Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Простые схемы для начинающих


Светящийся жук из светодиодной ленты, схема самодельной игрушки

Сейчас уже везде и всюду светодиодные ленты, они легко доступны и представлены в разных вариантах. Вот эта игрушка или предмет для оформления чего-то, просто представляет собой шесть отрезков светодиодной ленты, расположенные симметрично относительно некоего воображаемого тела насекомого, как его ...

0 20 0

Оптический музыкальный инструмент на одной микросхеме

Настоящий терменвокс, - это электронный музыкальный инструмент, состоящий из генератора изменяемой и опорной частоты. При этом генератор изменяемой частоты имеет антенну, поднося руки к которой можно изменять его частоты. В результате, частота биений изменяется, и изменяется тон звука ...

0 38 0

Звуковая и световая сигнализация для детского снегоката

Очень популярное развлечение у детей и подростков - кататься на снегокатах. Практически, это те же санки, но с рулевой лыжей, более удобным сидением и тормозом. В смысле безопасности, на мой взгляд, это куда лучше более популярных «ватрушек», которые вообще никак не управляются ...

0 98 0

Светодиодная цветомузыка на микросхемах BA6137

Эта цветомузыкальная установка выполнена на 15-ти сверхъярких светодиодах,разделенных по 5 на каждый из трех частотных каналов. Светодиоды не просто включаются от превышения входного сигнала некоторого порога, - изменяется число светящихся светодиодов в зависимости от уровня сигнала в частотном ...

0 690 0

Простая охранная сигнализация на одном транзисторе, конструкции датчиков

Здесь приводится описание очень простой но достаточно эффективной охранной сигнализации с минимумом деталей. Для дела потребуется: 1. Охранный герконовый датчик, например, ИО-102-2 или СМК-1. Такие датчики самые простейшие, они продаются в магазинах и на различных сайтах в интернете ...

0 980 0

Светодиодная фара для велосипеда с питанием от генератора (LT1932)

Схема фары к велосипеду на мощных светодиодах, стабилизатор тока собран на микросхеме LT1932. Обычная велофара питается от генератора, приводимого в движение от велосипедного колеса. Поскольку в схеме велосипедного оборудования никаких аккумуляторов нет, напряжение на выходе такого генератора ...

0 1972 0

Схема прожектора на сверхярких светодиодах ( LXLH-LW3C, LT1070)

Используя современные сверхяркие светодиоды белого света можно делать экономичные светильники, по светоотдаче сопоставимые с автомобильной фарой. На рисунке показана схема прожектора, питающегося от автомобильного аккумулятора (через разъем для прикуривателя). Источник света, - батарея из семи ...

1 1472 0

Схема двухразрядного автомата случайных чисел (4011, 4026, HDSP-h311H)

Устройство генерирует именно случайные числа, конструкция состоит из, генератора импульсов частотой около 100кГц, кнопки и счетчика с двухразрядным цифровым выходом. Суть работы в том, что импульсы с генератора поступают на вход счетчика через обычную кнопку. Нажал / отпустил, и смотри результат. При такой ...

1 1891 1

Светомузыкальный инструмент-игрушка на светодиодах

На идею создания этого светомузыкального инструмента натолкнули красивые разноцветные прозрачные пластмассовые линейки, продававшиеся в магазине канцтоваров. Линейки разных цветов выполнены с раскраской в стиле “неон”, то есть, со световозвращающими торцами ...

1 2308 0

Простой светодиодный пробник без батареек

Пробник представляет собой по существу преобразователь кинетического импульса в импульс электрический [1]. Таким преобразователем является электродвигатель от кассетного магнитофона, игрушки. Схема пробника. Если при подключении проверяемой цепи в розетку Х1 и от резкого ...

1 2785 0

1 2  3  4  5  ... 11 

Радиодетали, электронные блоки и игрушки из китая:

Схемы для начинающих


Конструкции нескольких простых мини-радиоприемников с AM модуляцией. Схемы для начинающих радиолюбителей.

10.05.2021 Читали: 1576


Схема электрическая оригинальной цветомузыки на 220 В - активный УНЧ и 3 цветовых канала.

05.03.2021 Читали: 2183


Еще один транзисторный усилитель с однополярным питанием на 2N3055, на этот раз в классе А. Схема и печатная плата.

13.11.2020 Читали: 4020


Игра Пинг-Понг на Arduino Pro Mini - схема, прошивка и фото самодельной игровой приставки.

25.02.2020 Читали: 2882


Подключение платы с вакуумно-люминесцентным индикатором ИЛМ1-7Л от видеомагнитофона Электроника ВМ-12.

14.02. 2020 Читали: 7741


Штормовой детектор на одном транзисторе - схема простейшего регистратора приближения грозы.

27.12.2019 Читали: 9198



  Вашему вниманию представляется сборник оригинальных принципиальных схем различной степени сложности. Профессионалы найдут здесь схемы металлоискателей и устройств на микроконтроллерах, переделку импульсных блоков питания от компьютера в регулируемые лабораторные БП или мощные зарядные устройства. Практические радиосхемы генераторов, преобразователей напряжения, измерительной техники. Любителям ретро, придётся по вкусу подборка схем, посвящённых ламповым усилителям, а сторонники современной элементарной базы, найдут для себя УНЧ на микросхемах TDA, STK и LM. Для начинающих радиолюбителей мы предлагаем простые схемки мигалок, генераторов звуковых эффектов и ФМ радиожучков. Даже серьёзное радиоустройство можно собрать используя минимум деталей, так как современная электроника переходит на специализированные малогабаритные микросхемы. Это увлекательное занятие даёт возможность спаять полезный прибор или интересную электронную игрушку, устройства измерения и автоматики. Радиолюбительское творчество нашло сотни тысяч сторонников во всех странах мира, объединяя талантливых людей и стирая границы. Все размещённые принципиальные электросхемы проверены, о чём свидетельствуют подробные фотографии и видео работы устройств. Мы не публикуем сборники из тысяч схем со всего интернета - лишь испытанные и работоспособные устройства занимают место на нашем сайте. Следует учитывать, что сборка один к одному не гарантирует исправную и надёжную работу электронных приборов. В процессе номиналы радиосхем могут отличаться от тех, что указаны в статьях. Так что приобретайте паяльник, припой, фольгированный стеклотестолит и приступайте к созданию своих, или повторению уже испытанных схем. Если возникают проблемы с поиском радиодеталей, и нужных компонентов нет в продаже в вашем городе вспомните, что на дворе 21-й век, и многие покупки делаются в интернет магазинах, доставка из которых вам на дом будет стоить дешевле, чем вы думаете.
А более подробно про сборку и настройку той или иной схемы читайте на нашем форуме по схемотехнике.

Лабораторный БП 0-30 вольт

Драгметаллы в микросхемах

Металлоискатель с дискримом

Ремонт фонарика с АКБ

Восстановление БП ПК ATX

Кодировка SMD деталей

Справочник по диодам

Аналоги стабилитронов

Радиосхемы. - Начинающим

раздел

Этот раздел сделан специально для начинающих радиолюбителей.

То есть для тех кто только начинает заниматься таким увлекательным занятием как радиолюбительство. Все схемы которые находятся в этом разделе очень просты и вас не затруднит изготовить их своими руками.

Сюда вошли не только простые схемы для самостоятельной сборки но и общие сведения про пайку, различные флюсы и припои.
Здесь вы также узнаете как изготовить свое первое изделие: просто как макет, использовать навесной монтаж или изготовить печатную плату.

Ну а если вдруг у Вас возникнут вопросы то мы всегда поможем- подскажем. Для этого Вам всего-лишь нужно зайти к нам на ФОРУМ.

 

Итак:

РАДИОЛЮБИТЕЛЬСКИЕ ТЕХНОЛОГИИ

Припои, флюсы, паяльники
Навесной монтаж
Монтаж на печатной плате
Изготовление печатных плат самостоятельно
Раствор для травления печатных плат из подручных материалов
Самодельный фоторезист
Демонтаж многовыводных элементов
Регулятор мощности паяльника
Простейший способ регулировки температуры жала паяльника
Как правильно паять (видео)
Даже старая техника может еще пригодиться!
Автоматический регулятор температуры паяльника
Терморегулятор для низковольтного паяльника
Практические советы начинающим радиолюбителям
Нанесение надписи на металлическую поверхность
Основные правила при монтаже микросхем
Простые правила пайки
Создание контрольных точек при сборке радиосхем
монтаж мощных радиоэлементов
полезные советы при сборке печатных плат
Проверка радиодеталей осциллографом
Как защитить электрические контакты от загрязнения
Печатная плата без травления
Умная подставка для паяльника

ПРОСТЫЕ СХЕМЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ

Мультивибраторы, мигалки
двухтональный звонок

мелодичный звонок
Мигалки на тиристорах
Несимметричный мультивибратор и его применение
Простейшая светомузыка на светодиодах
Простая мигалка на микросхеме LM3909
Простейший светодиодный индикатор уровня
Светодиодная мигалка с изменяемой частотой
Простейшая пищалка
простой металлодетектор 
Металлоискатель на специализированной микросхеме TDA0161
Простой металлоискатель
Металлоискатель- приставка к радиоприемнику
Звучащий брелок
Игровой автомат для проверки реакции
Индикатор температуры
Электронный термометр

Электронный метроном
Самодельный домофон
Простое переговорное устройство
Акустический выключатель освещения
Акустический выключатель с триггером
Самоблокирующаяся звуковая сигнализация
Простой стабилизированный блок питания
Регулируемые блоки питания
Фотореле- устройство автоматического включения освещения при наступлении темноты
Автомат периодического включения нагрузки
Бестрансформаторный блок питания
Усилитель на лампах от старого телевизора
Простой индикатор мощности
Мигающее сердце на светодиодах
Автомат световых эффектов "блуждающий огонек"

Имитатор звука мотора для игрушек
Имитатор звука дизельного двигателя
Мигающее сердце на таймере 555
Полицейский стробоскоп

Мигалка Солнышко на микросхеме К561ЛА7
Лазерный фототир
Фототир из лазерной указки
Световой телефон из лазерной указки
Простой тестер для диодов и транзисторов
Светодиодная мигалка на 1,5 Вольта
Простой усилитель для наушников
Простой регулятор мощности
Простейший осциллограф своими руками
Простой усилитель с низковольтным питанием
Сенсорный выключатель
Простейший электронный термометр
Простые регуляторы напряжения
Электронная канарейка
Электронный звонок "канарейка"
Электронная кукушка
Имитатор шума прибоя
Имитатор шума дождя
Имитатор птичьего пения
Имитатор кряканья утки
Имитатор полицейской сирены
Имитатор звука выстрела
Имитатор мяуканья кошки
Электронный соловей
Звуковой пробник для проверки транзисторов
Таймер с большим временем выдержки
Простейший кодовый замок
Регулятор яркости для настольного светильника
Реле времени
Таймер на 30 минут
Самодельный сетевой фильтр

Простой радиоприемник 
Автоматическая мормышка
Миниатюрный металлоискатель
Конструкции на двух транзисторах
Микрометр
Акустический телескоп
Простой преобразователь 12- 220 Вольт своими руками
Простейший электромузыкальный инструмент
Переключатель светодиодов
низковольтная мигалка
Пробник "генератор- усилитель"
Простой радиоприемник на двух транзисторах
Лампа дневного света от батареи 12 Вольт
Электронная рулетка
Микросхема КР142ЕН19А- регулируемый стабилизатор напряжения
Простейший искатель скрытой проводки
Игра "кто первый"
Кодовый замок со звуковой сигнализацией неправильного набора
Мультивибратор на полевых транзисторах
Сигнализатор поклевки из китайского будильника
Музыкальный светофон
Бесперебойник для радиоприемника
Сигнализатор отключения напряжения в сети
Индикатор перегрева
Узконаправленный микрофон
Конструкции с сенсорным управлением
Звук от телевизора по радиоканалу
Простой генератор-пробник
Простой светодиодный пробник
Реле времени для электромеханических игрушек
Сенсорное реле времени
Простой автоматический выключатель освещения
Простые конструкции на логической микросхеме К561ЛА7 (К176ЛА7)
Мигающий фонарь
Простой сигнализатор влажности
Реле времени для светильника
Светотелефон- лазер передает звук
Бестрансформаторный источник питания 10 V 0,1 A
Простой электронный замок
Светодиодный пробник для проверки P-N переходов
Светодиодный "ночник"
Простой лабораторный регулируемый источник питания 3- 33 V
Пробник для транзисторов
Сигнализатор "Открыт холодильник"
Мигалка для новогодней гирлянды
Простое акустическое реле для будильника
Самодельный радиобудильник
Простая "поливалка" для комнатных цветов
Простой детектор лжи
Светодиод- индикатор сетевого напряжения

Схемы с пояснениями простых устройств для радиолюбителей.

Как читать электрические схемы. Схемы самодельных измерительных приборов

Схемы самодельных измерительных приборов

Схема прибора, разработанная на основе классического мультивибратора, но вместо нагрузочных резисторов в коллекторные цепи мультивибратора включены транзисторы противоположной основным проводимостью.

Хорошо, если в вашей лаборатории есть осциллограф. Ну а если его нет и купить его по тем или иным причинам не представляется возможным, не огорчайтесь. В большинстве случаев его с успехом может заменить логический пробник, позволяющий проконтролировать логические уровни сигналов на входах и выходах цифровых интегральных схем, определить наличие импульсов в контролируемой цепи и отразить полученную информацию в визуальной (свето-цветовой или цифровой) или звуковой (тональными сигналами различной частоты) формах. При налаживании и ремонте конструкций на цифровых интегральных схемах далеко не всегда так уж необходимо знать характеристики импульсов или точные значения уровней напряжения. Поэтому логические пробники облегчают процесс налаживания, даже если есть осциллограф.

Представлена огромная подборка разичных схем генераторов импульсов. Одни из них формируют на выходе одиночный импульс, длительность которого не зависит от длительности запускающего (входного) импульса. Применяются такие генераторы в самых разнообразных целях: имитации входных сигналов цифровых устройств, при проверке работоспособности цифровых интегральных схем, необходимости подачи на какое-то устройство определенного числа импульсов с визуальным контролем процессов и т. д. Другие генерируют пилообразные и прямоугольные импульсы различной частоты, скважности и амплитуды

Ремонт различных узлов и устройств низкочастотной радиоэлектронной аппаратуры и техники можно значительно упростить, если использовать в качестве помощника функциональный генератор, который дает возможность исследовать амплитудно-частотные характеристики любого низкочастотного устройства, переходные процессы и нелинейные характеристики любых аналоговых приборов, а также обладает возможностью генерации импульсов прямоугольной формы и упрощения процесса наладки цифровых схем.

При наладке цифровых устройств обязательно нужен еще один прибор - генератор импульсов. Промышленный генератор - прибор достаточно дорогой и редко бывает в продаже, но его аналог, пусть не такой точный и стабильный, можно собрать из доступных радиоэлементов в домашних условиях

Однако создание звукового генератора, вырабатывающего синусоидальный сигнал, дело непростое и довольно кропотливое, особенно в части налаживания. Дело в том, что любой генератор содержит, по крайней мере, два элемента: усилитель и частотнозависимую цепь, определяющую частоту колебаний. Обычно она включается между выходом и входом усилителя, создавая положительную обратную связь (ПОС). В случае ВЧ-генератора все просто - достаточно усилителя на одном транзисторе и колебательного контура, определяющего частоту. Для диапазона звуковых частот наматывать катушку сложно, да и добротность ее получается низкой. Поэтому в диапазоне звуковых частот используют RC-элементы - резисторы и конденсаторы. Они довольно плохо фильтруют основную гармонику колебаний, и потому синусоидальный сигнал оказывается искаженным, например, ограниченным по пикам. Для устранения искажений применяют цепи стабилизации амплитуды, поддерживающие низкий уровень генерируемого сигнала, когда искажения еще незаметны. Именно создание хорошей стабилизирующей цепи, не искажающей синусоидальный сигнал, и вызывает основные трудности.

Часто, собрав конструкцию, радиолюбитель видит, что устройство не работает. У человека ведь нет органов чувств, позволяющих видеть электрический ток, электромагнитное поле или процессы, происходящие в электронных схемах. Помогают это сделать радиоизмерительные приборы - глаза и уши радиолюбителя.

Поэтому нужно какое-то средство испытания и проверки телефонов и громкоговорителей, усилителей звуковой частоты, различных звукозаписывающих и звуковоспроизводящих устройств. Такое средство - это радиолюбительские схемы генераторов сигналов звуковой частоты, или, говоря проще, звуковой генератор. Традиционно он вырабатывает непрерывный синусоидальный сигнал, частоту и амплитуду которого можно изменять. Это позволяет проверять все каскады УНЧ, находить неисправности, определять коэффициент усиления, снимать амплитудно-частотные характеристики (АЧХ) и много всего другого.

Рассмотрена несложная радиолюбительская самодельная приставка превращающая ваш мультиметр в универсальный прибор проверки стабилитронов и динисторов. Имеются чертежи печатной платы


Радиолюбительская технология. В книге рассказывается о технологии работ радиолюбителя. Даются реко-мендации по обработке материалов, намотке катушек и трансформаторов, монтажу и пайке деталей. Описывается изготовление самодельных деталей элементов конструкций, простейших станков, приспособлений и инструмента.


Цифровая электроника для начинающих. Основы цифровой электроники изложены простым и доступным для начинающих способом - путем создания на макетной плате забавных и познавательных устройств на транзисторах и микросхемах, которые сразу после сборки начинают работать, не требуя пайки, наладки и программирования. Набор необходимых деталей сведен к минимуму как по количеству наименований, так и по стоимости.

По ходу изложения даются вопросы для самопроверки и закрепления материала, а также творческие задания на самостоятельную разработку схем.


Осциллографы. Основные принципы измерений. Осциллографы – незаменимый инструмент для тех, кто проектирует, производит или ремонтирует электронное оборудование. В современном быстро изменяющемся мире специалистам необходимо иметь самое лучшее оборудование для быстрого и точного решения своих насущных, связанных с измерениями задач. Будучи “глазами” инженеров в мир электроники, осциллографы являются ключевым инструментарием при изучении внутренних процессов в электронных схемах.


Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.


Самоделки юного радиолюбителя. В книге описываются имитаторы звуков, искатели скрытой электропроводки, акустические выключатели, автоматы звукового управления моделями, электромузыкальные инструменты, приставки к электрогитарам, цветомузыкальные приставки и другие конструкции, собранные из доступных деталей


Школьная радиостанция ШК-2 - Алексеев С. М. В брошюре описаны два передатчика и два приемника, работающие на диапазонах 28 и 144 М гц, модулятор для анодно-экранной модуляции, блок питания и простые антенны. В ней рассказывается также об организации работы учащихся на коллективной радиостанции, о подготовке операторов, содержании их работы, об исследовательской работе школьников в области распространения КВ и УКВ.


Electronics For Dummies
Build your electronics workbench - and begin creating fun electronics projects right away
Packed with hundreds of colorful diagrams and photographs, this book provides step-by-step instructions for experiments that show you how electronic components work, advice on choosing and using essential tools, and exciting projects you can build in 30 minutes or less. You"ll get charged up as you transform theory into action in chapter after chapter!


Книга состоит из описаний простых конструкций, содержащих электронные компоненты, и экспериментов с ними. Кроме традиционных конструкций, чья логика работы определяется их схемотехникой, добавлены описания изделий, функционально реализующихся с помощью программирования. Тематика изделий - электронные игрушки и сувениры.


Как освоить радиоэлектронику с нуля. Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, - воспользуйтесь этим самоучителем. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы , узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно.


Паять просто - пошаговое руководство для начинающих. Комикс, несмотря на свой формат и объем, в мелких деталях объясняет основные принципы этого процесса, которые совсем не очевидны для людей, ни разу не державших в руках паяльник (как показывает практика, для многих державших тоже). Если вы давно хотели научиться паять сами, или планируете научить этому своих детей, то этот комикс для вас.


Электроника для любознательных. Эта книга написана специально для вас, начинающих увлекательное восхождение к вершинам электроники. Помогает освоению диалог автора книги с новичком. А еще помощниками в овладении знаниями становятся измерительные приборы, макетная плата, книги и ПК.


Энциклопедия юного радиолюбителя. Здесь Вы найдете множество практических схем как отдельных узлов и блоков, так и целых устройств. В разрешении многих вопросов поможет специальный справочник. Пользуясь удобной системой поиска, отыщешь нужный раздел, а к нему как наглядные примеры великолепно выполненные рисунки.


Книга создана специально для начинающих радиолюбителей, или, как еще у нас любят говорить, - «чайников». Она рассказывает об азах электроники и электротехники, необходимых радиолюбителю. Теоретические вопросы рассказываются в очень доступной форме и в объеме, необходимом для практической работы. Книга учит правильно паять, проводить измерения, анализ схем. Но, скорее, это книга о занимательной электронике. Ведь основа книги - радиолюбительские самоделки, доступные начинающему радиолюбителю и полезные в быту.


Это вторая книга из серии изданий, адресованных начинающему радиолюбителю в качестве учебно-практического пособия. В этой книге на более серьезном уровне продолжено знакомство с различными схемами на полупроводниковой и радиовакуумной базе, основами звукотехники, электро и радиоизмерениями. Изложение сопровождается большим количеством иллюстраций и практических схем.

Азбука радиолюбителя. Основное и единственное назначение этой книги - приобщить к радиолюбительскому творчеству ребят, не имеющих об этом ни малейшего представления. Книга построена по принципу `от азов - через знакомство - к пониманию` и может быть рекомендована школьникам средних и старших классов как путеводитель по началам радиотехники.

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ - передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Электронная утка
VT1, VT2 Биполярный транзистор

КТ361Б

2 МП39-МП42, КТ209, КТ502, КТ814 В блокнот
HL1, HL2 Светодиод

АЛ307Б

2 В блокнот
C1 100мкФ 10В 1 В блокнот
C2 Конденсатор 0.1 мкФ 1 В блокнот
R1, R2 Резистор

100 кОм

2 В блокнот
R3 Резистор

620 Ом

1 В блокнот
BF1 Акустический излучатель ТМ2 1 В блокнот
SA1 Геркон 1 В блокнот
GB1 Элемент питания 4.5-9В 1 В блокнот
Имитатор звука подскакивающего металлического шарика
Биполярный транзистор

КТ361Б

1 В блокнот
Биполярный транзистор

КТ315Б

1 В блокнот
C1 Электролитический конденсатор 100мкФ 12В 1 В блокнот
C2 Конденсатор 0.22 мкФ 1 В блокнот
Динамическая головка ГД 0.5...1Ватт 8 Ом 1 В блокнот
GB1 Элемент питания 9 Вольт 1 В блокнот
Имитатор звука мотора
Биполярный транзистор

КТ315Б

1 В блокнот
Биполярный транзистор

КТ361Б

1 В блокнот
C1 Электролитический конденсатор 15мкФ 6В 1 В блокнот
R1 Переменный резистор 470 кОм 1 В блокнот
R2 Резистор

24 кОм

1 В блокнот
T1 Трансформатор 1 От любого малогабаритного радиоприемника В блокнот
Универсальный имитатор звуков
DD1 Микросхема К176ЛА7 1 К561ЛА7, 564ЛА7 В блокнот
Биполярный транзистор

КТ3107К

1 КТ3107Л, КТ361Г В блокнот
C1 Конденсатор 1 мкФ 1 В блокнот
C2 Конденсатор 1000 пФ 1 В блокнот
R1-R3 Резистор

330 кОм

1 В блокнот
R4 Резистор

10 кОм

1 В блокнот
Динамическая головка ГД 0.1...0.5Ватт 8 Ом 1 В блокнот
GB1 Элемент питания 4.5-9В 1 В блокнот
Фонарь-мигалка
VT1, VT2 Биполярный транзистор

При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую. И часто бывает, что спаянное устройство, на которое было затрачено много времени, сил и терпения, — не работает, что вызывает только разочарование и отбивает желание у начинающего радиолюбителя заниматься электроникой, так и не ощутив все прелести данной науки. Хотя, как оказывается, схема не заработала из-за допущения сущего пустяковой ошибки. На исправление такой ошибки у более опытного радиолюбителя ушло бы меньше минуты.

В данной статье приведены полезные рекомендации, которые позволят свести к минимуму количество ошибок. Помогут начинающему радиолюбителю собирать различные электронные устройства, которые заработают с первого раза.

Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО . К УГО мы вернемся дальше в этой статье.


Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например или критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.

Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.

По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.

Обозначение источников питания

Любое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках . К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.

В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.

Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.


Гальванический элемент или одна батарейка, неважно «пальчиковая», «мизинчиковая» или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».

Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G .

Однако радиолюбители не всегда придерживаются такой шифровки и часто вместо G пишут букву E , которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.

Иногда вместо изображения источника питания показывают только его клеммы.

Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей . На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB . Вторая буква как раз и обозначает «батарея».

Обозначение проводов и их соединений на схемах

Электрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» — снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.

На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.

Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.

Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.

В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.

Обозначение общего провода

В сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общи й или масса или шасси или земля .

Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля .

Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы p n p структуры.

Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.

Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.

Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.

Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.

Условное графическое обозначение радиодеталей

Основу любого электронного устройства составляют радиодетали. К ним относятся , светодиоды, транзисторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.

Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 . Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R , после которой ставится его порядковый номер, например R 1 , R 2 , R 5 и т. д.

Поскольку важным параметром резистора помимо сопротивления является , то ее значение также указывается в обозначении.

УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.

Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD , а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».

Как читать электрические схемы реально

Давайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 .

Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I , который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I от положительной клеммы GB 1 через резистор R 1 , светодиод VD 1 к отрицательной клемме.

Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.

Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R 1 и светодиод VD 1 .

Если измерить вольтметром напряжение на R 1 и VD 1 , а затем полученные значения сложить, то их сумма будет равна напряжению на GB 1 : V 1 = V 2 + V 3 .

Соберем по данному чертежу реальное устройство.

Добавляем радиодетали

Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB 1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K 1.1 электромагнитного реле K 1 , резистора R 1 и светодиода VD 1 . Далее по чертежу находится кнопка SB 1 .

Третья параллельная ветвь состоит из электромагнитного реле K 1 , шунтированного в обратном направлении диодом VD 2 .

В четвертой ветви имеются нормально разомкнутые контакты K 1.2 и бузер BA 1 .

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB 1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Следующий элемент– это электромагнитное реле K 1 . Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Все контакты, которые соответствуют реле K 1 , обозначаются K 1.1 , K 1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер

Следующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Пассивный бузер – для переменного тока.

Активный бузер – для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K 1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB 1 через K 1.1 , R 1 , VD 1 и возвращается снова к GB 1 .

При нажатии кнопки SB 1 ее контакты замыкаются, и создается путь для протекания тока через катушку K 1 . Когда реле получило питание ее нормально замкнутые контакты K 1.1 размыкаются, а нормально замкнутые контакты K 1.2 замыкаются. В результате гаснет светодиод VD 1 и раздается звук бузера BA 1 .

Теперь вернемся к параметрам электромагнитного реле K 1 . В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS ‑4078‑ DC 5 V . Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB 1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD 2 серии 1 N 4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB 1 . Но если ее размыкает транзистор или тиристор, то VD 2 нужно обязательно устанавливать.

Учимся читать схемы с транзисторами

На данном чертеже мы видим VT 1 и двигатель M 1 . Для определенности будем применять транзистор типа 2 N 2222 , который работает в .

Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для n p n типа; для p n p типа нужно подавать отрицательный потенциал относительно эмиттера.

Кнопка SA 1 с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M 1 постоянного тока.

В исходном состоянии цепь разомкнута контактами SA 1 . При нажатии кнопки SA1 создается несколько путей протеканию тока. Первый путь – «+» GB 1 – контакты SA 1 – резистор R 1 – переход база-эмиттер транзистора VT 1 – «-» GB 1 . Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB 1 SA 1 – катушка реле K 1 – коллектор-эмиттер VT 1 – «-» GB 1 .

Получив питание, реле K 1 замыкает свои разомкнутые контакты K 1.1 в цепи двигателя M 1 . Таким образом, создается третий путь: «+» GB 1 SA 1 K 1.1 M 1 – «-» GB 1 .

Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.

Разобраться в общем подходе к разработке электронных устройств по чертежам, с множеством практических и наглядных примеров поможет мой очень полезный для начинающих курс . Пройдя данный курс, Вы сразу почувствуете, что перешли от новичка на новый уровень.

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик - он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В - четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора - он достигнет первоначального значения.

Нагрузка усилительного каскада - головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации - резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более "чувствительный” по сравнению с однокаскадным - коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 - в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока - коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 - если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем - около 2 мА.

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй - на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй - усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ - при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), - оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада - резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем - HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Он выдает световые сигналы по принципу меньше нормы - норма - больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один - зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение - вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.

Радиоэлектроника для новичка.

Первый шаг - он самый сложный...

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел "Старт".

На страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Если Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Ну, а для начала, рекомендуем научиться паять...

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Универсальный тестер радиокомпонентов

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Стрелочный вольтметр

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Как проверить транзистор?

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод?

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Как проверить диодный мост мультиметром?

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Как проверить ИК-приёмник?

Как проверить ИК-приёмник? Методика проверки исправности инфракрасного приёмника с помощью мультиметра и пульта ДУ.

Как узнать мощность трансформатора?

Как узнать мощность трансформатора, не производя сложных расчётов? Здесь вы узнаете о простой методике определения мощности силового трансформатора.

Что такое децибел (дБ)? Перевод из децибел в разы.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Сокращённая запись численных величин

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

Измерение сопротивления цифровым мультиметром

Несколько рекомендаций и советов начинающим радиолюбителям по правильному измерению сопротивления цифровым мультиметром. Общие правила по проверке работоспособности цифрового мультитестера и подготовки его к работе.

Как проверить конденсатор? Проверка конденсаторов цифровым мультиметром

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление конденсатора. Что такое ESR?

Эквивалентное последовательное сопротивление (или ЭПС) - это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Мощность резистора.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? Часть 1.

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Как читать электронные схемы? Часть 2.

Вторая часть рассказа о чтении принципиальных схем. Соединения и разъёмы, повторяющиеся элементы, механически связанные элементы, экранированные детали и проводники. Обо всём этом читайте здесь.

Усилитель на микросхеме TA8201AK. Схема, характеристики и даташит.

Приводится даташит на микросхему TA8201AK, а также пример тестового усилителя, собранного по схеме из него. Показано видео работы усилителя. На живом примере разбираемся с основными характеристиками микросхемы TA8201AK, графиками из даташита на данный интегральный усилитель.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Подробнее…

 

 

 

Универсальное зарядное устройство

Здесь я расскажу об универсальном зарядном устройстве, которым можно заряжать/разряжать практически любые аккумуляторы (Pb, Ni-Cd, Ni-Mh, Li-Po, Li-ion, LiFe).

USB-колонки для ноутбука. Электронная начинка и устройство.

Портативные USB-колонки для ноутбука являются достаточно востребованным атрибутом компьютерной периферии. Из каких электронных компонентов состоят данные устройства? В статье приводится принципиальная схема усилителя портативных компьютерных колонок с питанием от USB-порта.

Типы выпрямителей.

Для преобразования переменного тока в постоянный применяется так называемый выпрямитель. Здесь вы узнаете о типах диодных выпрямителей, а также об их особенностях и сферах применения. Материал будет интересен начинающим радиолюбителям и тем, кто хочет больше узнать о том, какие схемы выпрямителей применяются в электронике и электротехнике.

Маячок на микросхеме.

Здесь показана схема маячка на микросхеме к155ла3. Подробно рассказано о подборе деталей для светодиодного маячка на микросхеме.

Мультивибратор на микросхеме.

Как собрать мультивибратор на микросхеме? Здесь вы узнаете, как собрать мультивибратор на логических микросхемах серии К561, К176 и др.

Разное

Сенсорный RGB контроллер с радиоуправлением.

Трёхцветную светодиодную ленту можно использовать по-разному: фоновая и декоративная подсветка, световое оформление, мягкое освещение и пр. Но после приобретения RGB-ленты возникает вопрос: "А как управлять этой лентой?". Здесь я расскажу о личном опыте применения RGB контроллера с радиоуправлением. Кроме того, разберёмся в том, как подобрать блок питания для светодиодной ленты.

Как устроен фонарик с аккумулятором?

Как научиться электронике? Конечно, на самых простых вещах! Например, на обычном аккумуляторном фонарике. Показана схема аккумуляторного фонаря, а также даны пояснения о назначении радиоэлементов.

 

 

 

Электронные схемы, как научится их читать

Электронная схема — изделие, сочетание отдельных электронных компонентов, таких как резисторы, конденсаторы, индуктивности, диоды, транзисторы и интегральные микросхемы, соединённых между собой, для выполнения каких либо задач или схема (рисунок) с условными знаками.

Для начинающих электронщиков важно понимать, как работают детали, как их рисуют на схеме и как разобраться в схеме электрической принципиальной. Для этого нужно сперва ознакомиться с принципом работы элементов, а как читать схемы электроники я расскажу в этой статье на примерах популярных устройств для начинающих.

Схема настольной лампы и фонарика на светодиоде

Схема – это рисунок на которых с помощью определенных символов изображаются детали схемы, линиями – их соединения. При этом, если линии пересекаются – то контакта между этими проводниками нет, а если в месте пересечения присутствует точка – это узел соединения нескольких проводников.

Кроме значков и линий на схеме изображены буквенные обозначения. Все обозначения стандартизированы, в каждой стране свои стандарты, например в России придерживаются стандарта ГОСТ 2.710-81.

Начнем изучение с простейшего – схемы настольной лампы.

Схемы не всегда читают слева направо и сверху вниз, лучше идти от источника питания. Что мы можем узнать из схемы, посмотрите в правую её часть. ~ - значит питание переменным током.

Рядом написано «220» - напряжением в 220 В. X1 и X2 – предполагается подключение в розетку с помощью вилки. SW1 – так изображается ключ, тумблер или кнопка в разомкнутом состоянии. L – условное изображение лампочки накаливания.

Краткие выводы:

На схеме изображено устройство, которое подключается к сети 220 В переменного тока с помощью вилки в розетку или других разъёмных соединений. Есть возможность отключения с помощью переключателя или кнопки. Нужно для питания лампы накаливания.

С первого взгляда кажется очевидным, но специалист должен уметь сделать такие выводы глядя на схему без пояснений, это умение даст возможность выносить диагноз неисправности и устранять её или же собирать устройства с нуля.

Перейдем к следующей схеме. Это фонарик с питанием от батарейки, в качестве излучателя в нём установлен светодиод.

Взгляните на схему, возможно, вы увидите новые для себя изображения. Справа изображен источник питания, так выглядит батарейка или аккумулятор, длинный вывод это плюс другое название – Катод, короткий – минус или Анод. У светодиода к аноду (треугольная часть обозначения) подключается плюс, а к катоду (на УГО выглядит как полоска) – минус.

Это нужно запомнить, что у источников питания и потребителей названия электродов наоборот. Две исходящие от светодиода стрелки дают вам понять, что этот прибор ИЗЛУЧАЕТ свет, если бы стрелки наоборот указывали на него – это был бы фотоприемник. Диоды имеют буквенное обозначение VDx, где х- порядковый номер.

Важно:

Нумерация деталей на схемах идет столбцами сверху вниз, слева направо.

Резистор – это сопротивление. Преобразует электрический ток в тепло, препятствую его движению, выглядит как прямоугольник, обычно на схемах имеет буквенное обозначение «R».

Как читать электронные схемы: увеличиваем уровень сложности

Когда вы уже разобрались с базовым набором элементов, пора ознакомится с более сложными схемами, давайте рассмотрим схему трансформаторного блока питания.

Главным средством преобразователя на схеме является трансформатор TV1, это новый для вас элемент. Предлагаю рассмотреть ряд подобных изделий.

Трансформаторы используются повсеместно, либо в сетевом (50 гц), либо в импульсном (десятки кГц) исполнении. Катушки индуктивности используются в генераторах, радиопередающих устройствах, фильтрах частот, сглаживающих и стабилизирующих приборах. Она выглядит следующим образом.

Второй незнакомый элемент на схеме – это конденсатор, здесь используется для сглаживания пульсаций выпрямленного напряжения. Вообще основная его функция – это накапливать энергию в качестве заряда на его обкладках. Изображается следующим образом.

В центре схеме изображен мостовой диодный выпрямитель.

Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора, напряжение блока питания будет стабилизировано. При этом только от повышения питающего напряжения, при просадках ниже, чем Uстабилизации напряжение будет пульсирующем в такт с просадками. VD1 – это стабилитрон, они включаются в обратном смещении (катодом к точке с положительным потенциалом). Различаются по величине тока стабилизации (Iстаб) и напряжения стабилизации (Uстаб).

Краткие итоги:

Что мы можем понять из этой схемы? То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе. Подключается первичной стороной (входом) к сети переменного тока с напряжением 220 Вольт. На его выходе имеет два разъёмных соединения – «+» и «-» и напряжение 12 В, нестабилизорванное.

Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей.

Как читать схемы с транзисторами?

Транзисторы – это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Данные свойства позволяют их применять, как в ключевом, так и линейном режимах, что позволяет их использовать в огромном спектре схемных решений.

Давайте рассмотрим популярную среди новичков схему – симметричный мультивибратор. Это по сути генератор, который на своих выходах выдаёт симметричные импульсы. Может применяться, как основа для простых мигалок, в качестве источника частоты для пищалки, в качестве генератора для импульсного преобразователя и во многих других цепях.

Пройдемся по знакомым деталям сверху вниз. Вверху мы видим 4 резистора, средние два – времязадающие, а крайние – задают ток резистора, также влияют на характер выходных импульсов.

Далее HL – это светодиоды, а ниже два электролита – это полярные конденсаторы, когда будете их монтировать оставайтесь внимательны – неправильное подключение электролитического конденсатора чревато выходом его из строя вплоть до взрыва с выделением тепла.

Интересно:

На графическом обозначении электролитического конденсатора всегда помечается «положительная» обкладка конденсатора, а на настоящих элементах – чаще всего есть пометка отрицательной ножки, не перепутайте!

VT1-VT2 – это новые для вас элементы, таким образом обознаются биполярные транзисторы обратной проводимости (NPN), ниже указана модель транзистора – «КТ315». У них обычно 3 ножки:

1. База.

2. Эмиттер.

3. Коллектор.

При этом на корпусе их назначение не указывается. Чтобы определить назначение выводов, нужно воспользоваться одним из поисковых запросов:

1. «Название элемента» - цоколевка.

2. «Название элемента» - распиновка.

3. «Название элемента» datsheet.

Это справедливо, как для радиоламп, так и для современных микросхем. Запросы имеют почти одинаковый смысл. Вот таким образом я нашел цоколевку транзистора КТ315.

На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод.

Интересно:

У биполярных транзисторов стрелка на эмиттере обозначается направление протекания тока (от плюса к минусу), если стрелка ОТ базы – это транзистор обратной проводимости (NPN), а если К базе то прямой проводимости (PNP), часто вы можете заменить все NPN транзисторы на PNP, как в схеме мультивибратора, тогда нужно будет и поменять полярность источника питания (плюс и минус местами) ведь, повторюсь, стрелка на эмиттере указывает направление протекания тока.

На приведенной схеме положительный контакт источника питания подключен к верхней части схемы, а отрицательный к нижней. Так и на транзисторе стрелка указывает сверх-вниз – по направлению протекания тока!

В элементах с большим количеством ног имеет значение куда подключать, так же, как и в диодах и светодиодах, если вы перепутаете ножки – в лучшем случае схема не заработает, а в худшем – убьете детали.

Что мы смогли узнать, прочитав схему мультивибратора:

В этой схеме используются транзисторы и электролитические конденсаторы, питается она напряжением в 9 В (хотя может и больше, и меньше, например 12 В не повредят схеме, как и 5 В).

Стало ясно о способе соединения деталей и включения транзисторов. А также о том, что схема представляет собой прибор, работающий на принципе автогенератора основанного на процессе перезаряда транзисторов, которое вызвано попеременным открытием и закрытием транзисторов каждого по очереди, когда первый открыт, второй закрыт.

Проследив пути протекания тока (от плюса к минусу) и использовав знания о том, как работает биполярный транзистор мы делаем выводы о характере работы.

Тиристоры – полууправляемые ключи, учимся читать схемы

Давайте рассмотрим схему с не менее важным и распространенным элементом – тиристором. Я выбрал слово «полууправляемый» потому что, в отличие от транзистора, вы можете только открыть его, ток в нем прервется либо при прерывании питания, либо при смене полярности приложенного к нему напряжения. Открывается с помощью подачи на управляющий электрод напряжения.

Симисторы – содержат два тиристора соединённых встречно-параллельно. Таким образом, одним компонентом можно коммутировать переменный ток, при прохождении верхней части (положительной) полуволны синусоиды, при условии наличия сигнала на управляющем, электроде откроется один из внутренних тиристоров. Когда полуволна сменит свой знак на отрицательный – он закроется и в работу вступит второй тиристор.

Динисторы – разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения. Часто используются в импульсных блоках питания, как пороговый элемент для запуска автогенераторов и в устройствах для регулировки напряжения.

Вот так, собственно это выглядит на схеме.

Внимательно смотрим на подключение. Схема предназначена для подключения к сети переменного тока, например 220 В, в разрыв одного из питающих проводов, например фазного (L). Симистор VS1 – основной силовой элемент цепи, справа внизу дана его распиновка из даташита, 3 вывод – управляющий. На него через двунаправленный динистор VD1 модели DB3 рассчитанный на напряжение включения порядка 30 вольт, подаётся управляющий сигнал.

Так как все полупроводниковые приборы в этой конкретной схеме двунаправленные, регулировка осуществляется по обеим полуволнам синусоиды. Динистор открывается, когда на конденсаторе C1 появляется необходимой величины потенциал (напряжение), а скорость его заряда, следовательно, момент открытия ключей, задаётся RC цепью, состоящей из R1, переменного резистора (потенциометра) R2 и С1.

Эта простая схем имеет огромное значение и прикладное применение.

Выводы

Благодаря умению читать схемы электрические принципиальные, вы можете определить:

1. Что делает это устройство, для чего оно предназначено.

2. При ремонте – номинал вышедшей из строя детали.

3. Чем питать это устройство, каким напряжением и родом тока.

4. Примерную мощность электронного устройства, исходя из номиналов компонентов силовых цепей.

Важно не только знать условные графические обозначения элементов, но и принцип их работы. Дело в том, то не всегда те или иные детали могут использоваться в привычной роли. Но в пределах сегодняшней статьи рассмотреть все распространенные элементы довольно сложно, так как это займет очень большой объем.

Ранее ЭлектроВести писали, что Министерство развития экономики, торговли и сельского хозяйства передало госпредприятие, мощного производителя электрогенерирующего оборудования, завод «Электротяжмаш» на приватизацию в Фонд государственного имущества Украины.

По материалам: electrik.info.

Схемы по электрике. Виды и типы. Некоторые обозначения

Во время работ по электротехнике человек может столкнуться с обозначениями элементов, которые условно обозначены на электромонтажных схемах. Разнообразия схемы по электрике очень широки. Они имеют разные функции и классификацию. Но все графические обозначения в условном виде приводятся к одним формам, и для всех схем элементы соответствуют друг другу.

Электромонтажная схема – это документ, в котором обозначены связи составных элементов разных устройств, потребляющих электроэнергию, между собой по определенным стандартным правилам. Такое изображение в виде чертежа призвано научить специалистов по электрическому монтажу, чтобы они поняли из схемы принцип действия устройства, и из каких составных частей и элементов она собрана.

Главное предназначение электромонтажной схемы – оказать помощь в монтаже электроустройств и приборов, простом и легком обнаружении неисправности в электрической цепи. Далее разберемся в видах и типах электромонтажных схем, выясним их свойства и характеристики каждого типа.

Схемы по электрике: классификация

Все электрические схемы, как документы, разделяются на виды и типы. По соответствующим стандартам можно найти разделение этих документов по видам схем и типам. Разберем их подробную классификацию.

Виды электромонтажных схем следующие:
  • Электрические.
  • Газовые.
  • Гидравлические.
  • Энергетические.
  • Деления.
  • Пневматические.
  • Кинематические.
  • Комбинированные.
  • Вакуумные.
  • Оптические.
Основные типы:
  • Структурные.
  • Монтажные.
  • Объединенные.
  • Расположения.
  • Общие.
  • Функциональные.
  • Принципиальные.
  • Подключения.

Рассматривая схемы по электрике, перечисленные обозначения, по названию электросхемы определяют тип и вид.

Обозначения в электросхемах

В современный период в электромонтажных работах используются как отечественные, так и импортные элементы. Зарубежные детали можно представить широким ассортиментом. На схемах и чертежах они также обозначаются условно. Описывается не только размер параметров, но и список элементов, входящих в устройство, их взаимосвязь.

Теперь следует разобраться, для чего предназначена каждая конкретная электросхема, и из чего она состоит.

Принципиальная схема

Такой тип используется в распределительных сетях. Он обеспечивает полное раскрытие работы электрооборудования. На чертеже обязательно обозначают функциональные узлы, их связь. Схема имеет два вида: однолинейная, полная. На однолинейной схеме изображены первичные сети (силовые). Вот ее пример:

Полный вариант схемы по электрике изображается в элементном или развернутом виде. Если устройство простое, и на чертеже входят все пояснения, то хватит развернутого плана. При сложном устройстве с цепью управления, измерения и т. д., оптимальным решением будет изобразить все узлы на отдельных листах, во избежание путаницы.

Бывает также принципиальная электросхема, на которой изображена выкопировка плана с обозначением отдельного узла, его состав и работа.

Монтажная схема

Такие схемы по электрике применяются для разъяснения монтажа какой-либо проводки. На них можно изобразить точное положение элементов, их соединение, характеристики установок. На схеме проводки квартиры будет видно размещение розеток, светильников и т.д.

Эта схема руководит электромонтажными работами, дает понимание всех подключений. Для монтажа бытовых устройств такая схема лучше подходит для работы.

Объединенная схема

Этот тип схемы включает в себя разные виды и типы документов. Ее применяют для того, чтобы не загромождать чертеж, обозначить важные цепи, особенности. Чаще объединенные схемы применяют на предприятиях промышленности. Для домашнего применения она вряд ли имеет смысл.

Изучив условные обозначения, подготовив необходимую документацию, не трудно разобраться в работе любой электроустановке.

Порядок сборки по электрической схеме
Самым сложным делом для электрика является понимание взаимодействия элементов в схеме. Нужно знать, как читать и собирать схему. Сборка предполагает определенные правила:
  • Во время сборки необходимо руководствоваться одним направлением, например, по часовой стрелке.
  • Лучше для начала разделить схему на части, если много элементов и схема сложная.
  • Начинают сборку от фазы.
  • При каждом выполненном шаге по сборке нужно предположить, что будет происходить, если в данный момент подать напряжение.

После окончания сборки обязательно должна образоваться замкнутая цепь. Для примера разберем подключение в домашних условиях люстры, состоящей из 3-х плафонов, с применением двойного выключателя.

Сначала определим порядок работы люстры. При включении 1-й клавиши должна загораться одна лампочка, если включить 2-ю клавишу, то другие две. По схеме на выключатель и люстру идут по 3 провода. От сети идут два провода, фаза и ноль.

Индикатором определяем и находим фазу, соединяем ее с выключателем, не прерывая ноль. Провод присоединяем к общей клемме выключателя. От него пойдут 2 провода на 2 цепи. Один из проводов соединим с патроном лампы. От патрона выводим второй проводник, соединяем с нулем. Одна цепь готова. Для проверки щелкаем первой клавишей выключателя, лампа горит.

2-й провод от выключателя подключаем к патрону другой лампы. От патрона провод соединяем с нулем. Если по очереди щелкать клавишами выключателя, то будут светиться разные лампы.

Теперь подключим третью лампу. Соединяем ее параллельно к любой лампе. В люстре один провод стал общим. Его делают отличительным по цвету. Если у вас провода все одинаковые по цвету, то во избежание путаницы необходимо при монтаже пользоваться индикатором. Для подключения люстры обычно не требуется особого труда, так как эта схема не особо сложная.

Похожие темы:

15 Простая электронная схема для начинающих

Интересует электроника? Конечно, теория утомительна.

Начнем с более простых электронных схем.

Для новичков или тех, кто хочет, чтобы трасса была быстрой и недорогой.

Кроме того, это отличное обучение! Почему?

Потому что понимание простых электронных схем - хорошее основание.

Сказал мой друг.
«Большой проект в области электроники включает в себя множество небольших электронных схем»

Как вы думаете, правда?

Я тоже думаю, что это правда.Некоторые из ваших работ могут нуждаться в крошечных деталях. Так что небольшие схемы помогут ему хорошо работать.

Ну и что,

Я использовал для создания множества небольших схем. Конечно, на это нужно много времени. Наше время дорого.

Я хочу помочь вам выбрать эту простую схему. И строить быстро вовремя.

Всего ниже 15 цепей.

1 # Lego Автоматический светодиодный фонарик

Попробуйте простой автоматический светодиодный фонарик. Всего из 5 частей.

Узнайте о том, что транзистор, LDR, светодиоды и многое другое работают вместе как делитель напряжения.

Подробнее об этой схеме

Он подаст звуковой сигнал, когда почва высохнет. Итак, деревья не умирают.

Солнечная батарея работает от источника постоянного тока напряжением 6 В. Так что экономия на удобстве и не требует батарей.

Схема без использования печатной платы. Вы можете легко построить из нескольких частей.

Подробнее об этой схеме

3 # Сделайте источник питания 12 В 2 А постоянного тока

Если вы ищете адаптер переменного тока 12 В, простой проект.

Вам может понравиться эта схема.

Он может питать все цепи, требующие источника постоянного тока 12 В до 2 А.

Например, автомобильная аудиосистема: Усилитель TDA2004.

В любом случае, давайте вернемся к этой схеме.

Это особенное здание с молотком!

Подробнее об этой схеме

4 # Регулятор постоянного напряжения с использованием 78xx

Обычно основным источником питания электронной схемы является аккумулятор.

Энергия чистая и безопасная, поскольку она мала.

Например, в большинстве схем используется батарея на 9 В. Когда его сила ушла.

Надо купить новую замену. Это совсем не удобно.

Таким образом, я делаю вместо него блок питания на 9В.

Первый выбор, мы рекомендуем LM7809.

Это один из популярных трехконтактных линейных регуляторов семейства IC-78xx.

См. В схеме выше.

Напряжение переменного тока 12–18 В от трансформатора подается на D1-D4.Они выпрямляют переменный ток в постоянный.

Затем C1 фильтрует сглаживание постоянного тока.

Затем 7809 преобразует это нерегулируемое постоянное напряжение в стабильное + 9В.

Дополнительно, если нужны другие уровни напряжения.

Например, 5 В цифровой, мы используем IC-7805 вместо IC-7809.

Итак, используйте IC-7812 для выхода 12 В постоянного тока.

Если вы хотите построить это.

Вы можете увидеть больше простых электронных схем с разводкой печатной платы.

Подробнее об этой схеме

5 # Первый источник переменного тока

1.5A, от 1,2 В до 30 В Регулируемый источник питания с использованием LM317

Иногда необходимо использовать схему источника питания 1,5 В.

Но вы не можете использовать IC-7805. Или.

Вам необходимо использовать другое напряжение, например 13 В или 4,5 В.

Рекомендуется: Калькулятор микросхемы регулятора напряжения LM317

Лучше всего использовать регулируемый источник питания.

Для новичков и простейших мы используем LM317 (трехконтактные регулируемые регуляторы с положительным регулированием).

LM317 - это ИС регулируемого регулятора, предназначенная для многих источников питания для 1.Выход 5А.

Связано: LM317 2N3055 Источник переменного тока

Кроме того, он регулируется от 1,2 В до 37 В, с ограничением тока, тепловым отключением, полной защитой.

Эта схема создана для вас.

Он может подавать напряжение от 1,2 В до 30 В во всем диапазоне около 1 А.

Подробнее об этой схеме

6 # 30-минутный транзисторный таймер


Мы можем использовать эти простые электронные схемы.Изучить основную схему таймера.

Работа схемы основана на изучении заряда и разряда конденсатора.

И мы можем применить его для включения-выключения электроприборов.

Приложение, просто поставь реле вместо светодиода.

Подробнее об этой схеме

7 # Бесконтактный тестер напряжения

Вам нужен инструмент для проверки сети переменного тока без прикосновения?

Эта схема может это сделать.

Проще говоря, внутри схемы используются транзисторы без ИС.

Вы можете услышать звук и отобразить его на светодиодном дисплее.

Подробнее об этой схеме

8 # Таймер 5-30 минут с использованием IC 555

Эта схема таймера использует таймер 555 IC. Это маленький, компактный и портативный.

Для сигнализации с помощью зуммера. Мы можем выбрать время 5, 10, 15 и 30 минут с S3 до S7 в качестве порядка.

Это дает понять, что мозг готов продолжать работать.

Это нравится многим друзьям.Вам тоже может понравиться.

Можно читать дальше : это таймер на 5-30 минут с разводкой печатной платы.

9 # Простейший инвертор на транзисторах


Когда вам нужно использовать небольшую лампочку с батареей 12 В. Но света нет. Почему? Для этой лампочки требуется высокое напряжение 220 В переменного тока. Как преобразовать 12 В постоянного тока в 220 В переменного тока 50 Гц?

У вас может быть много идей на этот счет. Но если вы торопитесь, есть еще одна простая идея. Называется самый простой инвертор.

Он использует только два силовых транзистора, два резистора и один трансформатор.Так просто! Вы можете иметь их в магазине. […]

Подробнее об этой схеме


Если вы хотите сделать забавную схему для людей. Эта схема может вызвать смех. Это небольшая электрическая цепь высокого напряжения. На выходе низкий ток. Это не вредно для людей.

Внутри схемы есть несколько компонентов: два небольших NPN-транзистора, 2 резистора и трансформатор. Так легко строить и недорого!

Подробнее об этой схеме

11 # Звуковой усилитель низкой мощности с печатной платой

Это моя первая схема звукового усилителя.Я использую LM386 в качестве основного, это усилитель низкого напряжения (5V-12V), разработанный специально для аудио приложений.

Который может использоваться с маленьким 9-вольтовым аккумулятором. Потребление тока всего 5 мА. И усиление до 500 мВт.

Коэффициент усиления внутренне установлен на 20. Коэффициент усиления можно увеличить до 200, подключив конденсатор емкостью 10 мкФ к контактам 1 (+) и 8 (-). Достаточно, чтобы легко расширить звук мобильного телефона до 3-дюймового динамика.

Подробнее об этой схеме

12 # Стереоусилитель мощности низкого напряжения


Это мои первые комплекты схем стереоусилителя мощности, которые можно использовать с небольшой 9-вольтовой батареей, потребляемой током всего 5 миллиампер.И усиление до 500 мВт.

Подробнее об этой схеме

13 # Цепи LED Chaser с использованием 4017 + 555


Есть 5 цепей с печатными платами о цепях LED Chaser или ходовых огнях.

Они используют IC-4017 для управления светодиодами и IC-555 в качестве генератора импульсов. Лучше всего для новичка или для детей изучать цифровые технологии, и мой сын их любит.

Подробнее об этой схеме

Вот много интересных сайтов об этом.

10 лучших простых электронных схем для начинающих Спасибо за то, что показали мою схему на своих сайтах
Базовая электроника: 20 шагов
12 Простых электронных схем - Коллекция простых электронных схем
EasyEDA - Онлайн-дизайн печатных плат и симулятор схем

14 # Двойной светодиодный мигающий индикатор работает


Это требует дополнительной работы Free Running Multivibrator, чтобы напоминать Flip Flop. Которые постоянно поощряют себя.

Q1 и Q2 - это транзисторные PNP, которые можно использовать в целом (2N3906,2N2907 и т. Д.)

Подробнее об этой схеме

15 # Базовая музыкальная звуковая мелодия


В схеме в основном используется базовая микросхема IC UM66T, использующая звук музыкального происхождения с приятным звучанием и простая в использовании.

Он использует только одну интегральную схему и громкоговоритель, пьезозуммер, малогабаритный, и имеет питание только 3В.

Подробнее об этой схеме

Заключение

Это всего лишь несколько простых схем схем.Если вы хотите посмотреть больше схем, нажмите здесь!

Не только это. Смотрите больше схем ниже!

Смотрите! 99+ простых электронных схем

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Простое руководство по изучению электроники для начинающих

Электроника для начинающих - тема, которую я люблю. Слишком много людей пытаются проповедовать, что электроника - это сложно. Конечно, чтобы стать экспертом, нужно время.Но вы можете начать получать удовольствие и сразу же создавать полезные вещи. А это просто!

Разве не было бы круто сделать что-нибудь вроде пульта дистанционного управления или усилителя? А может, что-то более продвинутое, например, квадрокоптер или мобильный телефон?

Выполните эти шаги, и вы будете на правильном пути к созданию любого гаджета, о котором мечтаете.

Шаг 1. Обзор основных операций

Первый шаг, который нужно сделать, - получить простое понимание основных концепций электроники для начинающих.

Напряжение, ток и сопротивление

  • Ток измеряется в А или А
  • Напряжение измеряется в Вольтах или В
  • Сопротивление измеряется в Ом или Ом

Вот красивая иллюстрация:

Узнайте больше об основах тока, напряжения и сопротивления.

Схемы

Принципиальные схемы подобны рецептам электроники. Они говорят вам, как именно соединить компоненты, чтобы создать определенную цепь.

В Интернете есть миллиард принципиальных схем. Так что, не зная никакой теории, вы можете построить довольно продвинутые схемы. Если вы знаете практические шаги по построению схемы.

Основные компоненты

Я бы не стал уделять слишком много времени этой фазе, когда вы только начинаете. Просто прочтите немного, чтобы пробудить ваше любопытство. Затем переходите к следующему шагу.

Начните с беглого просмотра моей популярной статьи об основных электронных компонентах.Или выберите конкретный компонент, о котором вы хотите узнать больше, из одной из этих статей:

Затем, по мере того, как вы продвигаетесь вперед и что-то заинтересуетесь, вы можете вернуться к этому руководству «Электроника для начинающих» и узнать больше о компонентах.

Шаг 2: Начало построения схем

Если вы хотите научиться публичным выступлениям - как вы думаете, как это лучше всего сделать? Изучить или на самом деле это сделать? Думаю, вы согласитесь, что вы узнаете больше, если выступите публично.

Итак, как можно скорее приступайте к построению цепей. Это вещь номер один, если вы хотите изучать электронику.

Самый простой способ начать - это построить наборы. Вы получите плату и все компоненты в одной упаковке. Все, что вам нужно сделать, это следовать инструкциям.

Но, в конце концов, вы должны освободиться от этих инструкций и начать строить схемы самостоятельно. Начните с создания схем с использованием макетов и стрип-плат.

Я написал суперпрактичную электронную книгу, которая может оказаться полезной: «Начало работы с электроникой».

В книге даны пошаговые инструкции по созданию ваших первых схем - от мигающей лампочки до музыкального гаджета. Он также охватывает основы электроники: какие компоненты вам нужно знать и как выбрать компоненты для вашей схемы. Я рекомендую вам прочитать его и сделать шаги, чтобы освоиться со строительством схем.

Чтобы по-настоящему хорошо разбираться в построении схем, я рекомендую мою книгу «Руководство по схемам для новичков», учебное пособие по построению схем.

Шаг 3. Знакомство с микроконтроллерами

Теперь, когда вы построили несколько схем и намочили уши, пора узнать о микроконтроллерах. Это один из самых полезных инструментов в электронике.

Вы можете выбрать, насколько глубоко вы хотите зайти на этом этапе. Может быть, вы просто хотите прочитать об основах микроконтроллеров, или, может быть, вы хотите немного углубиться в некоторые более сложные темы о микроконтроллерах.

Один из самых простых способов начать работу с микроконтроллерами - использовать Arduino.Что бы вы ни выбрали, полезно знать о возможностях микроконтроллеров.

Шаг 4. Начните проект, который вам нравится

А теперь НАСТОЯЩЕЕ развлечение начинается!

Возьмите проект, который вас вдохновляет. Что-то, что, по вашему мнению, было бы действительно круто сделать. Поступая так, вы столкнетесь со многими проблемами. И эти вызовы хороши, потому что они покажут вам, чему вам нужно научиться.

На этом этапе вы, вероятно, изучите некоторую теорию электроники, например закон Ома.И некоторые полезные принципиальные схемы, такие как токоограничивающий резистор.

Хороший ресурс для вас, когда вы начинаете свой собственный проект, - это как создать свою собственную схему с нуля.

Шаг 5: Переходите на следующий уровень

Теперь, когда вы создали свой первый проект, пора поднять свой уровень мастерства на новый уровень. Пришло время научиться создавать собственные печатные платы. Изучив этот навык, вы сможете создавать действительно продвинутые устройства, такие как квадрокоптеры, роботы, мобильные телефоны +++

Создание собственных печатных плат - один из многих навыков, которым вы научитесь в моем клубе электроники Ohmify.

Вы новичок и хотите изучать электронику? Как я могу улучшить это руководство «Электроника для начинающих»? Сообщите мне, с чем вы боретесь, оставив комментарий ниже. Я сделаю все возможное, чтобы направить вас на верный путь.

А если понравится - поделитесь пожалуйста.

12 простых электронных схем - Сборник простых электронных схем для начинающих

В этой статье мы пытаемся перечислить самые популярные электронные схемы, которые мы опубликовали за последние пару лет.Мы знаем, что это непростая задача! Первое препятствие, которое нужно преодолеть, - это выбор критериев для принятия решения: « что делает трассу популярной? “. Следующее препятствие - перечислить их все в упорядоченном и категоризированном порядке. Некоторые схемы могут показаться такими глупыми и простыми для опытного любителя электроники, в то время как другие схемы могут показаться такими сложными и сложными для любителя. Мы знаем, что невозможно удовлетворить всех одинаково! Однако мы постарались сделать список максимально интересным.

Критерии, которые мы использовали для выбора популярной схемы, очень просты. Мы выбрали схемы с наибольшим количеством просмотров страниц из разных категорий. Мы полагались на данные, собранные из аналитического приложения, которое мы настроили на этом веб-сайте. Чтобы упорядочить список, мы просто выбрали 2–3 популярных схемы и поместили их в соответствующую категорию. Все перечисленные здесь электронные схемы можно использовать бесплатно. Мы протестировали многие из них и доказали, что работают в нашей лаборатории. Однако могут быть схемы с мелкими и незначительными ошибками! Если вы столкнетесь с подобными ошибками при реализации схемы, просто прокомментируйте.Мы постараемся помочь вам.

Схемы усилителя

1. Цепь усилителя мощностью 150 Вт

Это одна из самых популярных схем на этом сайте по количеству просмотров страниц и количеству комментариев! Я думаю, что особенность этой схемы усилителя делает ее такой популярной среди читателей. Это одна из самых дешевых схем, с помощью которой можно сделать выходной усилитель RMS на 150 Вт. К тому же схема отличается большой прочностью и надежностью.Такие факторы, как низкая стоимость, надежность и надежность, упрощают задачу даже новичков.

2. Усилитель сабвуфера 100 Вт

Это следующая по популярности схема в категории усилителей. Вы можете легко собрать эту схему, так как она состоит только из транзисторов. С помощью этой схемы вы можете создать выходную мощность 100 Вт. Самое интересное, что комплектующие такие простые и дешевые. Вы можете купить их все в местном магазине и собрать на доске.

Цепи освещения

3. Автоматический аварийный светодиодный светильник

Это самая популярная электронная схема в категории схем освещения. Он был разработан ценным сотрудником этого веб-сайта, Mr.Seetharaman . Схема проста и сделана с использованием микросхемы LM317, светодиодов, 2 транзисторов и некоторых общих компонентов. Об этой схеме было много дискуссий в разделе комментариев. Когда вы пытаетесь собрать эту схему, сначала просмотрите раздел комментариев.Это поможет вам сэкономить много времени на устранение неполадок.

4. Схема уличного освещения

Что ж, это довольно старая схема, которую мы разработали в 2008 году 😉 Причина ее популярности - простота схемы! Это может быть одна из самых простых схем на этом веб-сайте, которую может попробовать даже новичок. Вы можете заставить эту схему работать с парой транзисторов, резисторов, LDR и реле! Звучит слишком просто? Еще одна причина его популярности в том, что эта схема работает отлично.Большинство читателей, попробовавших эту схему, остались довольны результатом. Просто попробуйте это, если вы новичок!

Цепи индикаторов / аварийных сигналов

5 . Простой указатель уровня воды

Это еще одна схема, которую мы опубликовали еще в 2008 году! Что ж, его тихо и просто сделать, поскольку эта схема имеет всего 5 транзисторов, 5 светодиодов и 5 резисторов. Но схема, я думаю, немного противоречивая! В комментариях много сомнений и вопросов.Когда вы пробуете эту схему, внимательно прочтите комментарии. Также имейте в виду, что есть много ребят, которые отлично справились с выводом. Эта трасса действительно хороша для новичков.

6. Цепь сигнализации уровня воды

Итак, вот еще одна старинная собственность! Схема сделана еще в 2008 году! Отличие от приведенной выше схемы заключается в использовании сигнализации. Схема проста и удобна в реализации. Вы должны прочитать раздел комментариев, прежде чем реализовывать эту схему.Как обычно, есть люди, у которых это работает отлично, и есть люди, у которых есть ошибки! Так что, чтобы избежать большей части возможных проблем, вы можете прочитать комментарии. Это может сэкономить вам много времени на устранение неполадок.

7. Индикатор входящего мобильного вызова

Еще одна электронная схема 2008 года выпуска! Эта схема делает не что иное, как мигание светодиодов, когда ваш мобильный телефон звонит (даже когда звонок вашего телефона отключен). Просто забавный проект для реализации, вот и все! В любом случае прочтите комментарии, прежде чем делать схему.

Зарядные цепи

8 . Схема зарядки аккумулятора с использованием SCR

Quiet - простая в изготовлении схема зарядного устройства с использованием SCR, транзистора BC148 и некоторых других основных компонентов. Зарядное устройство предназначено для зарядки 12-вольтовых свинцово-кислотных автомобильных аккумуляторов емкостью от 30 до 40 Ач. Схема достаточно хороша, и многие ребята добились идеального результата. Просто попробуйте сами!

9. Зарядное устройство с использованием LM317

Итак, это еще одно зарядное устройство для свинцово-кислотных аккумуляторов, разработанное с использованием микросхемы LM317.Помимо микросхемы есть транзистор, пара конденсаторов и резисторы. Легко сделать схему зарядки с таким количеством проблем, исправленных в разделе комментариев. Внимательно прочтите комментарии!

Инверторные схемы

Есть две схемы инвертора мощностью 100 Вт, которые так популярны на этом сайте. Я перечислю их обоих. Первая - это схема, которую мы опубликовали в 2008 году, - это схема инвертора 100 Вт . Эта схема сделана с использованием микросхемы CD4047 и транзисторов TIP122 и 2N3055.Как обычно, сделать схему несложно! Второй - это схема простого инвертора на 100 Вт , сделанная с использованием CD4047 и полевых МОП-транзисторов (IRF540). Эта довольно новая (выпущена в 2010 году) и представляет собой отлично работающую схему. Однако я рекомендую вам ознакомиться с комментариями, прежде чем реализовывать какую-либо из этих схем.

Цепи контроллера

12. Контроллер уровня воды с использованием 8051

Что ж, это довольно новая и хорошо протестированная схема, которую мы недавно сделали.Мы проверили это в нашей лаборатории, и все работает нормально. Вы можете получить схему и программное обеспечение, необходимое для создания этого проекта. Он разработан с использованием микроконтроллера 8051 и имеет множество замечательных функций, добавленных к нему с помощью программного обеспечения. Просто попробуйте и посмотрите, как это работает!

Этот список еще не полный! В ближайшем будущем мы будем добавлять в этот список все больше и больше схем. Просто сохраните страницу в закладках!

Введение в основные электронные схемы

Эта статья представляет собой введение в очень простые электронные схемы.Я сделал эту вводную статью максимально простой для читателей, которые плохо знакомы с электроникой.

Оценка технической сложности: 6 из 10

В моей предыдущей статье Введение в базовую электронику вы узнали все о различных электронных компонентах. Но для реального использования электронные компоненты должны быть соединены вместе, чтобы образовать электронные схемы.

В этой статье есть несколько уравнений, но пусть они вас не пугают.Все используемые уравнения относительно просты для понимания, и они помогут вам получить более фундаментальное представление об обсуждаемой схеме.

Если вы не отличите конденсатор от диода, обязательно прочтите статью по базовой электронике, ссылка на которую указана выше.

Цепь резистора

Мы начнем с рассмотрения простейшей из возможных схем, а именно схемы, которая включает только источник напряжения и резистор (рис. 1).


Рисунок 1 - Схема простого резистора

Показанный символ источника напряжения представляет собой батарею, но можно заменить любой источник питания постоянного тока.Ток, обозначенный буквой «I» со стрелкой, будет течь от положительной клеммы источника напряжения V1 через провод вниз через R1 и затем в землю.

Самым фундаментальным уравнением во всей электронике является закон Ома. Закон Ома - это простое уравнение, которое показывает, как связаны напряжение, ток и сопротивление. Используя небольшую алгебру, закон Ома можно записать в трех формах:

I = V / R
В = I * R
R = V / I

где I = ток в амперах, V = напряжение в вольтах и ​​R = сопротивление в омах.Например, если V1 = 3 В и R = 1 кОм, протекающий ток будет 3 В / 1 кОм = 3 мА. Как увеличение напряжения, так и уменьшение сопротивления увеличивают протекающий ток.

Резисторный делитель

Следующая схема, которую мы рассмотрим, называется резистивным делителем. Самый простой тип резистивного делителя состоит всего из двух резисторов. Как следует из названия, резисторный делитель обеспечивает простой метод точного деления напряжения.


Рисунок 2- Схема резисторного делителя

Уравнение для расчета выходного напряжения резисторного делителя:

Vout = [R2 / (R1 + R2)] * Vin

Как показывает это уравнение, выходное напряжение пропорционально соотношению R1 и R2.

Давайте рассмотрим несколько простых случаев. Часто, когда вы хотите понять математическое уравнение, полезно посмотреть на некоторые из крайних пределов. Это может помочь вам лучше понять уравнение, а также проверить правильность уравнения.

Я собираюсь рассмотреть три различных варианта, которые упростят визуализацию:

Случай № 1: R1 = 0, R2> 0

Если сопротивление R1 становится равным нулю, значит, это короткое замыкание. Это означало бы, что V1 закорочен непосредственно на выход.На самом деле не имеет значения, что такое R2, если только он не короткий.

В этом случае уравнение резисторного делителя упрощается до

Vout = [R2 / (0 + R2)] * Vin
Vout = Vin

Нет деления напряжения, и выходное напряжение просто равно входному.

Случай № 2: R1> 0, R2 = 0

Если R2 = 0 (короткое замыкание) и сопротивление R1 превышает 0 Ом, тогда выход просто закорочен на массу. В этом случае уравнение упрощается следующим образом:

Vout = [0 / (R1 + 0)] * Vin
Выход = 0 * Вин = 0

Случай № 3: R1 = R2

Если уравнять R1 и R2, уравнение упростится до:

Vout = [R2 / (R2 + R2)] * Vin
Vout = [1/2] * Vin

Таким образом, в случае равенства R1 и R2 выходное напряжение резистивного делителя будет ровно половиной входного напряжения.

Цепь конденсатора

Следующая схема, которую мы рассмотрим, - это источник напряжения и конденсатор.


Рисунок 3 - Схема простого конденсатора

Мгновенный ток через конденсатор зависит от скорости изменения напряжения на этом конденсаторе. Уравнение для тока через конденсатор выглядит следующим образом:

я = C * dv / dt

В этом уравнении «i» равняется току через конденсатор (строчная буква обычно используется для обозначения мгновенного параметра, который изменяется со временем, а не значения постоянного тока).«C» - это емкость в фарадах, а dv / dt указывает скорость, с которой напряжение на конденсаторе изменяется со временем.

Предположим, что при первом включении источника напряжения оно возрастает с 0 до 3 вольт за 1 секунду. Это будет скорость нарастания (dv / dt) 3 В / с. Чтобы вычислить мгновенный ток конденсатора, вы просто умножаете эту скорость нарастания на емкость.

Когда конденсатор полностью заряжен, он выглядит как разрыв цепи для постоянного тока, поэтому ток не течет.Когда на конденсаторе имеется стабильное постоянное напряжение, коэффициент dv / dt в приведенном выше уравнении становится равным нулю, поскольку напряжение не меняется со временем.

Но вкратце, перед зарядкой конденсатора это выглядит как короткое замыкание (или низкий импеданс). Если вы установите член dt в уравнении 5 равным нулю (для нулевого времени), ток приблизится к бесконечности, что просто означает короткое замыкание.

При первом включении схемы, показанной на Рисунке 3, конденсатор выглядит как короткое замыкание, потому что конденсатор еще не заряжен.На самом деле это не будет настоящее короткое замыкание, потому что источник напряжения, цепь и конденсатор имеют небольшое паразитное сопротивление.

Как только источник напряжения достигнет своего конечного напряжения и конденсатор полностью заряжен, ток перестанет течь (кроме небольшого количества тока утечки). Это связано с тем, что скорость нарастания напряжения (dv / dt) теперь равна нулю.

Ток протекает только тогда, когда источник напряжения нарастает, и это уравнение позволяет рассчитать ток через этот конденсатор во время этого процесса нарастания.

Конденсатор последовательно по сравнению с параллельным

Мы рассмотрим еще две простые конденсаторные схемы, чтобы помочь вам лучше понять, как конденсаторы могут работать.


Рисунок 4 - Конденсатор с двигателем, включенным параллельно

В этой схеме у нас есть источник напряжения, подключенный параллельно конденсатору и двигателю постоянного тока. Двигатель не особо важен для того, что мы здесь обсуждаем, и это может быть что угодно, от микроконтроллера до регулятора напряжения.В этом случае на двигатель подается полное напряжение V1. Как только конденсатор заряжается, весь ток проходит через двигатель.

Теперь, если мы изменим эту схему и вместо того, чтобы подключать двигатель параллельно C1 и V1, давайте соединим их все последовательно.


Рисунок 5 - Конденсатор с двигателем последовательно

В этом случае двигатель может работать очень короткое время, пока источник напряжения нарастает, но как только V1 достигает своего конечного напряжения и C1 заряжается, ток через двигатель не течет.Таким образом, в этой схеме двигатель, скорее всего, не будет работать должным образом.

Диодные схемы

Теперь мы рассмотрим схему, состоящую из последовательно соединенных источника напряжения, резистора и диода. По сути, диод позволяет току течь через него только в одном направлении (если вам нужно напомнить о диодах и транзисторах, см. Введение в базовую электронику).

Диод с прямым смещением

Символ диода выглядит как стрелка, указывающая в направлении, в котором может течь ток.Если диод ориентирован в цепи, чтобы позволить току течь через него, тогда этот диод смещен в прямом направлении.


Рисунок 6 - Схема диода с прямым смещением

Если вы хотите рассчитать ток, протекающий через диод, показанный на рисунке 6, вы должны использовать закон Ома. Однако вам нужно сделать что-то немного другое из-за диода.

При прямом смещении диод имеет примерно фиксированное падение напряжения на нем, которое обычно составляет около 0.7V. Но существует много разных типов диодов с немного разными перепадами напряжения. Например, тип диода, называемый диодом Шоттки, имеет падение напряжения, близкое к 0,5 В.

Чтобы рассчитать ток, протекающий в этой цепи, необходимо определить напряжение на R1. Назначение этого резистора - установить и ограничить ток в этой цепи. Самая первая схема, которую мы рассмотрели, имела только источник напряжения и резистор. Источник полного напряжения был приложен к резистору, потому что другой конец резистора связан с землей.

Здесь дело обстоит не так, потому что этот другой вывод резистора связан с диодом, а не с землей. Это означает, что падение напряжения на диоде снижает величину напряжения на резисторе. Напряжение на резисторе V1 - 0,7В.

Уравнение для расчета тока для этой цепи:

I = (V1 - 0,7) / R

Например, если источник напряжения 3 В, а сопротивление резистора 1 кОм, то ток будет (3 - 0,7) / 1 кОм = 2.3 / 1к = 2,3 мА

Обратно смещенный диод

Следующая схема выглядит идентично, за исключением того, что диод направлен в противоположную сторону. Из-за полярности источника напряжения ток снова хочет течь в направлении стрелки, но теперь диод смещен в обратном направлении.


Рисунок 7 - Схема обратного смещения диода

Эту схему действительно легко проанализировать, поскольку при обратном смещении диода не будет протекать ток.

Ничто не бывает идеальным, и всегда есть небольшой ток утечки, который проходит через диод с обратным смещением. Кроме того, если V1 превысит максимальное номинальное напряжение обратного смещения диода, диод может выйти из строя, что приведет к протеканию тока.

Светоизлучающий диод (LED)

Рассмотрим еще одну диодную схему. Эта схема похожа на схему диода с прямым смещением, которую мы рассмотрели выше. Однако вместо обычного диода в этой схеме используется особый тип диода, называемый светоизлучающим диодом (LED).

Как следует из названия, светодиод излучает свет, когда через него проходит ток, будучи смещенным в прямом направлении. Светодиод также по-прежнему действует как обычный диод и пропускает ток только в одном направлении.


Рисунок 8 - Простая светодиодная схема

Если вы вставите этот диод в обратном направлении, и он будет смещен в обратном направлении, то ток не будет течь и свет не будет. Количество света, излучаемого светодиодом, зависит от тока, протекающего через него, а не от напряжения на нем.

Чтобы рассчитать ток для этой схемы, вы должны сделать то же самое, что и для схемы диода с прямым смещением, рассмотренной ранее, используя уравнение I = (V1-VD) / R, где VD - напряжение на диоде.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .

Имейте в виду, что прямое падение напряжения светодиода может сильно варьироваться в зависимости от цвета светодиода и, вероятно, будет больше 0.7V.

Фильтрующие контуры

Теперь мы рассмотрим схемы фильтров, предназначенные для пропускания и / или отклонения определенных частот. Фильтры - одна из самых важных и фундаментальных схем, которые имеют почти бесконечное количество применений.

У вас может быть, например, фильтр нижних частот, который пропускает низкочастотные сигналы, но отклоняет более высокие частоты. Фильтр высоких частот делает прямо противоположное. Он пропускает высокие частоты и блокирует низкие частоты.

Полосовой фильтр пропускает только частоты в определенном диапазоне.Наконец, режекторный фильтр будет отклонять частоты в определенном диапазоне и пропускать все частоты за пределами этого диапазона.

Частота измеряется в циклах в секунду или в герцах. Например, человеческий слух достигает примерно 10-20 кГц (10-20 тысяч раз в секунду). С другой стороны, радиосигнал Bluetooth или WiFi колеблется с частотой 2,4 ГГц (2,4 миллиарда раз в секунду).

RC-фильтр нижних частот

Простейший фильтр нижних частот состоит только из резистора и конденсатора и соответственно называется RC-фильтром.


Рисунок 9 - RC-фильтр нижних частот

В этой схеме сигнал поступает в R1, а отфильтрованный выходной сигнал снимается с узла между R1 и C1.

Конденсатор пропускает высокие частоты и блокирует низкие частоты. Таким образом, в RC-фильтре нижних частот низкие частоты будут воспринимать C1 как очень высокий импеданс (разомкнутую цепь), а высокие частоты будут воспринимать конденсатор как низкое сопротивление относительно земли.

В RC-фильтре нижних частот все высокие частоты проходят через C1 на землю.Это по существу удаляет высокочастотные компоненты, а низкие частоты передаются на выход.

Частота среза - это частота, с которой фильтр начинает фильтрацию. Для фильтра нижних частот частоты ниже частоты среза пропускаются, а частоты выше частоты среза отклоняются.

Ни один фильтр не идеален, и будут некоторые частоты около частоты среза, которые передаются на выход с сильным ослаблением (понижением).

Уравнение для расчета частоты среза для RC-фильтра:

F = 1 / (2 * PI * R * C)

Частота среза задается по существу R умноженной на C.Коэффициент R * C обычно называют постоянной времени фильтра.

RC-фильтр высоких частот

Для RC-фильтра верхних частот мы просто меняем местами резистор и конденсатор. Конденсатор по-прежнему имеет высокий импеданс на низких частотах и ​​низкий импеданс на высоких частотах.

Но при перестановке двух компонентов низкие частоты теперь блокируются конденсатором (они не проходят через C1 на выход), тогда как высокие частоты могут проходить на выход.


Рисунок 10 - RC-фильтр верхних частот

Частота среза соответствует тому же уравнению, что и RC-фильтр нижних частот, за исключением того, что теперь пропускаются частоты выше этой частоты среза. Отсюда и название фильтр верхних частот.

LC фильтр нижних частот

Следующим шагом на пути к RC-фильтрам являются LC-фильтры, в которых резистор заменен индуктором. Катушка индуктивности работает прямо противоположно конденсатору. Катушка индуктивности пропускает низкие частоты и блокирует высокие частоты.

Для RC-фильтра резистор просто устанавливает частоту среза. Если резистора нет, частота среза становится бесконечной - это означает, что пропускается каждая частота и никакой фильтрации не происходит. Для простого RC-фильтра только импеданс конденсатора изменяется с частотой и выполняет фильтрацию.


Рисунок 11 - LC-фильтр нижних частот

С другой стороны, в LC-фильтре оба компонента участвуют в фильтрации.В LC-фильтре нижних частот, помимо того, что конденсатор посылает высокие частоты на землю, высокие частоты также блокируются индуктором от достижения выхода.

Таким образом, для низких частот L1 выглядит как короткое замыкание, а C1 как разомкнутая цепь, поэтому эти частоты передаются на выход без ослабления.

Для высоких частот L1 выглядит как разомкнутый, а C1 - как замкнутый на землю, поэтому высокие частоты не будут передаваться на выход.

Уравнение для частоты среза LC-фильтра аналогично RC-фильтру, за исключением того, что вместо простого R * C множитель становится квадратным корнем из L * C.

F = 1 / [2 * PI * SQRT (L * C)]

ЖК-фильтр верхних частот

Так же, как мы сделали для RC-фильтра верхних частот, для LC-фильтра верхних частот мы просто меняем местами индуктивность и конденсатор. Теперь конденсатор блокирует низкие частоты и пропускает высокие частоты, в то время как катушка индуктивности отправляет низкие частоты на землю. Следовательно, на выход будут передаваться только частоты выше частоты среза.


Рисунок 12 - LC фильтр верхних частот

Заключение

Теперь вы на правильном пути к пониманию основ работы электронных схем.Я намеренно сделал эту вводную статью довольно простой, чтобы не ошеломить вас.

Но эта статья дает вам основу, необходимую для начала изучения более сложных электронных схем. Схемы, которые мы рассмотрели в этой вводной статье, не обладают достаточной независимой функциональностью, но они будут использоваться в качестве строительных блоков в бесчисленных схемах.

В следующей статье мы рассмотрим более сложные схемы, включая некоторые базовые схемы на транзисторах.

Наконец, не забудьте загрузить бесплатный PDF-файл : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product .Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который вам может понравиться:

Сантьяго, Джон: 9781118493120: Amazon.com: Книги

Изучите:

  • Поймите резистивные схемы, законы Кирхгофа, эквивалентные подсхемы и многое другое
  • Дополните свое обучение в классе
  • Получите высокие баллы в курсе анализа цепей

Анализ электрических цепей перегружен?

Анализ цепей для чайников дает вам четкую информацию о темах, охватываемых в типичном курсе анализа цепей.Это удобное практическое руководство - от резистивных цепей и законов Кирхгофа до эквивалентных подсхем и аккумуляторов энергии - станет идеальным помощником для понимания тем, которые могут сбивать вас с толку в вашем курсе анализа цепей. И так, чего же ты ждешь?

  • Анализ схем 101 - познакомьтесь с техническим языком, концепциями и методами, необходимыми для анализа схем
  • Упростите это - разберитесь с общими аналитическими методами, которые помогут вам упростить более сложные схемы до управляемого уровня
  • Получите усиление - узнайте, как работать с транзисторами как усилителями тока и операционными усилителями как усилителями напряжения.
  • Ch-ch-ch-changes конденсаторы)
  • Будьте преобразователем - используйте методы фазора и Лапласа для преобразования задачи, основанной на исчислении, в задачу, требующую только алгебры

Откройте книгу и найдите:

  • Ключи к чтению принципиальных схем
  • Как применять закон Ома и законы Кирхгофа при анализе схем
  • Этапы преобразования s ources
  • Анализ тока сетки, суперпозиция и другие полезные аналитические методы
  • Входы и выходы схем операционных усилителей
  • Подходы к анализу цепей первого и второго порядка
  • Как создавать фильтры, подключая резисторы, индукторы и конденсаторы

Изучите:

  • Поймите резистивные схемы, законы Кирхгофа, эквивалентные подсхемы и многое другое
  • Дополните свое обучение в классе
  • Получите высокие баллы в курсе анализа цепей

Анализ электрических цепей перегружен?

Анализ цепей для чайников дает вам четкую информацию о темах, охватываемых в типичном курсе анализа цепей.Это удобное практическое руководство - от резистивных цепей и законов Кирхгофа до эквивалентных подсхем и аккумуляторов энергии - станет идеальным помощником для понимания тем, которые могут сбивать вас с толку в вашем курсе анализа цепей. И так, чего же ты ждешь?

  • Анализ схем 101 - ознакомьтесь с техническим языком, концепциями и методами, необходимыми для анализа схем
  • Упростите это - разберитесь с общими аналитическими методами, которые помогут вам упростить более сложные схемы до управляемого уровня
  • Получите усиление - узнайте, как работать с транзисторами как усилителями тока и операционными усилителями как усилителями напряжения.
  • Ch-ch-ch-changes конденсаторы)
  • Будьте преобразователем - используйте методы фазора и Лапласа для преобразования задачи, основанной на исчислении, в задачу, требующую только алгебры

Откройте книгу и найдите:

  • Ключи к чтению принципиальных схем
  • Как применять закон Ома и законы Кирхгофа при анализе схем
  • Этапы преобразования s ources
  • Анализ тока сетки, суперпозиция и другие полезные аналитические методы
  • Входы и выходы схем операционных усилителей
  • Подходы к анализу цепей первого и второго порядка
  • Как создавать фильтры, подключая резисторы, индукторы и конденсаторы

Об авторе

Джон М.Сантьяго-младший, доктор философии, , прослужил в ВВС США (USAF) 26 лет. В течение этого времени он занимал различные руководящие должности в области управления техническими программами, развития приобретения и поддержки операционных исследований. Находясь в Европе, он возглавлял более 40 международных научных и технических конференций / семинаров.

Как работают электронные компоненты

Электронные гаджеты стали неотъемлемой частью нашей жизни. Они сделали нашу жизнь комфортнее и удобнее.Электронные гаджеты находят широкое применение в современном мире, от авиации до медицины и здравоохранения. Фактически, революция в электронике и революция в компьютерах идут рука об руку.

Большинство гаджетов имеют крошечные электронные схемы, которые могут управлять машинами и обрабатывать информацию. Проще говоря, электронные схемы - это линия жизни различных электроприборов. В этом руководстве подробно рассказывается об общих электронных компонентах, используемых в электронных схемах, и о том, как они работают.

В этой статье я дам обзор электронных схем. Затем я предоставлю дополнительную информацию о 7 различных типах компонентов. Для каждого типа я буду обсуждать состав, принцип работы, а также функцию и значение компонента.

  1. Конденсатор
  2. Резистор
  3. Диод
  4. Транзистор
  5. Катушка индуктивности
  6. Реле
  7. Кристалл кварца


Обзор электронной схемы

Электронная схема - это структура, которая направляет и управляет электрическим током для выполнения различных функций, включая усиление сигнала, вычисление и передачу данных.Он состоит из нескольких различных компонентов, таких как резисторы, транзисторы, конденсаторы, катушки индуктивности и диоды. Для соединения компонентов друг с другом используются токопроводящие провода или дорожки. Однако цепь считается завершенной, только если она начинается и заканчивается в одной и той же точке, образуя цикл.


Элементы электронной схемы

Сложность и количество компонентов в электронной схеме может изменяться в зависимости от ее применения. Однако простейшая схема состоит из трех элементов, включая токопроводящую дорожку, источник напряжения и нагрузку.

Элемент 1: токопроводящий путь

Электрический ток течет по токопроводящей дорожке. Хотя медные провода используются в простых цепях, они быстро заменяются токопроводящими дорожками. Проводящие дорожки - это не что иное, как медные листы, наклеенные на непроводящую основу. Они часто используются в небольших и сложных схемах, таких как печатные платы (PCB).

Элемент 2: Источник напряжения

Основная функция цепи - обеспечить безопасное прохождение электрического тока через нее.Итак, первый ключевой элемент - это источник напряжения. Это двухконтактное устройство, такое как аккумулятор, генераторы или энергосистемы, которые обеспечивают разность потенциалов (напряжение) между двумя точками в цепи, так что ток может течь через них.

Элемент 3: Нагрузка

Нагрузка - это элемент в цепи, который потребляет мощность для выполнения определенной функции. Лампочка - простейшая нагрузка. Однако сложные схемы имеют разные нагрузки, такие как резисторы, конденсаторы, транзисторы и транзисторы.


Факты об электронных схемах

Факт 1: обрыв цепи

Как упоминалось ранее, цепь всегда должна образовывать петлю, чтобы через нее протекал ток. Однако, когда дело доходит до разомкнутой цепи, ток не может течь, поскольку один или несколько компонентов отключены намеренно (с помощью переключателя) или случайно (сломанные части). Другими словами, любая цепь, не образующая петли, является разомкнутой.

Факт 2: Замкнутый контур

Замкнутый контур - это контур, который образует контур без каких-либо прерываний.Таким образом, это полная противоположность разомкнутой цепи. Однако полная цепь, которая не выполняет никаких функций, остается замкнутой цепью. Например, цепь, подключенная к разряженной батарее, может не работать, но это все равно замкнутая цепь.

Факт 3: Короткое замыкание

В случае короткого замыкания между двумя точками электрической цепи образуется соединение с низким сопротивлением. В результате ток имеет тенденцию течь через это вновь образованное соединение, а не по намеченному пути.Например, если есть прямое соединение между отрицательной и положительной клеммами батареи, ток будет проходить через нее, а не через цепь.

Однако короткое замыкание обычно приводит к серьезным несчастным случаям, так как ток может протекать на опасно высоких уровнях. Следовательно, короткое замыкание может повредить электронное оборудование, вызвать взрыв батарей и даже вызвать пожар в коммерческих и жилых зданиях.

Факт 4: Печатные платы (PCB)

Для большинства электронных приборов требуются сложные электронные схемы.Вот почему разработчикам приходится размещать крошечные электронные компоненты на печатной плате. Он состоит из пластиковой платы с соединительными медными дорожками с одной стороны и множества отверстий для крепления компонентов. Когда макет печатной платы наносится на пластиковую плату химическим способом, он называется печатной платой или печатной платой.

Рисунок 1: Печатная плата . [Источник изображения]
Факт 5: Интегральные схемы (ИС)

Хотя печатные платы могут предложить множество преимуществ, для большинства современных приборов, таких как компьютеры и мобильные телефоны, требуются сложные схемы, состоящие из тысяч и даже миллионов компонентов.Вот тут-то и пригодятся интегральные схемы. Это крошечные электронные схемы, которые могут поместиться внутри небольшого кремниевого чипа. Джек Килби изобрел первую интегральную схему в 1958 году в компании Texas Instruments. Единственная цель ИС - повысить эффективность электронных устройств при уменьшении их размера и стоимости производства. С годами интегральные схемы становились все более сложными, поскольку технологии продолжают развиваться. Вот почему персональные компьютеры, ноутбуки, мобильные телефоны и другая бытовая электроника с каждым днем ​​становятся все дешевле и лучше.

Рисунок 2: Интегральные схемы. [Источник изображения]

Электронные компоненты

Благодаря современным технологиям, процесс сборки электронных схем был полностью автоматизирован, особенно это касается изготовления микросхем и печатных плат. Количество и расположение компонентов в схеме может варьироваться в зависимости от ее сложности. Однако он построен с использованием небольшого количества стандартных компонентов.

Следующие компоненты используются для создания электронных схем.


Компонент 1: Конденсатор

Конденсаторы

широко используются для построения различных типов электронных схем.Конденсатор - это пассивный двухконтактный электрический компонент, который может электростатически накапливать энергию в электрическом поле. Проще говоря, он работает как небольшая аккумуляторная батарея, которая накапливает электричество. Однако, в отличие от аккумулятора, он может заряжаться и разряжаться за доли секунды.

Рисунок 3: Конденсаторы [Источник изображения]
A. Состав Конденсаторы

бывают всех форм и размеров, но обычно они состоят из одинаковых основных компонентов. Между ними уложены два электрических проводника или пластины, разделенные диэлектриком или изолятором.Пластины состоят из проводящего материала, такого как тонкие пленки из металла или алюминиевой фольги. С другой стороны, диэлектрик - это непроводящий материал, такой как стекло, керамика, пластиковая пленка, воздух, бумага или слюда. Вы можете вставить два электрических соединения, выступающих из пластин, чтобы зафиксировать конденсатор в цепи.

B. Как это работает?

Когда вы прикладываете напряжение к двум пластинам или подключаете их к источнику, на изоляторе возникает электрическое поле, в результате чего на одной пластине накапливается положительный заряд, а на другой накапливается отрицательный заряд.Конденсатор продолжает сохранять заряд, даже если вы отключите его от источника. В тот момент, когда вы подключаете его к нагрузке, накопленная энергия перетекает от конденсатора к нагрузке.

Емкость - это количество энергии, хранящейся в конденсаторе. Чем выше емкость, тем больше энергии он может хранить. Увеличить емкость можно, сдвинув пластины ближе друг к другу или увеличив их размер. В качестве альтернативы вы также можете улучшить изоляционные качества, чтобы увеличить емкость.

C. Функция и значение

Хотя конденсаторы выглядят как батареи, они могут выполнять различные типы функций в цепи, такие как блокировка постоянного тока с одновременным прохождением переменного тока или сглаживание выходного сигнала от источника питания. Они также используются в системах передачи электроэнергии для стабилизации напряжения и потока мощности. Одной из наиболее важных функций конденсатора в системах переменного тока является коррекция коэффициента мощности, без которой вы не сможете обеспечить достаточный пусковой момент для однофазных двигателей.

Фильтры для конденсаторов

Если вы используете микроконтроллер в цепи для запуска определенной программы, вы не хотите, чтобы его напряжение упало, так как это приведет к сбросу контроллера. Вот почему дизайнеры используют конденсатор. Он может обеспечить микроконтроллер необходимой мощностью на долю секунды, чтобы избежать перезапуска. Другими словами, он отфильтровывает шумы в линии питания и стабилизирует источник питания.

Применения удерживающего конденсатора

В отличие от батареи, конденсатор быстро разряжается.Вот почему он используется для кратковременного питания цепи. Батареи вашей камеры заряжают конденсатор, прикрепленный к вспышке. Когда вы делаете снимок со вспышкой, конденсатор высвобождает свой заряд за доли секунды, генерируя вспышку света.

Применение конденсатора таймера

В резонансной или зависящей от времени схеме конденсаторы используются вместе с резистором или катушкой индуктивности в качестве элемента синхронизации. Время, необходимое для зарядки и разрядки конденсатора, определяет работу схемы.


Компонент 2: Резистор

Резистор - это пассивное двухконтактное электрическое устройство, которое препятствует прохождению тока. Это, наверное, самый простой элемент в электронной схеме. Это также один из наиболее распространенных компонентов, поскольку сопротивление является неотъемлемым элементом почти всех электронных схем. Обычно они имеют цветовую маркировку.

Рисунок 4: Резисторы [Источник изображения]
A. Состав

Резистор - это совсем не модное устройство, потому что сопротивление - это естественное свойство, которым обладают почти все проводники.Итак, конденсатор состоит из медной проволоки, обернутой вокруг изоляционного материала, такого как керамический стержень. Количество витков и толщина медной проволоки прямо пропорциональны сопротивлению. Чем больше количество витков и чем тоньше провод, тем выше сопротивление.

Также можно встретить резисторы, изготовленные по спирали из углеродной пленки. Отсюда и название резисторы с углеродной пленкой. Они предназначены для схем с низким энергопотреблением, потому что резисторы с углеродной пленкой не так точны, как их аналоги с проволочной обмоткой.Однако они дешевле проводных резисторов. К обоим концам прикреплены клеммы проводов. Поскольку резисторы не учитывают полярность в цепи, ток может протекать в любом направлении. Таким образом, не нужно беспокоиться о том, чтобы прикрепить их вперед или назад.

B. Как это работает?

Резистор может показаться не очень большим. Можно подумать, что он ничего не делает, кроме как потребляет энергию. Однако он выполняет жизненно важную функцию: контролирует напряжение и ток в вашей цепи.Другими словами, резисторы дают вам контроль над конструкцией вашей схемы.

Когда электрический ток начинает течь по проводу, все электроны начинают двигаться в одном направлении. Это похоже на воду, текущую по трубе. По тонкой трубе будет течь меньше воды, потому что у нее меньше места для ее движения.

Точно так же, когда ток проходит через тонкий провод в резисторе, электронам становится все труднее двигаться через него. Короче говоря, количество электронов, проходящих через резистор, уменьшается с увеличением длины и толщины провода.

C. Функция и значение У резисторов

есть множество применений, но три наиболее распространенных - это управление током, разделение напряжения и цепи резистор-конденсатор.

Ограничение потока тока

Если вы не добавите в цепь резисторы, ток будет опасно высоким. Это может привести к перегреву других компонентов и их повреждению. Например, если вы подключите светодиод напрямую к батарее, он все равно будет работать.Однако через некоторое время светодиод нагреется, как огненный шар. В конечном итоге он сгорит, поскольку светодиоды менее устойчивы к нагреванию.

Но, если ввести в схему резистор, он снизит протекание тока до оптимального уровня. Таким образом, вы можете дольше держать светодиод включенным, не перегревая его.

Делительное напряжение Также используются резисторы

для понижения напряжения до нужного уровня. Иногда для определенной части схемы, такой как микроконтроллер, может потребоваться более низкое напряжение, чем для самой схемы.Здесь на помощь приходит резистор.

Допустим, ваша схема работает от аккумулятора 12 В. Однако для микроконтроллера требуется только питание 6 В. Итак, чтобы разделить напряжение пополам, все, что вам нужно сделать, это подключить последовательно два резистора с равным сопротивлением. Проволока между двумя резисторами снизит наполовину напряжение вашей цепи, к которой может быть подключен микроконтроллер. Используя соответствующие резисторы, вы можете снизить напряжение в цепи до любого уровня.

Резисторно-конденсаторные цепи Резисторы

также используются в сочетании с конденсаторами для создания микросхем, которые содержат матрицы резистор-конденсатор в одной микросхеме.Их также называют RC-фильтрами или RC-сетями. Они часто используются для подавления электромагнитных помех (EMI) или радиочастотных помех (RFI) в различных инструментах, включая порты ввода / вывода компьютеров и ноутбуков, локальные сети (LAN) и глобальные сети (WAN), среди прочего. Они также используются в станках, распределительных устройствах, контроллерах двигателей, автоматизированном оборудовании, промышленных приборах, лифтах и ​​эскалаторах.


Компонент 3: Диод

Диод - это устройство с двумя выводами, которое позволяет электрическому току течь только в одном направлении.Таким образом, это электронный эквивалент обратного клапана или улицы с односторонним движением. Он обычно используется для преобразования переменного тока (AC) в постоянный ток (DC). Он изготовлен либо из полупроводникового материала (полупроводниковый диод), либо из вакуумной трубки (вакуумный ламповый диод). Однако сегодня большинство диодов изготавливается из полупроводникового материала, особенно из кремния.

Рисунок 5: Диод [Источник изображения]
A. Состав

Как упоминалось ранее, существует два типа диодов: вакуумные диоды и полупроводниковые диоды.Вакуумный диод состоит из двух электродов (катода и анода), помещенных внутри герметичной вакуумной стеклянной трубки. Полупроводниковый диод состоит из полупроводников p-типа и n-типа. Поэтому он известен как диод с p-n переходом. Обычно он изготавливается из кремния, но также можно использовать германий или селен.

B. Как это работает?
Вакуумный диод

Когда катод нагревается нитью накала, в вакууме образуется невидимое облако электронов, называемое пространственным зарядом.Хотя электроны испускаются катодом, отрицательный объемный заряд отталкивает их. Поскольку электроны не могут достичь анода, через цепь не протекает ток. Однако, когда анод становится положительным, объемный заряд исчезает. В результате ток начинает течь от катода к аноду. Таким образом, электрический ток внутри диода течет только от катода к аноду и никогда от анода к катоду.

P-N переходной диод

Диод с p-n переходом состоит из кремниевых полупроводников p-типа и n-типа.Полупроводник p-типа обычно легируется бором, оставляя в нем дырки (положительный заряд). С другой стороны, полупроводник n-типа легирован сурьмой, добавляя в него несколько дополнительных электронов (отрицательный заряд). Таким образом, электрический ток может протекать через оба полупроводника.

Когда вы складываете блоки p-типа и n-типа вместе, дополнительные электроны n-типа объединяются с дырками p-типа, создавая зону обеднения без каких-либо свободных электронов или дырок. Короче, ток через диод больше не может проходить.

Когда вы подключаете отрицательную клемму батареи к кремнию n-типа, а положительную клемму к p-типу (прямое смещение), ток начинает течь, поскольку электроны и дырки теперь могут перемещаться по переходу. Однако, если вы перевернете клеммы (обратное смещение), ток через диод не будет протекать, потому что дырки и электроны отталкиваются друг от друга, расширяя зону обеднения. Таким образом, как и вакуумный диод, переходной диод может пропускать ток только в одном направлении.

С.Функция и значение

Хотя диоды являются одними из простейших компонентов электронной схемы, они находят уникальное применение в различных отраслях промышленности.

Преобразование переменного тока в постоянный

Наиболее распространенным и важным применением диодов является преобразование переменного тока в постоянный. Обычно полуволновой (один диод) или двухполупериодный (четыре диода) выпрямитель используется для преобразования мощности переменного тока в мощность постоянного тока, особенно в бытовых источниках питания. Когда вы пропускаете источник питания переменного тока через диод, через него проходит только половина формы волны переменного тока.Поскольку этот импульс напряжения используется для зарядки конденсатора, он создает устойчивые и непрерывные постоянные токи без каких-либо пульсаций. Различные комбинации диодов и конденсаторов также используются для создания различных типов умножителей напряжения для умножения небольшого переменного напряжения на высокие выходы постоянного тока.

Байпасные диоды

Обходные диоды часто используются для защиты солнечных панелей. Когда ток от остальных элементов проходит через поврежденный или пыльный солнечный элемент, это вызывает перегрев.В результате общая выходная мощность снижается, создавая горячие точки. Диоды подключаются параллельно солнечным элементам, чтобы защитить их от перегрева. Эта простая конструкция ограничивает напряжение на неисправном солнечном элементе, позволяя току проходить через неповрежденные элементы во внешнюю цепь.

Защита от скачков напряжения

Когда источник питания внезапно прерывается, он создает высокое напряжение в большинстве индуктивных нагрузок.Этот неожиданный скачок напряжения может повредить нагрузку. Однако вы можете защитить дорогое оборудование, подключив диод к индуктивным нагрузкам. В зависимости от типа безопасности эти диоды известны под разными названиями, включая демпферный диод, обратный диод, подавляющий диод и диод свободного хода, среди других.

Демодуляция сигнала

Они также используются в процессе модуляции сигнала, поскольку диоды могут эффективно удалять отрицательный элемент сигнала переменного тока.Диод выпрямляет несущую волну, превращая ее в постоянный ток. Звуковой сигнал извлекается из несущей волны, этот процесс называется звуковой частотной модуляцией. Вы можете слышать звук после некоторой фильтрации и усиления. Следовательно, диоды обычно используются в радиоприемниках для извлечения сигнала из несущей волны.

Защита от обратного тока

Изменение полярности источника постоянного тока или неправильное подключение батареи может привести к протеканию значительного тока через цепь.Такое обратное подключение может повредить подключенную нагрузку. Вот почему защитный диод включен последовательно с положительной стороной клеммы аккумулятора. В случае правильной полярности диод становится смещенным в прямом направлении, и ток течет по цепи. Однако в случае неправильного подключения он становится смещенным в обратном направлении, блокируя ток. Таким образом, это может защитить ваше оборудование от возможных повреждений.


Компонент 4: Транзистор

Один из важнейших компонентов электронной схемы, транзисторы произвели революцию в области электроники.Эти крошечные полупроводниковые устройства с тремя выводами существуют уже более пяти десятилетий. Их часто используют как усилители и переключающие устройства. Вы можете думать о них как о реле без каких-либо движущихся частей, потому что они могут включать или выключать что-то без какого-либо движения.

Рисунок 6: Транзисторы [Источник изображения]
A. Состав

Вначале германий использовался для создания транзисторов, которые были чрезвычайно чувствительны к температуре. Однако сегодня они изготавливаются из кремния, полупроводникового материала, обнаруженного в песке, потому что кремниевые транзисторы гораздо более устойчивы к температуре и дешевле в производстве.Есть два разных типа биполярных переходных транзисторов (BJT), NPN и PNP. Каждый транзистор имеет три контакта, которые называются базой (b), коллектором (c) и эмиттером (e). NPN и PNP относятся к слоям полупроводникового материала, из которых изготовлен транзистор.

B. Как это работает?

Когда вы помещаете кремниевую пластину p-типа между двумя стержнями n-типа, вы получаете транзистор NPN. Эмиттер присоединен к одному n-типу, а коллектор - к другому.Основание прикреплено к р-образному. Избыточные дырки в кремнии p-типа действуют как барьеры, блокирующие прохождение тока. Однако, если вы приложите положительное напряжение к базе и коллектору и отрицательно зарядите эмиттер, электроны начнут течь от эмиттера к коллектору.

Расположение и количество блоков p-типа и n-типа остаются инвертированными в транзисторе PNP. В этом типе транзистора один n-тип находится между двумя блоками p-типа. Поскольку распределение напряжения отличается, транзистор PNP работает иначе.Транзистор NPN требует положительного напряжения на базу, в то время как PNP требует отрицательного напряжения. Короче говоря, ток должен течь от базы, чтобы включить PNP-транзистор.

C. Функция и значение

Транзисторы функционируют как переключатели и усилители в большинстве электронных схем. Дизайнеры часто используют транзистор в качестве переключателя, потому что, в отличие от простого переключателя, он может превратить небольшой ток в гораздо больший. Хотя вы можете использовать простой переключатель в обычной цепи, для продвинутой схемы может потребоваться различное количество токов на разных этапах.

Транзисторы в слуховых аппаратах

Одно из самых известных применений транзисторов - слуховой аппарат. Обычно небольшой микрофон в слуховом аппарате улавливает звуковые волны, преобразовывая их в колеблющиеся электрические импульсы или токи. Когда эти токи проходят через транзистор, они усиливаются. Затем усиленные импульсы проходят через динамик, снова преобразуя их в звуковые волны. Таким образом, вы можете слышать значительно более громкую версию окружающего шума.

Транзисторы в компьютерах и калькуляторах

Все мы знаем, что компьютеры хранят и обрабатывают информацию, используя двоичный язык «ноль» и «единица». Однако большинство людей не знают, что транзисторы играют решающую роль в создании чего-то, что называется логическими вентилями, которые являются основой компьютерных программ. Транзисторы часто соединяются с логическими вентилями, чтобы создать уникальный элемент устройства, называемый триггером. В этой системе транзистор остается включенным, даже если вы уберете ток базы.Теперь он переключается или выключается всякий раз, когда через него проходит новый ток. Таким образом, транзистор может хранить ноль, когда он выключен, или единицу, когда он включен, что является принципом работы компьютеров.

Транзисторы Дарлингтона

Транзистор Дарлингтона состоит из двух соединенных вместе транзисторов с полярным соединением PNP или NPN. Он назван в честь своего изобретателя Сидни Дарлингтона. Единственное назначение транзистора Дарлингтона - обеспечить высокий коэффициент усиления по току при низком базовом токе.Вы можете найти эти транзисторы в приборах, которым требуется высокий коэффициент усиления по току на низкой частоте, таких как регуляторы мощности, драйверы дисплея, контроллеры двигателей, световые и сенсорные датчики, системы сигнализации и усилители звука.

IGBT и MOSFET транзисторы

Биполярные транзисторы с изолированным затвором (IGBT) часто используются в качестве усилителей и переключателей в различных инструментах, включая электромобили, поезда, холодильники, кондиционеры и даже стереосистемы.С другой стороны, полевые транзисторы металл-оксид-полупроводник (MOSFET) обычно используются в интегральных схемах для управления уровнями мощности устройства или для хранения данных.


Компонент 5: Индуктор

Катушка индуктивности, также известная как реактор, представляет собой пассивный компонент цепи, имеющей два вывода. Это устройство хранит энергию в своем магнитном поле, возвращая ее в цепь при необходимости. Было обнаружено, что когда две катушки индуктивности размещаются рядом, не касаясь друг друга, магнитное поле, создаваемое первой катушкой индуктивности, воздействует на вторую катушку индуктивности.Это был решающий прорыв, который привел к изобретению первых трансформаторов.

Рисунок 7: Катушки индуктивности [Источник изображения]
A. Состав

Это, вероятно, простейший компонент, состоящий только из мотка медной проволоки. Индуктивность прямо пропорциональна количеству витков в катушке. Однако иногда катушка наматывается на ферромагнитный материал, такой как железо, слоистое железо и порошковое железо, для увеличения индуктивности. Форма этого сердечника также может увеличить индуктивность.Тороидальные (в форме бублика) сердечники обеспечивают лучшую индуктивность по сравнению с соленоидными (стержневыми) сердечниками на такое же количество витков. К сожалению, индукторы в интегральной схеме сложно соединить, поэтому их обычно заменяют резисторами.

B. Как это работает?

Когда ток проходит по проводу, он создает магнитное поле. Однако уникальная форма индуктора приводит к созданию гораздо более сильного магнитного поля. Это мощное магнитное поле, в свою очередь, сопротивляется переменному току, но пропускает через него постоянный ток.Это магнитное поле также хранит энергию.

Возьмем простую схему, состоящую из батареи, переключателя и лампочки. Лампа будет ярко светиться, как только вы включите выключатель. Добавьте в эту цепь индуктивность. Как только вы включаете выключатель, лампочка переключается с яркой на тусклую. С другой стороны, когда переключатель выключен, он становится очень ярким, всего на долю секунды до полного выключения.

Когда вы включаете переключатель, индуктор начинает использовать электричество для создания магнитного поля, временно блокируя прохождение тока.Но только постоянный ток проходит через индуктор, как только магнитное поле заполнено. Вот почему лампочка переключается с яркой на тусклую. Все это время индуктор хранит некоторую электрическую энергию в виде магнитного поля. Итак, когда вы выключаете выключатель, магнитное поле поддерживает постоянный ток в катушке. Таким образом, лампочка некоторое время горит ярко перед тем, как погаснуть.

C. Функция и значение

Хотя индукторы полезны, их сложно включить в электронные схемы из-за их размера.Поскольку они более громоздкие по сравнению с другими компонентами, они увеличивают вес и занимают много места. Следовательно, их обычно заменяют резисторами в интегральных схемах (ИС). Тем не менее, индукторы имеют широкий спектр промышленных применений.

Фильтры в настроенных схемах

Одним из наиболее распространенных применений индукторов является выбор желаемой частоты в настроенных схемах. Они широко используются с конденсаторами и резисторами, подключенными параллельно или последовательно, для создания фильтров.Импеданс катушки индуктивности увеличивается с увеличением частоты сигнала. Таким образом, автономная катушка индуктивности может действовать только как фильтр нижних частот. Однако, когда вы объединяете его с конденсатором, вы можете создать режекторный фильтр, потому что импеданс конденсатора уменьшается с увеличением частоты сигнала. Таким образом, вы можете использовать различные комбинации конденсаторов, катушек индуктивности и резисторов для создания различных типов фильтров. Они присутствуют в большинстве электронных устройств, включая телевизоры, настольные компьютеры и радио.

Дроссели как дроссели

Если через катушку индуктивности протекает переменный ток, он создает противоположный ток. Таким образом, он может преобразовывать источник переменного тока в постоянный. Другими словами, он подавляет подачу переменного тока, но позволяет постоянному току проходить через него, отсюда и название «дроссель». Обычно они встречаются в цепях питания, которым необходимо преобразовать подачу переменного тока в подачу постоянного тока.

Ферритовые бусины

Ферритовый шарик или ферритовый дроссель используется для подавления высокочастотного шума в электронных схемах.Некоторые из обычных применений ферритовых шариков включают компьютерные кабели, телевизионные кабели и кабели для зарядки мобильных устройств. Эти кабели иногда могут действовать как антенны, взаимодействуя с аудио- и видеовыходами вашего телевизора и компьютера. Таким образом, индукторы используются в ферритовых шариках, чтобы уменьшить такие радиочастотные помехи.

Индукторы в датчиках приближения

Большинство датчиков приближения работают по принципу индуктивности. Индуктивный датчик приближения состоит из четырех частей, включая индуктор или катушку, генератор, схему обнаружения и выходную схему.Осциллятор генерирует флуктуирующее магнитное поле. Когда объект приближается к этому магнитному полю, начинают накапливаться вихревые токи, уменьшая магнитное поле датчика.

Схема обнаружения определяет силу датчика, в то время как выходная схема вызывает соответствующий ответ. Индуктивные датчики приближения, также называемые бесконтактными датчиками, ценятся за их надежность. Они используются на светофорах для определения плотности движения, а также в качестве датчиков парковки легковых и грузовых автомобилей.

Асинхронные двигатели

Асинхронный двигатель, вероятно, является наиболее распространенным примером применения индукторов. Обычно в асинхронном двигателе индукторы устанавливаются в фиксированном положении. Другими словами, им не разрешается выравниваться с близлежащим магнитным полем. Источник питания переменного тока используется для создания вращающегося магнитного поля, которое затем вращает вал. Потребляемая мощность регулирует скорость вращения. Следовательно, асинхронные двигатели часто используются в приложениях с фиксированной скоростью.Асинхронные двигатели очень надежны и прочны, поскольку нет прямого контакта между двигателем и ротором.

Трансформаторы

Как упоминалось ранее, открытие индукторов привело к изобретению трансформаторов, одного из основных компонентов систем передачи энергии. Вы можете создать трансформатор, объединив индукторы общего магнитного поля. Обычно они используются для повышения или понижения напряжения в линиях электропередач до желаемого уровня.

Накопитель энергии

Катушка индуктивности, как и конденсатор, также может накапливать энергию. Однако, в отличие от конденсатора, он может накапливать энергию в течение ограниченного времени. Поскольку энергия хранится в магнитном поле, она схлопывается, как только отключается источник питания. Тем не менее, индукторы функционируют как надежные устройства хранения энергии в импульсных источниках питания, таких как настольные компьютеры.


Компонент 6: реле

Реле - это электромагнитный переключатель, который может размыкать и замыкать цепи электромеханическим или электронным способом.Для работы реле необходим относительно небольшой ток. Обычно они используются для регулирования малых токов в цепи управления. Однако вы также можете использовать реле для управления большими электрическими токами. Реле - это электрический эквивалент рычага. Вы можете включить его небольшим током, чтобы включить (или усилить) другую цепь, использующую большой ток. Реле могут быть либо электромеханическими, либо твердотельными.

Рисунок 8: Реле [Источник изображения]
A. Состав

Электромеханическое реле (ЭМИ) состоит из корпуса, катушки, якоря, пружины и контактов.Рама поддерживает различные части реле. Якорь - это подвижная часть релейного переключателя. Катушка (в основном из медной проволоки), намотанная на металлический стержень, создает магнитное поле, которое перемещает якорь. Контакты - это токопроводящие части, которые размыкают и замыкают цепь.

Твердотельное реле (SSR) состоит из входной цепи, цепи управления и выходной цепи. Входная цепь эквивалентна катушке электромеханического реле. Схема управления действует как связующее устройство между входными и выходными цепями, в то время как выходная цепь выполняет ту же функцию, что и контакты в ЭМИ.Твердотельные реле становятся все более популярными, поскольку они дешевле, быстрее и надежнее по сравнению с электромеханическими реле.

B. Как это работает?

Используете ли вы электромеханическое реле или твердотельное реле, это нормально замкнутое (NC) или нормально разомкнутое (NO) реле. В случае реле NC контакты остаются замкнутыми при отсутствии питания. Однако в нормально разомкнутом реле контакты остаются разомкнутыми при отсутствии питания.Короче говоря, всякий раз, когда через реле протекает ток, контакты либо размыкаются, либо замыкаются.

В ЭМИ источник питания возбуждает катушку реле, создавая магнитное поле. Магнитная катушка притягивает металлическую пластину, установленную на якоре. Когда ток прекращается, якорь возвращается в исходное положение под действием пружины. EMR также может иметь один или несколько контактов в одном пакете. Если в цепи используется только один контакт, она называется цепью с одиночным разрывом (SB). С другой стороны, цепь двойного размыкания (DB) идет с буксировочными контактами.Обычно реле с одинарным размыканием используются для управления маломощными устройствами, такими как индикаторные лампы, в то время как контакты с двойным размыканием используются для управления мощными устройствами, такими как соленоиды.

Когда дело доходит до работы SSR, вам необходимо подать напряжение выше, чем указанное напряжение срабатывания реле, чтобы активировать входную цепь. Вы должны подать напряжение ниже установленного минимального напряжения падения реле, чтобы деактивировать входную цепь. Схема управления передает сигнал от входной цепи к выходной цепи.Выходная цепь включает нагрузку или выполняет желаемое действие.

C. Функция и значение

Поскольку они могут управлять сильноточной цепью с помощью слаботочного сигнала, в большинстве процессов управления используются реле в качестве первичных устройств защиты и переключения. Они также могут обнаруживать неисправности и нарушения в системах распределения электроэнергии. Типичные приложения включают телекоммуникации, автомобили, системы управления дорожным движением, бытовую технику и компьютеры, среди прочего.

Реле защиты

Защитные реле используются для отключения или отключения цепи при обнаружении каких-либо нарушений. Иногда они также могут подавать сигнал тревоги при обнаружении неисправности. Типы реле защиты зависят от их функции. Например, реле максимального тока предназначено для определения тока, превышающего заданное значение. При обнаружении такого тока реле срабатывает, отключая автоматический выключатель, чтобы защитить оборудование от возможного повреждения.

Дистанционное реле или реле импеданса, с другой стороны, может обнаруживать отклонения в соотношении тока и напряжения, а не контролировать их величину независимо. Он срабатывает, когда отношение V / I падает ниже заданного значения. Обычно защитные реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.

Реле автоматического повторного включения

Реле автоматического повторного включения предназначено для многократного повторного включения автоматического выключателя, который уже отключен с помощью защитного реле.Например, при резком падении напряжения в электрической цепи вашего дома может наблюдаться несколько кратковременных перебоев в подаче электроэнергии. Эти сбои происходят из-за того, что реле повторного включения пытается автоматически включить защитное реле. В случае успеха питание будет восстановлено. В противном случае произойдет полное отключение электроэнергии.

Тепловые реле

Тепловое воздействие электрической энергии - принцип работы теплового реле. Короче говоря, он может обнаруживать повышение температуры окружающей среды и соответственно включать или выключать цепь.Он состоит из биметаллической полосы, которая нагревается при прохождении через нее сверхтока. Нагретая полоса изгибается и замыкает замыкающий контакт, отключая автоматический выключатель. Наиболее распространенное применение теплового реле - защита электродвигателя от перегрузки.


Компонент 7. Кристалл кварца

Кристаллы кварца находят несколько применений в электронной промышленности. Однако в основном они используются в качестве резонаторов в электронных схемах. Кварц - это встречающаяся в природе форма кремния.Однако теперь его производят синтетически, чтобы удовлетворить растущий спрос. Он проявляет пьезоэлектрический эффект. Если вы приложите физическое давление к одной стороне, возникающие в результате вибрации создадут переменное напряжение на кристалле. Резонаторы из кварцевого кристалла доступны во многих размерах в зависимости от требуемых применений.

Рисунок 9: Кристалл кварца [Источник изображения]
A. Состав

Как упоминалось ранее, кристаллы кварца либо производятся синтетическим путем, либо встречаются в природе.Их часто используют для создания кварцевых генераторов для создания электрического сигнала с точной частотой. Обычно форма кристаллов кварца гексагональная с пирамидками на концах. Однако для практических целей их разрезают на плиты прямоугольной формы. К наиболее распространенным типам форматов резки относятся X, Y и AT. Эта плита помещается между двумя металлическими пластинами, называемыми удерживающими пластинами. Внешняя форма кварцевого кристалла или кварцевого генератора может быть цилиндрической, прямоугольной или квадратной.

Б.Как это работает?

Если подать на кристалл переменное напряжение, он вызовет механические колебания. Огранка и размер кристалла кварца определяют резонансную частоту этих колебаний или колебаний. Таким образом, он генерирует постоянный сигнал. Кварцевые генераторы дешевы и просты в изготовлении синтетическим способом. Они доступны в диапазоне от нескольких кГц до нескольких МГц. Поскольку кварцевые генераторы имеют более высокую добротность или добротность, они очень стабильны во времени и температуре.

C. Функция и значение

Исключительно высокая добротность позволяет использовать кристаллы кварца и резонансный элемент в генераторах, а также в фильтрах в электронных схемах. Вы можете найти этот высоконадежный компонент в радиочастотных приложениях, в качестве тактовых схем генератора в платах микропроцессоров, а также в качестве элемента синхронизации в цифровых часах.

Кварцевые часы

Проблема традиционных часов с винтовой пружиной заключается в том, что вам нужно периодически заводить катушку.С другой стороны, маятниковые часы зависят от силы тяжести. Таким образом, они по-разному показывают время на разных уровнях моря и высотах из-за изменений силы тяжести. Однако на характеристики кварцевых часов не влияет ни один из этих факторов. Кварцевые часы питаются от батареек. Обычно крошечный кристалл кварца регулирует шестеренки, которые управляют секундной, минутной и часовой стрелками. Поскольку кварцевые часы потребляют очень мало энергии, батарея часто может работать дольше.

Фильтры

Вы также можете использовать кристаллы кварца в электронных схемах в качестве фильтров.Они часто используются для фильтрации нежелательных сигналов в радиоприемниках и микроконтроллерах. Большинство основных фильтров состоят из одного кристалла кварца. Однако усовершенствованные фильтры могут содержать более одного кристалла, чтобы соответствовать требованиям к рабочим характеристикам. Эти кварцевые фильтры намного превосходят фильтры, изготовленные с использованием ЖК-компонентов.


Заключение

От общения с близкими, живущими на разных континентах, до приготовления горячей чашки кофе - электронные устройства затрагивают практически все аспекты нашей жизни.Однако что заставляет эти электронные устройства выполнять, казалось бы, трудоемкие задачи всего за несколько минут? Крошечные электронные схемы - основа всего электронного оборудования. Чтение о различных компонентах электронной схемы поможет вам понять их функции и значение. Поделитесь своими предложениями и мнениями по этому поводу в разделе комментариев ниже.

// Эта статья изначально была опубликована на ICRFQ.

простых схем | Блестящая вики по математике и науке

Для любой простой системы найти V, I или R несложно, если учесть два других фактора, но это усложняется, когда источник питания управляет несколькими устройствами последовательно.Последовательность означает несколько устройств, соединенных встык, причем положительный вывод одного устройства подключен к отрицательному устройству следующего, как набор рождественских гирлянд. Поскольку устройства перетекают друг в друга, и заряд сохраняется, любой ток, протекающий в первое устройство, должен вытекать из последнего устройства, то есть ток через все устройства одинаков. Последовательные устройства похожи на воду, плывущую по реке: река может закручиваться, поворачиваться, сжиматься и расширяться, но количество воды, текущей в любом заданном поперечном сечении в единицу времени, должно быть одинаковым во всех точках вдоль реки, т.е.е. v1A1 = v2A2v_1A_1 = v_2A_2v1 A1 = v2 A2. Если бы это было не так, вода накапливалась бы в точках вдоль реки и выливалась бы из берегов.

Таким образом, в приведенной выше схеме i1 = i2 = i3i_1 = i_2 = i_3i1 = i2 = i3, или поскольку каждый резистор подчиняется закону Ома

I = V1R1 = V2R2 = V3R3.I = \ frac {V_1} {R_1} = \ frac {V_2} {R_2} = \ frac {V_3} {R_3} .I = R1 V1 = R2 V2 = R3 V3.

Теперь левая сторона оранжевой лампочки подключена к положительной клемме батареи, а правая сторона зеленой лампочки подключена к отрицательной клемме батареи, что означает, что сумма напряжения падает на трех резисторы равны по величине падению напряжения на батарее, т.е.е.

Vbattery = V1 + V2 + V3.V_ \ text {battery} = V_1 + V_2 + V_3.Vbattery = V1 + V2 + V3.

Это физический принцип.

Следовательно,

Vbattery = V1 + V2 + V3 = IR1 + IR2 + IR3 = I (R1 + R2 + R3) = IReff. \ Begin {выровнено} V_ \ text {батарея} & = V_1 + V_2 + V_3 \\ & = IR_1 + IR_2 + IR_3 \\ & = I \ влево (R_1 + R_2 + R_3 \ вправо) \\ & = IR_ \ text {eff}. \ end {align} Vbattery = V1 + V2 + V3 = IR1 + IR2 + IR3 = I (R1 + R2 + R3) = IReff.

Следовательно, цепь, состоящая из трех последовательно соединенных лампочек, эквивалентна одной лампочке с сопротивлением, равным сумме отдельных сопротивлений.Это доказывает общий результат для резисторов, включенных последовательно.

Резисторы последовательно

Эффективное сопротивление последовательно включенных резисторов R1,…, RNR_1, \ ldots, R_NR1,…, RN равно

.

Reff = ∑iRi.R_ \ text {eff} = \ sum_i R_i.Reff = i∑ Ri.

Хотя последовательное расположение элементов схемы имеет некоторые привлекательные особенности, такие как равномерный ток, простота установки новых батарей и т. Д., Последовательное расположение элементов схемы имеет серьезные недостатки.Во-первых, введение любых новых устройств уменьшает ток, протекающий по цепи, и, таким образом, снижает выходную мощность каждого отдельного устройства. Если несколько устройств подключены последовательно, например, духовка, компьютер и лампа для чтения, затемнение лампы для чтения (за счет увеличения ее сопротивления) означает уменьшение тока в духовке и компьютере. Другой заключается в том, что если один элемент в цепи, например ваш телевизор, сломается, вся цепь также разорвется, потому что электрический потенциальный разрыв больше не поддерживается ни на одном устройстве.Это неудобно для создания надежных схем, в которых нам бы хотелось, чтобы отказы устройств не зависели друг от друга.

Некоторые из этих недостатков можно избежать в архитектуре параллельных цепей.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *