Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

виды, схемы, простые и сложные :: SYL.ru

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах – музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин – практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» – ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно – чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД – свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД – менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток – полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений – не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше – до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется – характерный металлический звук.

«Альтернативные» конструкции

Нельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:
  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, – обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление – несколько тысяч Ом. Но сопротивление обмотки динамиков – 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток – существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная – в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий – порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности – они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная – с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм – наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h31 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

При этом напряжение эмиттера равно 9 В и падение на участке цепи «Э-Б» 0,7 В (что характерно для транзисторов на кристаллах кремния). Если рассмотреть усилитель на германиевых транзисторах, то в этом случае падение напряжения на участке «Э-Б» будет равно 0,3 В. Ток в цепи коллектора будет равен тому, который протекает в эмиттере. Вычислить можно, разделив напряжение эмиттера на сопротивление R2 – 9В/1 кОм=9 мА. Для вычисления значения тока базы необходимо 9 мА разделить на коэффициент усиления h31 – 9мА/150=60 мкА. В конструкциях УНЧ обычно используются биполярные транзисторы. Принцип работы у него отличается от полевых.

На резисторе R1 теперь можно вычислить значение падения – это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле – сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 – 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h31. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

Но нужно учитывать, что по цепи базы абсолютно всегда, независимо от наличия смещения, обязательно протекает ток утечки коллектора. В схемах с общим эмиттером ток утечки усиливается не менее чем в 150 раз. Но обычно это значение учитывается только при расчете усилителей на германиевых транзисторах. В случае использования кремниевых, у которых ток цепи «К-Б» очень мал, этим значением просто пренебрегают.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое – обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

Это сопротивление почти не пропускает электрический ток, вследствие чего у затвора потенциал (в случае отсутствия сигнала на входе) такой же, как у земли. На истоке же потенциал оказывается выше, чем у земли, только благодаря падению напряжения на сопротивлении R2. Отсюда ясно, что у затвора потенциал ниже, чем у истока. А именно это и требуется для нормального функционирования транзистора. Нужно обратить внимание на то, что С2 и R3 в этой схеме усилителя имеют такое же предназначение, как и в рассмотренной выше конструкции. А входной сигнал сдвинут относительно выходного на 180 градусов.

УНЧ с трансформатором на выходе

Можно изготовить такой усилитель своими руками для домашнего использования. Выполняется он по схеме, работающей в классе «А». Конструкция такая же, как и рассмотренные выше, – с общим эмиттером. Одна особенность – необходимо использовать трансформатор для согласования. Это является недостатком подобного усилителя звука на транзисторах.Коллекторная цепь транзистора нагружается первичной обмоткой, которая развивает выходной сигнал, передаваемый через вторичную на динамики. На резисторах R1 и R3 собран делитель напряжения, который позволяет выбрать рабочую точку транзистора. С помощью этой цепочки обеспечивается подача напряжения смещения в базу. Все остальные компоненты имеют такое же назначение, как и у рассмотренных выше схем.

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.

В результате на выходе усилителя существенно снижается качество звучания. При работе двухтактного усилителя в классе «А» не получается качественно воспроизвести сложный сигнал. Причина – повышенный ток протекает по плечам усилителя постоянно, полуволны несимметричные, возникают фазовые искажения. Звук становится менее разборчивым, а при нагреве искажения сигнала еще больше усиливаются, особенно на низких и сверхнизких частотах.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

Следовательно, через нагрузку способны пройти только положительные полуволны. Но отрицательные открывают второй транзистор и полностью запирают первый. При этом в нагрузке оказываются только отрицательные полуволны. В результате усиленный по мощности сигнал оказывается на выходе устройства. Подобная схема усилителя на транзисторах достаточно эффективная и способна обеспечить стабильную работу, качественное воспроизведение звука.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог – например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток – 0,3-0,5 А.

Если сопротивление R1 не подключить, то в базе и коллекторе не будет тока. Но при подключении напряжение достигает уровня в 0,7 В и позволяет протекать току около 4 мкА. При этом по току коэффициент усиления окажется около 250. Отсюда можно сделать простой расчет усилителя на транзисторах и узнать ток коллектора – он оказывается равен 1 мА. Собрав эту схему усилителя на транзисторе, можно провести ее проверку. К выходу подключите нагрузку – наушники.

Коснитесь входа усилителя пальцем – должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука – выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.

www.syl.ru

Простейшие усилители низкой частоты на транзисторах

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10… 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 – 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

 

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

 

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2…4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5…0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50…60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

 

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

 

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит – напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 – 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

 

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 – вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 – 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

 

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.


Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

www.qrz.ru

Усилитель с HI-END качеством звучания

РадиоКот >Схемы >Аудио >Усилители >

Усилитель с HI-END качеством звучания

Вашему вниманию представляется усилитель с очень мягким, как ламповый усилитель звуком, но превосходящий ламповые усилители по другим параметрам (отношение сигнал/шум и нелинейные искажения).

Воспроизводимый звуковой диапазон: от 10Гц до 25кГц

Соотношение сигнал/шум:  не ниже 92dB (не взвешенное)

Нелинейные искажения: 0,001%

Подтолкнуло меня к созданию такого усилителя, любовь к очень хорошему и качественному звуку.

Пересмотрев массу всевозможных схем, сделал небольшой набросок принципиальной схемы усилителя. Позже столкнулся с поиском хорошего по качеству звучания операционного усилителя, занял такой поиск микросхемы в интернете на тот момент около 2 недель.

Первое условие – этот операционный усилитель должен быть высоковольтным, второе – очень качественным по соотношению сигнал/шум. До этого я собирал неплохие усилители на отечественной элементной базе микросхемах К544УД2 и К574УД1, а также на мощных выходных транзисторах КТ818 и КТ819. На тот момент их параметры меня полностью устраивали.

Но с появлением на наших прилавках современной импортной техники требования к такому усилителю стали намного выше, хотелось очень качественного звука, сравнимого по звучанию с ламповыми усилителями.

Итак, со всеми компонентами я определился, началась непосредственная сборка самого усилителя, а поскольку в то время я работал в сервисном центре, то и настройку со сборкой делал на работе в свободное от ремонта время.

Первый вариант усилителя выглядел так – это было только начало.

Поскольку на тот момент у меня еще не было ни корпуса, ни окончательно разведенных плат, устройство было собранно в коробке от упаковок ДВД проигрывателей. В таком виде оно проработало около месяца, и никаких казусов в работе не произошло.
После этого я плотно взялся за разводку печатных плат и вот что из этого вышло.

Ну и как выглядят платы промышленного производства:

Схемотехника усилителя довольно проста в сборке и не содержит дефицитных элементов.
Все компоненты можно приобрести на любом радиорынке.
Классическое схемопостроение как входного, так и выходного каскадов, позволило выполнить очень простую в сборке схему усилителя и что немало важно нет никакой необходимости в его настройке.  Да именно в настройке он не нуждается, поскольку в схеме нет регулирующих элементов подстройки токов покоя выходного каскада, системы термостабилизации и т.п.

После сборки усилителя необходимо после включения в сеть проверить на выходе усилителя постоянное напряжение, оно должно быть в диапазоне +20/ -20мВ, при этом вход усилителя нужно замкнуть на землю. Если это напряжение находиться в пределах нормы усилитель готов к работе, не забудьте только выпаять перемычку по входу.
На операционном усилителе собрана схема усиления по напряжению, с коэффициентом усиления приблизительно на 25. Транзисторы VT1, VT2, VT5, VT6, VT7 и  VT8 включены по схеме ОЭ и выполняют функцию усилителей тока с коэффициентом 10.
 На транзисторах VT3 и VT4 собрана схема термостабилизации самого усилителя, и они, как и выходные транзисторы также находятся на радиаторе. Если эти транзисторы не будут укреплены на радиатор, то усилитель мгновенно нагреется до температуры свыше 90 градусов.
Максимальная температура нагрева усилителя при нагрузке и длительной его эксплуатации составляла 70 градусов.
Катушка L1 содержит от 16 до 20 витков намотанные в один слой провода ПЭВ-2 1мм.
Конденсаторы С2 и С7 желательно использовать металлобумажные, а остальные многослойная керамика.
Транзисторы можно использовать импортные, подходящие по параметрам.
При определенных изменениях в схеме мощность данного усилителя можно поднять до 100Вт.

Ниже прилагается фото собранного усилителя:

К сожалению, я не мастер по металлу и дереву, но вот что у меня из этого вышло.
Данный усилитель работает достаточно надежно уже на протяжении 8 лет и никаких проблем не происходило. Качество его звучания очень пристойное, где-то и превосходящее ламповые усилители по мягкости звука, не говоря о шумах и нелинейных искажениях самих ламповых усилителей. Да-да я не оговорился.
Были произведены сравнения по качеству звучания с такими моделями как NAD, Rotel, Arcam и Yamaha, данная схема усилителя превзошла все выше перечисленные модели по мягкости и качеству звука.
Существует два варианта плат под левую сторону и правую сторону, в архиве находится только левая сторона разводки платы.

Файлы:
Печатная плата в формате SL 5.0.

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Каким должен быть хороший усилитель мощности на транзисторах

Феномен транзисторного звучания УНЧ против “тёплого” лампового звука.


История борьбы с феноменом транзисторного звучания уходит в далёкие 80-ые годы.
С появлением продвинутых мощных транзисторных усилителей низкой частоты многих гурманов качественного воспроизведения музыки постигло разочарование – новинки с более высокими электрическими характеристиками никак не могли сравниться со своими ламповыми собратьями по мягкости и естественности звучания. Мало того, по “качеству” звучания они субъективно уступали и стареньким германиевым УМЗЧ, выполненным по канонам простейшей схемотехники, присущей ламповым конструкциям.
Сотни умных разработчиков чесали свои просветлённые репы в надежде хоть как-то снизить тембральные искажения в транзисторных усилителях, меняли схемотехнику и элементную базу, оживлённо гнались за сверхпараметрами, писали разные статьи, пока не поняли, что к цифрам, указанным в характеристиках усилителя надо относиться сдержанно, а верить можно только собственным ушам.
Однако, проиграв глобальную борьбу с лампой за чистоту музыкального звучания УНЧ, обиженные, но не разбитые в пыль транзисторные аудиофилы всё же собрались духом и вынесли на своих плечах ряд постулатов о происхождении в УНЧ пресловутого транзисторного звучания:

1 — Глубокая отрицательная обратная связь, без которой не обходится ни один транзисторный усилитель, порождает переходные искажения, вызванные запаздыванием сигналов в петле обратной связи.
2 — Всё та же глубокая обратная связь обуславливает низкое выходное сопротивление УНЧ. Это, с одной стороны, хорошо, так как повышает коэффициент демпфирования усилителя, но, с другой стороны, чревато возникновением интермодуляционных искажений в динамических головках, что, в свою очередь, вызывает неприятные призвуки, ошибочно принимаемые за искажения усилителя.
3 — Особо продвинутые специалисты упоминают тепловые искажения, которые вызваны скачками мгновенной температуры кристалла транзистора при прохождении сигнала, в связи с изменением рассеиваемой в нем мгновенной мощности. В результате, в процессе усиления музыкального сигнала коэффициент усиления по току (или крутизна) выходных транзисторов плавно (из-за инерции тепловых процессов) изменяется на 20-30%. Эти флуктуации, в свою очередь, становятся причиной инфразвуковых интермодуляционных искажений в УНЧ, к которым ухо слушателя чрезвычайно чувствительно.
4 — Поскольку уравнения, описывающие вольтамперные характеристики полевых транзисторов, практически идентичны ВАХ вакуумных приборов, “правильный” транзисторный УМЗЧ следует реализовывать именно на полевиках.
5 — Не столь важен общий коэффициент нелинейных искажений УНЧ (в ламповых Hi-End системах он часто составляет величину 0,1% и выше), сколь спектр гармоник этих искажений.
«Покажите мне график зависимости коэффициента искажений от частоты, и я скажу, как будет звучать усилитель», – написал Владимир Ламм, основатель и идеолог американской компании, занимающейся разработкой и выпуском звукового оборудования “Lamm Industries”.

ИТАК, подытожим всё сказанное:
Идеальный усилитель должен быть построен на полевых транзисторах, иметь неглубокие и максимально короткие обратные связи (в идеале внутрикаскадные), работать в режиме А (для устранения тепловых искажений) и быть однотактным (как обладающий наиболее приятным для уха спектром гармоник выходного сигнала).
Последние 2 пункта скорее применимы для усилителей мощности, работающих при максимальных мощностях до 10Вт. Хотя существуют примеры американских мелкосерийных изделий однотактных транзисторных УНЧ и с выходной мощностью, достигающей 150Вт. Правда весит такой агрегат в одноканальном исполнении ни много ни мало – 70кг…! Поэтому для усилителей, работающих в режиме А и при значительных мощностях, предпочтительными являются всё-таки двухтактные схемы.
Именно такую схему на полевых транзисторах мы рассмотрели на странице ссылка на страницу.

Не так давно я наткнулся на обсуждение темы “Про тёплый ламповый звук”. Полемика велась на странице http://www.yaplakal.com/forum7/st/320/topic988477.html и, как это часто водится на любом неспециализированном форуме – никакого особого интереса не представляла… И всё было бы как обычно, если бы не единичный комментарий товарища по имени “aleks49”.
Поскольку связаться с уважаемым “aleks49” мне не удалось, а мысли, изложенные в комментарии, были хороши: как по форме, так и по содержанию, то “не пропадать же добру”, – подумал я и решил привести написанный им материал на этой странице – в полном объёме и авторском изложении.


«Итак:
Попытаюсь вставить свои 5 копеек. Может быть, мои наработки и наблюдения кому-то помогут правильно сориентироваться.
Дело в том, что я всю свою трудовую деятельность занимался ремонтом и настройкой всякой электронной, электромеханической и механической техники.
Так как это было оборонное предприятие мелкосерийной продукции, то разнообразие было очень широким.
Образование у меня специфическое – спец. училище подводного плавания радиолокационные и телевизионные системы. 8 лет службы на подводных лодках по специальности. В процессе службы так же 2 раза проходил специальную подготовку по быстрому поиску неисправностей в аппаратуре моей сферы деятельности.
Работая на “гражданке” в моих возможностях было использование любых лабораторных средств контроля и испытаний электронного оборудования. Эта преамбула нужна для того, чтобы те, кто будет мне оппонировать, могли ориентироваться в какие “дебри” может зайти разговор.
Продолжаю. В 70-е я увлёкся разработкой УНЧ. И к 1979 году, повторив большое количество распространённых на то время схем, пришёл к выводу, что транзисторные усилители, построенные по схемотехнике операционного усилителя с глубокой обратной связью, сильно грешат качеством звуковоспроизведения. Несмотря на низкие нелинейные искажения (измерялось измерителем нелинейных искажений) качество звука чем-то страдало. Получалась “каша” на звуке где звучат много различных инструментов. Некоторые инструменты даже в сольном исполнении с трудом узнаются. Никакие эквалайзеры не помогают.
Более тщательное исследование явления с помощью специализированного осциллографа (очень древний, ламповый, низкочастотный с высокой чувствительностью) обнаружило, что виной всему очень большое усиление исходных схем с разорванной общей обратной связью.
Действительно, такие схемы обладали таким же громадным коэффициентом усиления, как и интегральные ОУ. С помощью общей обратной связи усиление доводилось до нужного уровня и нелинейность устранялась. Но даже усилители с КНИ 0,01% и ниже при этом не удовлетворяли по звучанию. То, что в этом виноват именно транзисторный УНЧ не вызывало сомнений. На тех же акустических системах звучание от ламповых усилителей воспринималось лучше (имелись в наличии два ламповых советских усилителя на 50 и 100W).
Измерение КНИ показало, что ламповые УНЧ оказались совсем неидеальнами. КНИ у них достигал 1%.
В чём же дело? Работа с хорошим (правильным) осциллографом показала, что транзисторные УНЧ легковозбудимы. Так называемая нулевая точка на выходе совсем не нулевая. На уровне в несколько милливольт там присутствует хаотический колебательный процесс, который превращается в ВЧ генерацию при подаче на вход УНЧ даже самого маленького сигнала. В некоторых случаях эта генерация не превышает нескольких милливольт, а частенько бывает на весь размах напряжения питания.
Таким образом, если на вход УНЧ подавать синусоидальный сигнал то в “нулевой” точке это обнаруживается. Если подавать импульсный сигнал, то фронт импульса искажён выбросом. Частота этой генерации на уровне максимальной частоты выходных транзисторов УНЧ. Ко всему прочему выяснилось, что общая обратная связь обладает существенной задержкой. Задержку можно определить с помощью измерения единичного коэффициента усиления усилителя с разомкнутой обратной связью.
С хорошими высокочастотными транзисторами это может доходить до 100 и даже 200 кГц.
Итого, если усилитель без обратной связи способен усиливать сигнал до 100 кГц то задержка будет составлять 10 микросек. До появления обратной связи на выходе усилителя наблюдается размах выходного сигнала равный всему напряжению питания выходного каскада. При этом имеется ещё дополнительный выброс на переднем фронте. Через 10 микросекунд “срабатывает” обратная связь и с затухающим колебательным процессом сигнал опускается на уровень, который определён обратной связью.
Всё это можно увидеть с помощью хорошего осциллографа и присутствует на любом сигнале с любой звуковой частотой. На предельных для данного усилителя частотах присутствуют очень замысловатые виды искажений.

Вывод.
Виновата схемотехника построения УНЧ. Нельзя рассматривать УНЧ как операционный усилитель. Специфические искажения операционного усилителя улавливаются слуховым аппаратом человека.
Как с этим бороться? Полностью отказаться от схемотехники операционного усилителя при использовании в качестве УНЧ. Для УНЧ низкого класса можно это использовать и даже применять интегральные ОУ, но выходной каскад такого ОУ должен обладать большим током покоя. Таких ОУ почти не выпускают. Так называемые микромощные ОУ, хотя и обладают большой единичной частотой, но выход в покое микротоковый.
Ламповая схемотехника подсказала выход. В силу специфики ламп (они обладают невысокими показателями усиления и требуют для питания много энергии) не применяется излишнее усиление с последующим охватом общей обратной связью. В лампах используется довольно высокое анодное напряжение, что обусловливает очень протяжённую вольт-амперную характеристику. Перегрузка лампы тоже имеет протяжённую характеристику.
Одна из особенностей лампы состоит в том, что и нелинейность у неё несколько иная, чем у транзистора.
Здесь уже нужно сравнивать лампу с транзистором с помощью измерения образующихся при усилении гармоник.
В ламповом усилительном каскаде чётные гармоники на 5-8 децибелл выше по уровню, чем нечётные. Причём существенное значение имеют только 2-я и 3-я гармоники. Остальные ниже на 20-30 дб. и могут не учитываться.
В транзисторном усилителе на биполярном транзисторе 3-я гармоника выше, чем 2-я на 5 дб. но также существенна ещё и 5-я гармоника.
На полевых транзисторах 2-я и 3-я гармоники примерно равны и 5-я гармоника не имеет существенного значения.
Каскады усиления, построенные для увеличения токовой нагрузки(катодные повторители, истоковые повторители, эмиттерные повторители) не вносят заметных искажений в сигнал.
Что можно предпринять для высококачественного усиления.
1. Входные каскады УНЧ необходимо строить на полевых транзисторах и лампах для того, чтобы изначальный сигнал на малых уровнях не приобрёл неисправимых искажений.
2. Максимальное усиление по напряжению на один каскад не должно превышать 30.
3. Не охватывать обратной связью даже 2 каскада. Обратная связь должна существовать только на одном усилительном элементе (лампа, транзистор). Всякие новомодные усилительные микросхемы не должны рассматриваться как единый усилительный элемент.
4. Усиление сигнала необходимо разделить на две функции: усиление по напряжению и усиление по току. После усиления по напряжению необходимо обязательно повторителем разгрузить каскад.
5. Между каскадами усиления напряжения и разгрузкой разделительные конденсаторы применять не нужно, а при усилении напряжения конденсаторы ставить нужно, чтобы вывести рабочую точку лампы или транзистора на линейный рабочий участок.
6. Для усилительных каскадов, работающих с сигналами близкими к 1 вольту, использовать транзисторы с большим напряжением и задавать питание близкое к предельному. Именно таким образом удаётся растянуть вольт-амперную характеристику транзистора и получить большой динамический диапазон.
7. Не сдваивать полевые транзисторы во входных каскадах УНЧ. Иногда применяется такое для уменьшения коэффициента шума. Но такое решение приводит к увеличению нелинейности вольт-амперной характеристики и растёт 3-гармоника. В результате по гармоникам полевой транзистор становится ближе к биполярному.
8. Применять каскодные схемы в анод для ламп и в коллектор для транзисторов. Каскоды через катод или эмиттер не применять т.к. КНИ при этом возрастает сразу до 0,2%.

Существует проблема фазоинверторов. Как получить противофазные сигналы с минимумом нелинейных искажений?
В дифкаскаде плечи оказываются по характеристикам разные и по усилению, и по нагрузочной способности и по нелинейности. Разгружать дифкаскад лучше всего истоковыми повторителями. И вообще любые каскады усиления напряжения разгружать истоковыми повторителями.
Вот те основы схемотехники, которые позволяют получить усиление звука с высокой верностью.

Мои соображения по поводу “мягкого лампового звука”.
Лампа великолепный усилительный прибор для усиления звука и усилители на лампах за счёт растянутой характеристики показывают хороший результат. Но это не значит, что транзистор не способен конкурировать качеством звука.
В своё время в 1979 году мне удалось сделать усилитель с качеством звука, не отличимым от лампового. Тогда я применил технологии, которые перечислил текстом выше.
Получился усилитель без общей обратной связи с КНИ до 0,4% который не возможно было отличить по звучанию от лампового. Было изготовлено несколько штук разных по назначению УНЧ. Для домашнего использования до 30W и концертного использования до 100W причём для акустических систем с сопротивлением 16 ом и выше.
Качество звука оценивалось и сравнивалось работниками музыкальной культуры и лабухами, работающими по свадьбам и т.п. Для сравнения использовались имевшиеся в то время кинотеатральные профессиональные системы на транзисторах с выходными трансформаторами. Выходные трансформаторы никакого преимущества в усилителях на транзисторах не продемонстрировали. Разве только то, что могли согласовать выход усилителя с высокоомной акустикой. Но в случае с изготовленным усилителем, где применялось высокое напряжение питания и высоковольтные транзисторы, по мощностным параметрам он не уступил трансформаторным даже на высокоомной нагрузке. По качеству звука все участвующие отметили “чистоту” звука предъявленного УНЧ. Причём не возникло даже никаких ни у кого сомнений. Оказалось хорошее качество работы: как с микрофоном, так и с гитарами. Для Бас-гитары делали специальный усилитель с ограниченным диапазоном вверх и расширением вниз диапазона.
Усилители, которые делал я и мои соратники, по этому делу изготовлялись варварским способом, т.к. не было времени и денег оформлять конструкции в приличную форму. Распаивалось на “слепышах” обычными проводами, имевшимися под рукой. Под рукой тогда имелось большое количество провода МГШВ. Это многожильный провод в шёлковой и виниловой изоляции. Паялось внахлёст, межплатные соединения по месту.
Источники питания самые простецкие трансформаторы, диоды, электролиты. Платы обклеивались изолентами и полиэтиленом, иногда газетами или упаковочной бумагой. Всё обматывалось, чтобы нигде не замыкало. Коробку применяли от какого-нибудь прибора с заводской свалки. Всё уминалось и затискивалось. Имелись снаружи только сетевой шнур, тумблер включения, предохранители, регулятор уровня сигнала, регулятор громкости с тонкорректором, гнёзда для входа и выхода. Регулятор громкости был электронным своей конструкции. Для тон-коррекции применялись дроссели (сейчас никто такого не применяет).
Никаких регуляторов тембра не применялось. Как оказалось для хорошего усилителя они не нужны т.к. при использовании дома имеется уже нормализованная запись с винила или магнитофона. Никакой необходимости что-то менять в частотах не возникало.
Выходной каскад усилителя имел защиту от перегрузки по току на максимальный ток используемых транзисторов.
Входной усилитель делался на лампе 6Н16Б или 6Н23П и работал при напряжении 30В. В аноде стоял каскод на транзисторе (динамическая нагрузка), транзистор был германиевый. Разгрузка была эмиттерным повторителем на транзисторе П307. Далее стоял регулятор громкости с тон-корректором. Тон-корректор была возможность отключать. Регулятор громкости не был переменным резистором. Были три кнопки. Больше, меньше и вкл-откл тонкорректора. Схема на полевых транзисторах, максимальный уровень сигнала для такого регулятора 30мВ. Поэтому чувствительность усилителя была 30мВ. Именно при таком сигнале на входе выход получался на максимальную мощность. Внутри усилителя мощности между каскадами стояли фильтры НЧ. Частоты выше 30кГц обрезались, хотя без фильтров характеристика была линейна до 200кГц.
К чему я это рассказываю?
За всё время УНЧ творчества никогда и ни у кого не возникало даже мысли, что нужны какие-то особые провода, что провода нужно ориентировать в пространстве, что конденсаторы должны быть из меди или золота. Применялись обычные малогабаритные бумажные конденсаторы. Мощность сигнала в межкаскадных передачах мизерная, это не силовые элементы. У кондёра есть ёмкость, ТКЕ и утечка. Больше для него ничего не надо. В силовых цепях да! В силовых цепях важно ещё максимальный ток заряда-разряда. Иначе пластины отлетают.
Что касается “теплоты” звука, хочу обратить внимание на следующее. Лампоголики утверждают, что питание для ламп обязательно должно быть кенотронное, иначе звук становится неламповый. Я верю, что это действительно так. Дело в том, что кенотроны характеризуются током насыщения, что приводит к тому, что анодное напряжение слегка проседает при больших сигналах, а крутизна характеристики лампы зависима от анодного напряжения. Поэтому и появляется “мягкость” звучания. По всей видимости, это можно создать и в транзисторных каскадах. Но транзисторные каскады позволяют получить КНИ ниже, чем в лампах, с нечётными гармониками можно тоже побороться и получить приемлемый уровень. С шумами, конечно лампу не победить, но выйти на уровень когда они ниже порога слышимости – возможно.
Во всяком случае, в тех усилителях, что я делал, шумы на слух не обнаруживались. Никакого шипенья или шелеста. С гармониками та же история. 3-я гармоника всегда в транзисторных усилителях будет больше, чем в ламповых, но это примерно на 5 дб. Если же динамический диапазон усилителя сохраняется свыше 70 дб. то эту гармонику можно обнаружить только по прибору и никак не обнаружить прослушиванием. Если же транзисторный усилитель без общей ОС даёт КНИ 0.01% на малой и средней громкости (до 10W мощности), то такой усилитель значительно качественнее лампового. Опустить выходную лампу по КНИ ниже 0,2 задача очень сложная и потребует подспорья в виде добавок из транзисторов. В итоге мы опять вернёмся к вопросу – где транзисторное, а где ламповое.
Во входных каскадах лампа непревзойдённа из-за своей высоковольтности при милливольтных сигналах.
Хочу ещё отметить, что УНЧ на транзисторах без ОС тоже обладает мягкостью звучания и чёткостью звуковой картины, как и ламповые. Проблема только в том, что этот звук мало кто слышал. Только народные умельцы и их окружение».

Это сообщение отредактировал aleks49 – 12.01.2017 – 21:47


 

vpayaem.ru

Усилители на транзисторах – Усилитель своими руками, схемы, инструкции, фото

УНЧ  » Усилители на транзисторах


   Представляем схему усилителя повышенной мощности, собранного на импортных транзисторах  2SC5200 и 2SA1943. При указанном питании схема развивает мощность 500 ватт на нагрузку 4 ома. Возможно также повысить мощность поднятием питания УМЗЧ.

   Хочу представить конструкцию простого, но мощного усилителя низкой частоты, выполненного на современных недорогих транзисторах. Основные достоинства этого усилителя – простота сборки, доступные и дешевые радиодетали, также готовый усилитель в наладке не нуждается и работает сразу. Усилитель развивает очень высокую мощность по сравнению с аналогичными схемами.

   Для повышения дальности приёма ТВ сигнала, можно использовать небольшой усилитель на млошумящих отечественных транзисторах. Конструктивно, антенный усилитель состоит из функционально блока, устанавливаемого возле телевизора. Внутри корпуса усилителя расположены печатные платы и сетевой трансформатор питания.  

   Мы все любим слушать музыку, но часто громкость музыки нас не устраивает. Поэтому я решил собрать простой усилитель для наушников без использования микросхем, всего на двух транзисторах. На схеме источник звука подключен ко входу усилителя через резистор R1 и оксидный конденсатор С1. Резистор R1 позволяет повысить входное сопротивление усилителя. Это необходимо для согласования усилителя с источником звука.  

   Как самому сделать усилитель? Сейчас мы рассмотрим одну из неплохих и недорогих конструкций УНЧ. Вот мой первый транзисторный усилитель, который сделал несколько лет назад и теперь поделюсь с новичками этой сxемой. Как видно из принципиальной схемы, данный усилитель очен простой и скажу, что конструкцию попроще не стоит искать. Дефицитныx деталей нет и вопросы не возникнут, так что если вы новичок и решили спаять свой первый усилитель, то очень советую попробовать именно этот.

   Усилитель для компьютера на 3 ватта, выполненный на отечественных недорогих транзисторах. Недавно в руки попались компьютерные колонки китайского производства. Обычно в такиx колонкаx ставят стереофонические усилители выполненные на интегральной микросxеме тда2822. Такой усилитель имеет мощность 0,65 ватт на канал, не очень мощно – но достаточно качественный звук. Решил переделать колонки и собрать усилитель на транзистораx. 

   Привет всем радиолюбителям. Иногда нужно для домашнего пользования смастерить очень простой звуковой усилитель. Сегодня мы с вами обсудим один из вариантов такого усилителя. Очень простая сборка данного усилителя всего на одном полевом на транзисторе может заинтересовать многим из вас, но спешу сообщить радиолюбителям, что этот усилитель класса А, и он берет от источника питания 30 ватт мощности, а отдает всего 5 ватт! Остальные 25 ватт безвозвратно превращаются в теплоту. Еще один недостаток усилителя – перегрев.

   Наверное каждый новичек xоть раз попытался собрать транзисторный усилитель мощности звуковой частоты но не наxодил простенькиx сxем для повторения. Предлагаю вашему вниманию самую простую сxему усилителя которая имеет достаточно большую мощность для маленькой акустики. Усилитель не содержит дефицитныx деталей и собрать можно за 15 минут, конечно при наличии используемыx деталей.

amplif.ru

Усилители на транзисторах – Усилитель своими руками, схемы, инструкции, фото

УНЧ  » Усилители на транзисторах


   Данный усилитель – отличный вариант для домашнего или автомобильного сабвуфера, но подогнать под саб не советую, поскольку усилитель очень качественный, искажений даже на максимальной громкости не наблюдаются, для питания в автомобиле нужен отдельный преобразователь напряжения. 

   Недавно нашел на просторах интернета довольно таки интересную схемку усилителя на мощных составных транзисторах TIP142 и TIP147. Преимущество данной схемы в том, что при своей простоте исполнения мы имеем вполне приемлемое качество звука. Схема не требует настроек и работает сразу после сборки.

   Недавно на халяву досталось несколько отечественных транзисторов серии кт818/кт819. Недолго думая, решил собрать транзисторный усилитель. Поскольку на сборку у меня было не так уж и много времени, решил изготовить простую и мощную схему УНЧ. Немного поискав по интернету, нашел схему усилителя всего на 5-ти транзисторах.

   Рассмотрим схему несложного усилителя мощности звука на 10 ватт. Предлагаемая схема УНЧ выбрана как одна из самых простых и качественных и главное – чистый класс А. Можно сказать – это доисторическая схема, поскольку была она создана в 70-е годы. Итак, начинаем сборку схемы которой свыше сорока лет!

   Представляем сборник самодельных УМЗЧ, которые были неоднократно проверены и зарекомендовали себя отличным звучанием и простотой настройки усилителя. Схема высококачественного умзч на 200 ватт: 

   Рассмотрим очень простой УНЧ класса “А@? собранный всего на одном транзисторе. Помню этот усилитель собрал 2 года назад. Схема попалась мне на глаза совершенно случайно, поковырялся в своих деталях и к моему удивлению нашел нужный транзистор. Усилитель без ООС, чистый А класс ! Было решено собрать стерео вариант схемы, а поскольку она одноканальная, пришлось купить второй транзистор.

    Сегодня хотел бы рассмотреть схему мощного транзисторного 200-ваттного УНЧ на основе операционного усилителя. Усилитель мощности собран полностью на отечественных деталях, в наладке почти не нуждается и во время экспериментов показывает высокие параметры. Данный усилитель отлично бы подошел для домашнего сабвуфера, поскольку его выходная мощность вполне позволяет раскачать мощные динамические головки как отечественного, так и импортного производства. 

   Данный самодельный усилитель предназначен для питания маломощной акустики, колонок с мощностью порядка 1 ватт. Отличный вариант для наушников или скажем в качестве микрофонного усилителя. Собран усилитель полностью на транзисторах и при указанных деталях развивает мощность до 1 ватта! При повышения напряжения питания до 12 вольт схема развивает мощность до 2-х ватт. В целях повышения выходной, мощности выходные транзисторы можно заменить на пару кт816 / кт817 или кт818 / кт819, с использованием последней пары мощность достигает до 3-х ватт с питанием 12 вольт.

amplif.ru

Схемы усилителей мощности на германиевых транзисторах. Секреты звучания забытых германиевых УНЧ.

Эх, жалко пацанов – королевство маловато, разгуляться негде!
Ни ламповых тебе однотактников, ни гераниевых раритетов… Что ещё остаётся пытливому уму неоперившегося меломана?
Разве что брейкануть под японское хокку, да кайфануть для большего эффекта под уханье бумбокса.

«Кремний – всему голова» – крикнут яростные члены на форумных дебатах.
«Не надо впаривать нам этот шняга-силикатный экстракт» – вторят им другие, «для начала послушайте своими руками, а потом делайте свои тупоголовые выводы».

На самом деле, слушать надо!
Перелопатить определённое количество разномастной усилительной аппаратуры – тоже надо.
Не обязательно быть музыкантом со стажем, но таить в себе зачатки какого-никакого слуха – опять же, надо.
И тогда любой пацак, владелец старого пепелаца, сможет авторитетно заявить: «Однако разница в звуке есть, и она весьма существенна!»

На этой странице поговорим об УНЧ на германиевых транзисторах.

Своеобразие германиевого звучания, как правило, сводится к двум устойчивым постулатам:
1. Усилители на германиевых транзисторах отличаются музыкальностью,
2. Звук похож на звук ламповика.
И если первый пункт у меня возражений не вызывает, то со вторым мнением коллег позволю вежливо не согласиться – не похож, абсолютно разное звучание.

Электрофон сетевой транзисторный “Вега-101-стерео” с усилителем на германиевых транзисторах, выпускаемый Бердским радиозаводов с начала 1972 по 1982 год, заложил в головы современников основы понимания того, каким должен быть высококачественный стереофонический звук.
Время шло, появлялись на свет и более продвинутые вертушки с магнитными звукоснимателями, и значительно более мощные УНЧ на кремниевых транзисторах с незаурядными характеристиками.
Однако душещипательные воспоминания о том, как звучали в конце 70-ых простенькие Веги с их примитивной схемотехникой открыли историю ожесточённой борьбы человечества с феноменом транзисторного звучания.

Ну да и ладно, пора переходить на новый уровень – нарисовать пару-тройку принципиальных схем усилителей низкой частоты на германиевых транзисторах, но для начала озадачусь вопросом: Что любит и что не любит германий?
1. Германий любит простоту и не приемлет наворотов. Дифференциальный каскад с источником тока в цепи эмиттера – уже является буржуазным излишеством.
2. Германий не любит перегрева, легко может напустить дыма и отправиться к праотцам электроники Амперу и Ому в ответ на потерю бдительности в процессе настройки схемы.

А теперь обещанные схемы.


Рис.1

Номинальная мощность усилителя при коэффициенте гармоник на частоте 1000Гц менее 0,1% – 1 Вт, максимальная – 1,5Вт, чувствительность по входу – 0,2 В.
Усилитель сохраняет работоспособность при понижении напряжения питания до 9В.
Подбором номинала резистора R8 устанавливается значение напряжения на эмиттерах выходных транзисторов, равное половине напряжения питания.
Подбором номинала резистора R2 устанавливается значение напряжения на коллекторе транзистора V1, равное половине напряжения питания.


Рис.2

Схема, приведённая на Рис.2 – для эстетов, желающих порадовать свой слуховой аппарат ни с чем не сравнимым звуком однотактного усилителя, работающего в чистом режиме А.
Для настройки усилителя следует подбором номинала резистора R9 установить ток покоя выходного транзистора – 150мА.


Рис.3

На рис.3 показана принципиальная схема универсального усилителя НЧ, собранного на девяти транзисторах и развивающего выходную мощность до 10 Вт при сопротивлении нагрузки 4 Ом и входном напряжении около 10 мВ.
При налаживании устройства подстроечным резистором R2 устанавливают выходное напряжение в точке соединения транзисторов VT8 и VT9 равным половине напряжения питания.

Рис.4

Схема более мощного усилителя приведена на Рис.4. Усилитель рассчитан на подключение электрогитары и микрофона, но может быть использован также совместно с проигрывателем, магнитофоном или радиоприёмником.
Основные технические данные, приведённые автором:
Номинальная выходная мощность – 30 Вт.
Максимальная выходная мощность – 40 Вт.
Сопротивление нагрузки 3,5-5 Ом.
Полоса рабочих частот 30-16000 Гц.
Коэффициент нелинейных искажений – не более 1,5%.
Чувствительность с выхода микрофона – 10 мВ.
Чувствительность с выхода электрогитары – 0,1 В.
Напряжение 15 В на коллекторе транзистора Т10 устанавливают резистором R19.
Ток покоя всего усилителя не должен превышать 170 мА.


Рис.5

На Рис.5 приведена схема простого и мощного усилителя на германиевых транзисторах DTG110B. При подключении к его входу любого УНЧ мощностью 1,5-2 Вт устройство выдаёт на 8-ми омную нагрузку около 50 Вт чистого германиевого звука.
Согласующий трансформатор Т1 выполнен на железе Ш24 (толщина пакета 20-25мм) и содержит 3 одинаковые обмотки по 120 витков, намотанных на картонном каркасе проводом ПЭВ-1 или ПЭВ-2 диаметром 0,5-0,7мм.
Налаживание устройства заключается в подборе значений резисторов R2 R4 для достижения на выходе схемы нулевого потенциала и тока покоя транзисторов – 120-150 мА.
При снижении напряжения питания на каждом плече до 30В транзисторы DTG110B без каких-либо колебаний могут быть заменены на отечественные П210А.


Рис.6

Схема, представленная на Рис.6, является переработанным под «германий» вариантом усилителя НЧ из статьи Николая Трошина журнале Радио №8 за 1989г (стр. 51-55). Творцом переработки является сам автор статьи. Вот что он пишет на страннице сайта http://vprl.ru:

«Выходная мощность этого усилителя 30 Вт при сопротивлении нагрузки акустических систем 4 Ома, и примерно 18 Вт при сопротивлении нагрузки 8 Ом.
Напряжение питания усилителя (U пит) двухполярное ±25 В;
Диапазон рабочих частот 20Гц…20кГц:

Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В;
Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.

Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2.
На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.

Настройка правильно собранного из исправных элементов усилителя сводится к установке подстроечным резистором тока покоя выходного каскада 100мА (удобно контролировать на эмиттерном резисторе 1 Ом – напряжение 100мВ).
Диод VD1 желательно приклеить или прижать к радиатору выходного транзистора, что способствует лучшей термостабилизации. Однако если этого не делать, ток покоя выходного каскада от холодного 100мА до горячего 300мА меняется, в общем-то, не катастрофично.

Важно: перед первым включением необходимо выставить подстроечный резистор в нулевое сопротивление.
После настройки желательно подстроечный резистор выпаять из схемы, измерить его реальное сопротивление и заменить на постоянный».

 

vpayaem.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *