Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Простая переделка китайского фонаря своими руками


На днях заходит к нам соседка и приносит с собой симпатичный переносной фонарь.

Фонарь проработал полгода, полгода пролежал без дела, сейчас понадобился, а не работает. Фонарем пользовались в подвале; лампочка только над дверью, а у дальних полок с вареньем – соленьем сумрачно. Фонарь в подвале и обитал, висел на косяке под выключателем и розеткой. Подвал сухой, супруг хотел переноску с лампочкой сделать, а фонарь появился – надобности в ней не стало. Пока женщины судачили между собой, я занялся фонарем. Фонарь изготовили китайцы, имеется гелиевый кислотный аккумулятор,

галогеновая лампа накаливания,
Простая переделка китайского фонаря своими руками

зарядное устройство для подзарядки аккумулятора,
Простая переделка китайского фонаря своими руками
собранное по примитивной схеме.
Простая переделка китайского фонаря своими руками

Произвел необходимые замеры аккумулятора мультиметром:

Простая переделка китайского фонаря своими руками
Напряжение и ток на нуле, сопротивление – бесконечность. Возиться с таким аккумулятором нет смысла, имел с такими возможность попыток реанимировать, но если умерла, так умерла. Решено было делать простой фонарь со светодиодом, питание от сети 220 вольт.
Простая переделка китайского фонаря своими руками
Соседка принесла сетевой шнур около пяти метров с вилочкой на одном конце.
Простая переделка китайского фонаря своими руками
Нашлась светодиодная лампочка на 12 вольт,
Простая переделка китайского фонаря своими руками
работоспособная плата от необходимого зарядного устройства так же имелась,
Простая переделка китайского фонаря своими руками
установил только вместо индикаторного светодиода стабилитрон Д815Д,
Простая переделка китайского фонаря своими руками

да сетевой шнур к плате паяльном припаял.
Простая переделка китайского фонаря своими руками
Воткнул вилку в сеть и ласковый свет фонаря осветил комнату.
Простая переделка китайского фонаря своими руками
Делов – то всего на рубль с полтиной, а трехлитровую банку овощного маринованного ассорти в качестве презента от соседки получил.
Простая переделка китайского фонаря своими руками Простая переделка китайского фонаря своими руками
Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

usamodelkina.ru

Самодельный супер яркий мини LED-фонарик 3 Вт своими руками

Светодиоды сегодня встраивают куда угодно – в игрушки, зажигалки, бытовую технику и даже в канцелярские товары. Но самое полезное изобретение с ними – это конечно же фонарик. Большая часть из них автономны и выдают мощное свечение от небольших аккумуляторов. С ним не заблудишься в темноте, а при работе в слабоосвещенном помещении этот инструмент просто незаменим.
Небольшие экземпляры самых разных LED-фонариков можно купить практически в любом магазине. Стоят они недорого, но качество сборки может порой не радовать. То ли дело самодельные устройства, которые можно сделать на базе самых простых деталей. Это интересно, познавательно и оказывает развивающее действие на любителей мастерить.
Самодельный супер яркий мини LEDфонарик
Сегодня мы рассмотрим очередную самоделку – LED-фонарик, сделанную буквально из подручных деталей. Их стоимость не более нескольких долларов, а эффективность устройства выше чем у многих заводских моделей. Интересно? Тогда сделайте ее вместе с нами.
Самодельный супер яркий мини LEDфонарик

Принцип работы устройства


На сей раз светодиод подключен к аккумулятору только через сопротивление на 3 Ом. Поскольку в нем присутствует готовый источник энергии, ему не требуется накопительный тиристор и транзистор для распределения напряжения, как в случае с вечным фонариком Фарадея. Для зарядки аккумулятора применяется электронный модуль зарядки. Крохотный микромодуль обеспечивает защиту от перепадов напряжения и не допускает перезарядки аккумулятора. Заряжается устройство от USB разъема, а на самом модуле находится разъем микро USB.

Необходимые детали



Из инструментов понадобятся: паяльник с флюсом, клеевой пистолет, бормашина, зажигалка и малярный нож.
Самодельный супер яркий мини LEDфонарик

Собираем мощный светодиодный фонарик


Подготовка светодиода с линзами


Берем пластиковый колпак с линзами, и размечаем окружность радиатора. Он нужен для охлаждения светодиода. На алюминиевой пластине размечаем посадочные пазы, отверстия и вырезаем радиатор по разметке. Это можно сделать, например, при помощи бормашины.
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Вытаскиваем на время увеличительные линзы, сейчас они не понадобятся. С тыльной стороны колпачка на суперклей приклеиваем пластину радиатора. Отверстия, пазы у колпачка и радиатора должны совпадать.
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Контакты светодиода лудим и пропаиваем медной проводкой. Защищаем контакты термоусадочными кембриками, и прогреваем их зажигалкой. Вставляем с лицевой стороны колпака светодиод с проводкой.
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик

Обработка корпуса фонарика из шприца


Отмыкаем поршень с рукояткой у шприца, они нам больше не понадобятся. Обрезаем подыгольный конус малярным ножом.
Счищаем полностью торец шприца, проделывая в нем отверстия для светодиодных контактов фонарика.
Крепим колпак фонаря к торцевой поверхности шприца на любой подходящий клей, например, на эпоксидную смолу или жидкие гвозди. Не забываем светодиодные контакты поместить во внутрь шприца.
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик

Подключение микромодуля зарядки и аккумулятора


На литиевый аккумулятор крепим клеммы с контактами, и вставляем в корпус шприца. Подтягиваем медные контакты, чтобы зажать их корпусом аккумулятора.
Самодельный супер яркий мини LEDфонарик
У шприца остается всего несколько сантиметров свободного пространства, недостаточного для модуля зарядки. Поэтому его придется разделить на две части.
Проводим малярным ножом посередине платы модуля, и ломаем ее по линии среза. Используя двойной скотч соединяем обе половинки платы вместе.
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Разомкнутые контакты модуля лудим, и пропаиваем медной проводкой.
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик

Окончательная сборка фонарика


К плате модуля припаиваем резистор, и подключаем его к микро-кнопке, изолируя контакты термоусадкой.
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Остальные три контакта припаиваем к модулю согласно схеме его подключения. Микро-кнопку подключаем в последнюю очередь, проверяя работу светодиода.
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Электронную начинку нашего устройства помещаем в корпус шприца таким образом, чтобы разъем микро USB и микро-кнопка остались на поверхности. Остальное пространство изолируем горячим клеем. Устанавливаем светодиодные линзы обратно на их место с лицевой стороны колпака.
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Ставим на зарядку аккумулятор, и через некоторое время светодиод на модуле зарядки даст знать, что нашим фонариком уже можно пользоваться. Кстати, по заверениям автора, такой фонарик способен на одном заряде проработать около 10 часов!
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик
Самодельный супер яркий мини LEDфонарик

Смотрите видео


sdelaysam-svoimirukami.ru

TinyFL — драйвер фонарика на микроконтроллере / Habr

Привет, Habr!

Хочу рассказать историю о том, как мне в руки попал китайский налобный фонарик на светодиоде Cree XM-L и что дальше с ним стало.


Предыстория

Когда-то давно я заказал с одного китайского сайта фонарик с ярким светодиодом. Фонарик оказался довольно эргономичным (хотя он мог быть и полегче), но вот его драйвер оставлял желать лучшего.

Светил он достаточно ярко, но у драйвера было только 3 режима — очень яркий, яркий и стробоскоп, переключение между которыми производилось нажатием кнопки. Для того, чтобы просто включить и выключить фонарь, требовалось каждый раз перебирать эти 3 режима. Вдобавок, этот фонарик, будучи включенным, разряжал батарею до последнего – так пара моих банок 18650 ушли в глубокий разряд.

Все это было неудобно и надоедало, поэтому в какой-то момент я решил сделать для него свой драйвер, о чем и будет дальнейшее повествование.


Фонарик со старым драйвером

Вот такой фонарик, наверняка многие имели дело с подобными

Так выглядит оригинальный драйвер


Техническое задание

Как известно, для достижения хорошего результата любая разработка должна иметь хорошее ТЗ, поэтому постараюсь сформулировать его для себя. Итак, драйвер должен:


  • Уметь включаться/отключаться по короткому нажатию кнопки (кнопка без фиксации). Пожалуй, это основная причина, по которой все это затеялось.
  • Иметь плавную (бесступенчатую) регулировку яркости, от самого яркого — “турбо”, до “мунлайта”, когда диод еле светится. Яркость должна изменяться равномерно.
  • Запоминать установленную яркость на время выключения.
  • Контролировать заряд батареи, предупреждая когда она почти разряжена (примерно 3.3В) и отключаясь, когда разряжена полностью (примерно 2.9В). Для разных АКБ эти параметры могут быть иными. Соответственно, рабочее напряжение должно быть в диапазоне 2.7~4.5В.
  • Иметь 2 специальных режима — аварийный маячок и стробоскоп (ну а почему бы и нет?)
  • Уметь включать/выключать задний светодиод (это актуально при езде на велосипеде ночью, получается что-то вроде габаритного огня).
  • Иметь защиту от переполюсовки и статического электричества. Не обязательно, но будет приятным дополнением, поскольку в темноте можно по ошибке поставить АКБ неправильной стороной.
  • Быть меньше изначального драйвера по размерам, но при этом иметь те же посадочные места. Китайский драйвер просто огромен, сделать крупнее будет непросто.

Ну и если фонарик подвергается моддингу, почему бы не встроить в него зарядное устройство с micro-USB разъемом? У меня под рукой всегда есть такой кабель и USB зарядка, а родной блок питания приходится искать.


Железо

У меня есть кое-какой опыт работы с Arduino, поэтому было решено делать драйвер на МК семейства AVR. Они широко доступны, легко программируются и имеют режимы пониженного энергопотребления (сна).

В качестве “мозга” драйвера был выбран микроконтроллер Attiny13a — это один из самых дешевых МК фирмы Atmel (ныне поглощенной компанией Microchip), он имеет на борту все необходимое — GPIO для подключения кнопки и светодиода, таймер для генерации ШИМ-сигнала, АЦП для измерения напряжения и EEPROM для сохранения параметров. Доступно всего 1 КБ флеш-памяти (но много ли надо для фонарика), а так же 64 Б RAM и столько же EEPROM.
Attiny13 выпускается в нескольких вариантах корпуса, в частности в DIP-8, который можно воткнуть прямо в обычную макетную плату с шагом 2.54мм.

Поскольку от задней части к голове фонаря идет всего 3 провода, кнопка вынуждена замыкаться на землю (о невозможности замыкать на плюс — позже), придется коммутировать светодиод по плюсу — а значит, нужен P-канальный полевик. В качестве такого транзистора я взял AO3401, но можно взять SI2323, он дороже, но имеет меньшее сопротивление открытого канала (40 мОм, тогда как у AO3401 60 мОм, при 4.5 В), следовательно драйвер будет меньше греться.

От слов к делу, собираю на макетке предварительную версию

Питается оно пока что напрямую от программатора, напряжением 5 В (на самом деле меньше из-за потерь в кабеле USB). Вместо светодиода XM-L пока воткнул обычный светодиод на ножках и поставил слабый транзистор с высоким пороговым напряжением.
Затем в программе Altium Designer была начерчена схема, которую я дополнил защитой от переполюсовки и ESD.


Подробное описание и предназначение всех компонентов
Обязательные компоненты:

U1 – микроконтроллер Attiny13a в корпусе 8S1 (индекс SSU)

С1 — развязывающий конденсатор по питанию микроконтроллера, должен быть в районе 0.1 мкф, корпус 1206 или 0805, температурный коэффициент X7R

R1-R2 — резисторный делитель для измерения напряжения батареи, номиналы можно ставить любые, тут главное соотношение (750К/220K, коэффициент деления 4.41) и ток утечки, который будет больше, если увеличить номиналы (при текущих он порядка 4 мкА). Поскольку используется внутренний ИОН (1.1 В, согласно даташиту он может быть в пределах 1.0 В — 1.2 В), максимальное напряжение на выходе делителя не должно быть более 1 В. При делителе 750/220 максимально допустимое напряжение на входе делителя будет 4.41 В, что более чем достаточно для всех типов литиевых аккумуляторов.

Делитель я рассчитывал при помощи вот этого калькулятора .

R3 — защита вывода порта микроконтроллера от замыкания (если вдруг PB1 окажется притянуто к VCC, через пин потечет большой ток и МК может сгореть)

R4 — подтяжка RESET МК к питанию, без него возможны перезагрузки от наводок.

Q1 — P-канальный полевой транзистор в корпусе SOT-23, я поставил AO3401, но можно и любой другой с подходящей распиновкой (например SI2323)

R7 — токоограничительный резистор затвора. Поскольку затвор транзистора имеет некоторую емкость, при зарядке этой емкости через пин может проходить большой ток и пин может выйти из строя. Можно ставить в районе 100-220 Ом (больше не следует, транзистор начнет долго находиться в полузакрытом состоянии, и, как следствие, будет сильнее греться).

R6 — резистор подтяжки затвора к питанию. На случай, если PB0 перейдет в высокоимпедансное состояние, через этот резистор на затворе Q1 установится логическая 1 и транзистор будет закрыт. Такое может произойти из-за ошибки в коде или в режиме программирования.

D2 — “запирающий” диод — позволяет при “проседании” напряжения (когда светодиод включается на короткий период на полную яркость) питаться МК от конденсатора какое-то время, так же защищает от переполюсовки.
Можно ставить любой диод шоттки в корпусе SOD323 с минимальным падением напряжения, я поставил BAT60.

Изначально, защита от неправильной полярности питания была сделана на полевом транзисторе (это можно увидеть на платах, изготовленных лутом). После распайки вылезла неприятная особенность — при включении нагрузки возникала просадка напряжения и МК перезагружался, поскольку полевик не ограничивает ток в обратном направлении. Сначала я припаял между VCC и GND электролитический конденсатор на 200 мкФ, но мне не понравилось такое решение из-за его размеров. Пришлось отпаивать транзистор и на его место ставить диод, благо SOT-23 и SOD-323 имеют похожие размеры.

Итого, в схеме всего 10 компонентов, обязательных для установки.


Необязательные компоненты:

R5 и D1 отвечают за заднюю подсветку (LED2). Минимальный номинал R5 — 100 Ом. Чем больше номинал, тем слабее светится задний светодиод (он включается в постоянном режиме, без ШИМ). D1 — любой светодиод в корпусе 1206, я поставил зеленый, т.к. визуально они ярче при тех же токах, чем прочие.

D3 и D4 — защитные диоды (TVS), я использовал PESD5V0 (5.0В) в корпусе SOD323. D3 защищает от перенапряжения по питанию, D4 — по кнопке. Если кнопка закрыта мембраной, то в нем нету особого смысла. Защитные диоды наверное имеет смысл использовать двунаправленные, иначе при переполюсовке через них пойдет ток и они выгорят (см. ВАХ двунаправленного защитного диода).

C2 — танталовый конденсатор в корпусе А (похож на 1206), имеет смысл ставить при нестабильной работе драйвера (напряжение питания мк может просаживаться при больших токах коммутации светодиода)

Все резисторы типоразмера 0603 (для меня это адекватный предел для пайки вручную)

С компонентами все ясно, можно делать печатную плату по вышеприведенной схеме.
Первым делом для этого нужно построить 3D модель будущей платы, вместе с отверстиями — имхо, в Altium Designer это самый удобный способ определить геометрию ПП.
Измерил размеры старого драйвера и его посадочных отверстий — плата должна крепиться к ним же, но иметь меньшие габариты (для универсальности, вдруг куда-то еще придется встроить).
Разумный минимум здесь получился где-то 25х12.5мм (соотношение сторон 2:1) с двумя отверстиями диаметром 2мм для крепления к корпусу фонаря родными винтами.

3D-модель я сделал в SolidWorks, затем экспортировал в Altium Designer как STEP.
Затем я разместил компоненты по плате, контакты сделал по углам (так паять удобнее и проще разводить землю), Attiny13 поставил по центру, транзистор поближе к контактам LED.
Развел силовые дорожки, разместил остальные компоненты как получится и развел сигнальные дорожки. Для удобства подключения ЗУ я вывел под него отдельные контакты, которые дублируют контакты батареи.
Всю разводку (за исключением одной перемычки) я сделал на верхнем слое — для того, чтобы была возможность изготовить плату в домашних условиях ЛУТом.
Минимальная ширина сигнальных дорожек — 0.254 мм / 10 mil, силовые имеют максимальную ширину там, где это возможно.

Так выглядит разведенная плата в Altium Designer

В Altium Designer есть возможность посмотреть, как будет выглядеть плата в 3D (для этого необходимо наличие моделей для всех компонентов, некоторые пришлось строить самому).
Возможно, кто-то тут скажет, что 3D режим для трассировщика не нужен, но лично для меня это удобная функция, которая облегчает размещение компонентов для удобства пайки.

На момент написания статьи было сделано 3 версии платы — первая под ЛУТ, вторая для промышленного изготовления и 3-я, финальная с некоторыми исправлениями.


Изготовление плат


Самодельный способ

ЛУТ — лазерно-утюжная технология, способ производства плат при помощи травления по маске, полученной переводом тонера с бумаги на медь. Этот способ отлично подходит для несложных односторонних плат — таких как этот драйвер.
В сети достаточно много статей по этой технологии, поэтому я не буду углубляться в подробности, а лишь расскажу вкратце про то, как это делаю я.

Для начала нужно подготовить шаблон, который будет распечатан на термобумаге. Экспортирую в PDF слой top_layer, получаю векторное изображение.

Поскольку плата маленькая, есть смысл брать кусок текстолита с габаритами в несколько раз больше и делать то, что в промышленности называют панелизацией.
Для этих целей весьма удобен CorelDraw, но можно пользоваться и любым другим векторным редактором.
Размещаю копии шаблонов на документе, между платами делаю промежутки в 0.5-1мм (зависит от способа разделения, об этом позже), платы должны быть расположены симметрично — иначе будет сложно их разделить.

Подбираю кусок одностороннего текстолита размерами чуть больше, чем скомпонованная панель, зачищаю и обезжириваю (предпочитаю тереть ластиком и потом спиртом). Печатаю на термобумаге шаблон для травления (тут важно не забыть отзеркалить шаблон).
При помощи утюга и терпения, аккуратно поглаживая по бумаге, перевожу на текстолит. Жду пока остынет и осторожно отдираю бумагу.
Свободные участки меди (не покрытые тонером) можно покрыть лаком или заклеить скотчем (чем меньше площадь меди, тем быстрее идет реакция травления).

Такая вот домашняя панелизация — большое количество плат позволяет компенсировать брак производства

Я травлю платы лимонной кислотой в растворе перекиси водорода, это самый доступный способ, хотя и довольно медленный.
Пропорции такие: на 100мл перекиси 3% идет 30г лимонной кислоты и примерно 5г соли, это все перемешивается и выливается в емкость с текстолитом.
Подогревание раствора ускорит реакцию, но может привести к отслаиванию тонера.

Начинается неведомая химическая магия: медь покрывается пузырями, а раствор приобретает синий оттенок

Через какое-то время достаю протравленую плату, очищаю от тонера. У меня его не получается смывать какими-либо растворителями, поэтому я удаляю его механически — мелкозернистой наждачной бумагой.

Теперь остается залудить плату — это поможет при пайке и защитит медь от окисления и облегчит пайку. Лудить я предпочитаю сплавом Розе — этот сплав плавится при температуре около 95 градусов, что позволяет лудить им в кипящей воде (да, возможно не самый надежный состав для лужения, но для самодельных плат годится).

После лужения я сверлю плату (для контактов использую твердосплавные сверла ф1.0, для перемычек — ф0.7), сверлю дремелем за неимением другого инструмента. Пилить текстолит я не люблю из-за пыли, поэтому после сверления разрезаю платы канцелярским ножом — с двух сторон делаю несколько надрезов по одной линии, затем разламываю по надрезу. Это напоминает метод V-cut, используемый в промышленности, только там надрез делается фрезой.

Так выглядит плата, готовая к пайке

Когда плата готова, можно приступать к распайке компонентов. Сначала я запаиваю мелочь (резисторы 0603), затем все остальное. Резисторы примыкают вплотную к МК, поэтому в обратной последовательности запаять может быть проблематично. После пайки я проверяю, нет ли КЗ по питанию драйвера, после чего уже можно приступать к прошивке МК.

Драйверы, готовые к загрузке прошивки


Промышленный способ

ЛУТ — это быстро и доступно, но технология имеет свои недостатки (как и почти все “домашние” методы изготовления ПП). Проблематично сделать двухсторонную плату, дорожки могут быть перетравлены, а о металлизации отверстий остается только мечтать.

Благо, предприимчивые китайцы давно предлагают услуги изготовления печатных плат промышленным способом.
Как ни странно, однослойная плата у китайцев будет стоить дороже, чем двухслойная, поэтому я решил добавить второй (нижний) слой к печатной плате. На этом слое продублированы силовые дорожки и земля. Так же, появилась возможность сделать теплоотвод от транзистора (медные полигоны на нижнем слое), что позволит драйверу работать на более высоких токах.

Нижний слой платы в Altium Designer

Для этого проекта я решил заказать печатную плату на сайте PcbWay. На сайте есть удобный калькулятор расчета стоимости плат в зависимости от их параметров, размеров и количества. После расчета стоимости я загрузил gerber-файл, созданный ранее в Altium Designer, китайцы его проверили и плата отправилась на производство.

Изготовление комплект из 10 плат TinyFL обошлось мне в $5. При регистрации нового пользователя дается скидка $5 на первый заказ, поэтому я оплачивал только доставку, которая тоже стоит где-то в районе $5.
На этом сайте есть возможность выложить проект в общий доступ, поэтому если кто-то захочет заказать эти платы, можно просто добавить в корзину этот проект.

Спустя пару-тройку недель мне пришли те же самые платы, только красивенькие изготовленные промышленным способом. Их остается только распаять и залить в них прошивку.


Программа (прошивка)

Основная трудность, которая возникла при написании прошивки драйвера, связана она с крайне малым размером flash-памяти — у Attiny13 ее всего-навсего 1024 байта.
Так же, поскольку изменение яркости плавное, нетривиальной задачей оказалось равномерное ее изменение — для этого пришлось делать гамма-коррекцию.


Алгоритм управления драйвером

Драйвер включается по короткому нажатию на кнопку, выключается по нему же.
Выбранный режим яркости сохраняется на время выключения.

Если во время работы сделать двойное короткое нажатие кнопки (двойной клик), будет включен/выключен дополнительный светодиод.
При длинном нажатии во время работы начнет плавно изменяться яркость фонаря. Повторное длинное нажатие изменяет направление (сильнее/слабее).

Драйвер периодически проверяет напряжение батареи, и если оно ниже установленных значений, предупреждает пользователя о разряде, а затем отключается во избежание глубокого разряда.


Более подробное описание алгоритма работы драйвера
  1. При подаче питания на МК производится настройка периферии и МК погружается в сон (если STARTSLEEP определено). При подаче питания на драйвер оба светодиода мигают некоторое количество раз, если STARTBLINKS определено.
  2. Сон. Attiny13 засыпает в режиме power-down (это самый экономичный режим, по даташиту потребление МК составит ~ 1 мкА), выйти из которого оно может только по какому-либо прерыванию. В данном случае это прерывание INT0 — нажатие кнопки (установка PC1 в логическое 0).
    На PC1 при этом должна быть включена внутренняя слабая подтяжка к питанию. АЦП и компаратор являются основным потребителями тока из всей периферии, поэтому их тоже нужно отключить. На время сна содержимое регистров и оперативной памяти сохраняется, поэтому EEPROM не нужен для запоминания яркости.
  3. После сна периферия и ШИМ включается и драйвер входит в бесконечный цикл, в котором отслеживается нажатие кнопки и периодически проверяется напряжение батареи.
  4. Если кнопка нажата — засекается время нажатия.
    4.1. Если нажатие короткое — ожидается двойной клик (если BTN_DBCLICK определено).
    Если он был, переключается дополнительный светодиод LED2
    Если нет, то переход к п.2 (сон)
    4.2. Если нажатие долгое (дольше, чем BTN_ONOFF_DELAY) — включается режим управления яркостью. В этом режиме:
    • Инвертируется направление изменения (больше/меньше) и изменяется % заполнения ШИМ, пока нажата кнопка.
    • Если достигнуто максимальное/минимальное значение (RATE_MAX / RATE_MIN), светодиод начинает мигать;
    • Если прошло n-миганий (AUXMODES_DELAY) и кнопка все еще нажата, включается дополнительный режим. Таких режимов два — стробоскоп ( включается на 25 мс, частота 8 Гц) и аварийный маячок (включается на полную яркость на 50мс, частота 1 Гц). В этих режимах не происходит проверки заряда батареи, а для выхода нужно какое-то время держать нажатой кнопку.
  5. Если пришло время проверять напряжение батареи — считываются показания с ADC2, результат сравнивается с предустановленными значениями.
    • Если значение АЦП больше значения BAT_WARNING – все нормально
    • Если меньше BAT_WARNING – пользователь предупреждается о разряде, драйвер мигает основным светодиодом. Кол-во вспышек будет пропорционально степени разряда. Например, с дефолтными значениями при полном разряде фонарь мигнет 5 раз.
    • Если меньше BAT_SHUTDOWN — МК переходит в п.2 (сон).

Управление яркостью светодиода

Как известно, самый простой способ управлять яркостью — изменять скважность ШИМ, при этом светодиод на какое-то время включается на полную яркость, затем выключается. Из-за особенностей человеческого глаза кажется, что светодиод светит менее ярко, чем если бы он был включен постоянно. Поскольку светодиод подключен через P-канальный полевой транзистор, для его открытия необходимо притянуть затвор к земле, а для закрытия — наоборот, к питанию. Время открытия транзистора по отношению ко времени его закрытого состояния будет коррелировать с заполнением ШИМ.
За скважность шим отвечает переменная rate, 255 rate = 100% ШИМ.
При частоте тактирования 1.2 МГц и предделителе таймера в 1, частота ШИМ будет равна 1200000/256 = 4.7 КГц. Поскольку это частота звуковая (воспринимаемая человеческим ухом), на некоторой скважности ШИМ драйвер может начать пищать (точнее, пищит не драйвер, а провода, либо элементы питания). Если мешает, можно увеличить рабочую частоту до 9.6 (CKSEL[1:0]=10, CKDIV8=1) или 4.8 МГц (CKSEL[1:0]=01, CKDIV8=1), тогда частота ШИМ будет в 8 или в 4 раза больше, но энергопотребление МК так же вырастет пропорционально.

Считается, что диод нужно питать путем стабилизации тока через него, а в таком режиме он быстро выйдет из строя. Тут я соглашусь и скажу, что у меня в фонаре (да и во многих налобниках аналогичной конструкции) светодиод не подключается напрямую к драйверу, а до него идут достаточно длинные и тонкие провода, сопротивление которых, а так же внутреннее сопротивление батареи и сопротивление драйвера ограничивают максимальный ток в районе 1.5 А, что в 2 раза меньше максимального тока для данного светодиода (максимальный ток для Cree XM-L согласно документации — 3 А).
Если у Вас драйвер подключен к светодиоду короткими проводами и у держателя батареи хорошие контакты, ток при максимальной яркости (rate=255) может превышать значение в 3А. В этом случае данный драйвер Вам скорее всего не подойдет, так как есть риск выхода светодиода из строя. Тем не менее, можно скорректировать параметр RATE_MAX до получения приемлемых значений тока. К тому же, хоть по спецификации транзистора SI2323DS его максимальный ток и превышает 4 А, лучше выставить порог в 2 А, иначе драйверу может потребоваться охлаждение.


Гамма-коррекция

Человеческий глаз воспринимает яркость объектов нелинейно. В случае с этим драйвером, разница между 5-10% ШИМ будет восприниматься как многократное увеличение яркости, тогда как разница между 75-100% будет практически не будет заметна глазу. Если увеличивать яркость светодиода равномерно, со скоростью n процентов в секунду, будет казаться, что в начале яркость очень быстро растет от нуля до среднего значения, затем очень медленно увеличивается от середины до максимума.

Это весьма неудобно, и для компенсации этого эффекта пришлось сделать упрощенный алгоритм гамма-коррекции. Его суть в том, что шаг изменения яркости увеличивается от 1 при минимальных значениях ШИМ до 12 при максимальных значениях. В графическом представлении это выглядит как кривая, точки которой сохранены в массиве rate_step_array. Таким образом, кажется, что яркость изменяется равномерно на всем диапазоне.


Контроль напряжения батареи

Каждые n-секунд (за интервал в миллисекундах отвечает параметр BAT_PERIOD) происходит замер напряжения батареи. Положительный контакт батареи, который подключается к VIN и попадает на резисторный делитель R1-R2, к средней точке которого подключен пин PB4 (он же ADC2 у мультиплексора АЦП).

Поскольку напряжение питания изменяется вместе с измеряемым напряжением, не получится измерить его, использовав в качестве опорного напряжения Vref, поэтому в качестве ИОН я применил внутренний источник на 1.1 В. Как раз для этого и нужен делитель — МК не может измерить напряжение, большее чем напряжение опорного источника (так, напряжению 1.1 В будет соответствовать значение АЦП в 1023 или 255, если использовать 8-битное разрешение). Проходя через делитель, напряжение в средней его точке будет в 6 раз меньше входного, значению 255 будет соответствовать уже не 1.1 В, а целых 4.33 В (делитель на 4.03), что с запасом покрывает диапазон измерений.

В итоге получается некоторое значение, которое дальше сравнивается с предустановленными значениями минимальных напряжений. При достижении значения BAT_WARNING светодиод начинает мигать некоторое количество раз (чем сильнее разряжено, тем больше мигает — за это отвечает BAT_INFO_STEP, подробнее в коде), а при достижении BAT_SHUTDOWN драйвер отключается.
Значение АЦП переводить в милливольты я не вижу смысла, т.к. это тратит лишную память, которой в тиньке и так мало.

Кстати, делитель является основным потребителем питания, когда МК находится в режиме сна. Так, делитель на 4.03 с R1 = 1M и R2 = 330К, будет иметь общее R = 1330K и ток утечки при 4 В = 3 мкА.
На время измерения напряжения нагрузка (светодиод) отключается примерно на 1 мс. Это почти не заметно для глаз, но помогает стабилизировать напряжение, иначе измерения будут некорректные (а делать какие-либо поправки на скважности шим и прочее — слишком сложно).


Внесение изменений в прошивку

Это нетрудно сделать, особенно если был опыт работы с Arduino или просто с C/C++.
Даже если такого опыта не было, можно настроить почти все рабочие параметры путем редактирования определений (defines) заголовочного файла flashlight.h.
Для редактирования исходного кода нужно будет поставить Arduino IDE с поддержкой Attiny13(a) или Atmel Studio – оно не сложнее, чем Arduino IDE, но гораздо удобнее.


Arduino IDE

Сперва необходимо будет установить поддержку Attiny13 в IDE. Достаточно подробная инструкция имеется в этой статье.
Далее нужно выбрать в меню Tools>Board Attiny13(a) и в меню Tools>Frequency 1.2MHz.
“Скетч” содержится в файле с расширением .ino, он содержит всего одну строчку кода — это включение в проект заголовочного файла. По сути дела, данный скетч — просто способ скомпилировать прошивку через Arduino IDE. Если Вы захотите внести в проект какие-либо изменения, работайте с файлом .cpp.
После открытия проекта нужно нажать на галочку, пойдет компиляция, в случае успеха в логе будет ссылка на файл *.hex. Его нужно залить в микроконтроллер по инструкции ниже.


Atmel Studio

Проект для этого IDE содержится в файле flashlight.atsln, а исходники — в файлах flashlight.h содержит определения (настройки) и flashlight.cpp содержит собственно код.
Расписывать более подробно содержимое исходников не вижу смысла — в коде полно комментариев.
После внесения изменений в код надо нажать F7, прошивка скомпилируется (или нет, тогда компилятор укажет, где ошибка). В папке debug появляется flashlight.hex, который можно загрузить в микроконтроллер по инструкции ниже.


Загрузка прошивки в микроконтроллер

Для загрузки прошивки и настройки фьюзов я использую программатор USBASP в сочетании с программой AVRDUDEPROG. Программа представляет из себя подобие GUI для программы avrdude, есть удобный встроенный калькулятор фьюзов — достаточно поставить галочки возле нужных битов. В списке контроллеров нужно выбрать подходящий (в данном случае Attiny13(a), зайти на вкладку Fuses и нажать кнопку read. Только после того, как значения фьюзов считаны из МК, можно их изменять. После изменения нужно нажать programm, новые фьюзы будут записаны в МК. Подходящие значения фьюзов записаны в файле flashlight.h

Для заливки прошивки надо перейти на вкладку Program, в строке Flash выбрать скомпилированный файл прошивки в формате HEX (flashlight.hex) и нажать Program. Статус прошивки будет отображаться в окне снизу. Если загрузка неудачна, возможно дело в плохом контакте, так бывает — стоит попробовать еще раз. Кстати, именно для этого был сделан параметр STARTBLINKS — однократное мигание LED2 в момент подачи питания на драйвер служит индикацией контакта драйвера с программатором.
Вместо USBASP для загрузки прошивки можно использовать Arduino, подробнее тут и тут

Программатор USBASP, подключенный к драйверу через клипсу со шлейфом

Для подключения USBASP к тиньке я использую клипсу под 8-контактный SOIC. Не очень удобное приспособление, приходится помучаться минут 10, прежде чем поймаешь контакт (возможно, мне просто попалась бракованная клипса). Бывают так же адаптеры SOIC-DIP, куда вставляется микросхема до пайки и в нее заливается прошивка — этот вариант удобнее, но теряется возможность программировать драйвер внутрисхемно (то есть обновлять прошивку после пайки МК на плату).
Если всего этого нет, то можно просто припаять проводки к выводам МК, которые затем прикрепить к Arduino.


Калибровка

Токи, проходящие через драйвер и светодиод, не должны превышать максимальных значений. Для светодиода XM-L это 3 А, для драйвера оно зависит от используемого транзистора, например для SI2323 максимальный ток около 4 А, но лучше гонять на меньших токах из-за чрезмерного нагрева. Для уменьшения тока на максимальной яркости используется параметр RATE_MAX (#define RATE_MAX xx, где xx — максимальная яркость от 0 до 255).
Калибровка АЦП не является обязательной процедурой, но если хочется, чтобы драйвер точно отслеживал пороговое напряжение, то придется с этим повозиться.

Расчеты не дадут высокой точности измерений, т. к. во-первых, номиналы резисторов могут варьироваться в пределах допуска (обычно 1-5%), а во-вторых, внутренний ИОН может иметь разброс от 1.0 до 1.2 В.
Поэтому, единственный приемлемый способ — выставить значение в единицах АЦП (BAT_WARNING и BAT_SHUTDOWN), экспериментально подбирая его под нужное. Для этого понадобится терпение, программатор и регулируемый источник питания.
Я выставлял в прошивке значение BAT_PERIOD в 1000 (проверка напряжения раз в секунду) и постепенно снижал напряжение питания. Когда драйвер начинал предупреждать о разряде, я оставлял текущее значение BAT_WARNING как нужное.
Это не самый удобный способ, возможно в будущем надо сделать процедуру автоматической калибровки с сохранением значений в EEPROM.


Сборка фонарика

Когда плата была готова и прошивка была залита, можно было наконец ставить ее на место старого драйвера. Я выпаял старый драйвер и припаял на его место новый.


Новый драйвер подключается вместо старого по этой схеме

Проверив, нет ли короткого замыкания по питанию, подключил питание и проверил работоспособность. Затем смонтировал плату зарядки (TP4056), для этого пришлось немного дремелем рассверлить отверстие разъема зарядки, и зафиксировал ее термоклеем (тут важно было, чтобы клей не затек в разъем, достать его оттуда будет сложно).

Я не стал прикручивать плату винтами, т. к. резьба в корпусе сорвалась от многократных закручиваний, а просто залил ее клеем, провода тоже заклеил в местах пайки, дабы они не перетирались. Драйвер и ЗУ я решил покрыть акриловым бесцветным лаком, это должно помочь от коррозии.


Тестирование и расчет стоимости изготовления

После всех операций можно было приступать к тестированию драйверов. Ток измерял обычным мультиметром, подключив его в разрыв цепи питания.

Энергопотребление старого драйвера (измерялось при 4.04 В):


  1. Во время сна — не измерялось
  2. Максимальный режим: 0.60 А
  3. Средний режим: 0.30 А
  4. Стробоскоп: 0.28 А

Энергопотребление нового драйвера (измерялось при 4.0 В):


  1. В режиме сна потребляет в районе 4 мкА, это намного меньше тока саморазряда литий-ионной батареи. Основной ток в этом режиме протекает через резисторный делитель.
  2. На минимальном режиме, “мунлайт” — около 5-7 мА, если считать, что емкость одной ячейки 18650 около 2500 мА*ч, то получается около 20 дней непрерывной работы. Сам МК потребляет где-то 1.2-1.5 мА (при рабочей частоте 1.2 МГц).
  3. На максимальном режиме, “турбо” — потребляет около 1.5 А, в таком режиме проработает около полутора часов. Светодиод на таких токах начинает сильно нагреваться, поэтому данный режим не предназначен для длительной работы.
  4. Аварийный маячок — потребляет в среднем около 80 мА, в таком режиме фонарь проработает до 30 часов.
  5. Стробоскоп — потребляет около 0.35 А, проработает до 6 часов.

Цена вопроса

Если покупать компоненты в Чип и Дипе, выйдет около 100р (60р Attiny13, ~40р остальная рассыпуха). С китая заказывать имеет смысл, если делается несколько штук — тогда в пересчете на штуку выйдет дешевле, китайцы продают как правило партиями от 10 штук.
Платы выйдут по цене в районе 300р за 10 штук (без доставки), если заказывать их в Китае.
Распайка и прошивка одного драйвера у меня занимает где-то час.


Заключение

Китайский фонарик стал гораздо удобнее, хотя теперь у меня появились претензии к его механике — передняя часть слишком тяжелая, да и фокусировка не особо нужна.
В будущем планирую сделать версию этого драйвера для фонарей с кнопкой по питанию (с фиксацией). Правда, меня смущает обилие подобных проектов. Как вы считаете, стоит ли делать еще один такой?

Драйвер крупным планом (версия 2_t)

UPD: Добавлена поддержка Arduino IDE.

Исходники прошивки, схема, и разводка платы теперь лежит на гитхабе, скачать можно тут: https://github.com/madcatdev/tinyfl_t

habr.com

Драйвер для светодиода или даем вторую жизнь старому фонарику

Долго пылился на полке старый фонарик — ручка «Duracell». Работал он от двух батареек формата ААА, на лампочку накаливания. Очень удобен был, когда нужно посветить в какую-либо узкую щель в корпусе электронного прибора, но всё удобство от применения перечеркивал «жор» батареек. Можно было бы выкинуть этот раритет и поискать в магазинах что-то современнее, но… Это не наш метод… © Потому на Али была куплена микросхема светодиодного драйвера, которая помогла перевести фонарик на светодиодный свет. Переделка очень простая, которую сможет осилить, даже начинающий радиолюбитель, умеющий держать в руках паяльник… Так что, кому интересно, велком под Кат…

Микросхема драйвер покупалась давно, больше года назад, и ссылка на магазин уже ведет в «пустоту», потому я нашел аналогичный товар, у другого продавца. Сейчас этот драйвер стоит дешевле, чем я покупал его. Что же это за «клоп» с тремя ножками, давайте рассмотрим подробнее.
Для начала ссылка на даташит: www.diodes.com/assets/Datasheets/ZXLD381.pdf
Микросхема представляет собой Led драйвер способный работать от низкого напряжения, к примеру, одной батарейки 1.5В формата ААА. Микросхема драйвера имеет высокую эффективность (КПД) 85% и способна «высосать» батарейку практически полностью, до остаточного напряжения 0,8В.
Характеристики микросхемы драйвера

под спойлером


Схема драйвера очень проста…

Как вы видите, кроме этой микросхемы «клопа» нужна всего одна деталь — дроссель (индуктор), и именно индуктивностью дросселя задается ток светодиода.
Для фонарика в место лампочки, я подобрал яркий белый светодиод, потребляющий ток 30мА, соответственно мне нужно было намотать дроссель индуктивностью 10мкГн. Эффективность драйвера составляет 75-92% в диапазоне 0.8-1.5В, что очень неплохо.

Приводить здесь чертеж печатной платы не буду, т.к нет смысла, плату можно изготовить за пару минут, просто процарапав фольгу в нужных местах.

Дроссель можно намотать, или взять готовый. Я намотал на гантельке, которая попалась под руку. При самостоятельном изготовлении необходимо контролировать индуктивность при помощи LC метра. В качестве корпуса для платы драйвера был использовать двух кубовый одноразовый шприц, внутри которого вполне достаточно места, что бы разместить все необходимые компоненты. С одной стороны шприца -резиновая пробка с светодиодом и контактной площадкой, с другой стороны вторая контактная площадка. Размер отрезка шприца подбирается по месту и приблизительно равен размеру батарейки ААА (мизиньчиковой, как её называют в народе)

Собственно собираем фонарик

И видим, что светодиод ярко светит от одной батарейки…

Ручка-фонарик в сборе выглядит вот так

Светит хорошо и вес фонарика стал меньше, потому как используется всего одна батарейка, а не две, как было изначально…

Вот такой получился коротенький обзор… При помощи микросхемы драйвера, вы можете переделать почти любой раритетный фонарик, на питание от одной батарейки 1.5В. Если есть вопросы спрашивайте…

mysku.ru

Новое сердце для китайского фонарика / Habr

Купив множество китайских фонариков, мощностью от 100 до 16000 люмен, так и не остался доволен.

В большинстве случаев фонарик не отдаёт заявленный продавцом световой поток. Так получается из-за того, что продавцы в лучшем случае указывают максимальный световой поток, который может отдавать установленный светодиодный модуль, но в результате экономии на материалах светодиод работает, если повезёт, в половину от своего максимума. Для ограничения тока применяются тонкие провода, это позволяет отказаться от использования источника постоянного тока и ограничиться простым ШИМ контроллером с силовым ключём.

В качестве донора был выбран «2500Lm CREE XM-L T6 LED Headlamp» ценой в 12 долларов, у которого через год использования умер ШИМ контроллер CX2812. Данный контроллер имеет три выхода для нагрузки, два входа для настройки режимов работы и один вход для кнопки переключения режимов. Первым неприятным моментом практически любого китайского фонарика для меня оказалось наличие режимов Strobe и SOS. В случае с данным контроллером, достаточно подать на вход OPT1 логическую единицу и из пяти режимов останется только три (High, Low, Off). Если единицу подать на оба OPT входа, то режим Low тоже исчезнет.

Продавец заявляет, что в фонарике используется светодиод Cree XM-L T6 и он жарит аж 2500 люменов на максимальном режиме. На сайте Cree для данного светодиода заявлена светосила 100 люменов на ватт и максимальная мощность 10 ватт. На самом деле используется светодиод XM-L U2, его характеристики не сильно отличаются от T6, но из-за толщины проводов до светодиода доходит только 1.1А, что при напряжении аккумулятора 4.1В составляет 4.51Вт. Получается, что на максимальном режиме фонарик излучает примерно 451 люмен. Люксметр показывает 420 люменов, и это довольно далеко от цифры 2500.

Схема драйвера проще некуда и усложнять её не будем. В качестве нового каменного сердца был выбран микроконтроллер ATtiny85, хотя хватило бы и ATtiny13(a), но в нужном корпусе его под рукой не оказалось. Кнопка переключения режимов удачно попала на ножку PB2/INT0, а вот база транзистора оказалась подключенной к выходу RESET. Имея на борту аппаратный ШИМ, было решено использовать именно его, поэтому дорожка ведущая к RESET была перерезана, а база транзистора подключена перемычкой к выходу PB1/OC0B. Для удобства программирования необходимые пины были вынесены наружу. Провода зафиксированы соплями термоклея. Провода от аккумуляторов до платы заменены на чуть более толстые.

Прошивка собиралась в Arduino 1.0.6, в качестве программатора использовался Arduino Nano. Установлены фьюзы в соответствии со схемой «ATtiny85 @ 1 MHz (internal oscillator; BOD disabled)». Вес прошивки в бинарном виде на данный момент составляет 278 байт. В выключенном состоянии фонарик потребляет 0.3мкА, при кратковременном нажатии на кнопку включается минимальный режим, потребление увеличивается до 7.6мА. Для выключения необходимо кратковременно нажать и отпустить кнопку. Если продолжить удержание кнопку, то яркость плавно увеличится до максимальной. Частичная замена проводов не дала существенного прироста яркости, ибо провода от блока питания до головы остались узким местом. На данный момент на максимальном режиме потребление получилось 1.2А, напряжение АКБ 4.2, получается примерно 500 люменов.

Но даже несмотря на то, что китайские продавцы указывают в несколько раз завышенные показатели по светосиле, зачастую даже минимальный, из предложенных, режим был слишком ярким для меня. После переделки, минимального режима вполне достаточно для того, чтобы ночью не запнуться на лесной тропинке или использовать фонарик в качестве ночника при ночёвке в пещере. Итого буквально за пару часов из мёртвого фонарика удалось сделать фонарик моей мечты. Надеюсь мой опыт окажется для кого-нибудь полезным. Код доступен по ссылке HeadLamp.ino.

Обновление 04.02.2015: Подумав немного, добавил возможность моментального включения фонарика на максимальный режим (два быстрых клика), а так же режим стробоскопа (три быстрых клика). Для активации этих режимов необходимо раскомментировать соответствующие дефайны в начале кода.

habr.com

Простой светодиодный фонарик | Мастер Винтик. Всё своими руками!

Светодиодный фонарик своими руками и зарядное устройство к нему.

Уже давно известно, что фонарики на светодиодах очень экономичны, малогабаритны и имеют более продолжительный срок службы. Светодиодный фонарик можно легко сделать своими руками или переделать имеющийся ламповый. Для этого нужны яркие светодиоды повышенной мощности.

Светодиоды потребляют меньший ток, долговечней и надежней по сравнению с лампочкой. К тому же они не боятся ударов и тряски.

КПД при преобразовании электроэнергии в свет у светодиодов значительно выше, чем у обычной лампочки накаливания.

Принципиальная схема фонарика

Для выполнения фонарика достаточно трех светодиодов, подключаемых параллельно к трем аккумуляторам типоразмера LR6 (АА) или батарейки (AAA). Можно также использовать аккумулятор от любого сотового телефона.

Схема подключения светодиодов повышенной яркости.

Светодиоды напрямую подключать к обычным батарейкам (типоразмер АА) или более мощным аккумуляторам нельзя! У таких элементов из-за малого внутреннего сопротивления ток через каждый светодиод может превысить 100 мА, что больше допустимого. Для надежной длительной работы в непрерывном режиме общий ток через три светодиода (включенных параллельно) не должен превышать 90 мА.

При необходимости питать фонарик от более мощных элементов питания ток через светодиоды можно ограничить при помощи внешнего добавочного резистора. Смотрите схему выше. Его величину лучше подобрать экспериментально, так как обычно неизвестно внутреннее сопротивление источника питания.

Все три светодиода от аккумуляторов при номинальном напряжении 3,6 В потребляют ток не более 75…80 мА (по мере разряда элементов ток будет снижаться, но все равно свечение будет достаточно ярким для подсветки).

Аналогичная по светоотдаче лампа потребляет ток не менее 250…350 мА. Простейший расчет показывает, что такой фонарик на светодиодах будет значительно экономичней.

Устройство заряда аккумуляторов для фонаря

Для подзаряда аккумуляторов от бортовой сети автомобиля можно воспользоваться схемой, показанной на рисунке ниже. При этом аккумуляторы не придется вынимать из отсека фонарика, если на его корпусе установить соединительный разъем Х2.

Схема зарядного устройства для аккумуляторов фонарика от автомобильной сети

Схема зарядного устройства может подключаться в автомобиле через гнездо прикуривателя. Микросхема DA1 за счет резистора R2 имеет ограничение выходного тока на уровне 90…95 мА (при коротком замыкании нагрузки), а напряжение на выходе не превысит 4 В (устанавливается резистором R1 на холостом ходу). За счет ограничения максимального выходного напряжения полностью исключено получение элементами избыточного заряда, правда, это увеличивает время заряда элементов. Ток заряда будет находиться в интервале 30…20 мА, снижаясь по мере заряда аккумуляторов. Диод VD2 предотвращает повреждение микросхемы при отключенном входе, но подключенном аккумуляторе.

 

Рисунок печатной платы и расположение элементов

Все элементы могут быть размещены на печатной плате с размерами 42,5×25 мм. Выбор типов деталей не критичен. Микросхему КР142ЕН12А можно заменить на LM317T или LM317MP.

Конструкция фонарика

Большой отражатель для светодиодов не нужен — сами они уже имеют нужную диаграмму направленности. А располагать светодиоды удобнее в линейку, на расстоянии около 5 мм друг от друга, например, как это показано в конструкции на рисунке ниже. Для изготовления корпуса можно воспользоваться стандартным отсеком для размещения шести элементов питания (в три отсека установить сами элементы питания, а в неиспользуемой части закрепить отражатель и включатель SA1).

Возможный вариант конструкции фонаря на светодиодах.

Такой фонарик сможет непрерывно давать свет около ста часов и будет полезен не только на рыбалке, но пригодится и в быту. А если его закрепить при помощи ремня на голове или прищепкой к карману на груди, в темноте света будет вполне достаточно для чтения книги, карты или распутывания лески. Причем спектр света подсветки, приближенный к естественному, — белый, в отличие от обычной лампы.

Аналогичные фонари уже давно делают. На фото показан вариант выполнения конструкции, предусматривающей закрепление фонаря на голове (в показанном корпусе размещены 3 батарейки типоразмера AAA).

Повысить время непрерывной работы у фонаря можно, если использовать импульсное питание для светодиодов.
Импульсный режим питания позволяет светодиодам работать на большем токе, то есть можно добиться увеличения яркости света при той же самой потребляемой мощности, что и в непрерывном режиме. Но это уже другая история.





Шелестов И.П. (Электроника для рыболовов)




П О П У Л Я Р Н О Е:

  • Полезные советы радиолюбителям.
  • Если необходимо очистить контакты программного переключателя в видеокамере без его разборки, изумительно помогает жидкость KONTAKT PRF7-78 производства фирмы TAEROSOL (Фин). Впрыскиваю через тоненькую трубочку ( в комплекте с баллоном) прямо в зазор прогр. шестерни. Проникающая способность, моющие и смазывающие свойства просто поражают. Вечно хрипящие регуляторы громкости в отечественной аппаратуре начинают работать как новенькие. Подробнее…

  • Бабочка из спичек своими руками!
  • На дворе середина зимы, а мы сегодня помечтаем о лете!

    Давайте сейчас сделаем… бабочку… из спичек!

    Поделка не сложная, но в итоге красивая получается бабочка.

    Смотрите фото слева.

    Подробнее…

  • Зарядное устройство с автоматическим отключением от сети
  • Ещё одна схема зарядного устройства очень похожа на предыдущую, но отличается способом отключения при окончании зарядки. Пуск зарядного устройства производится нажатием кнопки «пуск» на лицевой панели, при этом на схему подаётся питающее напряжение, реле К1 срабатывает и обеспечивает «самоподхват». Подробнее…


– н а в и г а т о р –


Популярность: 9 166 просм.


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ


www.mastervintik.ru

Ремонт светодиодных фонарей – обзор поломок, устройство и схема

Для нормальной жизнедеятельности человека в темное время суток ему всегда необходим был свет. С развитием технологий источники освещения усовершенствовались, начиная свой путь от огня факелов и керосиновых ламп, заканчивая фонариками на аккумуляторах. Настоящей революцией в мире осветительной техники было создание светодиода, который тотчас же вошел в бытовую жизнь.

Современные светодиодные фонари очень экономные, свет распространяется очень далеко и он очень яркий. Огромная доля таких литиевых фонарей на современном рынке – китайского производства, они очень дешевые и доступные. Именно из-за дешевизны часто возникают поломки различного рода. В данной статье рассмотрим основные проблемы ремонта светодиодных фонарей и способы их устранения своими руками.

Как работает светодиодный фонарик?

Классическое устройство фонариков очень простое (независимо от типа корпуса, будь это модели Космос или ДиК АН-005). К батарейке подключается светодиод, цепь разрывается кнопкой выключения. В зависимости от количества светодиодов, количества самих световых элементов (например, основной фонарь на передней части и вспомогательный в ручке) в схему добавляются более сильная батарея (или несколько), трансформатор, сопротивление, а также устанавливается более функциональный выключатель (фонарики Фо-ДиК).

 

Схема работы светодиодного фонаряСхема работы светодиодного фонаря

Почему ломаются фонарик?

Сейчас мы опустим проблемы, связанные с неправильной эксплуатацией китайского фонарика – «уронил его в тазик с водой, включил-выключил, а он почему-то не светит». Дешевизна фонарей достигается за счет упрощения электрических цепей внутри устройства. Это позволяет сэкономить на комплектующих (на их количестве и качестве). Это сделано для того, чтобы люди чаще покупали новые, а старые просто выбрасывали, даже не попробовав их починить своими руками.

Еще один пункт экономии – работающие на производстве люди, которые не обладают достаточной квалификацией для выполнения подобной работы. Как следствие – множество мелких и крупных ошибок в самой схеме, некачественная спайка и сборка комплектующих, что ведет к постоянному ремонту фонарей. В большинстве случаев все проблемы можно решить, правильно их диагностировав, этим мы и займемся далее.

 

Разнообразие светодиодных фонарейРазнообразие светодиодных фонарей

Причина поломки фонаря

Скорее всего, при переключении выключателя светодиоды не хотят гореть по причине неисправности в электрической цепи. Самые распространенные из них:

  • окисление контактов аккумулятора или батарейки;
  • окисления на контактах, к которым батарейка подключается;
  • повреждение проводов, идущих как от аккумулятора к светодиоду, так и обратно;
  • неисправный элемент выключения;
  • отсутствие питания в цепи;
  • поломка в самих светодиодах.

Окисление. Чаще всего оно возникает в уже старых фонарях, которые часто используются в различных погодных условиях. Налет, который появляется на металле, мешает нормальному контакту, из-за чего фонарь на аккумуляторах может мигать или вообще не включаться. Если окисление наблюдается на батарейке или аккумуляторе, то нужно задуматься о замене.

Как починить контакты? Легкие загрязнения удаляются своими руками ваткой, смоченной в этиловом спирте. Когда загрязнения очень серьезные, даже ржавчина пошла по корпусу – использование такого элемента питания может быть опасно для здоровья и жизни. В магазинах сейчас можно найти достаточное количество новых батареек и аккумуляторов даже под старые типы фонарей.

Виды сменных аккумуляторов для ручных фонарейВиды сменных аккумуляторов для ручных фонарей

Позаботьтесь об окружающей среде – не выбрасывайте старые аккумуляторы в мусорное ведро, наверняка у вас в городе есть пункты приема для утилизации.

Окисление также образуется и на контактах в самом фонаре. Здесь тоже нужно обращать внимание на их целостность. Если загрязнение все еще можно удалить ваткой со спиртом – остановитесь на этом варианте. Для труднодоступных мест можно воспользоваться ватной палочкой.

Если же контакты совсем проржавели или даже подгнили (что не редкость для старого фонаря), их придется менять. Спросите в магазине электроники, есть ли похожие контактные элементы (на протяжении как минимум десяти лет во всех фонарях они абсолютно идентичны за редкими исключениями). Если таких же нет – подберите как можно более похожий вариант. Вооружившись тонким паяльником, их без труда можно перепаять.

Очистка контактов фонарика ватной палочкой со спиртомОчистка контактов фонарика ватной палочкой со спиртом

Повреждение контактов проводов. Помимо вышеописанных мест, контакты присутствуют в местах спайки проводов электрической цепи. Дешевое производство, спешка во время сборки и халатное отношение работников часто приводят к тому, что некоторые провода вообще забывают спаять, поэтому светодиодный фонарик не работает, даже если он только из коробки. Как отремонтировать фонарик в этом случае? Внимательно просмотрите всю цепь, аккуратно отодвигая провода медицинским пинцетом или другим тонким предметом. Если найдена несостоявшаяся спайка, ее нужно восстановить с помощью того же тонкого паяльника.

Это же можно проделать и с хлипкими соединениями, характерное состояние которых – надорванная оголенная жила, едва прикрепленная к месту спайки. Если у вас достаточно времени и ресурсов, и вы дорожите этим фонариком, можно методично и качественно перепаять вообще все контакты. Это значительно повысит эффективность такой цепи, защитит оголенные элементы от влаги и пыли (что актуально, если фонарик налобный), и при последующих случаях ремонта фонарика позволит исключить этот пункт. Ремонт маленьких налобных светодиодных фонарей выполняется абсолютно так же, размеры просто другие.

Повреждение проводов. После того, как вы убедились в чистоте контактов, можно приступить к просмотру всех проводов в цепи на предмет повреждений или замыканий. Распространенный случай, когда или во время сборки на заводе или после предыдущего ремонта проводки были повреждены неправильно установленной крышкой корпуса. Провод попал между двух деталей корпуса и был разрезан либо раздавлен во время затягивания болтов. Во время протекания тока электрическая схема могла перегреться или даже замкнуть, это неизбежно приведет к ремонту светодиодного фонарика.

Способы спаивания разорванных проводков в фонарикеСпособы спаивания разорванных проводков в фонарике

Все разорванные участки необходимо спаять друг с другом для обеспечения лучшей проводимости, нежели при простом скручивании. Все оголенные места не забудьте заизолировать, лучше всего использовать тонкую термоусадку. Сильно поврежденные провода, которые уже могли взяться ржавчиной, желательно своими руками заменить полностью (подбирайте соответствующую жилу). После подобной доработки старые фонари могут светить гораздо ярче – выполненная модернизация улучшает протекание тока.

Неисправный выключатель. Также обратите внимание на контакты проводов с клеммами выключателя, устраните неполадки. Самый просто способ узнать, из-за выключателя ли не работает ваш фонарик – замкнуть цепь без него. Исключите его из схемы, напрямую выполнив подключение аккумулятор-светодиоды (можно попробовать и от сети с соответствующим аккумулятору напряжением). Если они загорятся – меняем выключатель. Возможно, он уже механически сломался от многоразового использования, фонарь просто так выключается, также возможен брак с производства. Если же светодиоды не хотят загораться напрямую от батарейки, следуем дальше.

Отсутствие тока в сети. Самая распространенная причина такой неисправности – разряженный или сильно старый литиевый аккумулятор. Светодиодный фонарь может светиться при зарядке, но если его отключить от розетки – сразу тухнет. Полная неисправность наблюдается тогда, когда фонарь совсем не заряжается и никак не реагирует на включение, хотя индикатор зарядки горит стабильно.

Литий-ионный аккумулятор для больших фонарейЛитий-ионный аккумулятор для больших фонарей

Поломка светодиодов. Когда все проблемы с проводами устранены (или же их не было), обратите внимание на сами светодиоды. Аккуратно достаньте плату, на которую они припаяны. С помощью мультиметра узнайте ток, который входит и выходит с платы. Если есть возможность, проверьте контакты и на всей плате. Скорее всего, светодиоды соединены последовательно, поэтому при поломке одного остальные тоже не будут светить. Проверять каждый, если их 3 и более – дело достаточно длительное по времени, поэтому лучше сразу купить новые светодиоды.

Плата со светодиодами на платеПлата со светодиодами

Заключение

Множество дешевых китайских фонариков на светодиодах, собранных в условиях жесткой экономии, чаще всего подвержены поломкам электрической цепи. Туда устанавливаются провода с очень маленьким сечением, которые довольно проблематично перепаять даже хорошим прибором. Однако практически все проблемы с проводами и батарейками с легкостью устраняются в домашних условиях, при правильном и аккуратном подходе даже недорогой фонарь отремонтированным прослужит вам более трех лет постоянного использования.

lampagid.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *