Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Блок питания своими руками

Компактный регулируемый блок питания 24В 5А

Электроника / Блок питания своими руками

Решил переделать свой лабораторный блок питания. Хоть он и надежный, но тяжелый и занимает много места. На рабочем столе всегда не хватает. Планируя перестановку. Решил повесить навесную полку и под ней полно места. Идея пришла быстро, делаю

Компактный регулируемый блок питания

Электроника / Блок питания своими руками

Регулируемый блок питания нужная штука. Вообще считаю, блоков питания должно быть достаточное количество. Понадобился отцу, для мелких нужд, регулируемый блок питания. Изучив свои залежи, набралось некоторое количество компонентов. Решил собрать

Мощный блок питания с защитой по току

Электроника / Блок питания своими руками

Каждому человеку, собирающему электронные схемы, необходим универсальный источник питания, позволяющий в широких пределах изменять напряжение на выходе, контролировать ток и при необходимости отключать питаемое устройство. В магазинах подобные

Простой блок питания на три напряжения

Электроника / Блок питания своими руками

Решил я сделать из компьютерного блока питания, блок питания на несколько напряжений. Во всемирной паутине много конструкций. В Китае тоже есть готовые решения, типа приставок к блоку питания компьютера. Я же, насобирав некоторое количество

Блок питания начинающего радиолюбителя

Электроника / Блок питания своими руками

У многих из нас скопились различные блоки питания от ноутбуков, принтеров или мониторов напряжением +12, +19, +22. Это отличные источники питания, имеющие защиту и от короткого замыкания и от перегрева. Тогда как в домашней, радиолюбительской

Надежный лабораторный блок питания

Электроника / Блок питания своими руками

У меня есть регулируемый блок питания. Регулируется только напряжение, соответственно регулировка тока отсутствует. Для некоторых целей его хватает. Решил собрать блок с регулировкой тока и напряжения. Лабораторный блок питания, далее ЛБП, очень

Мощный линейный стабилизатор напряжения

Простые схемы / Блок питания своими руками

Для питания различных электронных устройств и схем, сделанных своими руками нужен такой источник питания, напряжение на выходе которого можно регулировать в широких пределах. С его помощью можно наблюдать, как ведёт себя схема при том или ином

Простой регулируемый блок питания

Электроника / Блок питания своими руками

Когда собираешь какую либо электронную самоделку, то для ее проверки нужен блок питания. На рынке большое разнообразие готовых решений. Красиво оформлены, имеют много функций. Так же много kit-наборов для самостоятельного изготовления. Я уже не

Лабораторный блок питания

Электроника / Блок питания своими руками

При создании различных электронных устройств, рано или поздно, встаёт вопрос о том, что использовать в качестве источника питания для самодельной электроники. Допустим, собрали вы какую-нибудь светодиодную мигалку, теперь её нужно от чего-то

Лабораторный блок питания

Электроника / Блок питания своими руками

Всем доброго времени суток! Сегодня я хочу представить вашему вниманию Лабораторный Блок Питания (ЛБП). Я думаю каждый начинающий радиолюбитель сталкивался с проблемой получения необходимого напряжения для той или иной своей самоделки, ведь каждое

Ремонт импульсного блока питания

Электроника / Блок питания своими руками

Видеокамеры, как и автомобили, сейчас уже перестали быть предметами роскоши и перешли в разряд необходимых приборов. Но, если сама видеокамера изготовлена качественно и выход её из строя без каких-либо внешних причин – явление нечастое, то с

Автомобильный инвертор 12-220В

Электроника / Блок питания своими руками

С полгода назад приобрел себе автомобиль. Не буду описывать все сделанные для его улучшения модернизации, остановлюсь только на одном. Это инвертор 12-220В для питания бытовой электроники от бортовой сети автомобиля. Конечно, можно было бы

Регулируемые блоки питания схемы

Такой блок питания — это крайне необходимая вещь в мастерской каждого любителя электроники. Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания — это максимальный ток I max , который он может отдать нагрузке питаемому устройству и выходное напряжение U out , которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Набор для сборки линейного регулируемого блока питания 35 Вольт 5 Ампер
  • Мощный регулируемый блок питания своими руками схема
  • Мощный регулируемый блок питания 0-28 вольт
  • Самодельный регулируемый блок питания 0-30В
  • Блок питания своими руками
  • Делаем своими руками регулируемый блок питания на LM 317
  • Простой регулируемый блок питания
  • Мощный регулируемый блок питания 0-28 вольт
  • Лабораторный блок питания своими руками 0-30В 0-5А. Схемы регулируемых блоков питания своими руками

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: КАК СДЕЛАТЬ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ СВОИМИ РУКАМИ

Набор для сборки линейного регулируемого блока питания 35 Вольт 5 Ампер


Регулируемый стабилизированный блок питания — V , 1 — 3А. Блок питания БП предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока. Для чего это нужно? На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт.

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно – если стабилитрон на 27 вольт , то максимальное выходное напряжение будет в пределах вольт.

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,. Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Несколько сложнее с емкостями по напряжению — рабочее напряжение грубо рассчитывается по такой методике — переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4.

Т е — допустим, что выходное напряжение вашего трансформатора порядка 30 вольт — 30 делим на 3 и множим на 4 — получаем 40 — значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,.

Очень просто — выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,,,. А можно ли заряжать автомобильный аккумулятор? Достаточно выставить регулятором напряжения , извиняюсь – потенциометром R3 напряжение 14,5 вольта на холостом ходу т е с отключенным аккумулятором а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта 14,5 в — напряжение полностью заряженного акк он будет равен нулю.

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью ватт и последовательно с ним амперметр.

Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне. Теперь про детали. Выпрямительный мостик — диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер.

Хочется больше — загляните в справочник и выбирайте диоды помощнее, скажем ампер на Транзисторы — VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить — поверьте, не помешает.

Особо пытливым — почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор.

Давайте посчитаем — на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт. Из 30 вольт минусуем 13 вольт получаем 17 вольт кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения. Ну так вот , тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет.

Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается Но попробуем выразиться математически , то бишь. Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,. Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление.

Теперь заглянем в справочник, в раздел транзисторы. Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто — неправильное соединение обмоток, но предохранителей нет.

Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей. Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания т е А , должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью вольт примерно на 0, ампер.

Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному — мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так — этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все процентов.

Так что 30 вольт при токе ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку. Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак Третье — проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом радиатор и принудительный обдув.

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство — это не критично. Схема подключения запараллеленных транзисторов вместо одного. Расположение светодиода на схема верное.

Просьба обратить внимание, что на печатной плате допущена ошибка и светодиод LED Red следует впаивать в обратно полярности, а не так, как указанно.

Приносим свои извинения за допущенную ошибку. Запомнить меня. Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона, Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Из 30 вольт минусуем 13 вольт получаем 17 вольт кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения Ну так вот , тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе, Ну а допустим подключим сопротивление на 1 ом.

Первое — соответствующий вашим запросам трансформатор Второе — диодный мост ампер на 15 и на радиаторы Третье — проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом радиатор и принудительный обдув Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство — это не критично.


Мощный регулируемый блок питания своими руками схема

Блог new. Технические обзоры. Опубликовано: , Перейти в магазин. В комплекте идет 10 номиналов мелких резисторов. При монтаже проще было быстро измерить тестером, чем искать по маркировке.

Как сделать простой лабораторный регулируемый блок питания от 0 до 30 вольт своими руками на транзисторах. Простая схема, регулятор.

Мощный регулируемый блок питания 0-28 вольт

Канал ЭлектроХобби на YouTube. Блоки питания являются неотъемлемой часть различной электротехники. У тех, кто занимается электроникой, электрикой возникает необходимость в наличии лабораторного блока питания, имеющий функцию плавной регуляции выходного напряжения. Таким источником тока можно питать различные устройства, нуждающиеся в различном постоянном напряжении. В этой статье предлагаю ознакомиться со схемой достаточно простого регулируемого блока питания, собранного на интегральном стабилизаторе напряжения и тока LM Выходное напряжение его можно изменять в пределах от 1,5 до 30 вольт. Максимальный ток на выходе до 1,5 ампера. Этот блок питания имеет встроенную защиту от короткого замыкания, перегрева. Для этого простого регулируемого блока питания подойдет любой трансформатор мощностью около 60 ватт, и выходным напряжением на вторичной обмотке 30 вольт.

Самодельный регулируемый блок питания 0-30В

Каждому начинающему радиолюбителю рано или поздно необходим простой регулируемый блок питания. Если для сборки серьезных схем не хватает опыта или навыков, то блок питания на LM подойдет в самый раз. Этот простой блок питания с регулировкой напряжения проверен не одним поколением, схема которого работает стабильно и безотказно. По этой схеме мы соберем блок питания с максимальным напряжением на 12 вольт на выходе, такого напряжения будет вполне достаточно, для питания большинства самодельных схем.

Здравствуйте уважаемые читатели сайта sesaga.

Блок питания своими руками

Вариантов немного — либо купить уже готовый блок с требуемыми характеристиками в магазине или же у более опытного коллеги по ремеслу, либо собрать устройство самостоятельно из подручных материалов. С учётом цен на более-менее качественные ИИП с регулировкой напряжения в среднем от 15 до 80 у. Один из самых простых и универсальных вариантов — блок питания на LM Это популярный и недорогой регулируемый линейный стабилизатор напряжения , обычно изготавливаемый в корпусе ТО Узнать, какая ножка за что отвечает, можно из картинки ниже. Чуть подробнее остановимся на максимальном токе.

Делаем своими руками регулируемый блок питания на LM 317

Источник питания ИП — это часть любого электрического устройства. Он обеспечивает функциональную часть питающим напряжением. Его параметры должны соответствовать определенным критериям. Особенность блока питания БП в том, что он сделан как отдельный внешний узел. Лабораторный БП — это корпус с лицевой панелью, регуляторами-переключателями, вольтметром, амперметром, выходными клеммами и сетевым шнуром. Далее расскажем нашим читателям о том, что необходимо учесть при самостоятельном изготовлении регулируемого блока питания и как получить оптимальный результат при минимальных затратах. Для начала остановимся на более широком толковании критериев, которые перечислены выше.

Регулируемый блок питания используется для обеспечения того, тока также называют линейным источником питания, его схемы.

Простой регулируемый блок питания

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео.

Мощный регулируемый блок питания 0-28 вольт

ВИДЕО ПО ТЕМЕ: Простые схемы регуляторов тока.

Блок питания достаточно простой и содержит минимум деталей. Позволяет регулировать выходное напряжение в пределах В. Максимальный ток около 2А. R1 резистор подстроечный, управляет напряжением. Марка СПВМ. Имеется выключатель R1,2.

Регулируемый стабилизированный блок питания — V , 1 — 3А.

Лабораторный блок питания своими руками 0-30В 0-5А. Схемы регулируемых блоков питания своими руками

Здравствуйте уважаемые читатели сайта sesaga. У каждого радиолюбителя, в его домашней лаборатории, обязательно должен быть регулируемый блок питания , позволяющий выдавать постоянное напряжение от 0 до 14 Вольт при токе нагрузки до mA. Эта статья, в первую очередь, рассчитана на начинающих радиолюбителей, а идею написания этой статьи подсказал Кирилл Г. За что ему отдельное спасибо. Схема немного отличается от оригинала изменением некоторых германиевых деталей на кремниевые. Включается блок питания в розетку при помощи двухполюсной вилки ХР1. При включении выключателя SA1 напряжение В подается на первичную обмотку I понижающего трансформатора Т1.

При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии и аналогичные, “усиленные” одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор. Схема одного из вариантов такого стабилизатора приведена на рис. В нем в качестве силового применен мощный полевой транзистор IRLR


Простая переменная схема питания 0–30 В, 2 А

Киран Салим

5304 просмотра

В этом уроке мы создадим «Простую переменную схему источника питания 0-30В 2А».

Блоки питания являются неотъемлемой частью почти каждого электронного устройства. Цепь источника питания оценивается напряжением или диапазоном напряжения, которое она обеспечивает, и максимальным током, который она позволяет потреблять нагрузке. Поскольку домашние хозяйства обеспечены переменным напряжением в качестве основного источника питания, а многие электроприборы, такие как вентиляторы, люминесцентные лампы и другие, могут напрямую использовать переменное напряжение, но большинству электронных устройств требуется преобразование переменного напряжения в постоянное напряжение для их работы.

Любая внешняя цепь питания должна преобразовывать переменное напряжение в постоянное. Он может быть спроектирован разными способами и может быть регулируемым или фиксированным. В этом проекте разработана регулируемая схема источника питания, которая потребляет переменный ток и обеспечивает постоянное напряжение от 0 до 30 В 2 А в качестве выхода.

Блок питания нерегулируемый

Для этого используем понижающий трансформатор. В схеме наблюдается некоторое падение выходного напряжения из-за резистивных потерь. Поэтому нам нужен трансформатор высокого номинального напряжения больше требуемых 30 В, и трансформатор должен обеспечивать ток 2А на выходе. Итак, наиболее подходящий понижающий трансформатор 18В-0-18В/2А. Этот трансформатор понижает напряжение сети до 36 В переменного тока.

Пониженное напряжение переменного тока необходимо преобразовать в напряжение постоянного тока. Выпрямление – это процесс преобразования переменного тока в постоянный. . В этой схеме мы использовали двухполупериодный мостовой выпрямитель для преобразования 36 В переменного тока в 36 В постоянного тока.

На выходе двухполупериодного выпрямителя нет постоянного напряжения. Он имеет вдвое большую частоту, чем основной источник питания, но все еще содержит рябь. Поэтому его необходимо сгладить, подключив конденсатор параллельно выходу двухполупериодного выпрямителя. Этот конденсатор действует как фильтрующий конденсатор, который пропускает весь переменный ток через него на землю. На выходе среднее значение постоянного напряжения остается более плавным и без пульсаций.

Регулируемое опорное напряжение

Силовая цепь должна обеспечивать регулируемое и постоянное напряжение без каких-либо колебаний или отклонений. Для регулирования напряжения в схеме необходим линейный стабилизатор. Целью использования этого регулятора является поддержание на выходе постоянного напряжения заданного уровня. Небольшой ток протекает через регулируемое опорное напряжение.

В этой схеме максимальное напряжение на выходе должно быть 30В. Стабилитрон идеально подходит для регулирования напряжения на выходе. Эта схема состоит из стабилитрона и переменного резистора. Он определяет уровень выходного напряжения. Для регулировки выходного напряжения от 0 до 30В подключен переменный резистор. Переменный щуп VR1 подключен к коллектору переключающего транзистора BC548. Изменяя этот резистор, эмиттер переключающего транзистора будет обеспечивать изменение напряжения от 0 до 30 В. Используемые в схеме стабилитроны должны иметь номинальную мощность 1 Вт, в противном случае они могут выйти из строя из-за нагрева.

Силовые транзисторы

Зенеровский диод может обеспечивать ток только в миллиамперах. Поэтому для получения на выходе большого тока нагрузки некоторые линейные элементы должны быть включены последовательно с нагрузкой, которая могла бы обеспечить требуемый ток. Таким образом, наибольший ток будет протекать через силовой транзистор. Он работает как большой мост для более высокого тока. В этой схеме в качестве линейного элемента используется биполярный NPN-транзистор. Транзистор Q1 используется для подачи достаточного базового напряжения на биполярный NPN-транзистор Q2 2N3055. Транзистор 2N3055 способен обеспечить на выходе ток силой 2А. Транзисторы подключены в конфигурации усилителя пары Дарлингтона для получения желаемого усиления по току. В конфигурации пары Дарлингтона чистый коэффициент усиления по току представляет собой произведение коэффициентов усиления по току двух транзисторов. И у него есть управляемый токоподвод.

Защита от перегрузки

Поскольку потребляемый ток увеличивается на выходной нагрузке, ток превышает 2 А. силовой транзистор начнет греться. Чтобы решить эту проблему, у нас есть секция защиты от перегрузки. Внутри находится резистор для проверки более высокого тока и транзистор для отключения контролируемого тока силового транзистора вниз. Кроме того, на транзисторе должен быть установлен надлежащий радиатор для отвода избыточного тепла. В противном случае транзистор может сгореть. А также повредить другие устройства.

Buy From Amazon

Hardware Components

The following components are required to make a Variable Power Supply Circuit

Sr.No Components Value Qty
1 Resistor 3,3 тыс., 100 Ом, 0,3 Ом 1
2 Потенциометр 10K 1
3 Electlytic
3 Electlytic
3 Electlytic
3 Electrytic
0058 2,200µF, 220µF 1
4 Power Transistor 2N3055  1
5  Transistor BC548 2
6 Diode 1N4007 2
7 Zener 30V 1
8 Transformer 1

2N3055 Pinout 

Для получения подробного описания цоколевки, размеров и спецификаций загрузите техническое описание 2N3055

Схема переменного источника питания

Принцип работы

Сначала мы подаем переменное напряжение 220 В к трансформатору T1 через выключатель SW1. и предохранитель F1. Предохранитель используется для защиты цепи от слишком большого источника питания. Трансформатор выполняет две задачи. Он преобразует сетевое напряжение и понижает напряжение до 24 В-0 В-24 В в соответствии с тремя лентами. Обеспечивает электрическую изоляцию между инженерной сетью и выходом источника питания. Это понижающее напряжение поступает в двухполупериодный выпрямитель. Выпрямитель преобразует напряжение переменного тока в напряжение постоянного тока.

Как мы получили пульсации постоянного напряжения. Конденсатор C1 отфильтровывает постоянное напряжение около 36 В постоянного тока и максимум 2 А. Затем есть светодиод 1, показывающий питание, а резистор R1 ограничивает ток до безопасного значения. Далее ток поступает на регулирующий участок. Этот отфильтрованный выход поступает на вход регулятора.

Силовая цепь должна обеспечивать регулируемое и постоянное напряжение без каких-либо колебаний или отклонений. Стабилитрон идеально подходит для регулирования напряжения на выходе. R2-100Ом и ZD1-30В подключены как стабилизаторы постоянного тока 30В. Для регулировки выходного напряжения от 0 до 30В к выходу подключен переменный резистор. Переменный щуп RV1 подключен к коллектору переключающего транзистора BC547. Изменяя этот резистор, эмиттер переключающего транзистора будет обеспечивать изменение напряжения от 0 до 30 В. Теперь есть транзисторы Q1 и Q2 в режиме Дарлингтона. Для привода или увеличения выходного тока до 2А. Конденсатор C2 на выходных клеммах силовой цепи помогает справляться с быстрыми переходными процессами и шумами на выходной нагрузке. Значение этого конденсатора зависит от отклонения напряжения, изменений тока и переходного времени отклика используемого конденсатора. Также имеется защита от короткого замыкания, которая осуществляется транзистором Q3 и резистором R3.

Приложения

Эту схему можно использовать в качестве адаптера питания для поддержки широкого спектра электронных приложений, таких как радиовещание, цифровые камеры, принтеры, ноутбуки и другие портативные электронные устройства. Его также можно использовать в качестве регулируемого источника постоянного тока для электронных устройств.

Похожие сообщения:

Zone.com – Электронные комплекты, электронные проекты, электронные схемы, самодельная электроника



FM-радиоприемник TDA7000 с усилителем LM386

Опубликовано 7 июня 2022 г.   •   Категория: FM-радио / приемники



Простая схема и простота сборки Самодельный FM-радиоприемник TDA7000 с микросхемой усилителя LM386. Сборка FM-радио всегда интересна любителям электроники. TDA7000, который интегрирует монофонический FM-радио на всем пути от антенного входа до аудиовыхода. Снаружи ИМС TDA7000 имеется только один перестраиваемый LC-контур гетеродина, несколько недорогих керамических конденсаторов и один резистор. TDA7000 значительно снижает затраты на сборку и настройку после производства, поскольку только схема генератора нуждается в настройке во время производства, чтобы установить пределы настроенного диапазона частот. Полное FM-радио может быть сделано достаточно маленьким, чтобы поместиться внутри калькулятора, прикуривателя, брелка для ключей или даже тонких часов. TDA7000 также может использоваться в качестве приемника в таком оборудовании, как беспроводные телефоны, радиостанции CB, радиоуправляемые модели, пейджинговые системы, звуковой канал телевизора или другие системы демодуляции FM.


BA1404 Стерео FM-передатчик с усилителем

Опубликовано 4 мая 2022 г.   •   Категория: FM-передатчики



Соберите довольно простую схему высококачественного стереофонического FM-передатчика, как показано на фото. Схема основана на микросхеме BA1404 от ROHM Semiconductors и усилителе S9018 для расширения диапазона передатчика. BA1404 представляет собой монолитный стереофонический FM-модулятор, который имеет встроенные схемы стереомодулятора, FM-модулятора и ВЧ-усилителя. FM-модулятор может работать на частоте от 76 до 108 МГц, а источник питания для схемы может быть от 6 до 12 вольт.


Переносной портативный настольный источник питания 1–32 В, 0–5 А

Опубликовано 13 апреля 2022 г.   •   Категория: Блоки питания



Я слишком долго жил без регулируемого блока питания лабораторного стола. Блок питания, который я использовал для питания большинства своих проектов, слишком часто подвергался короткому замыканию. Я фактически убил 2 случайно и нуждался в замене. В моей мастерской лежало много липо-аккумуляторов 18650, поэтому я решил использовать их для создания портативного регулируемого настольного источника питания, который можно было бы легко перемещать и использовать на ходу. Блок питания состоит из повышающего модуля питания постоянного тока, дисплея напряжения и тока, переключателя, подстроечных потенциометров стандартного размера 10K, XT-60 и балансировочного разъема для зарядки массива из 8×4 аккумуляторов 18650.


Усилитель FM-передатчика мощностью 1 Вт

Опубликовано в среду, 30 марта 2022 г.   •   Категория: FM-передатчики



1 Вт Усилитель FM-передатчика с разумно сбалансированной конструкцией, предназначенной для усиления радиочастот в диапазоне 88–108 МГц. Это может считаться довольно чувствительной конфигурацией при использовании с качественными транзисторами ВЧ-усилителя мощности, триммерами и катушками индуктивности. Он предполагает коэффициент усиления мощности от 9 до 12 дБ (от 9 до 15 раз). При входной мощности 0,1 Вт выходная мощность может быть значительно больше 1 Вт. Транзистор Т1 желательно выбирать исходя из входного напряжения. Для напряжения 12В рекомендуется использовать транзисторы типа 2N4427, КТ920А, КТ934А, КТ904, BLX65, 2SC1970, BLY87. Для напряжения 18-24В возможно использование транзисторов типа 2N3866, 2N3553, КТ922А, BLY91, BLX92A. Вы также можете рассмотреть возможность использования 2N2219 с входным напряжением 12 В, однако это даст выходную мощность около 0,4 Вт.


Декодер Arduino DCC

Опубликовано 14 марта 2022 г.   •   Категория: Разное



Современные модели железных дорог управляются в цифровом виде с использованием протокола Digital Command Control (DCC), аналогичного сетевым пакетам. Эти пакеты данных содержат адрес устройства и набор инструкций, который встроен в виде напряжения переменного тока и подается на железнодорожный путь для управления локомотивами. Большим преимуществом DCC по сравнению с аналоговым управлением постоянным током является то, что вы можете независимо контролировать скорость и направление многих локомотивов на одном и том же железнодорожном пути, а также управлять многими другими осветительными приборами и аксессуарами, используя тот же сигнал и напряжение. Коммерческие декодеры DCC доступны на рынке, однако их стоимость может довольно быстро возрасти, если у вас есть много устройств для управления. К счастью, вы можете самостоятельно собрать простой DCC-декодер Arduino для декодирования DCC-сигнала и управления до 17 светодиодами/аксессуарами на каждый DCC-декодер.


Простейший FM-приемник

Опубликовано 1 февраля 2022 г.   •   Категория: FM-радио / приемники



Это, пожалуй, один из самых простых и маленьких FM-приемников для приема местных FM-станций. Простой дизайн делает его идеальным для карманного FM-приемника. Аудиовыход приемника усиливается микросхемой усилителя LM386, которая может управлять небольшим динамиком или наушниками. Схема питается от трех элементов питания типа ААА или АА. Секция FM-приемника использует два радиочастотных транзистора для преобразования частотно-модулированных сигналов в аудио. Катушка L1 и переменный конденсатор образуют контур настроенного резервуара, который используется для настройки на любые доступные FM-станции.


FM-передатчик мощностью 7 Вт

Опубликовано 20 января 2022 г.   •   Категория: FM-передатчики



Это сборка известного FM-передатчика Veronica. Передатчик был построен на двух отдельных платах. Первая плата (на фото выше) — это сам передатчик Veronica с выходной мощностью 600 мВт при питании от напряжения 12 В или 1 Вт при питании от напряжения 16 В. Вторая плата представляет собой ВЧ-усилитель мощности, в котором используется транзистор 2SC1971 для усиления выходного сигнала Veronica примерно до 7 Вт. Хотя передатчик может питаться от 9-16 В, рекомендуется, чтобы и передатчик, и усилитель питались от напряжения 12 В, поскольку 600 мВт является верхним пределом для управления транзистором 2SC1971.


Простой стереофонический FM-передатчик с использованием микроконтроллера AVR

Опубликовано вторник, 4 января 2022 г.   •   Категория: FM-передатчики



Я был очарован идеей сделать простой стереокодировщик для создания стерео FM-передатчика. Не то чтобы стерео много значило для меня вдали от компьютера. Я использую передатчик FM-радиовещания для передачи выходного сигнала моих компьютеров на FM-радио на кухне, в спальне, на подъездной дорожке и в саду. В этих условиях я считаю, что моно достаточно, будь то музыка или радиопрограммы из Интернета, поскольку я все равно в основном занят чем-то другим. Когда я стою на четвереньках в саду, по локоть сажаю куст, музыка действительно не кажется более сладкой, когда она звучит в стерео. Но это не помешало мне увлечься идеей создания стереокодера. Стерео всегда казалось большим количеством схем и беспокойства из-за небольшой выгоды, которую оно давало. То есть до нескольких недель назад.


Стерео FM-приемник

Опубликовано Пятница, 24 декабря 2021 г.   •   Категория: FM-радио / приемники



Высокочувствительный приемник TEA5711 позволяет принимать удаленные станции на расстоянии более 150 миль (240 км). Хорошая селективность достигается с помощью керамических фильтров с узкой полосой пропускания. Автоматический контроль частоты AFC захватывает станции для приема без дрейфа. Стереоразделение, которое зависит от мощности сигнала, очень заметно на сильных сигналах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *