим проводником.

Электропроводность земли в первую очередь зависит от ее органического состава и от минералов, содержащихся в почве в любом данном месте.

Количество влаги в почве также определяет степень сопротивления почвы.Влага может повлиять на электрическую проводимость многих материалов. Это может даже привести к тому, что изолятор станет хорошим проводником.

Для пояснения возьмем дерево в качестве примера. Когда древесина сухая, она классифицируется как изолятор, но когда древесина становится влажной или влажной, она ведет себя больше как полупроводник.

Это внешнее кольцо атома определяет, является ли элемент хорошим или плохим проводником. Если внешнее кольцо имеет только один электрон, этот электрон может быть довольно легко освобожден от его орбиты внешней силой.

Если на внешней орбите много электронов, они удерживаются на орбите более плотно. Их труднее освободить от атома. Элементы, которые с трудом отдают электрон, - это изоляторы .

На рисунке 4 изображен атом меди. Обратите внимание, что у этого атома на внешней орбите только один электрон. Этот электрон может быть легко освобожден внешней силой. Медь - отличный проводник электричества.

Рис. 4. Элемент медь является отличным проводником.У него только один электрон на внешней орбите. Этот электрон может быть легко выпущен с орбиты под действием внешней силы.

Электрический ток, переменный и постоянный

Существует два типа электрического тока: dc (постоянный ток) и ac (переменный ток). Разница между этими токами заключается в том, как они протекают по электрической цепи.

Постоянный ток течет только в одном направлении через электрическую цепь. Примером постоянного тока является стандартный аккумулятор.Батарея имеет заданную полярность (положительная и отрицательная клеммы) и вырабатывает электрический ток только в одном направлении.

С другой стороны, переменный ток , как следует из названия, течет в обоих направлениях. Сначала он течет в одном направлении, а затем меняет направление на противоположное. См. Рисунок 5.

Рисунок 5. Постоянный ток течет в одном направлении, а переменный ток постоянно меняет направление.

На переменном токе нет маркировки положительной или отрицательной полярности, поскольку полярность меняется так быстро в типичной электрической цепи переменного тока.

Термины «цикл» и «герц» используются для описания того, насколько быстро переменный или меняющий направление ток в цепи.

Цепь переменного тока 60 циклов (работающая на частоте 60 Гц) меняет направление 120 раз в секунду. Это стандарт для переменного тока в США.

Обычный поток тока в сравнении с теорией потока электронов

Примерно 200 лет назад ученые предположили, что электричество имеет как положительную, так и отрицательную полярность. В то время они произвольно решили, что электрический ток течет с положительного на отрицательный.Хотя на самом деле это никогда не было доказано как факт, эта теория была принята в течение довольно долгого времени. Эта теория известна как общепринятая теория протекания тока .

По мере развития наших научных знаний и открытия атомной и полупроводниковой электроники стало очевидно, что традиционная теория протекания тока неверна. Принято считать, что на самом деле движутся электроны, переходя от отрицательного к положительному, а не от положительного к отрицательному. Эта новая теория известна как теория электронного потока .

Появление этой новой теории вызвало споры, которые существуют до сих пор. Более 150 лет все схемы были основаны на старой традиционной теории протекания тока.

Многие схемы и устройства, которые используются до сих пор, основаны на традиционной теории. Независимо от того, какая теория используется для объяснения явлений электроники, наиболее важным моментом является соблюдение правильной полярности при построении цепей с устройствами, требующими определенной полярности.См. Рисунок 6.

Рисунок 6. Теория потока электронов и обычная теория потока тока.

Последовательные и параллельные соединения

Существует два способа подключения компонента к электрической цепи: серии или параллельно . На рисунках 7 и 8 показаны два типа подключений.

Схема на рисунке 7 имеет три лампы, подключенные к батарее. В этой цепи есть только один путь, по которому могут течь электроны.

Когда электроны должны следовать только по одному пути цепи, эта цепь называется последовательной цепью. Говорят, что лампы соединены последовательно друг с другом.

Рисунок 7. Три лампы, соединенные последовательно.

Рисунок 8. Три лампы, подключенные параллельно

На рисунке 8 три лампы подключены параллельно. В этой схеме есть три разных пути, по которым электроны должны следовать от клеммы батареи к клемме батареи.

Основная электрическая схема | Решения для электрического планирования

Схема технологического процесса Основные электрические схемы и логика Схема системы промышленных систем управления Схема процесса и приборов Электрический план

Создание базовой электрической схемы с бесплатными шаблонами и примерами. Принципиальная электрическая схема никогда не была такой простой.

Базовая электрическая принципиальная схема - это упрощенное схематическое представление электрической цепи.Он использует стандартные электрические символы для компонентов в цепи и не показывает физическое расположение компонентов.
Повседневная жизнь на Земле практически невозможна без электричества. Мы знаем, что электрический ток течет по замкнутой цепи. Электрическая цепь представляет собой замкнутый контур, в котором непрерывный электрический ток идет от источника питания к нагрузке. Если вы пытаетесь описать электрическую цепь другим людям, вы должны провести связь. Например, если вы хотите объяснить схему освещения, может потребоваться больше времени, чтобы нарисовать лампочку, батарею и провода, потому что разные люди рисуют различные компоненты схемы по-разному, и это может занять много времени, чтобы объяснить.Поэтому лучший способ - научиться рисовать электрические цепи с помощью нашего программного обеспечения. У нас есть десятки примеров электрических схем, которые мгновенно сделают вашу работу продуктивной.

Чтобы узнать больше об основных электрических схемах, перейдите на страницу с тремя электрическими схемами. Также ознакомьтесь с введением простых электрических схем для получения дополнительной информации. Чтобы изучить электрические схемы на четырех примерах здесь.

Базовое электрическое программное обеспечение

Программное обеспечение Edraw Basic Electrical содержит стандартные векторные электрические символы для переключателей, реле, трактов передачи, полупроводников, цепей и трубок, что позволяет легко рисовать любые основные электрические схемы, такие как схематические, однолинейные и электрические схемы и голубые отпечатки.
Загрузить базовое программное обеспечение для электрооборудования

Шаблоны электрических схем Edraw предоставляют вам множество основных электрических символов, включая заземляющий электрод, элемент, батарею, источник, идеальный источник, резистор, альтернативный резистор, предварительно установленный резистор, предварительно установленный потенциометр, резистор потенциометра, аттенюатор, контакт, конденсатор, диод, кристалл, антенна и т. д. С этими формами ваша электрическая схема, несомненно, будет выглядеть более профессионально.

Примеры основных электрических схем

Обозначения цепей

| Electronics Club

Условные обозначения схем | Клуб электроники

Провода | Принадлежности | Устройства вывода | Переключатели | Резисторы | Конденсаторы | Диоды | Транзисторы | Аудио и радио | Метры | Датчики | Логические ворота

Следующая страница: Электричество и электрон

См. Также: Схемы соединений

Условные обозначения на схемах

Обозначения цепей используются в принципиальных схемах, показывающих, как соединены вместе.Фактическое расположение компонентов обычно сильно отличается от принципиальной схемы.

Для построения схемы вам понадобится другая диаграмма, показывающая расположение частей на макетная (для временных схем), стрипборд или печатная плата.

Принципиальная схема


Символы проводов и подключений

Провод

Соединяет компоненты и легко передает ток от одной части цепи к другой.

Провода соединены

«Клякса» должна быть нарисована в месте соединения (стыковки) проводов, но иногда ее не показывают.Провода, подключенные на перекрестке, должны быть слегка смещены в шахматном порядке для образования двух Т-образных переходов. как показано справа.

Провода не соединенные

В сложных схемах часто необходимо провести пересечение проводов, даже если они не связаны. Простое пересечение слева правильное, но может быть ошибочно прочитано как соединение, где о «капле» забыли. Символ моста справа не оставляет сомнений!



Символы блока питания

Ячейка

Поставляет электрическую энергию.Большая линия - положительный знак (+). Единичный элемент часто называют аккумулятором, но, строго говоря, аккумулятор - это два или более элемента, соединенных вместе.

Аккумулятор

Поставляет электрическую энергию. Батарея состоит из более чем одной ячейки. Большая линия - положительный знак (+).

Солнечный элемент

Преобразует свет в электрическую энергию.
Большая линия положительная (+).

Источник постоянного тока

Поставляет электрическую энергию.
DC = постоянный ток, всегда протекающий в одном направлении.

Электропитание переменного тока

Поставляет электрическую энергию.
AC = переменный ток, постоянно меняющий направление.

Предохранитель

Устройство безопасности, которое «взорвется» (расплавится), если ток, протекающий через него, превысит указанное значение.

Трансформатор

Две катушки проволоки, соединенные железным сердечником. Трансформаторы используются для усиления (увеличение) и понижение (уменьшение) переменного напряжения. Энергия передается между катушки магнитным полем в сердечнике, между катушками нет электрического соединения.

Земля (Земля)

Подключение к земле. В некоторых электронных схемах этот символ используется для обозначения 0 В (ноль вольт) источника питания, но для электросети и некоторых радиосхем это действительно означает землю. Он также известен как земля.


Символы выходных устройств

Лампа (освещение)

Преобразователь, преобразующий электрическую энергию в свет. Этот символ используется для лампы, обеспечивающей освещение, например, автомобильной фары или лампы фонарика.

Лампа (индикатор)

Преобразователь, преобразующий электрическую энергию в свет. Этот символ используется для лампы, которая является индикатором, например, сигнальной лампой на приборной панели автомобиля.

Нагреватель

Преобразователь, преобразующий электрическую энергию в тепло.

Двигатель

Преобразователь, преобразующий электрическую энергию в кинетическую энергию (движение).

Белл

Преобразователь, преобразующий электрическую энергию в звук.

Зуммер

Преобразователь, преобразующий электрическую энергию в звук.

Индуктор, катушка, соленоид

Катушка с проволокой, которая создает магнитное поле, когда через нее проходит ток. Внутри катушки может быть железный сердечник. Может использоваться как преобразователь преобразование электрической энергии в механическую, притягивая что-либо магнитным путем.


Символы переключения

Двухпозиционный выключатель

Кнопочный переключатель позволяет току течь только при нажатии кнопки. Это переключатель, используемый для управления дверным звонком.

Автоматический выключатель

Этот тип нажимного переключателя нормально замкнут = включен, он разомкнут = выключен только при нажатии кнопки.

SPST, двухпозиционный выключатель

SPST = однополюсный, односторонний. Ток протекает только тогда, когда переключатель находится в положении «замкнуто = включено».

SPDT, двухпозиционный переключатель

SPDT = однополюсный, двусторонний. Двухпозиционный переключатель направляет поток тока по одному из двух путей в зависимости от его положения. Некоторые переключатели SPDT имеют центральное выключенное положение и описываются как «включено-выключено-включено».

Переключатель DPST

DPST = двухполюсный, одинарный. Двойной двухпозиционный выключатель, который часто используется для включения электросети, поскольку он может Изолируйте как токоведущие, так и нейтральные соединения.

Переключатель DPDT

DPDT = двойной полюс, двойной бросок.
Этот переключатель можно подключить как реверсивный переключатель двигателя. Некоторые переключатели DPDT имеют центральное положение выключения.

Реле

Переключатель с электрическим приводом, например, цепь батареи 9 В, подключенная к катушка может переключать сеть переменного тока. Прямоугольник представляет катушку.
NO = нормально открытый, COM = общий, NC = нормально закрытый.


Условные обозначения резисторов

Резистор

Резистор ограничивает поток заряда.Использование включает ограничение тока, проходящего через светодиод, и медленно заряжают конденсатор в цепи синхронизации.
В некоторых публикациях используется старый символ резистора:

Реостат переменный резистор

Реостат имеет 2 контакта и обычно используется для контроля тока. Использование включает в себя управление яркостью лампы или скоростью двигателя и изменение скорости потока заряда в конденсатор в схеме синхронизации.

Потенциометр переменного резистора

Потенциометр имеет 3 контакта и обычно используется для контроля напряжения.Его можно использовать таким образом как преобразователь положения (угла управляющего шпинделя) в электрический сигнал.

Предустановленный переменный резистор

Для работы с предустановкой используется небольшая отвертка или аналогичный инструмент. Он предназначен для настройки при замыкании цепи, а затем для оставления без дальнейшей настройки. Пресеты дешевле стандартных переменных резисторов, поэтому их иногда используют в проектах для снижения стоимости.


Обозначения конденсаторов

Конденсатор неполяризованный

Конденсатор накапливает электрический заряд.Его можно использовать с резистором в цепи синхронизации, для сглаживания подачи (обеспечивает резервуар заряда) и может использоваться как фильтр (блокирует сигналы постоянного тока, но пропускает сигналы переменного тока). Неполяризованные конденсаторы обычно имеют небольшие значения, менее 1 мкФ.

Конденсатор поляризованный

Конденсатор накапливает электрический заряд. Поляризованные конденсаторы должны быть подключены правильно. Обычно они имеют большие значения, 1 мкФ и больше. См. Использование выше.

Конденсатор переменной емкости

В радиотюнере используется переменный конденсатор.

Подстроечный конденсатор переменного тока

Этот тип переменного конденсатора предназначен для установки при замыкании цепи, а затем оставления без дальнейшей регулировки.


Диодные символы

Диод

Устройство, позволяющее току течь только в одном направлении.

Светоизлучающий диод

Преобразователь, преобразующий электрическую энергию в свет. Обычно сокращается до LED.

Стабилитрон

Для поддержания постоянного напряжения можно использовать стабилитрон.

Фотодиод

Светочувствительный диод.


Обозначения транзисторов

Транзистор NPN

Транзистор усиливает ток и может использоваться с другими компонентами для создания усилителя или схемы переключения. Этот символ обозначает биполярный переходной транзистор (BJT), тип, который вы, скорее всего, будете использовать в первую очередь.

Транзистор ПНП

Транзистор усиливает ток и может использоваться с другими компонентами для создания усилителя или схемы переключения.Этот символ обозначает биполярный переходной транзистор (BJT), тип, который вы, скорее всего, будете использовать в первую очередь.

Фототранзистор

Транзистор светочувствительный.


Звуковые и радио символы

Микрофон

Преобразователь, преобразующий звук в электрическую энергию.

Наушники

Преобразователь, преобразующий электрическую энергию в звук.

Громкоговоритель

Преобразователь, преобразующий электрическую энергию в звук.

Пьезоэлектрический преобразователь

Преобразователь, преобразующий электрическую энергию в звук.

Усилитель (общее обозначение)

Схема усилителя с одним входом. На самом деле это символ блок-схемы потому что он представляет собой схему, а не только один компонент.

Антенна (антенна)

Устройство для приема и передачи радиосигналов. Он также известен как антенна.


Измерители и осциллографы

Вольтметр

Измеряет напряжение.Правильное название напряжения - «разность потенциалов», но более широко используется напряжение.

Амперметр

Измеряет ток.

Гальванометр

Очень чувствительный измеритель, используемый для измерения крошечных токов, обычно 1 мА или меньше.

Омметр

Измеряет сопротивление. Большинство мультиметров имеют настройку омметра.

Осциллограф

Осциллограф используется для отображения «формы» электрических сигналов, показывая, как они меняются со временем.Его можно использовать для измерения напряжения и временных периодов.


Датчики (устройства ввода)

LDR

Преобразователь, преобразующий яркость (свет) в сопротивление (электрическое свойство). LDR = светозависимый резистор

Термистор

Преобразователь, преобразующий температуру (тепло) в сопротивление (электрическое свойство).



Символы логического элемента

Логические вентили обрабатывают сигналы, которые представляют истинных (1, высокий, + Vs, вкл.) Или ложных (0, низкий, 0В, выкл.).Для получения дополнительной информации см. Страницу о логических вентилях. Есть два набора символов: традиционный и IEC (Международная электротехническая комиссия).

НЕ

Элемент НЕ может иметь только один вход. «О» на выходе означает «нет». Выходной сигнал элемента НЕ является обратным. (напротив) его входа, поэтому выход истинен, когда вход ложен. Вентиль НЕ также называется инвертором.


Традиционный


МЭК

И

Логический элемент И может иметь два или более входов.Выход логического элемента И истинен, когда все его входы истинны.


Традиционный


МЭК

NAND

Логический элемент И-НЕ может иметь два или более входов. 'O' на выходе означает 'не', показывая, что это N от И ворота. Выход логического элемента И-НЕ истинен, если все его входы не верны.


Традиционный


МЭК

ИЛИ

Логический элемент ИЛИ может иметь два или более входов.Выход логического элемента ИЛИ истинен, когда хотя бы один из его входов истинен.


Традиционный


МЭК

НОР

Логический элемент ИЛИ-НЕ может иметь два или более входов. 'O' на выходе означает 'не', показывая, что это N от OR вентиль. Выход логического элемента ИЛИ-НЕ является истиной, когда ни один из его входов не является истиной.


Традиционный


МЭК

EX-OR

Элемент EX-OR может иметь только два входа.Выход логического элемента EX-OR истинен, когда его входы различны (один истинный, один ложный).


Традиционный


МЭК

EX-NOR

Гейт EX-NOR может иметь только два входа. 'O' на выходе означает 'not', показывая, что это N ot EX-OR ворота. Выход элемента EX-NOR является истинным, когда его входы одинаковы (оба истинны или оба ложны).


Традиционный


МЭК



Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Условные обозначения электрических цепей - Ausgrid

Вы когда-нибудь видели электрическую схему? Эти схемы иногда прилагаются к новым приборам или могут быть приклеены к внутренней части приборов, чтобы проинформировать специалистов по ремонту электрооборудования.Вы задавались вопросом, что означают символы на диаграммах? Ученые и инженеры разработали набор символов для обозначения компонентов электрической цепи. Это упрощает демонстрацию того, как различные компоненты схемы соединяются вместе. Это означает, что использование стандартных символов может описать любому, кто знаком с электрическими цепями, либо то, как была построена существующая цепь, либо действовать как план, рассказывающий кому-либо, как должна быть построена цепь.

Электрохимическая ячейка - Длинная тонкая сторона - ПОЛОЖИТЕЛЬНАЯ клемма, более короткая и толстая сторона - ОТРИЦАТЕЛЬНАЯ клемма

или

Батарея - несколько электрохимических ячеек, соединенных вместе

Переменный Источник питания постоянного тока

Выключатель разомкнутого типа , т.е.е. цепь выключена.

A замкнут выключатель , т.е. цепь включена.

Проводник - металлический и используется для соединения компонентов между собой

Свет глобус

или

Фиксированный резистор - устройство, которое обеспечивает определенное электрическое сопротивление

Амперметр , используемый для регистрации величины электрического тока, протекающего по проводам.Подключены последовательно по цепи.

Вольтметр , используемый для регистрации падения напряжения между двумя точками (изменение энергии на каждый кулон заряда). Подключены параллельно в цепи.

Электрические контакты для подключения другого устройства между ними

Соединены вместе в цепи

Эта простая схема, показанная ниже, содержит общие компоненты любой электрической цепи, т.е.е. батарея действует как источник питания, обеспечивая энергию для работы схемы; проводящие провода позволяют электрическому току течь от батареи; переключатель может замыкать цепь при замыкании или размыкать цепь при размыкании; световой шар - это нагрузка , в которой электрическая энергия преобразуется в другие формы, например свет и тепло.

На приведенной ниже принципиальной схеме представлены компоненты указанной выше цепи.

Вы можете использовать онлайн-конструктор схем для проектирования и тестирования простых схем на сайте www.circuitlab.com или посетить интерактивное учебное руководство, загрузить комплект для построения схем (части 1 и 2) или попробовать создать свои собственные схемы из электрических компонентов.

как нарисовать символы электрических цепей что такое электрический ток? какая разница потенциалов? как интерпретировать принципиальные схемы igcse / gcse 9-1 Physics примечания к редакции

ЭЛЕКТРИЧЕСТВО 2: Электрические схемы и их рисование, обозначения схем, Введение в последовательные и параллельные схемы

Док Брауна Примечания к редакции школьной физики: физика GCSE, физика IGCSE, O level физика, ~ 8, 9 и 10 школьные курсы в США или эквивалентные для ~ 14-16 лет студенты-физики

Что такое электрическая схема а что такое электрический ток? Как нарисовать электрическую схему? Как вы интерпретируете принципиальную схему? Вы знаете символы своих схем? В чем разница между серией схема и параллельная схема? Можете ли вы интерпретировать, что происходит, когда цепь включен?

Субиндекс этой страницы

1.Определения и что такое электрический ток и электрическая схема?

2. Условные обозначения и символика электрических цепей, используемые при построении принципиальных схем

3. Примеры простых схем и их интерпретация

См. ПРИЛОЖЕНИЕ 1 для обзора всей электроэнергии уравнения, которые могут вам понадобиться.


ВИКТОРИНА по теме «Электрооборудование схемы »Основные вопросы доработки от КС3 наука-физика о простых схемах, схемах и компонентах, протекании тока & показания амперметра, полезные схемы - опасности и как они работают - что ты вспомнил?



1.Определения и что такое электрический ток и электрическая схема?

На этой странице Я упомянул родственника показания амперметра как a1, a2 и т. д., но на всех остальных страницах I 1 , I 2 и т.д. будут использоваться.

В схема схема 01 (справа) простейшая разновидность электрической схемы , которая может делать что угодно полезно например зажигая лампочку (символ ) с использованием одноэлементной батареи (символ ).

Переключатель замкнут ('вкл', символ ) для завершения электрическая цепь, в которой все компоненты должны быть соединены вместе с электрический провод, например медный провод.

Это одна из самых простых схем , которые вы можете нарисовать - так что привыкните к ним как можно скорее!

Контур 01 - простой замкнутый петля, и ток будет одинаковым в любой точке схемы.

Подробнее о графических образах в следующем разделе и это просто проводные соединения!

ТОК - Амперметр (обозначение ) включен для измерения тока - скорость потока электрического заряда - обычно отрицательных электронов .

Единица тока называется ампер , обозначение A .

Поток электрического заряда Обычно поток крошечных отрицательных частиц мы называем электронами .

Ток электрического заряда может только полный контур - как на диаграмме - нет зазоров в провода! И должно быть исходник () разности потенциалов (стр.d.) как элемент или аккумулятор, чтобы управлять электроны вокруг.

ПОТЕНЦИАЛЬНАЯ РАЗНИЦА - это электроны («заряд»), которые передают электрический энергия от «более высокого потенциала» до «более низкого потенциала».

Блок потенциала разница (p.d.) - это вольт , символ В например а простая одиночная батарейка для фонарика может дать p.d. 1,5 В, авто аккумулятор может выдавать 12 В от шести ячеек 2 В, подключенных один за другим. другие последовательно - подробнее о последовательном подключении позже.

Это разность потенциалов который вращает электроны по цепи, и если вы увеличите п.д. затем вы подталкиваете больше электронов за определенное время, т. е. вы увеличить ток.

Это разность потенциалов ('напряжение'), которое 'толкает' электрический заряд (-ve электронов) вокруг цепи.

Если п.о. > 0 В, ток течет в одном направлении, если п.о. <0 В, ток течет в в обратном направлении !, а если стр.d. = 0 В, ток не течет!

Обыденный термин " напряжение " строго говоря не правильно, на экзамене используйте ' потенциал разница 'один раз, а затем используйте сокращение' p.d. ' после этого.

Принципиальные схемы должны быть нарисованы с правильными символами для компонентов, и обычно провода нарисованы прямыми линиями, а переключатель замкнут ('включен'), чтобы завершить схема - так вроде работает!

Вы должны быть в состоянии следовать за проводом от одного конца («терминала») источника питания к другому и проходя через любые компоненты в цепи.

Схема 29 (справа) по сути то же самое, что и схема 01 выше с резистором (условное обозначение ).

Резистор - это двухконтактный компонент что препятствует прохождению электрического заряда - уменьшает ток.

Это часто тонкая проволока относительно ширина провода, используемого для остальной части схемы. Это тонкое сопротивление провод может преобразовывать электрические энергию в тепло и свет (лампа накаливания), тепло (нагревательный элемент) или просто свет (светодиодная лампа).

СОПРОТИВЛЕНИЕ - Сопротивление - это любой компонент, который ограничивает поток заряда , т. е. противодействует току.

Единица сопротивления - это Ом , символ Ом .

Ток, протекающий через резистор зависит от двух факторов:

(i) для данного фиксированного сопротивления чем больше разность потенциалов, тем больше ток,

(ii) для данного фиксированного потенциала Разница в том, что чем больше сопротивление резистора, тем меньше ток.

Подробнее см. 3. Закон Ома, экспериментальные исследования сопротивления, простые графики и расчеты

, где мы расскажем, как подключать вверх и воспользуйтесь вольтметром.

Каждая ячейка (батарея) имеет положительный (+) и отрицательный (-) вывод и по условию ток течет от соедините положительную клемму с отрицательной клеммой (здесь по часовой стрелке).

Примечание 1 : Текущее соглашение и химия!

Это соглашение об электрическом токе может быть проблемой в химии, потому что электроны фактически текут в противоположное направление! То есть по схеме 29 против часовой стрелки - логично что отрицательные электроны перетекают с отрицательных на положительные. Это важно тебе поймите это, потому что вы изучаете химию электролиз и нужно знать, что делают электроны! Причина для этого столкновения нынешняя конвенция была принята до того, как ученые про электроны знал!)

Примечание 2: переменный ток (ac) и постоянный ток (dc) (для , ссылка на будущее )

с переменным током (ac) ток меняет направление в цикле e.грамм. 50 Гц и разность потенциалов проходит цикл +/- В.

с постоянного тока (dc) нет разворота в текущем направлении, он течет в одну сторону с постоянное напряжение (пд / В).

Осциллограммы сравнение Сигналы переменного и постоянного тока - отображение изменяющегося направления + <=> - колебания переменного тока п.д. и постоянная p.d. из постоянный ток.

Обратите внимание, что некоторые устройства в доме отрабатывать постоянный ток - но выход, например, трансформатор в вашем блок питания компьютера, выпрямлен, чтобы преобразовать его в источник постоянного тока.


ВЕРХ СТРАНИЦЫ и субиндекс


2. Условные обозначения и символика электрических цепей, используемые при построении принципиальных схем

Расширенный взгляд на схему символы и как их использовать в принципиальных схемах

условное обозначение провода в электрической цепи.

условное обозначение цепи Т-образное соединение в цепи провода.

условное обозначение замкнутого выключателя , это замыкает цепь, так что она включена, и течет ток.

условное обозначение разомкнутого выключателя , это разрывает цепь, так что она «выключена», и ток не может течь.

условное обозначение двухпозиционного переключателя , в котором один маршрут «открыт», а другой - «закрыт».

, , , графические образы цепей для 1, 2, 3 или многих ячейки при подключении к серии (> 1 элемент, часто называемый «аккумулятором»), короткая короткая вертикальная линия обозначает отрицательный полюс, а длинная тонкая вертикальная линия - положительный полюс.

Компоненты в серии подключены линии друг с другом, конец в конец подключение к положительным и отрицательным клеммам источника питания.

Если у вас подключены две батареи на 1,5 В последовательно, вы складываете их, чтобы получить общий п.д. 3.0 В.

Вы делаете то же самое с резисторы например последовательно подключенные резисторы 3,0 Ом и 5,5 действуют как сопротивление 8,5 Ом.

Четвертый символ часто указывает аккумулятор, подобный автомобильному, состоящий из нескольких отдельных ячеек , соединенных проводом в серии .

условное обозначение для двух ячеек, подключенных параллельно .

Когда компоненты подключены параллель , каждый по подключается отдельно к положительным и отрицательным клеммам путем подключения к главной цепи на каждом конце клемм компонента.

Если у вас есть две клетки, производящие одинаковые p.d. подключил параллельно, п.о. схемы точно так же, как один клетка.

Два символа для источника питания .

Постоянный ток (постоянный или постоянный ток) означает, что ток течет только в одном направлении, а условный ток течет от положительного (+) к отрицательному (-). Электроны действительно текут в противоположное направление!

Переменный ток (перем. или ac) переключает направление в непрерывном колебании, например 50 Гц, т.е. изменение направления 50 раз в секунду.

условное обозначение резистора , который препятствует прохождению электрического тока e.грамм. в компоненте, часто более тонкая проволока, чем остальная часть цепи провода.

или символы схемы для переменный резистор.

Он ведет себя как любой другой резистор, НО его сопротивление можно изменять, например к поворот механического ползунка, как в переключателе диммера лампы в комнате.

Чем больше тонкая проволока сопротивления ток проходит, тем больше его сопротивление и меньший ток.

В школьной лаборатории вы можете встретить это как реостат, с помощью которого вы можете изменить сопротивление, перемещая ползунок по проводу сопротивления.

условное обозначение для нити накала одинарное лампа накаливания .

условные обозначения для двух ламп накаливания подключен последовательно .

графические образы для две лампы накаливания, подключенные параллельно.

условное обозначение схемы вольтметра который измеряет разность потенциалов в вольтах (стр.d. в V).

Вольтметр всегда подключаются параллельно к другому компоненту схемы для измерения p.d. в напряжение на нем.

условное обозначение для амперметр, прибор, который измеряет поток электрического тока в усилители (А).

Он может быть подключен последовательно или параллельно в зависимости от того, какая часть цепи, которую вы хотите узнать, текущий поток.

условное обозначение предохранителя .Это плавит и разрывает цепь, если ток превышает безопасный предел.

условное обозначение диода , иногда символ заключен в кружок

А диод пропускает только ток поток в одном направлении.

условное обозначение для термистор, сопротивление которого изменяется с температурой, т. е. ток разрешение течь зависит от температуры.

условное обозначение светоизлучающей лампы диод (ан LED), полупроводниковое устройство, преобразующее электрическую энергию в свет энергия i.е. он светится при приложении к нему разности потенциалов (напряжения).

Это гораздо более эффективное устройство, чем колба лампы накаливания.

условное обозначение для светозависимого резистор ( LDR ), иногда прямоугольник заключен в круг

Сопротивление LDR изменяется в зависимости от интенсивности света. что светит на нем.

Чем больше интенсивность света, тем чем меньше сопротивление, тем больше ток.

обозначение цепи для электродвигателя, иногда это просто круг с M в Это


Обозначения цепей (до Я знаю) НЕ нужен для UK GCSE курсы физики ???

символ цепи для конденсатора, устройства, которое хранит энергию в виде электрически заряженное поле между пластинами.

символ схемы для микрофона, который преобразует звуковую волну в электрическую сигнал.

символ цепи для громкоговорителя, который преобразует сигнал электрической энергии в звуковая энергия.

условное обозначение трансформатора, преобразующего переменный ток. ток одного напряжения в одной входной катушке в переменный ток ток другого напряжения на втором выходе катушка.

символ цепи для звонка.

символ цепи для зуммера.


ВЕРХ СТРАНИЦЫ и субиндекс


3.Примеры простых схем и их интерпретация

Это схемы диаграммы скопированы с моих KS3 викторины по науке и физике.

Я просто хочу, чтобы вы думали "просто" концептуальный способ, например какие лампочки загорятся и насколько ярко И сравните ток течет в разных частях контуров.

Я редко вставляю прямоугольный резистор Обозначение схемы здесь, но не забудьте , лампочка - резистор .

Эти электрические схемы включают амперметры, переключатели и простой батарейный блок питания.

Подключение последовательно или параллельно в цепях обсуждается.

Принять все показания амперметра, например, a1, a2 и т. д. указаны в амперах (A).

В настоящий момент нет специальных резисторов или вольтметров. и нет расчетов пока нет !.

1. Принципиальная схема 01: 1 амперметр, 1 переключатель, 1 элемент и 1 лампочка подключены к серия в простую одинарную петлю.

Предположим, лампа светится с нормальной яркостью, так что 1 элемент правильно питает 1 лампочку - не тускнеет и не перегорает лампочку!

В серии цепи, все компоненты соединены вместе встык , не в отдельный шлейф.

2. Принципиальная схема 02: 1 амперметр, 1 выключатель, 2 элемента и 2 лампы - все в серии .

Здесь мы удвоили потенциал разница (p.d.), но мы также удвоили сопротивление, эффекты гаснут друг друга, поэтому лампа будет светиться с нормальной яркостью.

3. Принципиальная схема 03: 1 амперметр, 1 переключатель, 2 последовательно соединенных элемента с 1 лампочкой, все подключенные последовательно.

Здесь удвоение п.о. удвоит ток и лампочка будет светиться ярче, чем в цепях 01 и 02 (наверное, лампочку перегорят!).

4. Принципиальная схема 04: 1 амперметр, 1 переключатель, 1 элемент и 2 лампы, подключенные последовательно.

Здесь удвоение сопротивления уменьшит вдвое ток и лампочки будут светиться тусклее, чем в цепях 01 и 02.

5.Принципиальная схема 05: 1 амперметр, 1 переключатель, 3 элемента и 3 лампы, все подключены серии.

Здесь мы утроили p.d., но также увеличили сопротивление втрое, поэтому лампочки будут светиться нормально, как в цепях 01 и 02.

6. Принципиальная схема 06: 1 амперметр, 1 переключатель, 3 элемента и 2 лампы, все подключены серии.

Вот лампочки еще немного засветятся ярче, чем в схемах 01 и 02.Вы можете понять почему?

7. Принципиальная схема 07: 1 амперметр, 1 переключатель, 3 элемента и 1 лампочка, подключенные последовательно.

Здесь лампочка будет светиться ОЧЕНЬ ярко в течение несколько секунд, а затем перегорят!

Вы утроили п.п. но сохранил минимум одно сопротивление, слишком большой ток для нити накала лампы!

8. Принципиальная схема 08: 1 амперметр, 1 переключатель, 1 элемент и 3 лампы, подключенные последовательно.

По сравнению с контуром 07, здесь лампочки будет светиться очень тускло, намного меньше, чем в цепях 01 и 02.

Вы утроили сопротивление и сохранили минимальный p.d.

Следовательно, текущий расход намного меньше чем в цепи 07, меньше электроэнергии для зажигания лампочек.

9. Принципиальная схема 09: 1 амперметр, 1 переключатель, 1 элемент и 3 лампы, подключенные последовательно.

Здесь лампочки немного загорятся тусклее, чем их «нормальная» яркость.Вы понимаете почему?

10. Принципиальная схема 10: 1 амперметр, 1 переключатель, 2 ячейки последовательно с пары амперметров и лампочек, подключенных параллельно .

Когда компоненты подключены к параллельно , каждый находится в отдельном цикле (или ветви), фактически оба конца каждого компоненты соединены вместе.

Обратите внимание на два немного разных стиля рисование схемы - они оба составляют одно и то же.

Здесь все становится немного больше сложно, и я представляю, какими могут быть относительные показания амперметра.

С этого момента меня меньше интересует, как Ярко светятся лампочки, но каковы могут быть относительные показания амперметра?

Цепи с 01 по 09 были простыми петлями и ток идентичен в любой точке цепи.

Однако здесь ток разделен на включите каждую лампочку отдельно в параллельных секциях цепи.

Показания тока амперметра a1 + a2 ДОЛЖНЫ равное показание амперметра a3, потому что ток, идущий от батареи, даже если он разделен, он должен быть одинаковым. Вы не можете ни потерять, ни получить электроны! , поэтому a1 + a2 = a3 .

Также показания амперметра a1 = a2 , при условии, что у ламп одинаковое сопротивление, поэтому будет течь одинаковый ток через них в равной степени, поскольку они оба испытывают одинаковый p.d.

В разделе 3.Закон Ома мы рассмотрим эти ситуаций в количественном отношении.

12. Принципиальная схема 12: Здесь все замкнуто в простой шлейф.

Лампы b1 и b2 горят нормально и с одинаковой яркостью, при условии, что они имеют одинаковое сопротивление.

Поскольку все подключено последовательно, все Показания амперметра будут такими же, а1 = а2 = а3.

13. 14. Схема 13/14:

То же, что и схемы 10/11, за исключением ничего происходит, пока не замкнешь переключатели!

Чтобы зажечь лампочку, необходимо замкнуть выключатель s3. и один / оба переключателя s1 и s2.

Здесь можно зажечь каждую лампочку по отдельности , чего нельзя сделать, если они подключены последовательно.

15. Принципиальная схема 15: Все подключено последовательно.

То же, что и схема 12, за исключением того, что ничего не происходит. пока не замкнешь переключатели,

и все 3 переключателя должны быть замкнуты на зажечь лампочки!

16. Принципиальная схема 16. Лампочки будут светиться очень ярко, а нити накаливания - наверное выгорят!

Вы понимаете, почему лампы могут просто свет за несколько секунд перед тем, как погаснуть !?

17. Принципиальная схема 17: Лампы светятся очень тускло, 4 лампочки соответствуют высокому полное сопротивление.

Когда сопротивления, например лампы накаливания соединенные последовательно , вы складываете , чтобы получить общее сопротивление .

18. Принципиальная схема 18: 1 амперметр, 1 переключатель, 2 ячейки, соединенные последовательно с 3 парами параллельно подключенных амперметров и лампочек .

Если вы следовали аргументам в пользу схемы 11/12, вы должны вывести следующее:

Все три лампочки от b1 до b3 горят с одинаковой яркостью - все подвергаются одинаковому р.d.

Относительные показания амперметра:

a1 = a2 = a3 (при условии, что все лампы имеют такое же сопротивление).

Полный ток, протекающий в цепь = a4 = a1 + a2 + a3

19. Принципиальная схема 19: Эта простая контурная схема включает переменный резистор ().

Изменяя сопротивление, вы можете изменять ток и контролировать, насколько ярко светится лампочка.

Это простейшая схема для проиллюстрируйте, как работает диммер.

Чем больше сопротивление, тем ниже ток, тем диммером загорается лампочка.

21. Принципиальная электрическая схема 21. Несколько комплектов лампочек подключены параллельно.

По показаниям амперметра и лампочки яркость:

a4 = a1 + a2 + a3, но a1, a2 и a3 Показания амперметра будут разными из-за разных цифр лампочек, то есть каждая последовательность лампочек приравнивается к разным сопротивление при той же разности потенциалов.

Когда у вас есть лампы, подключенные последовательно вы складываете отдельные сопротивления, чтобы получить общее сопротивление.

Итак, в контуре 21 для лампочек мы имеют значения относительного сопротивления 1: 2: 3 (слева направо).

Чем больше сопротивление, тем ниже ток, поэтому относительные показания амперметра будут a1> a2> a3,

и последовательность яркости для лампочки b1> b2> b3.

22. Принципиальная схема 22: Это двусторонняя система переключения, например. для посадочного света в дом.

Свет можно включать с двух разные места, например цокольный и первый этаж жилого дома.

25. 26. Электрические схемы 25: Когда вы замыкаете выключатель s, загорается только лампочка b2.

Дополнительный провод "закорачивает" и Обходит лампочку b1 - ток через нее практически не протекает.

Дополнительный провод будет предлагать меньше сопротивление, чем тонкая нить лампы накаливания.

В контуре 26 такая же ситуация и горит только лампочка b2, и вам даже не нужно включать выключатель.

27. Принципиальная схема 27: Следуя схемам 25 и 26, когда вы замыкаете на выключателе загорится только лампочка b1.

Ток практически не протекает лампочка b2.


ВЕРХ СТРАНИЦЫ и субиндекс


ПРИЛОЖЕНИЕ 1: Важные определения, описания, формулы и ед.

Примечание: Вы можете / можете нет (но не волнуйтесь!), столкнулись со всеми этими терминами, это зависит от как далеко продвинулась ваша учеба. В вашем курсе вам может не понадобиться каждая формула - решать вам.

V разность потенциалов ( p.d ., обычно называемая `` напряжение '') - это движущий потенциал, который перемещает электрический заряд вокруг цепь - обычно электронов .

Возможная разница - это работа, выполненная в перемещение единицы заряда.

Показывает, сколько энергии передается за единицу заряда, когда заряд перемещается между двумя точками в цепи е.грамм. между выводами аккумуляторной батареи.

г. в любой части цепи измеряется в вольтах, В .

I ток - это скорость протекания электрического заряда в кулонов в секунду ( C / s ), измеряется в амперах (амперы, A ).

Количество переданного электрического заряда a give time = текущий расход в амперах x прошедшее время в секундах

Формула соединения: Q = Оно , I = Q / t, t = Q / I, Q = электрический заряд перемещается в кулонов ( C ), время т ( с )

R сопротивление в цепи, измеренное в Ом ( Ом ).

Сопротивление замедляет прохождение электрического заряда - он противодействует потоку электрического заряда .

Формула соединения: В = ИК , I = V / R, R = V / I (Это формула для Закон Ома)

П является мощность , передаваемая цепью = показатель энергии передача ( Дж / с, ) и измеряется в Вт ( Вт, ).

Формула соединения: P = IV , I = P / V, V = P / I также P = I 2 R (см. также P = E / t ниже)

E = QV , энергия, передаваемая количеством электрического заряда потенциалом разность вольт.

переданной энергии (джоулей) = количество электрического заряда (кулоны) x разность потенциалов (вольт)

Q = E / V, V = E / Q, E = передача энергии в джоулях ( Дж ), Q = электрический заряд перемещен ( C ), V = p.d. ( В )

E = Pt , P = E / t, t = E / P, где P = мощность ( Вт, ), E = переданная энергия ( Дж) , t = затраченное время ( с )

Передаваемая энергия в джоулях = мощность в ваттах. x время в секундах

Формула связи: Поскольку E = Pt и P = IV, переданная энергия E = IVt


НАЧАЛО СТРАНИЦЫ


Что дальше?

Электричество и ревизия магнетизма индекс нот

1.Полезность электроэнергии, безопасность, передача энергии, расчеты стоимости и мощности, P = IV = I 2 R, E = Pt, E = IVt

2. Электрические схемы и как их рисовать, условные обозначения схем, параллельность схемы, объяснение последовательных схем

3. Закон Ома, экспериментальные исследования сопротивление, I-V графики, расчеты V = IR, Q = It, E = QV

4. Схема устройств и как они используются? (е.грамм. термистор и LDR), соответствующие графики gcse Physical Revision

5. Подробнее о последовательных и параллельных цепях. электрические схемы, измерения и расчеты gcse физика

6. Электроснабжение «Национальной сети», экология вопросы, использование трансформаторов gcse примечания к редакции физики

7. Сравнение способов получения электроэнергии gcse Заметки о пересмотре физики (энергия 6)

8.Статическое электричество и электрические поля, использование и опасность статического электричества gcse примечания к редакции физики

9. Магнетизм - магнитные материалы - временные (индуцированные) и постоянные магниты - использует gcse физика

10. Электромагнетизм, соленоидные катушки, применение электромагнитов gcse примечания к редакции физики

11. Моторное воздействие электрического тока, электродвигатель, громкоговоритель, правило левой руки Флеминга, F = BIL

12.Эффект генератора, приложения, например. генераторы генерация электричества и микрофон gcse физика

ВСЕ мои GCSE Примечания к редакции физики

ИЛИ воспользуйтесь [GOGGLE ПОИСК]



Версия IGCSE примечания простые схемы обозначения схем KS4 физика Научные заметки о простых схемы схемы символы руководство по физике GCSE заметки о простых схемах схемы символов для школ, колледжей, академий, учебных курсов, репетиторов, изображений рисунки, схемы для простых схем, условные обозначения, научные исправления, примечания к простые схемы схемы символы для пересмотра физических модулей примечания по темам физики, чтобы помочь в понимании простые схемы схемы символы университетские курсы физики карьера в науке и физике вакансии в машиностроении технический лаборант стажировка инженер стажировка по физике США 8 класс 9 класс 10 AQA Заметки о пересмотре GCSE 9-1 по физике на простых схемах символы схемы GCSE примечания к простым схемам обозначения схем Edexcel GCSE 9-1 физика и наука примечания к пересмотру простые схемы схемы условных обозначений для OCR GCSE 9-1 21 век физика научные заметки о простых схемах символы схем OCR GCSE 9-1 Шлюз физики примечания к пересмотру простых схем обозначения схем WJEC gcse science CCEA / CEA gcse science

ВЕРХ СТРАНИЦЫ и субиндекс

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *