Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Показать содержимое по тегу: ATX

Схема импульсного стабилизатора ненамного сложней обычного, используемого в трансформаторных блоках питания, но более сложная в настройке.

Поэтому недостаточно опытным радиолю­бителям, не знающим правил работы с высоким напряжением (в частности, никогда не работать в одиночку и никогда не настраивать включенное уст­ройство двумя руками — только одной!), не рекомендую повторять эту схему.

На рис. 1 представлена электрическая схема импульсного стабилизатора напряжения для зарядки сотовых телефонов.

Рис. 1 Электрическая схема импульсного стабилизатора напряжения

Схема представляет собой блокинг-генератор, реализованный на транзисторе VT1 и трансформаторе Т1. Диодный мост VD1 выпрямляет переменное сете­вое напряжение, резистор R1 ограничивает импульс тока при включении, а также выполняет функцию предохранителя. Конденсатор С1 необязателен, но благодаря ему блокинг-генератор работает более стабильно, а нагрев транзи­стора VT1 чуть меньше (чем без С1).

При включении питания транзистор VT1 слегка приоткрывается через рези­стор R2, и через обмотку I трансформатора Т1 начинает течь небольшой ток. Благодаря индуктивной связи, через остальные обмотки также начинает протекать ток. На верхнем (по схеме) выводе обмотки II положительное напряжение небольшой величины, оно через разряженный конденсатор С2 приоткрывает транзистор еще сильней, ток в обмотках трансформатора нарастает, и в итоге транзистор открывается полностью, до состояния насыщения.

Через некоторое время ток в обмотках перестает нарастать и начинает снижаться (транзистор VT1 все это время полностью открыт). Уменьшается напряжение на обмотке II, и через конденсатор С2 уменьшается напряжение на базе транзистора VT1. Он начинает закрываться, амплитуда напряжения в обмотках уменьшается еще сильней и меняет полярность на отрицательную.

Затем транзистор полностью закрывается. Напряжение на его коллекторе увеличивается и становится в несколько раз больше напряжения питания (индуктивный выброс), однако благодаря цепочке R5, С5, VD4 оно ограничивается на безопасном уровне 400. ..450 В. Благодаря элементам R5, С5 генерация нейтрализуется не полностью, и через некоторое время полярность напряжения в обмотках снова меняется (по принципу действия типичного колебательного контура). Транзистор снова начинает открываться. Так продолжается до бесконечности в цикличном режиме.

На остальных элементах высоковольтной части схемы собраны регулятор напряжения и узел защиты транзистора VT1 от перегрузок по току. Резистор R4 в рассматриваемой схеме выполняет роль датчика тока. Как только паде­ние напряжения на нем превысит 1…1,5 В, транзистор VT2 откроется и замк­нет на общий провод базу транзистора VT1 (принудительно закроет его). Конденсатор СЗ ускоряет реакцию VT2. Диод VD3 необходим для нормаль­ной работы стабилизатора напряжения.

Стабилизатор напряжения собран на одной микросхеме – регулируемом стабилитроне DА1.

Для гальванической развязки выходного напряжения от сетевого использует­ся оптрон VOL Рабочее напряжение для транзисторной части оптрона берет­ся от обмотки II трансформатора Т1 и сглаживается конденсатором С4. Как только напряжение на выходе устройства станет больше номинального, через стабилитрон DA1 начнет течь ток, светодиод оптрона загорится, сопротивле­ние коллектор-эмиттер фототранзистора VOL2 уменьшится, транзистор VT2 приоткроется и уменьшит амплитуду напряжения на базе VT1.

Он будет сла­бее открываться, и напряжение на обмотках трансформатора уменьшится. Если же выходное напряжение, наоборот, станет меньше номинального, то фототранзистор будет полностью закрыт и транзистор VT1 будет “раскачиваться” в полную силу. Для защиты стабилитрона и светодиода от перегрузок по току, последовательно с ними желательно включить резистор сопротивле­нием 100…330 Ом.

Налаживание
Первый этап: первый раз включать устройство в сеть рекомендуется через лампу 25 Вт, 220 В, и без конденсатора С1. Движок резистора R6 устанавли-вают в нижнее (по схеме) положение. Устройство включают и сразу отклю­чают, после чего как можно быстрей измеряют напряжения на конденсаторах С4 и Сб. Если на них есть небольшое напряжение (согласно полярности!), значит, генератор запустился, если нет генератор не работает, требуется поиск ошибки на плате и монтаже. Кроме того, желательно проверить тран­зистор VT1 и резисторы R1, R4.

Если все правильно и ошибок нет, но генератор не запускается, меняют мес­тами выводы обмотки II (или I, только не обоих сразу!) и снова проверяют работоспособность.

Второй этап: включают устройство и контролируют пальцем (только не за металлическую площадку для теплоотвода) нагрев транзистора VTI, он не должен нагреваться, лампочка 25 Вт не должна светиться (падение напряже­ния на ней не должно превышать пары Вольт).

Подключают к выходу устройства какую-нибудь маленькую низковольтную лампу, например, рассчитанную на напряжение 13,5 В. Если она не светится, меняют местами выводы обмотки III.

И в самом конце, если все нормально работает, проверяют работоспособность регулятора напряжения, вращая движок подстроечного резистора R6. После этого можно впаивать конденсатор С1 и включать устройство без лампы-токоограничителя.

Минимальное выходное напряжение составляет около 3 В (минимальное па­дение напряжения на выводах DA1 превышает 1,25 В, на выводах светодио­да—1,5В).
Если нужно меньшее напряжение, заменяют стабилитрон DA1 резистором сопротивлением 100…680 Ом. Следующим шагом настройки требуется уста­новка на выходе устройства напряжения 3,9…4,0 В (для литиевого аккумуля­тора). Данное устройство заряжает аккумулятор экспоненциально умень­шающимся током (от примерно 0,5 А в начале заряда до нуля в конце (для литиевого аккумулятора емкостью около 1 А/ч это допустимо)). За пару ча­сов режима зарядки аккумулятор набирает до 80 % своей емкости.

О деталях
Особый элемент конструкции — трансформатор.
Трансформатор в этой схеме можно использовать только с разрезным ферри-товым сердечником. Рабочая частота преобразователя довольно велика, поэтому для трансформаторного железа нужен только феррит. А сам преоб­разователь — однотактный, с постоянным подмагничиванием, поэтому сер­дечник должен быть разрезным, с диэлектрическим зазором (между его поло­винками прокладывают один-два слоя тонкой трансформаторной бумаги).

Лучше всего взять трансформатор от ненужного или неисправного анало­гичного устройства. В крайнем случае его можно намотать самому: сечение сердечника 3…5 мм2, обмотка I-450 витков проводом диаметром 0,1 мм, обмотка II-20 витков тем же проводом, обмотка III-15 витков прово­дом диаметром 0,6…0,8 мм (для выходного напряжения 4…5 В). При намот­ке требуется строгое соблюдение направления намотки, иначе устройство будет плохо работать, или не заработает совсем (придется прикладывать усилия при налаживании — см. выше). Начало каждой обмотки (на схеме) вверху.

Транзистор VT1 — любой мощностью 1 Вт и больше, током коллектора не менее 0,1 А, напряжением не менее 400 В. Коэффициент усиления по току Ь2ь должен быть больше 30. Идеально подходят транзисторы MJE13003, KSE13003 и все остальные типа 13003 любой фирмы. В крайнем случае, при­меняют отечественные транзисторы КТ940, КТ969. К сожалению, эти транзи­сторы рассчитаны на предельное напряжение 300 В, и при малейшем повы­шении сетевого напряжения выше 220 В они будут пробиваться. Кроме того, они боятся перегрева, т. е. требуется их установка на теплоотвод. Для транзи­сторов KSE13003 и МГС13003 теплоотвод не нужен (в большинстве случаев цоколевка — как у отечественных транзисторов КТ817).

Транзистор VT2 может быть любым маломощным кремниевым, напряжение на нем не должно превышать 3 В; это же относится и к диодам VD2, VD3. Конденсатор С5 и диод VD4 должны быть рассчитаны на напряжение 400…600 В, диод VD5 должен быть рассчитан на максимальный ток нагрузки. Диодный мост VD1 должен быть рассчитан на ток 1 А, хотя потребляемый схемой ток не превышает сотни миллиампер — потому что при включении происходит довольно мощный бросок тока, а увеличивать сопротивление ре­зистора Шдля ограничения амплитуды этого броска нельзя — он будет силь­но нагреваться.

Вместо моста VD1 можно поставить 4 диода типа 1N4004…4007 или КД221 с любым буквенным индексом. Стабилизатор DA1 и резистор R6 можно заме­нить на стабилитрон, напряжение на выходе схемы будет на 1,5 В больше напряжения стабилизации стабилитрона.

“Общий” провод показан на схеме только для упрощения графики, его нельзя заземлять и (или) соединять с корпусом устройства. Высоковольтная часть устройства должна быть хорошо изолирована.

Оформление
Элементы устройства монтируют на плате из фольгированного стеклотексто­лита в пластмассовый (диэлектрический) корпус, в котором просверливают два отверстия для индикаторных светодиодов. Хорошим вариантом (использованным автором) является оформление платы устройства в корпус от ис­пользованной батареи типа А3336 (без понижающего трансформатора).

Блоки питания 350w схема принципиальная

Дата: 26.04.2016 // 0 Комментариев

Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.

Cхемы компьютерных блоков питания ATX

Схема JNC LC-250ATX

Схема JNC LC-B250ATX

Схема JNC SY-300ATX

Схема JNC LC-B250ATX

Схема Enlight HPC-250 и HPC-350

Схема Linkworld 200W, 250W и 300W

Схема Green Tech MAV-300W-P4

Схема AcBel API3PCD2 ATX-450P-DNSS 450W

Схема AcBel API4PC01 400W

Схема Maxpower PX-300W

Схема PowerLink LPJ2-18 300W

Схема Shido LP-6100 ATX-250W

Схема Sunny ATX-230

Схема KME PM-230W

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-200PB-59

Схема InWin IW-P300A2-0

Схема SevenTeam ST-200HRK

Схема SevenTeam ST-230WHF

Схема DTK PTP-2038

Схема PowerMaster LP-8

Схема PowerMaster FA-5-2

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Схема Codegen 300X 300W

Схема PowerMan IP-P550DJ2-0

Схема Microlab 350w

Схема Sparkman SM-400W (STM-50CP)

Схема GEMBIRD 350W (ShenZhon 350W)

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105

Утилиты и справочники.

cables.zip — Разводка кабелей — Справочник в формате .chm. Автор данного файла — Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru — краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.

Конденсатор 1.0 — Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

Transistors.rar — База данных по транзисторам в формате Access.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Таблица контактов 24-контактного разъема блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов

КонтОбознЦветОписание
13. 3VОранжевый+3.3 VDC
23.3VОранжевый+3.3 VDC
3COMЧерныйЗемля
45VКрасный+5 VDC
5COMЧерныйЗемля
65VКрасный+5 VDC
7COMЧерныйЗемля
8PWR_OKСерыйPower Ok — Все напряжения в пределах нормы. Это сигнал формируется при включении БП и используется для сброса системной платы.
95VSBФиолетовый+5 VDC Дежурное напряжение
1012V Желтый+12 VDC
1112VЖелтый+12 VDC
123.3VОранжевый+3.3 VDC
133.3VОранжевый+3.3 VDC
14-12VСиний-12 VDC
15COMЧерныйЗемля
16/PS_ONЗеленыйPower Supply On. Для включения блока питания нужно закоротить этот контакт на землю ( с проводом черного цвета).
17COMЧерныйЗемля
18COMЧерныйЗемля
19COMЧерныйЗемля
20-5VБелый-5 VDC (это напряжение используется очень редко, в основном, для питания старых плат расширения.)
21+5VКрасный+5 VDC
22+5VКрасный+5 VDC
23+5VКрасный+5 VDC
24COMЧерныйЗемля

typical-450.gif — типовая схема блока питания на 450W с реализацией active power factor correction (PFC) современных компьютеров.

ATX 300w .png — типовая схема блока питания на 300W с пометками о функциональном назначении отдельных частей схемы.

ATX-450P-DNSS. zip — Схема блока питания API3PCD2-Y01 450w производства ACBEL ELECTRONIC (DONGGUAN) CO. LTD.

AcBel_400w.zip — Схема блока питания API4PC01-000 400w производства Acbel Politech Ink.

Alim ATX 250W (.png) — Схема блока питания Alim ATX 250Watt SMEV J.M. 2002.

atx-300p4-pfc.png — Схема блока питания ATX-300P4-PFC ( ATX-310T 2.03 ).

ATX-P6.gif — Схема блока питания ATX-P6.

ATXPower.rar — Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

GPS-350EB-101A.pdf — Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350EB-101A.

GPS-350FB-101A.pdf — Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350FB-101A.

ctg-350-500.png — Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P

ctg-350-500.pdf — Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P

cft-370_430_460.pdf — Схема блоков питания Chieftec CFT-370-P12S, CFT-430-P12S, CFT-460-P12S

gpa-400.png — Схема блоков питания Chieftec 400W iArena GPA-400S8

GPS-500AB-A. pdf — Схема БП Chieftec 500W GPS-500AB-A.

GPA500S.pdf — Схема БП CHIEFTEC TECHNOLOGY GPA500S 500W Model GPAxY-ZZ SERIES.

cft500-cft560-cft620.pdf — Схема блоков питания Chieftec CFT-500A-12S, CFT-560A-12S, CFT-620A-12S

aps-550s.png — Схема блоков питания Chieftec 550W APS-550S

gps-650_cft-650.pdf — Схема блоков питания Chieftec 650W GPS-650AB-A и Chieftec 650W CFT-650A-12B

ctb-650.pdf — Схема блоков питания Chieftec 650W CTB-650S

ctb-650_no720.pdf — Схема блоков питания Chieftec 650W CTB-650S Маркировка платы: NO-720A REV-A1

aps-750.pdf — Схема блоков питания Chieftec 750W APS-750C

ctg-750.pdf — Схема блоков питания Chieftec 750W CTG-750C

cft-600_850.pdf — Схема блоков питания Chieftec CFT-600-14CS, CFT-650-14CS, CFT-700-14CS, CFT-750-14CS

cft-850g.pdf — Схема блока питания Chieftec 850W CFT-850G-DF

cft-1000_cft-1200.pdf — Схема блоков питания Chieftec 1000W CFT-1000G-DF и Chieftec 1200W CFT-1200G-DF

colors_it_330u_sg6105. gif — Схема БП NUITEK (COLORS iT) 330U (sg6105).

330U (.png) — Схема БП NUITEK (COLORS iT) 330U на микросхеме SG6105 .

350U.pdf — Схема БП NUITEK (COLORS iT) 350U SCH .

350T.pdf — Схема БП NUITEK (COLORS iT) 350T .

400U.pdf — Схема БП NUITEK (COLORS iT) 400U .

500T.pdf — Схема БП NUITEK (COLORS iT) 500T .

600T.pdf — Схема БП NUITEK (COLORS iT) ATX12V-13 600T (COLORS-IT — 600T — PSU, 720W, SILENT, ATX)

codegen_250.djvu — Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

codegen_300x.gif — Схема БП Codegen 300w mod. 300X.

PUh500W.pdf — Схема БП CWT Model PUh500W .

Dell-145W-SA145-3436.png — Схема блока питания Dell 145W SA145-3436

Dell-160W-PS-5161-7DS.pdf — Схема блока питания Dell 160W PS-5161-7DS

Dell_PS-5231-2DS-LF.pdf — Схема блока питания Dell 230W PS-5231-2DS-LF (Liteon Electronics L230N-00)

Dell_PS-5251-2DFS.pdf — Схема блока питания Dell 250W PS-5251-2DFS

Dell_PS-5281-5DF-LF.pdf — Схема блока питания Dell 280W PS-5281-5DF-LF модель L280P-01

Dell_PS-6311-2DF2-LF. pdf — Схема блока питания Dell 305W PS-6311-2DF2-LF модель L305-00

Dell_L350P-00.pdf — Схема блока питания Dell 350W PS-6351-1DFS модель L350P-00

Dell_L350P-00_Parts_List.pdf — Перечень деталей блока питания Dell 350W PS-6351-1DFS модель L350P-00

deltadps260.ARJ — Схема БП Delta Electronics Inc. модель DPS-260-2A.

delta-450AA-101A.pdf — Схема блока питания Delta 450W GPS-450AA-101A

delta500w.zip — Схема блока питания Delta DPS-470 AB A 500W

DTK-PTP-1358.pdf — Схема блока питания DTK PTP-1358.

DTK-PTP-1503.pdf — Схема блока питания DTK PTP-1503 150W

DTK-PTP-1508.pdf — Схема блока питания DTK PTP-1508 150W

DTK-PTP-2001.pdf — Схема БП DTK PTP-2001 200W.

DTK-PTP-2005.pdf — Схема БП DTK PTP-2005 200W.

DTK PTP-2007 .png — Схема БП DTK Computer модель PTP-2007 (она же – MACRON Power Co. модель ATX 9912)

DTK-PTP-2007.pdf — Схема БП DTK PTP-2007 200W.

DTK-PTP-2008.pdf — Схема БП DTK PTP-2008 200W.

DTK-PTP-2028. pdf — Схема БП DTK PTP-2028 230W.

DTK_PTP_2038.gif — Схема БП DTK PTP-2038 200W.

DTK-PTP-2068.pdf — Схема блока питания DTK PTP-2068 200W

DTK-PTP-3518.pdf — Схема БП DTK Computer model 3518 200W.

DTK-PTP-3018.pdf — Схема БП DTK DTK PTP-3018 230W.

DTK-PTP-2538.pdf — Схема блока питания DTK PTP-2538 250W

DTK-PTP-2518.pdf — Схема блока питания DTK PTP-2518 250W

DTK-PTP-2508.pdf — Схема блока питания DTK PTP-2508 250W

DTK-PTP-2505.pdf — Схема блока питания DTK PTP-2505 250W

EC mod 200x (.png) — Схема БП EC model 200X.

FSP145-60SP.GIF — Схема БП FSP Group Inc. модель FSP145-60SP.

fsp_atx-300gtf_dezhurka.gif — Схема источника дежурного питания БП FSP Group Inc. модель ATX-300GTF.

fsp_600_epsilon_fx600gln_dezhurka.png — Схема источника дежурного питания БП FSP Group Inc. модель FSP Epsilon FX 600 GLN.

green_tech_300.gif — Схема БП Green Tech. модель MAV-300W-P4.

HIPER_HPU-4K580.zip — Схемы блока питания HIPER HPU-4K580 . В архиве — файл в формате SPL (для программы sPlan) и 3 файла в формате GIF — упрощенные принципиальные схемы: Power Factor Corrector, ШИМ и силовой цепи, автогенератора. Если у вас нечем просматривать файлы .spl , используйте схемы в виде рисунков в формате .gif — они одинаковые.

iwp300a2.gif — Схемы блока питания INWIN IW-P300A2-0 R1.2.

IW-ISP300AX.gif — Схемы блока питания INWIN IW-P300A3-1 Powerman.
Наиболее распространенная неисправность блоков питания Inwin, схемы которых приведены выше — выход из строя схемы формирования дежурного напряжения +5VSB ( дежурки ). Как правило, требуется замена электролитического конденсатора C34 10мкФ x 50В и защитного стабилитрона D14 (6-6.3 V ). В худшем случае, к неисправным элементам добавляются R54, R9, R37, микросхема U3 ( SG6105 или IW1688 (полный аналог SG6105) ) Для эксперимента, пробовал ставить C34 емкостью 22-47 мкФ — возможно, это повысит надежность работы дежурки.

IP-P550DJ2-0.pdf — схема блока питания Powerman IP-P550DJ2-0 (плата IP-DJ Rev:1.51). Имеющаяся в документе схема формирования дежурного напряжения используется во многих других моделях блоков питания Power Man (для многих блоков питания мощностью 350W и 550W отличия только в номиналах элементов ).

JNC_LC-B250ATX.gif — JNC Computer Co. LTD LC-B250ATX

JNC_SY-300ATX.pdf — JNC Computer Co. LTD. Схема блока питания SY-300ATX

JNC_SY-300ATX.rar — предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

KME_pm-230.GIF — Схемы блока питания Key Mouse Electroniks Co Ltd модель PM-230W

L & C A250ATX (.png) — Схемы блока питания L & C Technology Co. модель LC-A250ATX

LiteOn_PE-5161-1.pdf — Схема блоков питания LiteOn PE-5161-1 135W.

LiteOn-PA-1201-1.pdf — Схема блоков питания LiteOn PA-1201-1 200W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VW.pdf — Схема блоков питания LiteOn PS-5281-7VW 280W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VR1.pdf — Схема блоков питания LiteOn PS-5281-7VR1 280W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VR.pdf — Схема блоков питания LiteOn PS-5281-7VR 280W (полный комплект документации к БП)

LWT2005 (.png) — Схемы блока питания LWT2005 на микросхеме KA7500B и LM339N

M-tech SG6105 (.png) — Схема БП M-tech KOB AP4450XA.

Macrom Power ATX 9912 .png — Схема БП MACRON Power Co. модель ATX 9912 (она же – DTK Computer модель PTP-2007)

Maxpower 230W (.png) — Схема БП Maxpower PX-300W

MaxpowerPX-300W.GIF — Схема БП Maxpower PC ATX SMPS PX-230W ver.2.03

PowerLink LP-J2-18 (.png) — Схемы блока питания PowerLink модель LP-J2-18 300W.

Power_Master_LP-8_AP5E.gif — Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Power_Master_FA_5_2_v3-2.gif — Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

microlab350w.pdf — Схема БП Microlab 350W

microlab_400w.pdf — Схема БП Microlab 400W

linkworld_LPJ2-18.GIF — Схема БП Powerlink LPJ2-18 300W

Linkword_LPK_LPQ.gif — Схема БП Powerlink LPK, LPQ

PE-050187 — Схема БП Power Efficiency Electronic Co LTD модель PE-050187

ATX-230.pdf — Схема БП Rolsen ATX-230

SevenTeam_ST-230WHF (.png) — Схема БП SevenTeam ST-230WHF 230Watt

hpc-360-302.zip — Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0 заархивированный документ в формате .PDF

hpc-420-302.pdf — Схема блока питания Sirtec HighPower HPC-420-302 420W

HP-500-G14C.pdf — Схема БП Sirtec HighPower HP-500-G14C 500W

cft-850g-df_141.pdf — Схема БП SIRTEC INTERNATIONAL CO. LTD. NO-672S. 850W. Блоки питания линейки Sirtec HighPower RockSolid продавались под маркой CHIEFTEC CFT-850G-DF.

SHIDO_ATX-250.gif — Схемы блока питания SHIDO модель LP-6100 250W.

SUNNY_ATX-230.png — Схема БП SUNNY TECHNOLOGIES CO. LTD ATX-230

s_atx06f.png — Схема блока питания Utiek ATX12V-13 600T

Wintech 235w (.png) — Схема блока питания Wintech PC ATX SMPS модель Win-235PE ver.2.03

Схемы блоков питания для ноутбуков.

EWAD70W_LD7552.png — Схема универсального блока питания 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W на микросхеме LD7552.

KM60-8M_UC3843.png — Схема блока питания 60W 19V 3.42A для ноутбуков, плата KM60-8M на микросхеме UC3843.

ADP-36EH_DAP6A_DAS001.png — Схема блока питания Delta ADP-36EH для ноутбуков 12V 3A на микросхеме DAP6A и DAS001.

LSE0202A2090_L6561_NCP1203_TSM101.png — Схема блока питания Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A на микросхеме NCP1203 и TSM101, АККМ на L6561.

ADP-30JH_DAP018B_TL431.png — Схема блока питания ADP-30JH 30W для ноутбуков 19V 1.58A на микросхеме DAP018B и TL431.

ADP-40PH_2PIN.jpg — Схема блока питания Delta ADP-40PH ABW

Delta-ADP-40MH-BDA-OUT-20V-2A.pdf — Ещё один вариант схемы блока питания Delta ADP-40MH BDA на чипах DAS01A и DAP8A.

PPP009H-DC359A_3842_358_431.png — Схема блока питания HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A на микросхемах UC3842 и LM358.

NB-90B19-AAA.jpg — Схема блока питания NB-90B19-AAA 90W для ноутбуков 19V 4.74A на TEA1750.

PA-1121-04.jpg — Схема блока питания LiteOn PA-1121-04CP на микросхеме LTA702.

Delta_ADP-40MH_BDA.jpg — Схема блока питания Delta ADP-40MH BDA (Part No:S93-0408120-D04) на микросхеме DAS01A, DAP008ADR2G.

LiteOn_LTA301P_Acer.jpg — Схема блока питания LiteOn 19V 4.74A на LTA301P, 103AI, PFC на микросхемах TDA4863G/FAN7530/L6561D/L6562D.

ADP-90SB_BB_230512_v3.jpg — Схема блока питания Delta ADP-90SB BB AC:110-240v DC:19V 4.7A на микросхеме DAP6A, DSA001 или TSM103A

Delta-ADP-90FB-EK-rev.01.pdf — Схема блоков питания Delta ADP-90FB AC:100-240v DC:19V 4.74A на микросхеме L6561D013TR, DAP002TR и DAS01A.

PA-1211-1.pdf — Схема блока питания LiteOn PA-1211-1 на LM339N, L6561, UC3845BN, LM358N.

Li-Shin-LSE0202A2090.pdf — Схема блоков питания Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W на микросхемах L6561, NCP1203-60 и TSM101.

GEMBIRD-model-NPA-AC1.pdf — Схема универсального блока питания Gembird NPA-AC1 AC:100-240v DC:15V/16V/18V/19V/19.5V/20V 4.5A 90W на микросхеме LD7575 и полевом транзисторе MDF9N60.

ADP-60DP-19V-3.16A.pdf — Схема блоков питания Delta ADP-60DP AC:100-240v DC:19V 3.16A на микросхеме TSM103W (он же M103A) и I6561D.

Delta-ADP-40PH-BB-19V-2.1A.jpg — Схема блоков питания Delta ADP-40PH BB AC:100-240v DC:19V 2.1A на микросхеме DAP018ADR2G и полевом транзисторе STP6NK60ZFP.

Asus_SADP-65KB_B.jpg — Схема блоков питания Asus SADP-65KB B AC:100-240v DC:19V 3.42A на микросхеме DAP006 (DAP6A или NCP1200) и DAS001 (TSM103AI).

Asus_PA-1900-36_19V_4.74A.jpg — Схема блоков питания Asus PA-1900-36 AC:100-240v DC:19V 4.74A на микросхеме LTA804N и LTA806N.

Asus_ADP-90CD_DB.jpg — Схема блоков питания Asus ADP-90CD DB AC:100-240v DC:19V 4.74A на микросхеме DAP013D и полевике 11N65C3.

PA-1211-1.pdf — Схема блоков питания Asus ADP-90SB BB AC:100-240v DC:19V 4.74A на микросхеме DAP006 (она же DAP6A) и DAS001 (она же TSM103AI).

LiteOn-PA-1900-05.pdf — Схема блока питания LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A на LTA301P и 103AI, транзистор PFC 2SK3561, транзистор силовой 2SK3569.

LiteOn-PA-1121-04.pdf — Схема блока питания LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A на LTA702, транзистор PFC 2SK3934, транзистор силовой SPA11N65C3.

Прочее оборудование.

monpsu1.gif — типовая схема блоков питания мониторов SVGA с диагональю 14-15 дюймов.

sch_A10x.pdf — Схема планшетного компьютера (“планшетника”) Acer Iconia Tab A100 (A101).

HDD SAMSUNG.rar — архив с обширной подборкой документации к HDD Samsung

HDD SAMSUNG M40S — документация к HDD Samsung серии M40S на английскомязыке.

sonyps3.jpg — схема блока питания к Sony Playstation 3.

APC_Smart-UPS_450-1500_Back-UPS_250-600.pdf — инструкции по ремонту источников бесперебойного питания производства APC на русском языке. Принципиальные схемы многих моделей Smart и Back UPS.

Silcon_DP300E.zip — эксплуатационная документация на UPS Silcon DP300E производства компании APC

symmetra-re.pdf — руководство по эксплуатации UPS Symmetra RM компании APC.

symmetrar.pdf — общие сведения и руководство по монтажу UPS Symmetra RM компании APC (на русском языке).

manuals_symmetra80.pdf — эксплуатационная документация на Symmetra RM UPS 80KW, высокоэффективную систему бесперебойного питания блочной конфигурации, конструкция которой обеспечивает питание серверов высокой готовности и другого ответственного электронного оборудования.

APC-Symmetra.zip — архив с эксплуатационной документацией на Symmetra Power Array компании APC

Smart Power Pro 2000.pdf — схема ИБП Smart Power Pro 2000.

BNT-400A500A600A.pdf — Схема UPS Powercom BNT-400A/500A/600A.

ml-1630.zip — Документация к принтеру Samsung ML-1630

splitter.arj — 2 принципиальные схемы ADSL — сплиттеров.

KS3A.djvu — Документация и схемы для 29″ телевизоров на шасси KS3A.

Если вы желаете поделиться ссылкой на эту страницу в своей социальной сети, пользуйтесь кнопкой “Поделиться”

Достаточно часто при ремонте или переделке компьютерного блока питания ATX в зарядное устройство или лабораторный источник требуется схема этого блока. Учитывая, что моделей таких источников великое множество, мы решили собрать в одном месте коллекцию этой тематики.

В ней вы найдете типовые схемы блоков питания для компьютеров, как современных АТХ типа, так и уже заметно устаревших АТ. Понятное дело, что каждый день появляются все более новые и актуальные варианты, поэтому постараемся оперативно пополнять сборник схем более новыми вариантами. Кстати, Вы, можете нам в этом помочь.


Блок питания персонального компьютера — используется для электроснабжения всех компонентов и комплектующих системного блока. Стандартный АТХ блок питания должен обеспечивать следующие напряжения: +5, -5 В; +12, -12 В; +3,3 В; Практически любой стандартный блок питания имеет мощный вентилятор находящийся с низу. На задней панели имеется гнездо для подключения сетевого кабеля и кнопка выключения блока питания, но на дешевых китайских модификациях она может и отсутствовать. С противоположной стороны выходит огромная кипа проводов с разъемами для подключения материнской платы и всех остальных компонентов системного блока. Установка блока питания в корпус как правило достаточно проста. Установка компьютерного блока питания в корпус системного блока Для этого засовываете его в верхнюю часть системного блока, и затем фиксируете тремя или четырьмя винтами к тыловой панели системного блока. Есть конструкции корпуса системника при которых блок питания размещается в нижней части. В общем если что, надеюсь сориентируетесь

Случаи поломок компьютерных блоков питания совсем не редкость. Причинами возникновения неисправностей могут послужить: Выбросы напряжения в сети переменного тока; Низкое качество изготовления, особенно это касается дешевых китайских блоков питания; Неудачные схемотехнические решения; Использование низкокачественных компонентов при изготовлении; Перегрев радиокомпонентов из-за загрязнения блока питания, или остановки вентилятора.

Чаще всего при поломке компьютерного блока питания, в системнике отсутствуют признаки жизни, не горит светодиодная индикация, нет звуковых сигналов, не крутятся вентиляторы. В других случаях неисправности не запускается материнская плата. При этом крутятся вентиляторы, светится индикация, подают признаки жизни приводы и жесткий диск, но на дисплее монитора ничего нет, только темный экран.

Приступая к поиску неисправности рекомендуется ознакомится со схемой компьютерного БП.

Проблемы и дефекты могут быть абсолютно разные — от полной не работоспособности до постоянных или временных сбоев. Как только вы приступите к ремонту убедитесь, что все контакты и радио компоненты визуально в порядке, силовые шнуры не повреждены, предохранитель и выключатель исправен, коротких замыканий на землю нет. Конечно, блоки питания современной аппаратуры хоть и имеют общие принципы работы, но схемотехнически отличаются достаточно сильно. Постарайтесь найти схему на компьютерный источник, это ускорит ремонт.

Сердцем любой схемы компьютерного БП, формата ATX, является полумостовой преобразователь. Его работа и принцип действия основывается на применении двухтактного режима. Стабилизация выходных параметров устройства осуществляется с помощью широтно-импульсной модуляции управляющих сигналов.

В импульсных источниках часто используется известная микросхема ШИМ-контроллера TL494, которая обладает рядом положительных характеристик:

Принцип работы типового компьютерного БП можно увидеть в структурной схеме ниже:

Преобразователь напряжения выполняет преобразование этой велечины из переменной в постоянную. Он выполнен в виде диодного моста, преобразующего напряжение, и емкости, сглаживающей колебания. Кроме этих компонентов могут присутствовать еще дополнительные элементы: термисторы и фильтр. Генератор импульсов генерирует импульсы с заданной частотой, которые запитывают обмотку трансформатора. ОН выполняет основную работу в компьютерном БП, это преобразование тока до нужных значений и гальваническая развязка схемы. Далее переменное напряжение, с обмоток трансформатора, следует на еще один преобразователь, состоящий из полупроводниковых диодов, выравнивающих напряжение, и фильтра. Последний отсекает пульсации и состоит из группы дросселя и конденсаторов.

Так как многие параметры такого БП на выходе «плавают» из-за нестабильного напряжения и температуры. Но если осуществлять оперативное управление этими параметрами, например с помощью контроллера с функцией стабилизатора, то показанная выше структурная схема будет вполне пригодной для использования в компьютерной техники. Такая упрощенная схема БП с использованием контроллера широтно-импульсной модуляции показана на следующем рисунке.

ШИМ-контроллер, например UC3843 , он в данном случае и регулирует амплитуду изменения сигналов следующих через фильтр низких частот, смотри видео урок чуть ниже:

Принципиальные Схемы Atx – tokzamer.ru

Аналогичная ситуация возникает в условиях аварийной эксплуатации блока питания, связанной с короткими замыканиями в нагрузке, контроль которых осуществляется специальной схемой контроля. Вывод 1 ИМС является входом схемы сравнения.


Сигнал проходит через резистор R23, транзистор Q 6 и операционный усилитель IC 2.

Как только вы приступите к ремонту убедитесь, что все контакты и радио компоненты визуально в порядке, силовые шнуры не повреждены, предохранитель и выключатель исправен, коротких замыканий на землю нет.
Ремонт блока питания бп atx дежурка

Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления; Входные электролиты обозначены красным тестирование ключевых силовых транзисторов.

Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ; Проверка выходных диодных сборок диоды шоттки при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность — КЗ; Отмеченные на плате диодные сборки проверка выходных конденсаторов электролитического типа.

Резистор R67 — нагрузка делителя. Структурная схема блока питания компьютера Схема блока питания компьютера кликните для увеличения.

При этом через диод D5, подключенный к этой обмотке, заряжается конденсатор С7, и происходит намагничивание трансформатора. Проверить наличие на контакте PS-ON потенциала корпуса нуля , исправность микросхемы U4 и элементов ее обвязки.

Отсутствие вращения вентилятора. Последний отсекает пульсации и состоит из группы дросселя и конденсаторов.

Обзор и ремонт блока питания FSP ATX 350PAF

Отзывы о сервисе

Мануалы Справочник Программы Радиосамоделки Медтехника Библиотека Схема блока питания для компьютера Здесь вы можете скачать довольно приличный сборник принципиальных схем компьютерных блоков питания АТХ и уже устаревших источников АТ, узнаете как проверить компьютерный источник, получите дельные советы по его ремонту и возможные варианты модернизации в нужные радиолюбительские конструкции. Сергеев Б. Фильтр состоит из группы конденсаторов и дросселя. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций.

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. С задержкой в 0,

Конструктивные особенности Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. Чаще всего при поломке компьютерного блока питания, в системнике отсутствуют признаки жизни, не горит светодиодная индикация, нет звуковых сигналов, не крутятся вентиляторы.

Но если осуществлять оперативное управление этими параметрами, например с помощью контроллера с функцией стабилизатора, то показанная выше структурная схема будет вполне пригодной для использования в компьютерной техники.

Нагрузка источника питания — схема терморегулирования. Сергеев Б.

Транзисторы Q 1 и Q 2 открываются противофазно на равные временные интервалы t1 и t2 рис. В источниках питания для конструктива АТХ в дальнейшем — источник изменен разъем для подключения питания к системной плате.

При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор методика такая же, как при проверке диодов. Структурная схема блока питания компьютера Схема блока питания компьютера кликните для увеличения.
Блок питания АТХ пособие по ремонту часть1

Структурная схема

Установка компьютерного блока питания в корпус системного блока Для этого засовываете его в верхнюю часть системного блока, и затем фиксируете тремя или четырьмя винтами к тыловой панели системного блока.

К ним относятся двухзвенный заградительный фильтр сетевых помех, низкочастотный высоковольтный выпрямитель с фильтром, основной и вспомогательный импульсные преобразователи, высокочастотные выпрямители, монитор выходных напряжений, элементы защиты и охлаждения. В случае их наличия заменить микросхему U4.

Мюллер С. Резисторы R2, R3 — элементы цепи разряда конденсаторов С1, С2 при выключении питания.

Положительная обратная связь обеспечивается дополнительной обмоткой, расположенной на магнитопроводе трансформатора ТЗ. Временные диаграммы коммутационных процессов переключения силовых транзисторов Q 1 и Q 2 Управление базовыми цепями транзисторов Q1 и Q 2 осуществляется через ускоряющие цепочки D 3, R 7, С9, R 5 и D 4, R 8, С10, R 6, которые форсируют прямые и обратные токи баз Q 1 и Q 2 на этапах их включения и выключения. Стабилизация этого напряжения осуществляется микросхемами U1, U2.

Как правило, их неисправность может быть обнаружена путем визуального осмотра. Уровень выходных напряжений источника устанавливается потенциометром VR 2. ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности КМ. Неисправности компьютерного блока питания и способы их диагностирования и ремонта Приступая к поиску неисправности рекомендуется ознакомится со схемой компьютерного БП.


В момент подачи питания начинает развиваться блокинг-процесс, и через рабочую обмотку трансформатора Т1 начинает протекать ток. Кучеров Д. Методика проверки инструкция После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов потемнение, изменившийся цвет, нарушение целостности. Структурная схема источника рис. В аварийном режиме функционирования увеличивается падение напряжения на резисторе R

Согласование маломощных выходных сигналов логических элементов УУ с входами силовых транзисторов выполняется усилителями импульсов УИ через трансформатор Т2, который обеспечивает гальваническую развязку. На некоторых моделях возможно встретить сразу два вентилятора. С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. В источнике также имеются цепи защиты от короткого замыкания в каналах выходного напряжения. Напряжение -5 В формируется с помощью диодов D27,

Питание ВПр осуществляекч от сетевого выпрями теля через резистор R 9. Возвратные диоды D 1 и D 2 ограничивают напряжения на коллекторах транзисторов Q 1 и Q 2, обеспечивая их безопасную paботу в инверсном режиме при возврате реактивной энергии, накопленной в нагрузке и трансформаторе, в систему электроснабжения через открытый транзистор.
Лабораторный БП из компьютерного блока питания ATX

Блок питания ATX-400W — принципиальная схема

Конденсаторы С1, С2 образуют фильтр низкочастотной сети.

Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании. Такая упрощенная схема БП с использованием контроллера широтно-импульсной модуляции показана на следующем рисунке.

Диоды D13, D14 предназначены для рассеивания магнитной энергии, накопленной полуобмотками трансформатора Т2. В случае исправности элементов обвязки заменить U4. Магнитный поток, создаваемый этим током, наводит ЭДС в обмотке положительной обратной связи.

При этом в трансформаторе Т1 накапливается больше электромагнитной энергии, отдаваемой в нагрузку, вследствие чего выходное напряжение повышается до номинального значения. Структурная схема источника рис. Конструктивные особенности Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. Значительно реже происходит отказ вентилятора, но это также приводит к печальным последствиям: от перегрева выгорают дроссели L1, L 2.

Еще по теме: Монтаж двухклавишного выключателя видео

Во вторичных обмотках блока питания компьютера, кроме диодных сборок на радиаторах задействованы дроссели. Принципиальные схемы блоков питания ATX. Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.

Этой величины достаточно для запирания транзистора Q6. Резистор R47 и конденсатор С29 — элементы частотной коррекции усилителя.

Распиновка основного коннектора БП

Проверить исправность цепи стабилизации U1, U2, неисправный элемент заменяется. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Выходной сигнал инвертора подается через токовый датчик Т4 на первичную обмотку силового трансформатора Т1. На неинвертирующий вход усилителя ошибки 1 выв. При протекании тока через первичную обмотку ТЗ происходит процесс накопления энергии трансформатором, передача этой энергии во вторичные цепи источника питания и заряд конденсаторов С1, С2.

Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста; Дисковый термистор обозначен красным тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. Обзор схем источников питания Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь.
Как работает ATX

Революция в схемах компьютерных блоков питания полувековой давности / Хабр

Полвека назад улучшенные транзисторы и импульсные стабилизаторы напряжения произвели революцию в схемах компьютерных блоков питания. Получила преимущества, к примеру, компания Apple – хотя не она запустила эту революцию, несмотря на заявления Стива Джобса.



Без Intel внутри: на рентгене видны компоненты импульсного блока питания, использованного в оригинальном микрокомпьютере Apple II, вышедшем в 1977 году

Компьютерным блокам питания не уделяется должного внимания.

Как энтузиаст технологий, вы наверняка знаете, какой у вашего компьютера микропроцессор и сколько у него физической памяти, однако есть вероятность, что вам ничего не известно о его блоке питания. Не тушуйтесь – даже производители разрабатывают БП в последнюю очередь.

А жаль, поскольку на создание БП для персональных компьютеров ушло довольно много сил, и это было серьёзное улучшение по сравнению с теми схемами, что питали другую потребительскую электронику вплоть до конца 1970-х. Этот прорыв стал возможен благодаря огромным скачкам в полупроводниковой технологии, сделанным полвека назад, в частности, улучшениям в импульсных стабилизаторах напряжения и инновациям в интегральных схемах. Но при этом данная революция прошла мимо внимания общественности, и даже неизвестна многим людям, знакомым с историей микрокомпьютеров.

В мире БП не обошлось без выдающихся чемпионов, включая и личность, упоминание которой может вас удивить: Стива Джобса. Согласно его авторизованному биографу, Уолтеру Айзексону, Джобс очень серьёзно относился к БП передового персонального компьютера Apple II и его разработчику, Роду Холту. Джобс, как утверждает Айзексон, заявлял следующее:

Вместо обычного линейного БП, Холт создал такой, который использовался в осциллографах. Он включал и выключал энергию не 60 раз в секунду, а тысячи раз; это позволяло ему сохранять энергию на гораздо меньших промежутках времени, в результате чего он испускал гораздо меньше тепла. «Этот импульсный БП был таким же революционным, как логическая плата Apple II, — сказал позже Джобс. – Рода не часто хвалят за это в книжках по истории, а должны были бы. Сегодня все компьютеры используют ИБП, и все они скопированы со схемы Рода Холта».

Это серьёзное заявление показалось мне не слишком достоверным, и я провёл своё расследование. Я обнаружил, что, хотя ИБП и были революционными, эта революция произошла в конце 1960-х и середине 1970-х, когда ИБП приняли эстафету у простых, но неэффективных линейных БП. Apple II, появившийся в 1977, получил преимущества этой революции, но не вызывал её.

Исправление джобсовской версии событий – не какая-то мелочь из инженерной области. Сегодня ИБП представляют собой повсеместный оплот всего, мы используем их ежедневно для зарядка наших смартфонов, планшетов, ноутбуков, камер и даже некоторых автомобилей. Они питают часы, радио, домашние аудиоусилители, и другую мелкую бытовую технику. Спровоцировавшие эту революцию инженеры заслуживают признания своих заслуг. Да и вообще, это весьма интересная история.

БП в настольных компьютерах, таких, как Apple II, преобразует переменный линейный ток в постоянный ток, и выдаёт очень стабильное напряжение для питания системы. БП можно сконструировать множеством разных способов, но чаще всего встречаются линейные и импульсные схемы.

Со всеми бородавками


В прошлом небольшие электронные устройства обычно использовали громоздкие БП-трансформаторы, получившие уничижительное прозвище «стенные бородавки». В начале XXI века технологические улучшения позволили начать практическое применение компактных импульсных источников питания малой энергии для питания небольших устройств. С падением стоимости импульсных AC/DC адаптеров они быстро заменили собой громоздкие БП у большинства домашних устройств.

Apple превратила зарядник в хитроумное устройство, представила прилизанную зарядку для iPod в 2001 году, внутри которой был компактный обратноходовой преобразователь под управлением интегральных схем (слева на картинке). Вскоре получили широкое распространение USB-зарядки, а ультракомпактный зарядник в виде дюймового куба от Apple, появившись в 2008, стал культовым (справа).

Самые модные зарядники высокого уровня подобного типа сегодня используют полупроводники на основе нитрида галлия, способные переключаться быстрее кремниевых транзисторов, и потому более эффективные. Развивая технологии в другом направлении, сегодня производители предлагают USB-зарядки уже по цене меньше доллара, хотя и экономя при этом на качестве питания и системах безопасности.

* * *

Типичный линейный БП использует громоздкий трансформатор для преобразования высоковольтного AC в розетке в низковольтный AC, который затем превращается в низковольтный DC при помощи диодов, обычно четырёх штук, подключенных в классическую схему диодного моста. Для сглаживания выходного напряжения диодного моста применяются крупные электролитические конденсаторы. Компьютерные БП используют схему под названием линейный стабилизатор, уменьшающую напряжение DC до нужного уровня и удерживающую его на этом уровне даже при изменениях в нагрузке.

Линейные БП тривиальны в проектировании и создании. Они используют дешёвые низковольтные полупроводниковые компоненты. Однако у них есть два больших минуса. Один – необходимость в использовании крупных конденсаторов и громоздких трансформаторов, которые никак нельзя запихнуть в нечто столь маленькоё, лёгкое и удобное, как зарядники, которые мы все используем для наших смартфонов и планшетов. Другой – схема линейного стабилизатора, основанная на транзисторах, превращает излишнее напряжение DC – всё, что выше необходимого уровня – в паразитное тепло. Поэтому такие БП обычно теряют более половины потребляемой энергии. И им часто требуются крупные металлические радиаторы или вентиляторы, чтобы избавляться от этого тепла.

ИБП работает на другом принципе: линейный вход AV превращается в высоковольтный DC, который включается и выключается десятки тысяч раз в секунду. Высокие частоты позволяют использовать гораздо более мелкие и лёгкие трансформаторы и конденсаторы. Особая схема точно управляет переключениями для контроля выходного напряжения. Поскольку таким БП не нужны линейные стабилизаторы, они теряют очень мало энергии: обычно их эффективность достигает 80-90%, и в итоге они гораздо меньше греются.

Однако ИБП обычно гораздо более сложные, чем линейные, и их сложнее проектировать. Кроме того, они выдвигают больше требований к компонентам, и нуждаются в высоковольтных транзисторах, способных эффективно включаться и выключаться с высокой частотой.

Должен упомянуть, что некоторые компьютеры использовали БП, не являвшиеся ни линейными, ни импульсными. Одной грубой, но эффективной техникой было запитать мотор от розетки и использовать его для раскрутки генератора, выдававшего необходимое напряжение. Мотор-генераторы использовались несколько десятилетий, по меньшей мере, с момента появления машин от IBM с перфокартами в 1930-х и до 1970-х, питая, среди прочего, суперкомпьютеры Cray.

Ещё один вариант, популярный с 1950-х и вплоть до 1980-х, использовал феррорезонансные трансформаторы – особый тип трансформаторов, дающих на выходе постоянное напряжение. Также в 1950-х для регулирования напряжения ламповых компьютеров использовался дроссель насыщения, контролируемая катушка индуктивности. В некоторых современных БП для ПК он вновь появился под именем “магнитного усилителя”, давая дополнительное регулирование. Но в итоге все эти старые подходы уступили место ИБП.

Принципы, лежащие в основе ИБП, известны инженерам-электрикам с 1930-х, однако эта технология редко использовалась в эру электронных ламп. В то время в некоторых БП использовались специальные ртутные лампы, тиратроны, и их можно считать примитивными, низкочастотными импульсными стабилизаторами. Среди них — REC-30, питавшая телетайп в 1940-х, а также блок питания компьютера IBM 704 от 1954 года. Но с появлением в 1950-х силовых транзисторов ИБП начали быстро улучшаться. Pioneer Magnetics начала производить ИБП в 1958. General Electric выпустила ранний проект транзисторного ИБП в 1959.

В 1960-е НАСА и аэрокосмическая индустрия стала основной движущей силой в развитии ИБП, поскольку для аэрокосмических нужд преимущества малого размера и высокой эффективности имели приоритет перед большой стоимостью. К примеру, в 1962-м спутник Telstar (первый спутник, начавший передачу телевидения) и ракета “Минитмен” использовали ИБП. Годы шли, цены пали, и ИБП начали встраивать в потребительскую технику. К примеру, в 1966 Tektronix использовала ИБП в портативном осциллографе, что позволяло ему работать как от розетки, так и от батареек.

Тенденция ускорялась по мере того, как производители начали продавать ИБП другим компаниям. В 1967 RO Associates представила первый ИБП на 20 КГц, который назвала первым коммерчески успешным примером ИБП. Nippon Electronic Memory Industry Co. начала разработку стандартизованных ИБП в Японии в 1970. К 1972 году большинство производителей БП продавали ИБП или готовились к их выпуску.

Примерно в это время индустрия компьютеров начала использовать ИБП. Среди ранних примеров – микрокомпьютер PDP-11/20 от Digital Equipment 1969 года, и микрокомпьютер 2100A от Hewlett-Packard 1971 года. В публикации 1971 года заявлялось, что среди компаний, использующих ИБП, отметились все главные игроки рынка: IBM, Honeywell, Univac, DEC, Burroughs и RCA. В 1974 в списке микрокомпьютеров, использующих ИБП, отметились Nova 2/4 от Data General, 960B от Texas Instruments и системы от Interdata. В 1975 ИБП использовались в терминале HP2640A, похожем на пишущую машинку Selectric Composer от IBM, и в портативном компьютере IBM 5100. К 1976 году Data General использовала ИБП в половине своих систем, а HP – в мелких системах типа 9825A Desktop Computer и 9815A Calculator. ИБП начали появляться и в домашних устройствах, например, в некоторых цветных телевизорах к 1973 году.

ИБП часто освещались в электронных журналах той эпохи, как в виде рекламы, так и в статьях. Ещё в 1964 году Electronic Design рекомендовал использовать ИБП из-за более высокой эффективности. На обложке от октября 1971 года журнала Electronics World красовался ИБП на 500 Вт, а название статьи гласило: «Блок питания с импульсным стабилизатором». Computer Design в 1972 детально описывал ИБП и постепенный захват ими компьютерного рынка, хотя упомянул и о скептицизме некоторых компаний. На обложке Electronic Design 1976 года было написано «Переключаться внезапно стало легче», и описывалась новая интегральная схема управления ИБП. В журнале Electronics была длинная статья на эту тему; в Powertec были двухстраничные рекламные материалы о преимуществах ИБП со слоганом «The big switch is to switchers» [большие изменения для переключателей]; Byte объявлял о выпуске ИБП для микрокомпьютеров компанией Boschert.

Роберт Бошерт, уволившийся с работы и начавший собирать БП у себя на кухне в 1970-м, был ключевым разработчиком этой технологии. Он концентрировался на упрощении схем, чтобы сделать импульсные БП конкурентными по цене с линейными, и к 1974 году уже выпускал недорогие БП для принтеров в промышленных количествах, а потом в 1976 выпустил и недорогие ИБП на 80 Вт. К 1977 Boschert Inc. выросла до компании из 650 человек. Она делала БП для спутников и истребителя Grumman F-14, а позже – компьютерные БП для HP и Sun.

Появление недорогих высоковольтных высокочастотных транзисторов в конце 1960-х и начале 1970-х, выпускаемых такими компаниями, как Solid State Products Inc. (SSPI), Siemens Edison Swan (SES) и Motorola, помогло вывести ИБП в мейнстрим. Более высокие частоты переключения повышали эффективность, поскольку тепло в таких транзисторах рассеивалось в основном в момент переключения между состояниями, и чем быстрее устройство могло совершать этот переход, тем меньше энергии оно тратило.

Частоты транзисторов в то время увеличивались скачкообразно. Транзисторная технология развивалась так быстро, что редакторы Electronics World в 1971 могли заявлять, что БП на 500 Вт, представленный на обложке журнала, невозможно было произвести всего на 18 месяцев ранее.

Ещё один заметный прорыв случился в 1976, когда Роберт Маммано, сооснователь Silicon General Semiconductors, представил первую интегральную схему для контроля ИБП, разработанную для электронного телетайпа. Его контроллер SG1524 кардинально упростил разработку БП и уменьшил их стоимость, что вызвало всплеск продаж.

К 1974 году, плюс-минус пару лет, каждому человеку, хотя бы примерно представлявшему себе состояние индустрии электроники, было ясно, что происходит реальная революция в конструкциях БП.


Лидеры и последователи: Стив Джобс демонстрирует персональный компьютер Apple II в 1981 году. Впервые представленный в 1977, Apple II выиграл от промышленного сдвига от громоздких линейных БП к небольшим и эффективным импульсным. Но Apple II не запустил этот переход, как позже утверждал Джобс.

Персональный компьютер Apple II представили в 1977. Одной из его особенностью был компактный ИБП без вентилятора, дававший 38 Вт мощности и напряжение в 5, 12, –5, и –12 В. Он использовал простую схему Холта, ИБП с топологией обратноходового офлайнового преобразователя. Джобс заявил, что сегодня каждый компьютер копирует революционную схему Холта. Но была ли эта схема революционной в 1977? И скопировал ли её каждый производитель компьютеров?

Нет и нет. Похожие обратноходовые преобразователи в то время уже продавали Boschert и другие компании. Холт получил патенты на парочку особенностей своего БП, но их так и не стали широко использовать. А создание управляющей схемы из дискретных компонентов, как сделали для Apple II, оказалось технологическим тупиком. Будущее ИБП принадлежало специализированным интегральным схемам.

Если и был микрокомпьютер, оказавший долгосрочное влияние на проектирование БП, это был IBM Personal Computer, запущенный в 1981. К тому времени, всего через четыре года после выхода Apple II, технология БП серьёзно изменилась. И хотя оба этих ПК использовали ИБП с топологией обратноходового офлайнового преобразователя и несколькими выходами, это и всё, что между ними было общего. Контуры питания, управления, обратной связи и стабилизации были разными. И хотя БП для IBM PC использовал контроллер на интегральной схеме, в нём было почти в два раза больше компонентов, чем в БП от Apple II. Дополнительные компоненты давали дополнительную стабилизацию выходного напряжения и сигнал «качественное питание», когда все четыре напряжения были верными.

В 1984 году IBM выпустила значительно обновлённую версию ПК, под названием IBM Personal Computer AT. Его БП использовал множество новых схем, полностью отказавшись от обратноходовой топологии. Он быстро стал стандартом де факто и оставался таковым до 1995 года, когда Intel представила форм-фактор ATX, который, как и другие вещи, определившие БП ATX, по сей день остаётся стандартом.

Но, несмотря на появление стандарта ATX, компьютерные системы питания стали сложнее в 1995 году, когда появился Pentium Pro – микропроцессор, требовавший меньшего напряжения и больших токов, чем БП ATX мог дать напрямую. Для такого питания Intel представил модуль регулирования напряжения (VRM) – импульсный преобразователь DC-DC, устанавливаемый рядом с процессором. Он уменьшал 5 В от БП до 3 В, используемых процессором. В графических картах многих компьютеров тоже есть VRM, питающий установленные в них высокоскоростные графические чипы.

Сегодня быстрому процессору от VRM может требоваться целых 130 Вт – что гораздо больше, чем полватта мощности, которые использовал процессор Apple II, 6502. Современный процессор в одиночку может использовать в три раза больше мощности, чем целый компьютер Apple II.

Растущее потребление энергии компьютерами стало причиной беспокойства, связанной с окружающей средой, в результате чего появились инициативы и законы, требующие более эффективных БП. В США правительственный сертификат Energy Star и промышленный 80 Plus требуют от производителей выдавать более «зелёные» БП. Им удаётся это сделать при помощи различных технологий: более эффективного энергопотребления в режиме ожидания, более эффективных стартовых схем, резонансных схем, уменьшающих потери питания в импульсных транзисторах, схемы типа active clamp, заменяющие импульсные диоды более эффективными транзисторами. Улучшения в технологиях силовых транзисторов MOSFET и высоковольтных кремниевых выпрямителей, произошедшие в последние десять лет, также послужили увеличению эффективности.

Технология ИБП продолжает развиваться и другими путями. Сегодня, вместо аналоговых схем, многие поставщики используют цифровые чипы и программные алгоритмы, контролирующие выход. Разработка контроллера БП стала как вопросом проектирования железа, так и вопросом программирования. Цифровое управление питанием позволяет поставщикам общаться с остальной системой с большей эффективностью и вести логи. И хотя эти цифровые технологии по большей части используются в серверах, они начинают влиять на разработку настольных ПК.

Сложно увязать всю эту историю с мнением Джобса о том, что Холт должен быть известен шире, или что «Рода не часто хвалят за это в книжках по истории, а должны были бы». Даже самые лучшие разработчики БП не становятся известными за пределами крохотного сообщества. В 2009 году редакторы Electronic Design пригласили Бошерта в свой “Инженерный зал славы”. Роберт Маммано получил награду “достижения всей жизни” в 2005 году от редакторов Power Electronics Technology. Руди Севернс получил другую такую награду в 2008 году за инновации в ИБП. Но никто из этих светил в области проектирования БП даже не отмечен в Википедии.

Часто повторяемое мнение Джобса о том, что Холта незаслуженно не заметили, привело к тому, что работу Холта описывают в десятках популярных статей и книжек про Apple, от “Реванша нердов” Пола Киотти, появившейся в журнале California в 1982, до биографии Джобса, бестселлера за авторством Айзексона, вышедшего в 2011. Так что весьма иронично, что, хотя его работа над Apple II вовсе не была революционной, Род Холт, вероятно, стал самым известным разработчиком БП всех времён.

Лабораторный БП из компьютерного БП формата АТХ – Блоки питания – Источники питания

Евгений Князев

Привет всем!!! Решил описать вкратце переделку БП от компьютера формата АТХ. Может кому-то будет интересно.

За основу был взят БП CODEGEN – 300X (типа 300Вт, ну Вы поняли китайских 300). Мозгом БП служит ШИМ-контроллер КА7500 (TL494…). Только такие мне приходилось переделывать. Управлять ШИМкой будет PIC16F876A, он же и для контроля и установки выходного напряжения и тока, отображение информации на LCD Wh2602(…), регулировка осуществляется кнопками.
Программу помог сделать один хороший человек (IURY, сайт “Кот”, который радио), за что ему большое спасибо!!! В архиве схема, плата, программа для контроллера.

Берем рабочий БП (если не рабочий, то надо восстановить до рабочего состояния).
Ориентировочно определяемся, где у нас что будет располагаться. Выбираем место под LCD, кнопки, клеммы (гнезда), индикатор включения…
Определились. Делаем разметку для “окна” ЛСД. Вырезаем (я резал маленькой болгаркой 115мм), может кто-то дремелем, кто-то рассверливанием отверстий, а потом подгонка напильником. В общем кому как удобнее и доступнее. Должно получиться что-то похоже на это. 

 

 

 Продумываем как будем крепить дисплей. Можно сделать несколькими способами:
а) соединить с платой управления разъёмами;
б) сделать через фальшпанель;
в) или…
Или… припаять непосредственно 4 (3) винтика М2,5 к корпусу. Почему М2,5, а н М3,0? В ЛСД отверстия 2,5мм в диаметре для крепления.
Я припаял 3 винтика, потому что при пайке четвертого, отпаивается перемычка (на фото видно). Потом припаиваешь перемычку – отпадает винтик. Просто сильно близкое расстояние. Не стал заморачиваться – оставил 3 шт.
 


Пайка выполнена ортофосфорной кислотой. После пайки всё необходимо хорошо промыть водой с мылом.
Примеряем дисплей.

 

Изучаем схему, а именно все относительно TL494 (KA7500). Все что касается ног 1, 2, 3, 4, 13, 14, 15, 16. Всю обвязку возле этих выводов удаляем (на основной плате БП), и устанавливаем детали, согласно схемы.
 

Удаляем на основной плате БП всё лишнее. Все детали касательно +5, -5, -12, PG, PS – ON.
Оставляем только всё, что касается +12 V и дежурного питания +5V SB .
Желательно найти схему по своему БП, чтобы не удалить чего лишнего. В цепи питания +12 вольт – удаляем родные электролиты и ставим вместо них, аналогичный по ёмкости, но на рабочее напряжение 35-50 вольт.
Должно получиться что-то похоже на это.

 

Посмотрев на характеристики имеющегося блока питания (наклейка на корпусе) – по 12В выходной ток должен быть 13А. Ого неплохо вроде!!! Смотрим на плату, что у нас образовывает 12В, 13А??? Ха два диода FR302 (по даташиту 3А!). Ну пусть максимальный ток 6А. Нет, такое нас не устраивает, надо заменить на что-нибудь по мощнее, да еще и с запасом, поэтому ставим 40CPQ100 – 40А, Uобр=100В.
 

На радиаторе были какие-то изолирующие прокладки, прорезиненная ткань (что-то похожее). Отодрал, отмыл. Поставил нашу отечественную слюду.
Винты, поставил подлиннее. Под один сзади зажал еще слюду. Блок решил дополнить индикатором перегрева теплоотвода на МП42. Германиевый транзистор здесь используется в качестве датчика температуры
 


Схема индикатора перегрева теплоотвода собрана на четырёх транзисторах. В качестве транзистора стабилизатора применён КТ815, КТ817, а в качестве индикатора – двухцветный светодиод.
 


Печатную плату не рисовал. Думаю, что особой сложности при сборке этого узла возникнуть не должно. Как узел собран, видно на фото ниже.
 


Делаем плату управления. ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!
 

 

Соединяем все согласно схеме. Устанавливаем плату в БП. Также надо изолировать основную плату от корпуса. Сделал я всё это через пластиковые шайбочки.
 

Наладка схемы.
 

1.Все наладки блока питания проводить только через лампу накаливания 60 – 150 Вт, включенную в разрыв сетевого кабеля, а ещё лучше и через разделительный трансформатор.
2.Корпус БП изолировать от GND, а цепь, которая образовывалась через корпус, соединить проводками.
3.Iizm (U15) – выставляется выходной ток (правильность показаний индикатора) по образцовому А – метру.
Uizm (U14) – выставляется выходное напряжение (правильность показаний индикатора), по образцовому В – метру.
Uset_max (U16) – выставляется МАХ выходное напряжение
 

Максимальный выходной ток данного блока питания составляет 5 ампер (вернее 4,96А), ограничен прошивкой.
Максимальное выходное напряжение для данного блока питания, не желательно выставлять более 20-22 вольт, так как в этом случае увеличивается вероятность пробоя силовых транзисторов из-за нехватки предела ШИМ-регулирования микросхемой TL494
.
Для увеличения выходного напряжения более 22 вольт, необходима перемотка вторичной обмотки трансформатора.

 

 

Пробный запуск прошёл успешно. Слева двухцветный индикатор перегрева теплоотвода (холодный радиатор – цвет LED зеленый, теплый – оранжевый, горячий – красный). Справа – индикатор включения БП.

 

 

Установил выключатель. Основа – стеклотекстолит, обклеен самоклейкой “оракл”.

Финал. То, что получилось в домашних условиях.

 

 


А теперь пробуем работу всех узлов собранного блока, так сказать в условиях приближенных к реальным, то есть нагружаем и испытываем собранный блок питания.
БП под нагрузкой, в качестве нагрузки используются лампы “галогенки” на 12В, 35 и 50Вт.

 

Скачать архив с прошивкой, схемой, платами.

Архив для статьи.

Если возникнут какие то вопросы по статье, задавайте их здесь, обсудим.

 

Переделка atx под бп с регулируемым напряжением. Переделка компьютерного блока питания ATX в регулируемый блок питания

Хороший лабораторный блок питания – это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из , которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания “Codegen” схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия – даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя “дежурки”, который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 10-20 вольт (обычно около 12-ти).
Мы будем использовать для питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
Если это выходное напряжение будет значительно выше 12-ти вольт, то вентилятор подключать к этому источнику нужно будет через дополнительный резистор, как будет далее в рассматриваемых схемах.
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители “дежурки” – синей линией, а всё остальное, что необходимо будет удалить – красным цветом.

Итак всё, что помечено красным цветом – выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора – резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа – оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа – обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь – при экспериментах с режимом стабилизации тока, на форуме pro-radio , участник форума DWD привёл такую цитату, приведу её полностью:

“Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ – нормально, а меньше – нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше – ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.”

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) – перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD , то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской “цешки”.
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.

Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы – с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора – увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима – в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
– Самый верхний выпрямитель – это дежурка.
– Величины переменных резисторов показаны, как 3,3 и 10 кОм – стоят такие, какие нашлись.
– Величина резистора R1 указана 270 Ом – он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
– Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
– Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа – резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя – обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 100 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (40-50 вольт например), то нужно будет вместо диодной – сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём – просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать – рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и “поварить” наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) – острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 – 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на “косу” и в том же направлении, что и начинали – мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором “I”.
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока – лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала “Плавно”, потом когда у него заканчивается предел, начинает регулироваться “Грубо”.
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;

Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их на форуме.

Удачи Вам в конструировании!


Мне нужен был легкий блок питания, для разных дел (экспедиций, питания разных КВ и УКВ трансиверов или для того чтобы переезжая на другую квартиру не таскать с собой трансформаторный БП) . Прочитав доступную информацию в сети, о переделке компьютерных БП – понял, что разбираться придется самому. Все что нашел, было описано както сумбурно и не совсем понятно (для меня) . Здесь я расскажу, по порядку, как переделывал несколько разных блоков. Различия будут описаны отдельно. Итак, я нашел несколько БП от старых PC386 мощностью 200W (во всяком случае, так было на крышке написано) . Обычно на корпусах таких БП пишут примерно следующее: +5V/20A , -5V/500mA , +12V/8A , -12V/500mA

Токи указанные по шинам +5 и +12В – импульсные. Постоянно нагружать такими токами БП нельзя, перегреются и треснут высоковольтные транзисторы. Отнимем от максимального импульсного тока 25% и получим ток который БП может держать постоянно, в данном случае это 10А и до 14-16А кратковременно (не более 20сек) . Вообще-то тут нужно уточнить, что 200W БП бывают разные, их тех что мне попадались не все могли держать 20А даже кратковременно! Многие тянули только 15А, а некоторые до 10А. Имейте это в виду!

Хочу заметить что конкретная модель БП роли не играет, так как все они сделаны практически по одной схеме с небольшими вариациями. Наиболее критичным моментом, является наличие микросхемы DBL494 или ее аналогов. Мне попадались БП с одной микросхемой 494 и с двумя микросхемами 7500 и 339. Всё остальное, не имеет большого значения. Если у вас есть возможность выбрать БП из нескольких, в первую очередь, обратите внимание на размер импульсного трансформатора (чем больше, тем лучше) и наличие сетевого фильтра. Хорошо, когда сетевой фильтр уже распаян, иначе его придётся самому распаять, чтобы помехи снизить. Это несложно, намотайте 10 витков на ферритовом кольце и поставьте два конденсатора, места для этих деталей уже предусмотрены на плате.

ПЕРВООЧЕРЕДНЫЕ МОДИФИКАЦИИ

Для начала, сделаем несколько простых вещей, после которых вы получите хорошо работающий блок питания с выходным напряжением 13.8В, постоянным током до 4 – 8А и кратковременным до 12А. Вы убедитесь что БП работает и определитесь, нужно ли продолжать модификации.

1. Разбираем блок питания и вытаскиваем плату из корпуса и тщательно чистим её, щеткой и пылесосом. Пыли быть не должно. После этого, выпаиваем все пучки проводов идущие к шинам +12, -12, +5 и -5В.

2. Вам нужно найти (на плате) микросхему DBL494 (в других платах стоит 7500, это аналог) , переключить приоритет защиты c шины +5В на +12В и установить нужное нам напряжение (13 – 14В) .
От 1-ой ноги микросхемы DBL494 отходит два резистора (иногда больше, но это не принципиально) , один идёт на корпус, другой к шине +5В. Он нам и нужен, аккуратно отпаиваем одну из его ножек (разрываем соединение) .

3. Теперь, между шиной +12В и первой ножной микросхемы DBL494 припаиваем резистор 18 – 33ком. Можно поставить подстроечный, установить напряжение +14В и потом заменить его постоянным. Я рекомендую установить не 13.8В, а именно 14.0В, потому что большинство фирменной КВ-УКВ аппаратуры работает лучше при этом напряжении.

НАСТРОЙКА И РЕГУЛИРОВКА

1. Пора включить наш БП, чтобы проверить, всё ли мы сделали правильно. Вентилятор можно не подключать и саму плату в корпус не вставлять. Включаем БП, без нагрузки, к шине +12В подключаем вольтметр и смотрим какое там напряжение. Подстроечным резистором, который стоит между первой ногой микросхемы DBL494 и шиной +12В., устанавливаем напряжение от 13.9 до +14.0В.

2. Теперь проверьте напряжение между первой и седьмой ногами микросхемы DBL494, оно должно быть не меньше 2В и не больше 3В. Если это не так, подберите сопротивление резистора между первой ногой и корпусом и первой ногой и шиной +12В. Обратите особое внимание на этот пункт, это ключевой момент. При напряжении выше или ниже указанного, блок питания будет работать хуже, нестабильно, держать меньшую нагрузку.

3. Закоротите тонким проводом шину +12В на корпус, напряжение должно пропасть, чтобы оно восстановилось – выключите БП на пару минут (нужно чтобы ёмкости разрядились) и включите снова. Напряжение появилось? Хорошо! Как видим, защита работает. Что, не сработала?! Тогда выкидываем этот БП, нам он не подходит и берем другой…хи.

Итак, первый этап можно считать завершённым. Вставьте плату в корпус, выведите клеммы для подключения радиостанции. Блоком питания можно пользоваться! Подключите трансивер, но давать нагрузку более 12А пока нельзя! Автомобильная УКВ станция, будет работать на полной мощности (50Вт) , а в КВ трансивере придётся установить 40-60% мощности. Что будет если вы нагрузите БП большим током? Ничего страшного, обычно срабатывает защита и пропадает выходное напряжение. Если защита не сработает, перегреются и лопаются высоковольтные транзисторы. В этом случае напряжение просто пропадет и последствий для аппаратуры не будет. После их замены, БП снова работоспособен!

1. Переворачиваем вентилятор наоборот, дуть он должен внутрь корпуса. Под два винта вентилятора, подкладываем шайбы чтобы его немного развернуть, а то дует только на высоковольтные транзисторы, это неправильно, нужно чтобы поток воздуха был направлен и на диодные сборки и на ферритовое кольцо.

Перед этим, вентилятор желательно смазать. Если он сильно шумит поставьте последовательно с ним резистор 60 – 150ом 2Вт. или сделайте регулятор вращения в зависимости от нагрева радиаторов, но об этом чуть ниже.

2. Выведите две клеммы из БП для подключения трансивера. От шины 12В до клеммы проведите 5 проводов из того пучка который вы отпаяли вначале. Между клеммами поставьте неполярный конденсатор на 1мкф и светодиод с резистором. Минусовой провод, также подведите к клемме пятью проводами.

В некоторых БП, параллельно клеммам к которым подключается трансивер, поставьте резистор сопротивлением 300 – 560ом. Это нагрузка, для того чтобы не срабатывала защита. Выходная цепь должна выглядеть примерно так, как показано на схеме.

3. Умощняем шину +12В и избавляемся от лишнего хлама. Вместо диодной сборки или двух диодов (которые часто ставят вместо неё) , ставим сборку 40CPQ060, 30CPQ045 или 30CTQ060, любые другие варианты ухудшат КПД. Рядом, на этом радиаторе, стоит сборка 5В, выпаиваем её и выбрасываем.

Под нагрузкой, наиболее сильно нагреваются следующие детали: два радиатора, импульсный трансформатор, дроссель на ферритовом кольце, дроссель на ферритовом стержне. Теперь наша задача, уменьшить теплоотдачу и увеличить максимальный ток нагрузки. Как я говорил ранее, он может доходить до 16А (для БП мощностью 200Вт) .

4. Выпаяйте дроссель на ферритовом стержне из шины +5В и поставьте его на шину +12В, стоящий там ранее дроссель (он более высокий и намотан тонким проводом) выпаяйте и выбросите. Теперь дроссель греться практически не будет или будет, но не так сильно. На некоторых платах дросселей просто нет, можно обойтись и без него, но желательно чтобы он был для лучшей фильтрации возможных помех.

5. На большом ферритовом кольце намотан дроссель для фильтрации импульсных помех. Шина +12В на нем намотана более тонким проводом, а шина +5В самым толстым. Выпаяйте аккуратно это кольцо и поменяйте местами обмотки для шин +12В и +5В (или включите все обмотки параллельно) . Теперь шина +12В проходит через этот дроссель, самым толстым проводом. В результате, этот дроссель будет нагреваться значительно меньше.

6. В БП установлены два радиатора, один для мощных высоковольтных транзисторов, другой, для диодных сборок на +5 и +12В. Мне попадались несколько разновидностей радиаторов. Если, в вашем БП, размеры обоих радиаторов 55x53x2мм и в верхней части у них есть ребра (как на фотографии) – вы можете рассчитывать на 15А. Когда радиаторы имеют меньший размер – не рекомендуется нагружать БП током более 10А. Когда радиаторы более толстые и имеют в верхней части дополнительную площадку – вам повезло, это наилучший вариант, можно получить 20А в течении минуты. Если радиаторы маленькие, для улучшения теплоотдачи, можно закрепить на них небольшую пластину из дюраля или половинку от радиатора старого процессора. Обратите внимание, хорошо ли прикручены высоковольтные транзисторы к радиатору, иногда они болтаются.

7. Выпаиваем электролитические конденсаторы на шине +12В, на их место ставим 4700×25В. Конденсаторы на шине +5В желательно выпаять, просто для того, чтобы места свободного больше стало и воздух от вентилятора лучше детали обдувал.

8. На плате вы видите два высоковольтных электролита, обычно это 220×200В. Замените их на два 680×350В, в крайнем случае, соедините параллельно два по 220+220=440мКф. Это важно и дело тут не только в фильтрации, импульсные помехи будут ослаблены и возрастёт устойчивость к максимальным нагрузкам. Результат можно посмотреть осциллографом. Во общем, надо делать обязательно!

9. Желательно чтобы вентилятор менял скорость в зависимости от нагрева БП и не крутился когда нет нагрузки. Это продлит жизнь вентилятору и уменьшит шума. Предлагаю две простые и надежные схемы. Если у вас есть терморезистор, смотрите на схему посередине, подстроечным резистором устанавливаем температуру срабатывания терморезистора примерно +40С. Транзистор, нужно ставить именно KT503 с максимальным усилением по току (это важно), другие типы транзисторов работают хуже. Терморезистор любой типа NTC, это означает, что при нагреве его сопротивление должно уменьшаться. Можно использовать терморезистор с другим номиналом. Подстроечный резистор должен быть многооборотным, так легче и точнее настроить температуру срабатывания вентилятора. Плату со схемой прикручиваем к свободному ушку вентилятора. Терморезистор крепим к дросселю на ферритовом кольце, он нагревается быстрее и сильнее остальных деталей. Можно приклеить терморезистор к диодной сборке на 12В. Важно, чтобы ни один из выводов терморезистора не коротил на радиатор!!! В некоторых БП, стоят вентиляторы с большим током потребления, в этом случае после КТ503 нужно поставить КТ815.

Если терморезистора у вас нет, сделайте вторую схему, смотрите справа, в ней в качестве термоэлемента используются два диода Д9. Прозрачными колбами приклейте их к радиатору на котором установлена диодная сборка. В зависимости от применяемых транзисторов, иногда нужно подобрать резистор 75 ком. Когда БП работает без нагрузки, вентилятор не должен крутиться. Все просто и надежно!

ЗАКЛЮЧЕНИЕ

От компьютерного блока питания мощностью 200W, реально получить 10 – 12А (если в БП будут стоять большие трансформаторы и радиаторы) при постоянной нагрузке и 16 – 18А кратковременно при выходном напряжении 14.0В. Это значит, что вы можете спокойно работать в режимах SSB и CW на полной мощности (100Вт) трансивера. В режимах SSTV, RTTY, MT63, MFSK и PSK, придётся уменьшить мощность передатчика до 30-70Вт., в зависимости от продолжительности работы на передачу.

Вес переделанного БП, примерно 550гр. Его удобно брать с собой в радиоэкспедиции и различные выезды.

При написании этой статьи и во время экспериментов, было испорчено три БП (как известно, опыт приходит не сразу) и удачно переделано пять БП.

Большой плюс компьютерного БП, в том, что он стабильно работает при изменении сетевого напряжения от 180 до 250В. Некоторые экземпляры работают и при большем разбросе напряжений.

Смотрите фотографии удачно переделанных импульсных блоков питания:

Игорь Лаврушов
г.Кисловодск

За основу был взят БП CODEGEN – 300X (типа 300Вт, ну Вы поняли китайских 300). Мозгом БП служит ШИМ-контроллер КА7500 (TL494…). Только такие мне приходилось переделывать. Управлять ШИМкой будет PIC16F876A, он же и для контроля и установки выходного напряжения и тока, отображение информации на LCD Wh2602(…), регулировка осуществляется кнопками.
Программу помог сделать один хороший человек (IURY, сайт “Кот”, который радио), за что ему большое спасибо!!! В архиве схема, плата, программа для контроллера.

Берем рабочий БП (если не рабочий, то надо восстановить до рабочего состояния).
Ориентировочно определяемся, где у нас что будет располагаться. Выбираем место под LCD, кнопки, клеммы (гнезда), индикатор включения…
Определились. Делаем разметку для “окна” ЛСД. Вырезаем (я резал маленькой болгаркой 115мм), может кто-то дремелем, кто-то рассверливанием отверстий, а потом подгонка напильником. В общем кому как удобнее и доступнее. Должно получиться что-то похоже на это.

Продумываем как будем крепить дисплей. Можно сделать несколькими способами:
а) соединить с платой управления разъёмами;
б) сделать через фальшпанель;
в) или…
Или… припаять непосредственно 4 (3) винтика М2,5 к корпусу. Почему М2,5, а н М3,0? В ЛСД отверстия 2,5мм в диаметре для крепления.
Я припаял 3 винтика, потому что при пайке четвертого, отпаивается перемычка (на фото видно). Потом припаиваешь перемычку – отпадает винтик. Просто сильно близкое расстояние. Не стал заморачиваться – оставил 3 шт.

Пайка выполнена ортофосфорной кислотой. После пайки всё необходимо хорошо промыть водой с мылом.
Примеряем дисплей.

Изучаем схему, а именно все относительно TL494 (KA7500). Все что касается ног 1, 2, 3, 4, 13, 14, 15, 16. Всю обвязку возле этих выводов удаляем (на основной плате БП), и устанавливаем детали, согласно схемы.

Удаляем на основной плате БП всё лишнее. Все детали касательно +5, -5, -12, PG, PS – ON. Оставляем только всё, что касается +12 V и дежурного питания +5V SB. Желательно найти схему по своему БП, чтобы не удалить чего лишнего. В цепи питания +12 вольт – удаляем родные электролиты и ставим вместо них, аналогичный по ёмкости, но на рабочее напряжение 35-50 вольт.
Должно получиться что-то похоже на это.

Для увеличения, жмите на схему

Посмотрев на характеристики имеющегося блока питания (наклейка на корпусе) – по 12В выходной ток должен быть 13А. Ого неплохо вроде!!! Смотрим на плату, что у нас образовывает 12В, 13А??? Ха два диода FR302 (по даташиту 3А!). Ну пусть максимальный ток 6А. Нет, такое нас не устраивает, надо заменить на что-нибудь по мощнее, да еще и с запасом, поэтому ставим 40CPQ100 – 40А, Uобр=100В.

На радиаторе были какие-то изолирующие прокладки, прорезиненная ткань (что-то похожее). Отодрал, отмыл. Поставил нашу отечественную слюду.
Винты, поставил подлиннее. Под один сзади зажал еще слюду. Блок решил дополнить индикатором перегрева теплоотвода на МП42. Германиевый транзистор здесь используется в качестве датчика температуры

Схема индикатора перегрева теплоотвода собрана на четырёх транзисторах. В качестве транзистора стабилизатора применён КТ815, КТ817, а в качестве индикатора – двухцветный светодиод.

Печатную плату не рисовал. Думаю, что особой сложности при сборке этого узла возникнуть не должно. Как узел собран, видно на фото ниже.

Делаем плату управления. ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!

Соединяем все согласно схеме. Устанавливаем плату в БП. Также надо изолировать основную плату от корпуса. Сделал я всё это через пластиковые шайбочки.

Наладка схемы.

1.Все наладки блока питания проводить только через лампу накаливания 60 – 150 Вт, включенную в разрыв сетевого кабеля.
2.Корпус БП изолировать от GND, а цепь, которая образовывалась через корпус, соединить проводками.
3.Iizm (U15) – выставляется выходной ток (правильность показаний индикатора) по образцовому А – метру.
Uizm (U14) – выставляется выходное напряжение (правильность показаний индикатора), по образцовому В – метру.
Uset_max (U16) – выставляется МАХ выходное напряжение

Максимальный выходной ток данного блока питания составляет 5 ампер (вернее 4,96А), ограничен прошивкой.
Максимальное выходное напряжение для данного блока питания, не желательно выставлять более 20-22 вольт, так как в этом случае увеличивается вероятность пробоя силовых транзисторов из-за нехватки предела ШИМ-регулирования микросхемой TL494.
Для увеличения выходного напряжения более 22 вольт, необходима перемотка вторичной обмотки трансформатора.

Пробный запуск прошёл успешно. Слева двухцветный индикатор перегрева теплоотвода (холодный радиатор – цвет LED зеленый, теплый – оранжевый, горячий – красный). Справа – индикатор включения БП.

Установил выключатель. Основа – стеклотекстолит, обклеен самоклейкой “оракл”.

Финал. То, что получилось в домашних условиях.

Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.

Несколько вариантов схем рассмотрим ниже:

Параметры

От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.

Схема АТ блока питания на TL494

Несколько схем АТX блока питания на TL494

Переделка

Основная переделка заключается в следующем, все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты. Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.

Для регулируемого (4В – 25В) блока питания R1 должен быть 1к. Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).

Так же следует иметь ввиду, что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А, ее следует поменять на ту, которая стоит на 5 вольтовом выпрямителе, она расчитана до 10 А, 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.

Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.

Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус, используете на свой страх и риск.

Бывает при включении БП при большом токе может срабатывать защита, хотя у меня при 9А не срабатывает, если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.

Ещё один интересный вариант переделки компьютерного блока питания.

В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).

Для самодельного блока хорошо подойдут индикаторы напряжения и тока. Вы их можете купить на сайте «Мастерок».

Эта статья предназначена для людей, которые быстро могут отличить транзистор от диода, знают для чего нужен паяльник и за какую сторону его держать, ну и наконец дошли до понимания, что без лабораторного блока питания их жизнь больше не имеет смысла…

Данную схему нам прислал человек под ником: Loogin.

Все изображения уменьшены в размере, для просмотра в полном размере кликните левой клавишей мышки на изображение

Здесь я постараюсь максимально подробно – шаг за шагом рассказать как это сделать с минимальными затратами. Наверняка у каждого после апгрейдов домашнего железа валяется под ногами как минимум один БП. Конечно кое-что придётся докупить, но эти жертвы будут небольшими и скорее всего оправданы конечным результатом – это, как правило около 22В и 14А потолочных. Лично я вложился в $10. Конечно, если собирать всё с «нулевой» позиции, то надо быть готовым выложить ещё около $10-15 для покупки самого БП, проводов, потенциометров, ручек и прочей рассыпухи. Но, обычно – такого хлама у всех навалом. Есть ещё нюанс – немного придётся потрудиться руками, поэтому они должны быть «без смещения» J и нечто подобное может и у Вас получиться:

Для начала нужно любыми способами раздобыть ненужный но исправный БП АТХ мощностью >250W. Одна из наиболее популярных схем – это Power Master FA-5-2:


Подробную последовательность действий я опишу именно для этой схемы, но все они справедливы и для других вариантов.
Итак, на первом этапе нужно подготовить БП-донор:

  1. Удаляем диод D29 (можно просто одну ногу поднять)
  2. Удаляем перемычку J13, находим в схеме и на плате (можно кусачками)
  3. Перемычка PS ON на землю должна стоять.
  4. Включаем ПБ только на короткое время, так как напряжение на входах будет максимальное (примерно 20-24В) Собственно это и хотим увидеть…

Не забываем про выходные электролиты, рассчитанные на 16В. Возможно они немного нагреются. Учитывая, что они скорее всего «набухшие», их все равно придется отправить в болото, не жалко. Провода уберите, они мешают, а использоваться будут только GND и +12В их потом назад припаяете.


5. Удаляем 3.3х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21:


6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и “типа дроссель” L5
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29


8. Меняем плохие: заменить С11, С12 (желательно на большую ёмкость С11 – 1000uF, C12 – 470uF)
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом.


Смотрим на мою плату и повторяем:

10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1ю ногу), R52-54 (… 2ю ногу), С26, J11 (…3ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем то J рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му. Собственно R37 тоже можно перерубить.


12. отделяем 15ю и 16ю ноги микросхемы от “всех остальных”: для этого делаем 3 прореза существующих дорожек а к 14й ноге восстанавливаем связь чёрной перемычкой, как показано на моем фото.


13. Теперь подпаиваем шлейф для платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14й и 15й пришлось содрать лак и просверлить отверстия, на фото вверху.
14. Жила шлайфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10. Просверлить отверстие в дорожку, расчистить лак и туда! Сверлить лучше со стороны печати.


Это всё было, как говорится: «минимальная доработка», чтобы сэкономить время. Если время не критично, то можно просто привести схему в следующее состояние:


Ещё я посоветовал бы поменять кондёры высоковольтные на входе (С1, С2) Они маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Плюс неплохо дроссель групповой стабилизации L3 немного переделать, либо использовать 5ти вольтные обмотки, соединив их последовательно, либо вообще убрать всё и намотать около 30ти витков новым эмальпроводом общим сечением 3-4мм 2 .

Для питания вентилятора нужно «подготовить» ему 12В. Я выкрутился таким образом: Там где раньше стоял полевой транзистор для формирования 3,3В можно «поселить» 12ти вольтную КРЕН-ку (КРЕН8Б или 7812 импортный аналог). Конечно там без резки дорожек и добавки проводов не обойтись. В конечном итоге получилось в общем даже и «ничего»:


На фото видно, как всё гармонично ужилось в новом качестве, даже разъём вентилятора недурно уместился и перемотанный дроссель получился весьма неплох.

Теперь регулятор. Чтобы упростить задачу с разными там шунтами, поступаем так: покупаем готовые амперметр и вольтметр в Китае, либо на местном рынке (наверняка там их можно найти у перекупщиков). Можно купить совмещённый. Но, надо не забывать, что потолок по току у них 10A! Поэтому в схеме регулятора придется ограничивать предельный ток на этой отметке. Здесь я опишу вариант для отдельных приборов без регулировки тока с ограничением по максимуму 10A. Схема регулятора:


Чтобы сделать регулировку ограничения тока, надо вместо R7 и R8 поставить переменный резистор 10кОм, также как R9. Тогда можно будет использовать всемерялку. Также стоит обратить внимание на R5. В данном случае его сопротивление 5,6кОм, потому что у нашего амперметра шунт 50mΩ. Для других вариантов R5=280/R шунта. Поскольку мы взяли вольтметр один из самых дешевых, поэтому его немного надо доработать, чтобы он мог измерять напряжения от 0В, а не от 4,5В как это сделал производитель. Вся переделка заключается в разделении цепей питания и измерения посредствам удаления диода D1. Туда впаиваем провод – это и есть +V питания. Измеряемая часть осталась без изменений.


Плата регулятора с расположением элементов показана ниже. Изображение для лазерно-утюжного метода изготовления идёт отдельным файлом Regulator.bmp с разрешением 300dpi. Также в архиве есть и файлы для редактирования в EAGLE. Последнюю офф. версию можно скачать тут: www.cadsoftusa.com. В интернете имеется много информации о этом редакторе.





Потом прикручиваем готовую плату у потолку корпуса через изолирующие проставки, например нарезанные из отработанной палочки чупа-чупса высотой по 5-6 мм. Ну и не забыть проделать предварительно все необходимые вырезы для измерительных и прочих приборов.



Предварительно собираем и тестируем под нагрузкой:



Как раз и смотрим на соответствие показаний различных китайских девайсов. А ниже уже с «нормальной» нагрузкой. Это автомобильная лампа главного света. Как видно – без малого 75Вт имеется. При этом не забываем засунуть туда осциллограф, и увидеть пульсации около 50мВ. Если будет больше, то вспоминаем про «большие» электролиты по высокой стороне ёмкостью по 220uF и тут же забываем после замены на нормальные ёмкостью 680uF например.


В принципе на этом можно и остановиться, но чтобы придать более приятный вид прибору, ну чтобы он не выглядел самоделкой на 100%, мы делаем следующее: выходим из своей берлоги, поднимаемся на этаж выше и с первой попавшейся двери снимаем бесполезную табличку.

Как видим, до нас тут кто-то уже побывал


В общем по тихому делаем это грязное дело и начинаем работать напильниками разных фасонов и параллельно осваивать AutoCad.



Потом на наждаке затачиваем кусок трёхчетвертной трубы и из достаточно мягкой резины нужной толщины вырубываем и суперклеем лепим ножки.



В итоге получаем достаточно приличный прибор:


Следует отметить несколько моментов. Самое главное – это не забывать, что GND блока питания и выходной цепи не должны быть связаны , поэтому нужно исключить связь между корпусом и GND БП. Для удобства желательно вынести предохранитель, как на моём фото. Ну и постараться максимально восстановить недостающие элементы входного фильтра, их скорее всего нет вообще у исходника.

Вот ещё пара вариантов подобных приборов:


Слева 2х этажный корпус ATX с всемерялкой, а справа сильно переделанный старый AT корпус от компьютера.

Блоки питания электронных устройств – устройство и принцип работы основных схем

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения.

Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств.

Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В.

Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме.

Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию.

Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм.

Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц.

Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток.

Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя.

Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств;
    Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Схемотехника блоков питания персональных компьютеров. Часть 1

Реальная практика ремонта электроники

Один из самых важных блоков персонального компьютера — это, конечно, импульсный блок питания.

Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции.

Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки  на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

  • Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).
  • Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.
  • Узел управления. Является «мозгом» блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).
  • Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).
  • Выходные выпрямители. С помощью выпрямителя происходит выпрямление — преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Как говорится: «No comment «.

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 («230/115»). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110…127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220…230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180…220 вольт.

Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит.

При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра

Характерные неисправности выпрямителя, это выход из строя одного из диодов «моста» (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще).

Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Далее

Главная » Мастерская » Текущая страница

Импульсные блоки питания

Электрика »
Электроснабжение »
Источники питания »
Блоки питания »
Импульсные

ПРИНЦИП РАБОТЫ ПРИМЕНЕНИЕ

Блок питания — это устройство, преобразующее сетевое напряжения до уровня, необходимого для работы электрических схем различных приборов. Вторичные источники электропитания часто используются для бытовой техники и промышленных установок, содержащих электронику.

Изначально источники вторичного напряжения строились по схеме, которую принято называть трансформаторной. Принцип её работы состоит в трансформации сетевого напряжения до необходимого уровня с последующим его выпрямлением и стабилизацией.

Типовая схема традиционного источника электропитания состоит из следующих элементов:

  • силовой понижающий трансформатор, содержащий одну или несколько вторичных обмоток, в зависимости от потребностей питаемой схемы; выпрямительный блок, как правило, выполняется по схеме диодного моста;
  • конденсатор фильтра, включенный между положительным и отрицательным выводами моста и необходимый для сглаживания пульсаций выпрямленного напряжения, иногда для улучшения параметров фильтра, в схему добавляется дроссель;
  • стабилизатор выходного напряжения, построенный на основе специализированной микросхемы или содержащий ключевой транзистор и небольшую схему управления.

Эти схемы надёжны в работе, не создают высокочастотных помех, обеспечивают гальваническую развязку между первичными и вторичными цепями. Тем не менее есть ряд причин по которым они уступают блокам питания импульсного типа.

Трансформаторы, преобразующие напряжение с частотой 50 герц, отличаются относительно большими габаритами и весом. Это свойство трансформаторных источников электропитания вступило в противоречие с общими принципами миниатюризации бытовых и промышленных электроприборов.

Проблему удалось решить путём создания импульсных или инверторных блоков. Такие параметры трансформатора, как сечение магнитопровода, количество витков обмотки и сечение провода, существенно уменьшаются с увеличением частоты преобразуемого напряжения.

Это также относится к ёмкости, следовательно, и к габаритам фильтрующих конденсаторов. Этот базовый принцип электротехники был послужил основой при создании вторичных источников питания нового типа.

Как работает импульсный блок питания

Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:

  • выпрямление входного напряжения;
  • инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
  • трансформация высокочастотных импульсов до требуемого уровня;
  • выпрямление и фильтрация полученного напряжения.

Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).

Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.

Тор обычно изготавливается штамповкой из пермаллоя — сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.

Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.

Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.

Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.

Раньше, компонентов, отвечающих этим требованиям, просто не существовало. Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET.

Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.

Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.

Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.

Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера. Принцип работы обратной связи — при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.

Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.

Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.

Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:

  • малые габариты и вес по сравнению с трансформаторными источниками питания;
  • схемотехническая простота, обусловленная применением интегральных электронных компонентов;
  • возможность работы в широком диапазоне изменения значений входного напряжения.

Применение импульсных блоков

Источники вторичного напряжения инверторного типа используются повсеместно, как в быту, так и в промышленной технике. Перечень устройств и бытовых приборов, в которых реализована схема электропитания, работающая по принципу инверторного преобразователя:

  • все виды компьютерной техники;
  • телевизионная и звуковоспроизводящая аппаратура;
  • пылесосы, стиральные машины, кухонная техника;
  • источники бесперебойного электроснабжения различного назначения;
  • системы видеонаблюдения, комплексы охранной сигнализации.

Исполнение инверторных источников зависит от условий эксплуатации и назначения. Блоки питания, встроенные в электроприбор, выполняются бескорпусными. Они могут располагаться внутри основного изделия на отдельной плате, или быть интегрированы в общую плату электроприбора.

Существуют источники электропитания для автономного применения, к ним могут подключаться различные потребители. Примером могут служить зарядные устройства, источники электропитания систем видеонаблюдения, охранной и пожарной сигнализации. Такие блоки питания размещаются в отдельном корпусе и комплектуются штекерами и проводами для подключения.

  *  *  *

© 2014-2020 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Блоки питания для ПК: принципы работы и основные узлы

Современные блоки питания для ПК являются довольно сложными устройствами. При покупке компьютера мало кто обращает внимание на марку предустановленного в системе БП.

Впоследствии некачественное или недостаточное питание может вызвать ошибки в программной среде, стать причиной потери данных на носителях и даже привести к выходу из строя электроники ПК.

Понимание хотя бы базовых основ и принципов функционирования блоков питания, а также умение определить качественное изделие позволит избежать различных проблем и поможет обеспечить долговременную и бесперебойную работу любого компьютера.

Структура типичного блока питания

Компьютерный блок питания состоит из нескольких основных узлов. Детальная схема устройства представлена на рисунке. При включении сетевое переменное напряжение подается на входной фильтр [1], в котором сглаживаются и подавляются пульсации и помехи. В дешевых блоках этот фильтр часто упрощен либо вообще отсутствует.

Далее напряжение попадает на инвертор сетевого напряжения [2]. В сети проходит переменный ток, который меняет потенциал 50 раз в секунду, т. е. с частотой 50 Гц.

Инвертор же повышает эту частоту до десятков, а иногда и сотен килогерц, за счет чего габариты и масса основного преобразующего трансформатора сильно уменьшаются при сохранении полезной мощности.

Для лучшего понимания данного решения представьте себе большое ведро, в котором за раз можно перенести 25 л воды, и маленькое ведерко емкостью 1 л, в котором можно перенести такой же объем за то же время, но воду придется носить в 25 раз быстрее.

Импульсный трансформатор [3] преобразовывает высоковольтное напряжение от инвертора в низковольтное. Благодаря высокой частоте преобразования мощность, которую можно передать через такой небольшой компонент, достигает 600–700 Вт. В дорогих БП встречаются два или даже три трансформатора.

Рядом с основным трансформатором обычно имеются один или два меньших, которые служат для создания дежурного напряжения, присутствующего внутри блока питания и на материнской плате всегда, когда к БП подключена сетевая вилка. Этот узел вместе со специальным контроллером отмечен на рисунке цифрой [4].

Пониженное напряжение поступает на быстрые выпрямительные диодные сборки, установленные на мощном радиаторе [5]. Диоды, конденсаторы и дроссели сглаживают и выпрямляют высокочастотные пульсации, позволяя получить на выходе почти постоянное напряжение, которое идет далее на разъемы питания материнской платы и периферийных устройств.

Типичная информационная наклейка БП. Основная задача – информирование пользователя о максимально допустимых токах по линиям питания, максимальных долговременной и кратковременной мощностях, итоговой комбинированной мощности, которую способен отдать БПКонструкция модульных разъемов блоков питания может быть самой разной. Их применение допускает отключение силовых кабелей, не востребованных в отдельно взятом системном блоке

В недорогих блоках применяется так называемая групповая стабилизация напряжений. Основной силовой дроссель [6] сглаживает только разницу между напряжениями +12 и +5 В. Подобным образом достигается экономия на количестве элементов в БП, но делается это за счет снижения качества стабилизации отдельных напряжений.

Если возникает большая нагрузка на каком-то из каналов, напряжение на нем снижается. Схема коррекции в блоке питания, в свою очередь, повышает напряжение, стараясь компенсировать недостачу, но одновременно возрастает напряжение и на втором канале, который оказался малонагруженным. Налицо своеобразный эффект качелей.

Отметим, что дорогие БП имеют выпрямительные цепи и силовые дроссели, полностью независимые для каждой из основных линий.

Кроме силовых узлов в блоке есть дополнительные – сигнальные.

Это и контроллер регулировки оборотов вентиляторов, часто монтируемый на небольших дочерних платах [7], и схема контроля за напряжением и потребляемым током, выполненная на интегральной микросхеме [9].

Она же управляет работой системы защиты от коротких замыканий, перегрузки по мощности, перенапряжения или, наоборот, слишком низкого напряжения.

Кожух блока питания с установленным 120-миллиметровым вентилятором. Часто для формирования необходимого воздушного потока используются специальные вставки-направляющие

Зачастую мощные БП оснащены активным корректором коэффициента мощности. Старые модели таких блоков имели проблемы совместимости с недорогими источниками бесперебойного питания.

В момент перехода подобного устройства на батареи напряжение на выходе снижалось, и корректор коэффициента мощности в БП интеллектуально переключался в режим питания от сети 110 В. Контроллер бесперебойного источника считал это перегрузкой по току и послушно выключался.

Так вели себя многие модели недорогих ИБП мощностью до 1000 Вт. Современные блоки питания практически полностью лишены данной «особенности».

Многие БП предоставляют возможность отключать неиспользуемые разъемы, для этого на внутренней торцевой стенке монтируется плата с силовыми разъемами [8].

При правильном подходе к проектированию такой узел не влияет на электрические характеристики блока питания.

Но бывает и наоборот, некачественные разъемы могут ухудшать контакт либо неверное подключение приводит к выходу комплектующих из строя.

Для подключения комплектующих к БП используется несколько стандартных типов штекеров: самый крупный из них – двухрядный – служит для питания материнской платы.

Ранее устанавливались двадцатиконтактные разъемы, но современные системы имеют большую нагрузочную способность, и в результате штекер нового образца получил 24 проводника, причем часто добавочные 4 контакта отсоединяются от основного набора.

Кроме силовых каналов нагрузки, на материнскую плату передаются сигналы управления (PS_ON#, PWR_OK), а также дополнительные линии (+5Vsb, -12V). Включение проводится только при наличии на проводе PS_ON# нулевого напряжения. Поэтому, чтобы запустить блок без материнской платы, нужно замкнуть контакт 16 (зеленый провод) на любой из черных проводов («земля»).

Исправный БП должен заработать, и все напряжения сразу же установятся в соответствии с характеристиками стандарта ATX. Сигнал PWR_OK служит для сообщения материнской плате о нормальном функционировании схем стабилизации БП. Напряжение +5Vsb используется для питания USB-устройств и чипсета в дежурном режиме (Standby) работы ПК, а -12 – для последовательных портов RS-232 на плате.

На данном рисунке показана распиновка контактов блоков питания, традиционно используемых в современных ПК

Стабилизатор процессора на материнской плате подключается отдельно и использует четырех- либо восьмиконтактный кабель, подающий напряжение +12 В. Питание мощных видеокарт с интерфейсом PCI-Express осуществляется по одному 6-контактному либо по двум разъемам для старших моделей.

Существует также 8-контактная модификация данного штекера. Жесткие диски и накопители с интерфейсом SATA используют собственный тип контактов с напряжениями +5, +12 и +3,3 В.

Для старых устройств подобного рода и дополнительной периферии имеется 4-контактный разъем питания с напряжениями +5 и +12 В (так называемый molex).

Основное потребление мощности всех современных систем, начиная с Socket 775, 754, 939 и более новых, приходится на линию +12 В. Процессоры могут нагружать данный канал токами до 10–15 А, а видеокарты до 20–25 А (особенно при разгоне). В итоге мощные игровые конфигурации с четырехъядерными CPU и несколькими графическими адаптерами запросто «съедают» 500–700 Вт.

Материнские платы со всеми распаянными на РСВ контроллерами потребляют сравнительно мало (до 50 Вт), оперативная память довольствуется мощностью до 15–25 Вт для одной планки. А вот винчестеры, хоть они и неэнергоемкие (до 15 Вт), но требуют качественного питания.

Чувствительные схемы управления головками и шпинделем легко выходят из строя при превышении напряжения +12 В либо при сильных пульсациях.

Качественное тестирование современных блоков питания можно провести лишь на специализированных стендах. На фото показана электронная начинка одного из них. Для теплового рассеивания больших мощностей применяется массивный радиатор, обдуваемый скоростными вентиляторами

На наклейках блоков питания часто указывают наличие нескольких линий +12 В, обозначаемых как +12V1, +12V2, +12V3 и т. д. На самом деле в электрической и схемотехнической структуре блока они в абсолютном большинстве БП представляют собой один канал, разделенный на несколько виртуальных, с различным ограничением по току.

Данный подход применен в угоду стандарту безопасности EN-60950, который запрещает подводить мощность свыше 240 ВА на контакты, доступные пользователю, поскольку при возникновении замыкания возможны возгорания и прочие неприятности. Простая математика: 240 ВА/12 В = 20 А.

Поэтому современные блоки обычно имеют несколько виртуальных каналов с ограничением по току каждого в районе 18–20 А, однако общая нагрузочная способность линии +12 В не обязательно равна сумме мощностей +12V1, +12V2, +12V3 и определяется возможностями используемого в конструкции преобразователя.

Все заявления производителей в рекламных буклетах, расписывающие огромные преимущества от множества каналов +12 В, – не более чем умелая маркетинговая уловка для непосвященных.

Многие новые блоки питания выполнены по эффективным схемам, поэтому выдают большую мощность при использовании маленьких радиаторов охлаждения. Примером может служить распространенная платформа FSP Epsilon (FSPxxx-80GLY/GLN), на базе которой построены БП нескольких производителей (OCZ GameXStream, FSP Optima/Everest/Epsilon).

Современные мощные видеокарты потребляют большое количество энергии, поэтому давно подключаются отдельными кабелями к БП независимо от материнской платы. Новейшие модели оснащаются шести- и восьмиконтактными штекерами. Часто последний имеет отстегивающуюся часть, для удобства подсоединения к меньшим разъемам питания видеокарт.

Надеемся, что после рассмотрения основных узлов блоков питания читателям уже понятно: за последние годы конструкция БП стала значительно сложнее, она подверглась модернизации и сейчас для полноценного всестороннего тестирования требует квалифицированного подхода и наличия специального оборудования.

Невзирая на общее повышение качества доступных рядовому пользователю блоков, существуют и откровенно неудачные модели. Поэтому при выборе конкретного экземпляра БП для вашего компьютера нужно ориентироваться на подробные обзоры данных устройств и внимательно изучать каждую модель перед покупкой.

Ведь от блока питания зависит сохранность информации, стабильность и долговечность работы компонентов ПК в целом.

Суммарная мощность – долговременная мощность потребления нагрузкой, допустимая для блока питания без его перегрева и повреждений. Измеряется в ваттах (Вт, W).

Конденсатор, электролит – устройство для накопления энергии электрического поля. В БП используется для сглаживания пульсаций и подавления помех в схеме питания.

Дроссель – свернутый в спираль проводник, обладающий значительной индуктивностью при малой собственной емкости и небольшом активном сопротивлении. Данный элемент способен запасать магнитную энергию при протекании электрического тока и отдавать ее в цепь в моменты больших токовых перепадов.

Полупроводниковый диод – электронный прибор, обладающий разной проводимостью в зависимости от направления протекания тока. Применяется для формирования напряжения одной полярности из переменного. Быстрые типы диодов (диоды Шоттки) часто используются для защиты от перенапряжения.

Трансформатор – элемент из двух или более дросселей, намотанных на единое основание, служащий для преобразования системы переменного тока одного напряжения в систему тока другого напряжения без существенных потерь мощности.

ATX – международный стандарт, описывающий различные требования к электрическим, массогабаритным и другим характеристикам корпусов и блоков питания.

Пульсации – импульсы и короткие всплески напряжения на линии питания. Возникают из-за работы преобразователей напряжения.

Коэффициент мощности, КМ (PF) – соотношение активной потребляемой мощности от электросети и реактивной. Последняя присутствует всегда, когда ток нагрузки по фазе не совпадает с напряжением сети либо если нагрузка является нелинейной.

Активная схема коррекции КМ (APFC) – импульсный преобразователь, у которого мгновенный потребляемый ток прямо пропорционален мгновенному напряжению в сети, то есть имеет только линейный характер потребления. Этот узел изолирует нелинейный преобразователь самого БП от электросети.

Пассивная схема коррекции КМ (PPFC) – пассивный дроссель большой мощности, который благодаря индуктивности сглаживает импульсы тока, потребляемые блоком. На практике эффективность подобного решения довольно низкая.

Блок питания

Блок питания (PSU) компьютера преобразует домашнее напряжение питания переменного тока переменного тока (220-240 В в Европе) в различные регулируемые выходы постоянного тока постоянного тока (постоянного тока) с регулируемым напряжением , необходимые для компонентов, которые составляют компьютерную систему.

Блок питания обычно представляет собой металлическую коробку шириной 150 мм, высотой 86 мм и глубиной (обычно) 140 мм.Он устанавливается внутри корпуса системы с помощью четырех винтов в стандартном месте, так что доступ к переключателю включения / выключения и гнезду кабеля питания, установленным на задней части блока питания, осуществляется через отверстие в задней части корпуса. Через то же отверстие воздух поступает в охлаждающий вентилятор блока питания.

В некоторых случаях может быть переключатель напряжения, позволяющий пользователю выбирать напряжение в соответствии с их географическим положением (например, в США есть внутренний источник питания, работающий при номинальном напряжении 120 вольт).Внутри корпуса из передней части БП выходит пучок кабелей. Кабели часто группируются и имеют цветовую маркировку в зависимости от типа устройства, к которому они будут подключены.

Хотя в прошлом блоки питания использовались в нескольких форм-факторах, некоторые из них были довольно тяжелыми и громоздкими, в большинстве настольных персональных компьютеров теперь используются блоки питания, соответствующие стандарту ATX формата , последняя версия которого – 2 .3.1, выпущенной в 2008 году. На рисунке ниже показан типичный блок питания ATX.


Типичный блок питания ATX


Блоки питания ATX разработаны специально для работы с материнскими платами семейства ATX и помещаются в корпус системы ATX и могут быть включены или выключены (или переведены в режим ожидания) с использованием сигналов, генерируемых материнской платой. Максимальная номинальная выходная мощность блока питания может варьироваться от 250 Вт до 2 киловатт, в зависимости от типа системы, для которой они предназначены.

Компьютерные системы с малым форм-фактором обычно имеют низкие требования к источнику питания, порядка 300 Вт или меньше. Системы, используемые для игр, имеют гораздо более высокие требования к мощности (обычно от 450 до 800 Вт), в основном потому, что они используют высокопроизводительные графические адаптеры, которые потребляют большое количество энергии. Наибольшее энергопотребление наблюдается у коммерческих сетевых серверов или высокопроизводительных персональных компьютеров с несколькими процессорами, несколькими дисковыми накопителями и несколькими видеокартами.

Количество энергии, необходимое для конкретной компьютерной системы, будет зависеть от требований к питанию материнской платы, процессора и оперативной памяти, а также от количества дополнительных карт и периферийных устройств, потребляющих питание от блока питания. На самом деле немногим персональным компьютерам в настоящее время требуется мощность более 350 Вт.

Даже в этом случае следует проявлять осторожность при выборе блока питания, поскольку номинальная максимальная выходная мощность, заявленная некоторыми производителями, не всегда отражает фактическую выходную мощность, которая может быть достигнута при различных условиях нагрузки.В результате производители и поставщики компьютерных систем и системных компонентов (особенно высокопроизводительных видеокарт) имеют тенденцию завышать минимальные требования к питанию, когда дело доходит до рекомендации номинальных значений блока питания для блоков питания, которые будут использоваться с их продуктами.

Хотя верно то, что неадекватный источник питания может выйти из строя в случае перегрузки, не рекомендуется использовать источник питания с высокой выходной мощностью независимо от фактических требований к мощности.Напротив, вы должны выбрать блок питания с выходной мощностью, которая отражает требования к мощности системы. Энергоэффективность достигает максимума, когда нагрузка на источник питания составляет от 50% до 75% максимальной выходной мощности. Это означает, что блок питания рассеивает меньше энергии в виде тепла.

Если скорость вентилятора блока питания регулируется материнской платой, как это часто бывает, система будет работать более тихо, поскольку для охлаждения блока питания требуется меньший поток воздуха.При низких нагрузках (менее 20% емкости) энергоэффективность значительно падает, и больше мощности будет рассеиваться в виде тепла, чем было бы в случае с блоком питания с более подходящим номиналом. Хуже того, если нагрузка упадет ниже 15% мощности, блок питания может не работать должным образом, и есть большая вероятность, что он отключится совсем.

Информация, содержащаяся на этикетке или табличке, прикрепленной к источнику питания, предоставляет техническую информацию об источнике питания, которая будет включать в себя напряжение питания переменного тока, токи и частоты, с которыми устройство может использоваться, максимальная общая выходная мощность в ваттах и Доступны различные выходы постоянного и токового напряжения.На нем также будут отображаться предупреждения об опасности и необходимая информация о сертификации безопасности (в Европе это знак CE). Типичная этикетка блока питания показана ниже.


Пример информации, представленной на БП


Поставляемые разъемы могут отличаться от одной модели к другой, но те, которые обычно входят в комплект, перечислены в таблице ниже.

Стандартные выходные напряжения

Положительные выходные напряжения, создаваемые блоком питания, равны +3.3В, + 5В и + 12В. Также предусмотрены отрицательные напряжения -5В и -12В, а также резервное напряжение + 5В . Для питания различных компонентов используются разные напряжения (иногда называемые шинами , ), и ниже приводится сводная информация о том, какие напряжения и (и токи) используются для каких целей.

Для тех, кто не знаком с концепцией отрицательного напряжения в цепях постоянного тока, это просто означает, что разность потенциалов измеряется от земли до сигнала, а не наоборот (земля обычно используется в качестве точки отсчета для измерения напряжения).Текущие требования к различным компонентам системы очень важны, потому что мощность – это произведение напряжения и тока. Таким образом, общая потребляемая мощность системы зависит от требований к напряжению и току ее отдельных компонентов.

Сводка напряжений БП
Напряжение Назначение
-12 В Используется в некоторых старых типах схем усилителя последовательного порта.
Обычно не используется в новых системах.
Ток обычно ограничен до 1А.
-5V Используется на некоторых ранних персональных компьютерах для контроллеров гибких дисков
и некоторых дополнительных карт ISA.
Обычно не используется в новых системах.
Ток обычно ограничен до 1А.
0V Заземление нулевого напряжения (также называемое общей или землей ) и опорная точка
для других напряжений системы.
+3.3V Используется для питания процессора, некоторых типов памяти
, некоторых видеокарт AGP и других цифровых схем
(для большинства этих компонентов требовалось питание +5 В в более старых системах
).
+ 5V Все еще используется для питания материнской платы и некоторых компонентов
на материнской плате. Обратите внимание, что
также присутствует резервное напряжение 5 В, когда система
отключена, что может быть заземлено (например, пользователем
, нажав выключатель питания на передней панели корпуса), чтобы
восстановить питание системы.
+ 12V В основном используется для таких устройств, как дисководы и охлаждающие вентиляторы
, которые имеют двигатели того или иного типа. Эти устройства
имеют собственные разъемы питания, которые подключаются непосредственно к блоку питания
.

Как работает блок питания

Тип блока питания, встречающийся в современном ПК, называется импульсным блоком питания (SMPSU).По сути, это означает, что сетевое напряжение переменного тока, поступающее в блок питания, выпрямляется для получения постоянного напряжения без использования сетевого трансформатора (обычно они довольно тяжелые из-за необходимости в катушке с ферритовым сердечником). Полученное таким образом напряжение затем включается и выключается на очень высоких скоростях с помощью электронной схемы переключения, эффективно создавая высокочастотное прямоугольное напряжение (фактически, серию импульсов постоянного тока). Затем можно использовать легкий и относительно недорогой высокочастотный трансформатор для получения требуемого выходного напряжения постоянного тока.

Выходное напряжение постоянного тока и ток регулируются (поддерживаются постоянными) с помощью контроллера обратной связи, который увеличивает или уменьшает выходную мощность в соответствии с изменениями тока нагрузки. Это достигается путем увеличения или уменьшения рабочего цикла (по сути, это означает увеличение или уменьшение количества импульсов напряжения, производимых схемой переключения в заданный период времени).

Обратите внимание, что большинство блоков питания могут отключиться, если ток нагрузки превышает определенный порог, что снижает вероятность повреждения компьютерной системы (или ее пользователя) в случае электрического сбоя, такого как короткое замыкание.Тот же принцип применяется к отсутствию тока нагрузки (или очень низкому току нагрузки), поскольку блок питания не может правильно работать ниже определенного уровня выходной мощности и отключится при обнаружении недостаточного тока нагрузки.

При первом включении может потребоваться полсекунды или около того, чтобы блок питания стабилизировался и начал генерировать правильное напряжение постоянного тока, необходимое для компьютера. Таким образом, блок питания отправляет на материнскую плату сигнал, называемый сигналом Power Good , после того, как он выполнил свои внутренние тесты и убедился, что все выходы питания в порядке.Материнская плата должна дождаться этого сигнала перед включением системы.

Скачок напряжения или кратковременный сбой питания иногда вызывают кратковременное прерывание сигнала Power Good, что приводит к перезагрузке системы при ее возобновлении. Также обратите внимание, что по практическим причинам разные напряжения, создаваемые блоком питания, фактически производятся несколькими разными импульсными блоками питания, которые связаны вместе внутри блока питания, каждый из которых изменяет свою выходную мощность в соответствии с требованиями к питанию компонентов.

Одной из последних тенденций в разработке блоков питания стала концепция модульного блока питания , в котором кабели могут быть подключены к блоку питания через разъемы на конце блока питания , что позволяет пользователю устанавливать только те кабели, которые им действительно необходимы. Идея состоит в том, что отсутствие ненужных кабелей уменьшит беспорядок внутри корпуса и улучшит воздушный поток. Он также обеспечивает больший выбор типа кабеля питания, который может установить пользователь (например,г. Serial ATA или Molex для жестких дисков).

Критики этой разработки указали, что электрическое сопротивление будет увеличиваться из-за большего количества электрических соединений. Сторонники отмечают, что увеличение сопротивления очень невелико. Однако на практике проблемы могут возникнуть только в том случае, если разъемы старые и изношенные (в этом случае соединение может быть неплотным) или соединение было выполнено неправильно во время установки.Очевидный ответ – заменить старые кабели и проверить все соединения перед первым использованием. Основные разъемы блока питания и их выводы показаны на схеме ниже.


Общие разъемы блоков питания и их контактные выходы


Сбой источника питания неизбежно потребует замены блока питания, поскольку компьютер, очевидно, не будет работать без него.Такие сбои часто возникают из-за перегрева из-за поломки охлаждающего вентилятора. Впоследствии система отключается и не может быть перезагружена, или, как иногда случается, многократно перезагружается через явно случайные промежутки времени.

В критически важных компьютерных системах, таких как сетевые серверы, нередко можно найти резервные источники питания, действующие в качестве резервных для основного источника питания. В случае выхода из строя основного источника питания его заменяет резервный блок, который затем может быть заменен в течение планового периода технического обслуживания.

С другой стороны, портативным компьютерам, таким как ноутбуки и нетбуки, требуется гораздо меньше энергии (200 Вт или меньше), что позволяет им питаться от съемной аккумуляторной батареи, которую можно легко заменить при необходимости. Внешний источник питания используется для зарядки аккумулятора и может подавать питание на систему, когда она подключена. Этот внешний блок питания обычно подает постоянный ток 19,5 В.

Возможность включения и выключения источника питания компьютера путем заземления резервного напряжения + 5 В означает, что система может включаться или выключаться с помощью сигнала, генерируемого материнской платой в ответ на программное прерывание (или системный вызов – сигнал, генерируемый операционной системой) или аппаратное прерывание (сигнал, генерируемый аппаратным компонентом в системе).

Возможность управления питанием с помощью системного вызова означает, что пользователь может выключить систему, щелкнув значок или пункт меню, вместо того, чтобы физически выключать систему с помощью выключателя питания. Это также означает, что программное обеспечение управления питанием может быть настроено на отключение питания компьютера при отсутствии действий пользователя в течение заданного периода времени. Система может быть настроена на повторное включение в случае некоторого заранее определенного события, такого как нажатие пользователем клавиши на клавиатуре или активация сетевого соединения.


Знание технологий

Руководство по компьютеру Блоки питания

Что такое блок питания?

Блок питания компьютера (Компьютерный блок питания) – это компонент, обеспечивающий питание компьютера. В частности, источник питания обычно предназначен для преобразования 100-120 В (Северная Америка и Япония) или 220-240 В (Европа, Азия и Австралия) Переменный ток из сети в пригодный для использования низковольтный источник постоянного тока. для внутренних компонентов компьютера.Некоторые блоки питания есть переключатель для переключения между 230 В и 115 В. Другие модели имеют автоматические датчики, которые автоматически переключают входное напряжение, или может принимать любое напряжение между этими пределами.

Построены самые распространенные компьютерные блоки питания. чтобы соответствовать форм-фактору ATX. Самая последняя спецификация стандарта ATX – это версия 2.2, выпущенная в 2004 году. Это позволяет разные источники питания должны быть взаимозаменяемы с разными компоненты внутри компьютера.Блоки питания ATX также разработаны включать и выключать по сигналу с материнской платы (провод PS-ON), и обеспечить поддержку современных функций, таких как режим ожидания доступно на многих компьютерах.

Компьютерные блоки питания рассчитаны на максимальная выходная мощность. Типичные диапазоны мощности от 300 Вт до 500 Вт. (менее 300 Вт для систем малого форм-фактора), хотя используются блоки геймерами и энтузиастами обычно варьируются от 500 Вт до 1000 Вт, с агрегаты самого высокого уровня мощностью до 2 кВт для максимальной производительности компьютеры с несколькими процессорами и видеокартами (ATI CrossFire или NVIDIA SLI).

Большинство компьютерных блоков питания имеют вид квадратного металлического ящика и имеет большой пучок проводов, выходящих с одного конца. Напротив жгута проводов находится задняя грань силового источник питания, с вентиляционным отверстием и разъемом C14 IEC для питания переменного тока. Опционально может быть выключатель питания и / или переключатель напряжения. выключатель. Этикетка на одной стороне коробки содержит техническую информацию. об источнике питания, включая сертификаты безопасности максимум выходная мощность.Общие сертификационные знаки безопасности – это UL. знак, знак GS, TV, NEMKO, SEMKO, DEMKO, FIMKO, CCC, CSA, VDE, ГОСТ Р и БСМИ. Общие сертификаты для EMI / RFI – это знак CE, FCC и C-галочка. Знак CE требуется для блоков питания, продаваемых в Европа.

Размеры блока питания ATX 150 мм ширина, высота 86 мм и обычно глубина 140 мм, хотя глубина может отличаться от бренда к бренду.Перед заменой блока питания убедитесь, что вы знаете емкость оригинального корпуса, поэтому вы покупаете блок питания это подойдет.

Как купить блок питания?

Не только блок питания подойдет

Большинство людей склонны игнорировать важность свои источники питания. Это потому, что ваш блок питания намного больше чем просто непритязательный серый или черный ящик, который вы вставляете в розетку, прежде чем включить компьютер.Теперь, когда игровые автоматы, экстремальные ПК и быстрые и мощные рабочие станции требуют все большего количества надежной мощности, вы больше не можете позволить себе упускать из виду роль что ваш блок питания поддерживает ваш компьютер в рабочем состоянии и работает в весь его потенциал. Мало кто тратит время на размышления о блоке питания. Тем не менее, когда вы создаете систему по минимально возможной цене, производитель, скорее всего, будет сокращать углы в таких компонентах, как БП.В результате вам нужно быть осторожным при покупке компьютерной системы. Если обратить внимание на блок питания, то там достойный Вероятно, вас больше всего беспокоит, сколько ватт это мощность оценен для создания, даже если вероятность того, что вы возможность проверить эти номинальные мощности. К сожалению многие не берут время подумать, чиста ли мощность, которую производит блок и стабильный, будь то шумный или склонный к пики и скачки, угрожающие системе, или, что не менее важно, MTBF (средняя наработка на отказ) срок службы источника питания!

Растущие потребности в источниках питания

Кажется, только ценители ПК, те сборка или покупка экстремальных ПК или первоклассных игр систем, считайте, что источник питания является сердцем и душой системы и всегда ищут лучшие источники питания, которые могут себе позволить.

Блок питания важен просто потому, что он подает электроэнергию ко всем остальным компонентам системы. К сожалению, исторически это одна из наиболее вероятных составляющих. потерпеть неудачу, особенно потому, что многие производители сокращают углы качество при добавлении источников питания в свои системы. Грустно сказать что отказ источника питания может вызвать сбои в работе компонентов, так как а также повредить их без возможности ремонта, доставив ненадлежащие или неустойчивые Напряжение.По мере того, как вы добавляете все больше и больше периферийных устройств в систему вашего ПК – дополнительные жесткие диски, приводы компакт-дисков – все, что вы подключаете к своему материнская плата – вы увеличиваете нагрузку на блок питания. В чем больше напряжение должен выдерживать источник питания, тем выше вероятность того, что у вас будут проблемы с непостоянным уровнем мощности. Когда ваш система лишена постоянного потока надежной энергии, быть склонным к случайным сбоям оборудования, причудливым ошибкам, которые могут никогда раньше не видел (и что вы, конечно, не хотите видеть), или даже безвременный выход из строя вашего персонального компьютера.Даже несмотря на возрастающее значение источников питания они далеки от самые сексуальные товары в каталоге компьютерных товаров или на веб-сайте. Так при покупке нового ПК или Bare-Bones Chassis платите осторожно внимание к встроенному блоку питания и выбор лучшего блок питания, который вы можете себе позволить.

Ознакомьтесь с блоком питания Условия

Когда вы покупаете ПК или заменяющий блок питания, вы Следует ознакомиться с самим блоком питания.Учить все, что вы можете об этом. Однако средний потребитель склонен испугаться словарного запаса и сложной статистики, найденной в спецификации. Вот несколько общих терминов, которые могут помочь понять смысл спецификации.

  • Среднее время наработки на отказ (MTBF) или среднее время До отказа (MTTF).
    Это значение представляет рассчитанный средний часовой интервал, который ожидается, что источник питания будет работать до того, как он выйдет из строя, или просто поставить, наработка на отказ.Хотя блоки питания будут иметь Расчетная наработка на отказ 100000 часов или более, имейте в виду, что эти цифры не всегда можно было отличить от реальных испытаний в реальном времени. Наиболее производители получают эти итоги на основе сравнительных интенсивность отказов отдельных компонентов источника питания. Независимо от средней наработки на отказ, более качественный источник питания будет использовать качественные компоненты, и быть более надежным предсказателем фактических срок жизни.
  • Защита от перенапряжения.
    Защита от перенапряжения предотвращает прием сигнала, если напряжение превышает определенный предел. Это помогает предотвратить электрическое устройство от перегрузки и разрушения. Убеждаться приобретаемый вами блок питания включает защиту от перенапряжения.
  • Максимальный ток нагрузки.
    Максимальный ток нагрузки – это наибольшая величина тока, выраженная в усилителях, которые можно безопасно доставить через конкретный выход.Значения максимального тока нагрузки представлены как индивидуальные. силы тока для каждого выходного напряжения. С этими цифрами вы можете рассчитать не только общую мощность, которую может обеспечить блок питания питания, но также и сколько устройств, использующих эти различные напряжения, может поддержать.
  • Минимальный ток нагрузки.
    Обратный к максимальному току нагрузки, минимальный ток нагрузки – это наименьшее количество тока (в амперах), которое должно быть снято с конкретный выход для того, чтобы этот выход работал.Если нынешний потребляемая мощность на выходе падает ниже минимума, источник питания может быть поврежден или автоматически отключен.
  • Регулировка нагрузки.
    Когда ток, потребляемый с определенного выхода, увеличивается или уменьшается, напряжение тоже немного меняется, обычно увеличивается с ростом тока. Регулировка нагрузки в процентах изменение выходного напряжения при изменении нагрузки с минимального на максимум, при постоянной линии и постоянной температуре.Загрузка изменение может быть указано для других случаев, кроме полной нагрузки без нагрузки, например от 20% нагрузки до полной.
  • Эффективность.
    Отношение мощности, потребляемой источником, к тому, сколько гаснет, если это. Это значение выражается в процентилях, где наиболее распространен в диапазоне 65% -85% в сегодняшней мощности запасы. Обязательно приобретите блок питания, соответствующий требованиям этот диапазон – чем выше, тем лучше! Однако, хотя больше эффективность означает меньшее нагревание внутри компьютера, что то, к чему вы всегда должны стремиться, точность, стабильность и долговечность – более важные факторы.

Сколько энергии мне нужно?

Очевидно, мы не ожидаем, что у всех будет все Когда дело доходит до источников питания, термины искусства неуместны. Как и ты посетите наши веб-страницы по источникам питания, вы заметите эти продукты бывают разными обозначениями мощности. Какая мощность необходимо для среднестатистической системы ПК, если такая есть Настоящее время? Взгляните на то, что у вас было в прошлом.Если вы купили стандартный блок питания от одного из ведущих производителей компьютеров, скорее всего, вы приобрели блок питания мощностью от 250 до 300 Вт со средней мощностью качество. Теперь этого более чем достаточно для повседневного использования. система, состоящая из жесткого диска, оптического привода и средняя видеокарта. Однако, если вы собираетесь добавить нужно больше периферийных устройств, чтобы серьезно подумать об увеличении мощности поставлять.

Для справки, ниже приведена диаграмма, показывает примерно, сколько мощности вам потребуется для запуска различные общие компоненты в системе ПК:

Компонент Мощность Требуется
Материнская плата 15-30
Младший процессор 20-50
ЦП среднего и высокого класса 40-100
RAM RAM 7 на 128 МБ
Плата расширения PCI 5
Графическая плата низкого и среднего уровня 20-60

Высококачественная графика доска

60-100

IDE жесткий диск 10-30
Оптические приводы 10-25

Преимущества более высокого класса Блок питания

Чем больше ватт, тем веселее

При покупке более качественного блока питания вы заметно снизить уровень шума, производимого компьютером, когда он на.Вентилятор, охлаждающий источник питания, должен быть очень мощным. для достижения поставленной задачи. Таким образом, это один из самых больших, самые шумные фанаты на вашем ПК. И он стратегически расположен напротив вентиляционные отверстия, ведущие к внешней стороне корпуса компьютера. Так что издает заметный шум, который со временем может стать раздражающим. Новый, более эффективный и мощный блок питания обеспечит больше мощность, отрегулируйте ее на более равномерном уровне и с меньшим шумом уровень.Для сборщиков ПК имейте в виду, что некоторые из недорогих кейсы часто поставляются с блоками питания по сниженной цене, которые могут не подходить для задача питания высококлассного ПК. Некоторые из более дорогих модели не поставляются с блоком питания, что дает вам возможность выбрать свой. Если вы добавили много нового компоненты к вашему ПК, вы можете перенапрягать имеющуюся мощность поставка, так что смотрите на то, чтобы стать больше, лучше.Источники питания могут вызывать проблемы – включая случайные сбои или даже компоненты отказ – если их просят произвести больше энергии, чем они предназначен для генерации. Авторитетные производители обычно включают таблица допустимых компонентов.

Наконец, убедитесь, что ваш новый блок питания совместим с Ваш компьютер

Будьте осторожны – вы должны убедиться, что ваш блок питания совместим с вашей системой, прежде чем вы ее подключите.Некоторые компьютеры используйте специальный штекер, соединяющий блок питания с материнской платой. Если вы воспользуетесь неправильной вилкой, вы можете буквально поджечь свой компьютер!

Подключение источника питания

20 + 4 контакта

P4 МБ

SATA

Периферийное устройство

FDD

Используется для питания материнской платы

Используется для конкретного процессора материнские платы

Для жестких дисков SATA

Для большинства периферийных устройств

Разъем дисковода гибких дисков

Охлаждение компьютера

Обеспечьте охлаждение блока питания и компьютера

Один из самых недооцененных аспектов Блок питания ПК также обеспечивает большую часть охлаждения ПК. Вентилятор в блоке питания обеспечивает большую часть воздушного потока внутри вашего компьютерное шасси. Поэтому важно не только иметь надежное питание, но вам также понадобится надежный вентилятор, способный создавая поток воздуха, необходимый для охлаждения ваших компонентов.

Благодаря современным высокоскоростным процессорам, видеокарты, и диски, терморегулирование критично. Компоненты выходят из строя при перегреве. Итак, покупка блока питания с вентилятором большой мощности можно буквально спасти вашу систему.

Многие производители блоков питания также предлагают вентиляторы с регулируемой скоростью, которые увеличивают скорость вращения вентилятора при нагревании внутри вашего компьютера. Это важная функция, и одна из что следует искать. Также ищите самый низкий уровень шума уровень, так как вентилятор блока питания отвечает за 90% шум, производимый вашим ПК.


Стандартный коробчатый вентилятор и


Новые конструкции открытых вентиляторов, обеспечивающие больший поток воздуха.

Лучшие

Теги: Мощность компьютера Запасы, БП, Блок питания ПК, Сбой питания, Проблемы с напряжением

Общие сведения об источниках питания переменного / постоянного тока | Статья

.

СТАТЬЯ ОБРАЗОВАНИЯ


Получайте ценные ресурсы прямо на свой почтовый ящик – рассылается раз в месяц

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания – это электрическое устройство, которое преобразует электрический ток, поступающий от источника питания, такого как сеть, в значения напряжения и тока, необходимые для питания нагрузки, такой как двигатель или электронное устройство.

Назначение источника питания – обеспечить нагрузку надлежащим напряжением и током. Ток должен подаваться контролируемым образом – и с точным напряжением – на широкий диапазон нагрузок, иногда одновременно, и все это не позволяет изменениям входного напряжения или других подключенных устройств влиять на выход.

Источник питания может быть внешним, что часто встречается в таких устройствах, как ноутбуки и зарядные устройства для телефонов, или внутренним, например, в более крупных устройствах, таких как настольные компьютеры.

Источник питания может быть регулируемым или нерегулируемым. В регулируемом источнике питания изменения входного напряжения не влияют на выход. С другой стороны, в нерегулируемом источнике питания выходная мощность зависит от любых изменений на входе.

Все блоки питания объединяет то, что они берут электроэнергию от источника на входе, каким-то образом преобразуют ее и доставляют в нагрузку на выходе.

Питание на входе и выходе может быть переменным (AC) или постоянным (DC) током:

  • Постоянный ток (DC) возникает, когда ток течет в одном постоянном направлении.Обычно он поступает от батарей, солнечных элементов или преобразователей переменного тока в постоянный. Постоянный ток – предпочтительный тип питания для электронных устройств.
  • Переменный ток (AC) возникает, когда электрический ток периодически меняет свое направление. Переменный ток – это метод, используемый для доставки электроэнергии по линиям электропередачи в дома и на предприятия

Следовательно, если переменный ток – это тип питания, подаваемого в ваш дом, а постоянный ток – это тип питания, который вам нужен для зарядки телефона, вам понадобится источник питания переменного / постоянного тока для преобразования переменного напряжения, поступающего из электросети к напряжению постоянного тока, необходимому для зарядки аккумулятора вашего мобильного телефона.

Общие сведения о переменном токе (AC)

Первым шагом в разработке любого источника питания является определение входного тока. И в большинстве случаев источником входного напряжения электросети является переменный ток.

Типичная форма волны переменного тока – синусоидальная (см. Рисунок 1) .`

Рисунок 1: Форма сигнала переменного тока и основные параметры

Есть несколько показателей, которые необходимо учитывать при работе с блоком питания переменного тока:

  • Пиковое напряжение / ток: максимальное значение амплитуды волны
  • Частота: количество циклов, выполняемых волной в секунду.Время, необходимое для завершения одного цикла, называется периодом.
  • Среднее напряжение / ток: Среднее значение всех точек напряжения в течение одного цикла. В чисто переменном токе без наложенного постоянного напряжения это значение будет равно нулю, потому что положительная и отрицательная половины компенсируют друг друга.
  • Среднеквадратичное напряжение / ток: Определяется как квадратный корень из среднего за один цикл квадрата мгновенного напряжения. В чистой синусоидальной волне переменного тока его значение можно рассчитать с помощью Уравнение (1) :
  • $$ V_ {PEAK} \ over \ sqrt 2 $$
  • Он также может быть определен как эквивалентная мощность постоянного тока, необходимая для достижения такого же нагревающего эффекта.Несмотря на сложное определение, он широко используется в электротехнике, поскольку позволяет найти эффективное значение переменного напряжения или тока. Из-за этого его иногда обозначают как V AC .
  • Фаза: Угловая разница между двумя волнами. Полный цикл синусоидальной волны делится на 360 °, начиная с 0 °, с пиками при 90 ° (положительный пик) и 270 ° (отрицательный пик) и дважды пересекая начальную точку, при 180 ° и 360 °. Если две волны изображены вместе, и одна волна достигает своего положительного пика в то же самое время, когда другая достигает своего отрицательного пика, тогда первая волна будет под углом 90 °, а вторая волна будет под углом 270 °; это означает, что разность фаз составляет 180 °.Считается, что эти волны находятся в противофазе, так как их значения всегда будут иметь противоположные знаки. Если разность фаз равна 0 °, мы говорим, что две волны находятся в фазе.

Переменный ток (AC) – это способ передачи электроэнергии от генерирующих объектов конечным пользователям. Он используется для транспортировки электроэнергии, потому что в процессе транспортировки электричество необходимо преобразовывать несколько раз.

Электрические генераторы вырабатывают напряжение около 40 000 В или 40 кВ.Затем это напряжение повышается до любого значения от 150 кВ до 800 кВ, чтобы снизить потери мощности при транспортировке электрического тока на большие расстояния. Когда он достигает места назначения, напряжение снижается до 4–35 кВ. Наконец, прежде чем ток достигнет отдельных пользователей, он снижается до 120 В или 240 В, в зависимости от местоположения.

Все эти изменения напряжения будут либо сложными, либо очень неэффективными по сравнению с постоянным током (DC), потому что линейные трансформаторы зависят от колебаний напряжения для передачи и преобразования электрической энергии, поэтому они могут работать только с переменным током (AC).

Линейный и импульсный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока имеет простую конструкцию.

При использовании трансформатора входное напряжение переменного тока (AC) снижается до значения, более подходящего для предполагаемого применения. Затем пониженное напряжение переменного тока выпрямляется и превращается в напряжение постоянного тока (DC), которое фильтруется для дальнейшего улучшения качества формы сигнала (Рисунок 2) .

Рисунок 2: Блок-схема линейного источника переменного / постоянного тока

Традиционная конструкция линейного источника питания переменного / постоянного тока развивалась с годами, улучшаясь с точки зрения эффективности, диапазона мощности и размера, но эта конструкция имеет некоторые существенные недостатки, которые ограничивают ее интеграцию.

Огромным ограничением линейного источника питания переменного / постоянного тока является размер трансформатора. Поскольку входное напряжение преобразуется на входе, необходимый трансформатор должен быть очень большим и, следовательно, очень тяжелым.

На низких частотах (например, 50 Гц) необходимы большие значения индуктивности для передачи большого количества энергии от первичной обмотки ко вторичной. Это требует больших сердечников трансформатора, что делает практически невозможной миниатюризацию этих источников питания.

Еще одним ограничением линейных источников питания переменного / постоянного тока является регулировка напряжения большой мощности.

Линейный источник питания переменного / постоянного тока использует линейные регуляторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают лишнюю энергию в виде тепла.Для малой мощности особых проблем не представляет. Однако для высокой мощности тепло, которое должен рассеивать регулятор для поддержания постоянного выходного напряжения, очень велико и потребует добавления очень больших радиаторов.

Импульсный источник питания переменного / постоянного тока

Новая методология проектирования была разработана для решения многих проблем, связанных с проектированием линейных или традиционных источников питания переменного / постоянного тока, включая размер трансформатора и регулировку напряжения.

Импульсные источники питания теперь возможны благодаря развитию полупроводниковой технологии, особенно благодаря созданию мощных полевых МОП-транзисторов, которые могут очень быстро и эффективно включаться и выключаться даже при больших напряжениях и токах.

Импульсный источник питания переменного / постоянного тока позволяет создавать более эффективные преобразователи мощности, которые больше не рассеивают избыточную мощность.

Блоки питания

AC / DC, в которых используются импульсные преобразователи мощности, называются импульсными блоками питания. Импульсные источники питания переменного / постоянного тока имеют несколько более сложный метод преобразования переменного тока в постоянный.

В импульсных источниках питания переменного тока входное напряжение больше не снижается; скорее, он выпрямляется и фильтруется на входе.Затем постоянное напряжение проходит через прерыватель, который преобразует напряжение в серию высокочастотных импульсов. Наконец, волна проходит через другой выпрямитель и фильтр, который преобразует ее обратно в постоянный ток (DC) и устраняет любую оставшуюся составляющую переменного тока (AC), которая может присутствовать до достижения выхода (см. Рисунок 3) .

При работе на высоких частотах катушка индуктивности трансформатора может передавать больше мощности, не достигая насыщения, что означает, что сердечник может становиться все меньше и меньше.Следовательно, трансформатор, используемый для переключения источников питания переменного / постоянного тока для уменьшения амплитуды напряжения до заданного значения, может составлять часть размера трансформатора, необходимого для линейного источника питания переменного / постоянного тока.

Рисунок 3: Блок-схема импульсного источника питания переменного / постоянного тока

Как и следовало ожидать, этот новый метод проектирования имеет некоторые недостатки.

Импульсные преобразователи мощности переменного / постоянного тока могут создавать в системе значительный уровень шума, который необходимо устранить, чтобы исключить его на выходе.Это создает потребность в более сложных схемах управления, что, в свою очередь, усложняет конструкцию. Тем не менее, эти фильтры состоят из компонентов, которые можно легко интегрировать, поэтому они не оказывают существенного влияния на размер блока питания.

Меньшие трансформаторы и повышенная эффективность регуляторов напряжения в импульсных источниках питания переменного / постоянного тока – вот причина, по которой теперь мы можем преобразовывать напряжение переменного тока 220 В ¬RMS в напряжение 5 В постоянного тока с помощью преобразователя питания, который может поместиться у вас на ладони.

Таблица 1 суммирует различия между линейными и импульсными источниками питания переменного / постоянного тока.

Транзисторы
Линейный источник питания переменного / постоянного тока Импульсный источник питания переменного / постоянного тока
Размер и вес Необходимы большие трансформаторы, что значительно увеличивает размер и вес Более высокие частоты позволяют при необходимости использовать трансформаторы гораздо меньшего размера.
КПД Если не регулировать, потери в трансформаторе являются единственной существенной причиной потери эффективности.В случае регулирования приложения с большой мощностью будут иметь решающее влияние на эффективность. обладают небольшими коммутационными потерями, поскольку они ведут себя как малые сопротивления. Это обеспечивает эффективных мощных приложений .
Шум Нерегулируемые источники питания могут иметь значительный шум, вызванный пульсациями напряжения, но регулируемые линейные источники питания постоянного тока переменного тока могут иметь чрезвычайно низкий уровень шума. Вот почему они используются в медицинских приложениях. Когда транзисторы переключаются очень быстро, они создают шум в цепи. Однако это может быть либо отфильтровано, либо частота переключения может быть сделана чрезвычайно высокой, выше предела человеческого слуха, для аудиоприложений
Сложность Линейный источник питания переменного / постоянного тока, как правило, имеет меньше компонентов и более простые схемы, чем импульсный источник питания переменного / постоянного тока. Дополнительный шум, создаваемый трансформаторами, вынуждает добавлять большие сложные фильтры, а также схемы управления и регулирования для преобразователей.

Таблица 1: Линейные и импульсные источники питания

Однофазные и трехфазные блоки питания

Источник питания переменного тока может быть однофазным или трехфазным:

  • Трехфазный источник питания состоит из трех проводников, называемых линиями, каждая из которых несет переменный ток (AC) той же частоты и амплитуды напряжения, но с относительной разностью фаз 120 °, или одной трети цикл (см. рисунок 4) .Эти системы являются наиболее эффективными при передаче большого количества энергии и поэтому используются для доставки электроэнергии от генерирующих объектов в дома и на предприятия по всему миру.
  • Однофазный источник питания является предпочтительным методом подачи тока в отдельные дома или офисы, чтобы равномерно распределять нагрузку между линиями. В этом случае ток течет от линии питания через нагрузку, а затем обратно через нейтральный провод. Это тип источника питания, который используется в большинстве установок, за исключением крупных промышленных или коммерческих зданий.Однофазные системы не могут передавать столько энергии на нагрузку и более подвержены сбоям питания, но однофазное питание также позволяет использовать гораздо более простые сети и устройства.

Рисунок 4: Форма кривой переменного тока трехфазного источника питания

Существует две конфигурации для передачи энергии через трехфазный источник питания: конфигурация треугольника $ (\ Delta) $ и конфигурация звезды (Y), также называемые конфигурациями треугольника и звезды, соответственно.

Основное различие между этими двумя конфигурациями – возможность добавить нейтральный провод (см. Рисунок 5) .

Соединения

треугольником обеспечивают большую надежность, но соединения типа Y могут подавать два разных напряжения: фазное напряжение, которое является однофазным напряжением, подаваемым в дома, и линейное напряжение для питания больших нагрузок. Соотношение между фазным напряжением (или фазным током) и линейным напряжением (или линейным током) в конфигурации Y заключается в том, что амплитуда линейного напряжения (или тока) в √3 раз больше, чем амплитуда фазы.

Поскольку стандартная система распределения электроэнергии должна обеспечивать питанием как трехфазные, так и однофазные системы, большинство сетей распределения электроэнергии имеют три линии и нейтраль.Таким образом, и дома, и промышленное оборудование могут быть снабжены одной и той же линией электропередачи. Поэтому конфигурация Y наиболее часто используется для распределения мощности, тогда как конфигурация треугольника обычно используется для питания трехфазных нагрузок, таких как большие электродвигатели.

Рисунок 5: Трехфазные конфигурации Y и треугольника

Напряжение, при котором электросеть поставляет однофазную электроэнергию своим пользователям, имеет различные значения в зависимости от географического положения.Вот почему очень важно проверить диапазон входного напряжения источника питания перед его покупкой или использованием, чтобы убедиться, что он предназначен для работы в электросети вашей страны. В противном случае вы можете повредить блок питания или подключенное к нему устройство.

В таблице 2 сравниваются напряжения в сетях в разных регионах мира.

Действующее значение (AC) Напряжение Пиковое напряжение Частота Регион
230 В 310 В 50 Гц Европа, Африка, Азия, Австралия, Новая Зеландия и Южная Америка
120 В 170V 60 Гц Северная Америка
100 В 141V 50 Гц / 60 Гц Япония *

* Япония имеет две частоты в своей национальной сети из-за истоков ее электрификации в конце 19 века.В западном городе Осака поставщики электроэнергии купили генераторы 60 Гц в Соединенных Штатах, а в Токио, который находится на востоке Японии, они купили немецкие генераторы 50 Гц. Обе стороны отказались изменить свою частоту, и по сей день в Японии все еще есть две частоты: 50 Гц на востоке и 60 Гц на западе.

Как упоминалось ранее, трехфазное питание используется не только для транспортировки, но также для питания больших нагрузок, таких как электродвигатели или зарядки больших аккумуляторов. Это связано с тем, что параллельное приложение мощности в трехфазных системах может передавать намного больше энергии нагрузке и может делать это более равномерно из-за перекрытия трех фаз (см. Рисунок 6) .

Рисунок 6: Передача энергии в однофазных (слева) и трехфазных (справа) системах

Например, при зарядке электромобиля (EV) количество энергии, которое вы можете передать аккумулятору, определяет, насколько быстро он заряжается.

Однофазные зарядные устройства подключаются к сети переменного тока (AC) и преобразуются в постоянный ток (DC) внутренним силовым преобразователем переменного / постоянного тока автомобиля (также называемым бортовым зарядным устройством). Мощность этих зарядных устройств ограничена сетью и розеткой переменного тока.

Ограничение варьируется от страны к стране, но обычно составляет менее 7 кВт для розетки на 32 А (в ЕС 220 x 32 А = 7 кВт). С другой стороны, трехфазные источники питания преобразуют мощность из переменного в постоянный извне и могут передавать более 120 кВт на батарею, обеспечивая сверхбыструю зарядку.

Сводка

Источники питания переменного / постоянного тока есть повсюду. Основная задача источника питания переменного / постоянного тока – преобразовывать переменный ток (AC) в стабильное постоянное напряжение (DC), которое затем может использоваться для питания различных электрических устройств.

Переменный ток используется для транспортировки электроэнергии по всей электрической сети от генераторов до конечных потребителей. Цепь переменного тока (AC) может быть сконфигурирована как однофазная или трехфазная система. Однофазные системы проще и могут обеспечивать мощность, достаточную для питания всего дома, но трехфазные системы могут обеспечивать гораздо больше мощности более стабильным образом, поэтому они часто используются для питания промышленных приложений.

Разработка эффективных источников питания переменного / постоянного тока – непростая задача, поскольку современные рынки требуют мощных, чрезвычайно эффективных и миниатюрных источников питания, способных поддерживать эффективность в широком диапазоне нагрузок.

Способы проектирования источников питания переменного / постоянного тока со временем изменились. Линейные источники питания переменного / постоянного тока ограничены по размеру и эффективности, поскольку они работают на низких частотах и ​​регулируют выходную температуру, рассеивая избыточную энергию в виде тепла. Напротив, импульсные источники питания стали чрезвычайно популярными, потому что в них используются импульсные регуляторы для преобразования переменного тока в постоянный. Импульсные блоки питания работают на более высоких частотах и ​​преобразуют электроэнергию намного эффективнее, чем предыдущие разработки, что позволило создавать мощные блоки питания переменного / постоянного тока размером с ладонь.

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик – рассылайте их раз в месяц!

Статьи по теме

Чему о синхронных выпрямителях не говорят в школе – Избранные темы из реальных проектов

50 лучших тестеров блоков питания ПК в 2021 году: по мнению экспертов.

Вы можете найти любые тестеры блоков питания для ПК, но если вы ищете совета экспертов по выбору наиболее подходящего для ваших нужд, то вы попали в нужное место.

Неважно, какие тестеры блоков питания нужны вашему компьютеру или каков ваш бюджет, потому что я провел углубленный анализ, чтобы включить лучшие варианты, подходящие для разнообразных потребностей использования и различных диапазонов бюджета.

Чтобы попасть в этот список, я потратил 41 час на изучение тестеров блоков питания для ПК от лучших производителей, таких как: EVGA, EVGA, EVGA.

Примечание. Убедитесь, что в выбранном вами варианте есть все необходимые функции. В конце концов, есть ли смысл покупать то, что нельзя использовать?

50 лучших тестеров блоков питания для ПК в 2021 году: после 41 часа исследований

Чтобы сделать этот список объективным источником для выбора лучших тестеров блоков питания для ПК, я связался с 10 экспертами и обсудил различные аспекты, которые следует учитывать.После долгого обсуждения я просмотрел отзывы клиентов, изучил известные бренды и многое другое. Потому что моя цель – рекомендовать продукты, которые стоят ваших денег.

По Fuhengli

  • [Beep Alarm] – Когда тестовое значение вашего источника питания выходит за пределы нормального диапазона, тестер источника питания выдает звуковой сигнал, Easy to Know
  • ПРИМЕЧАНИЕ. Напряжение интерфейса IDE / SATA / P6 / P8 отображается на индикаторе три индикатора слева от тестера питания
  • [Тестер блока питания ATX 8-в-1] – Тест поддержки 20-контактный IDE / 24-контактный IDE / HDD / 4-контактный гибкий диск / 6-контактный PCI-e / 4 -pin / 8-pin / SATA разъемы
  • Если их напряжение в норме, загораются три группы (+ 12В, + 3.3, + 5V) будет на
  • [Корпус из алюминиевого сплава] – легкий и удобный для переноски, высокая прочность, хорошая теплопроводность и устойчивость к коррозии
  • [ЖК-экран 1,8 дюйма] – Выходное напряжение отображается на ЖК-экране 1,8 дюйма, Легко читается (1,8-дюймовый ЖК-экран питался от 20-контактного / 24-контактного разъема). Примечание: на экране продукта много царапин. Поскольку экран легко царапается, мы надеваем защитную пленку Это, если вам кажется, что это некрасиво, вы можете оторвать его самостоятельно
  • Если индикатор не горит, это означает, что группа интерфейсных линий неисправна

от Optimal Shop

  • При тестировании с 4-контактным жестким диском / гибким диском / 6-контактным PCI-e / 4-контактным / 8-контактным / разъемом SATA индикатор слева показывает выходное напряжение (+12 В + 3.3В + 5В).
  • Корпус из алюминиевого сплава: легкий и удобный для переноски, высокая прочность, хорошая теплопроводность и устойчивость к коррозии.
  • 1,8-дюймовый ЖК-экран: выходное напряжение отображается на 1,8-дюймовом ЖК-экране, который легко читается (1,8-дюймовый ЖК-экран питается от 20-контактного / 24-контактного разъема)
  • Звуковой сигнал тревоги: когда ваше питание Если номер PG не подан, тестер мощности подаст звуковой сигнал, который легко узнать.
  • Примечание. Есть ли царапина на экране устройства? Поскольку экран легко поцарапать, мы наклеиваем на него защитную пленку, если вам кажется, что он некрасивый, вы можете оторвать его самостоятельно.
  • Тестер блоков питания ATX 8-в-1: поддержка тестирования 20-контактного IDE / 24-контактного IDE / жесткого диска / 4-контактного гибкого диска / 6-контактного / 4-контактного / 8-контактного разъема PCI-e / SATA.

По Comidox

  • Он может измерять напряжение каждой группы источников питания 3,3 В / + 5 В / + 12 В / -12 В / SB + 5 В / PG, а также измерять выходной провод P4 / P6 / P8 / SATA / IDE, внешний DIE / SATA / P6 / P8 – это световой дисплей, нет напряжения на ЖК-дисплее
  • Он имеет ЖК-дисплей с интуитивно понятным и точным отображением напряжения (+/- 0.01V), автоматическая сигнализация неисправности, полный тестовый интерфейс, небольшой и красивый внешний вид и множество тестовых функций
  • На ЖК-дисплее отображаются различные параметры, такие как выходное напряжение и PG
  • Это лучший выбор для быстрого определения мощности ПК.
  • Этот тестер питания должен быть подключен только к разъему ATX источника питания, чтобы легко и интуитивно узнать, нормальный ли выход каждого источника питания
  • Поддержка 20-контактного, 24-контактного интерфейса ATX / интерфейса SATA / 4-контактного, 8-контактного интерфейса / PCI -E графическая карта 6-контактный интерфейс / интерфейс гибкого диска / интерфейс жесткого диска ATE.
  • Когда каждый параметр превышает нормальное значение, раздается предупреждающий сигнал и соответствующее значение мигает.
  • Только 24- или 20-контактный разъем будет иметь напряжение ЖК-дисплея.
  • ЖК-тестер мощности – это мощное устройство для проверки мощности.
  • Он может обнаруживать блоки питания компьютеров ATX, BTX, ITX, TFX и может отображать различные значения напряжения и PG на жидких кристаллах для быстрого определения производительности блока питания компьютера.

Кингвин

  • Изготовлен из алюминиевого корпуса
  • Легко читаемый цифровой ЖК-дисплей
  • Точный индикатор напряжения +/- 0
  • 3V / 5VSB / + 12V2 / -12V)
  • 1V (+ 12V1 / + 5V / +3
  • Надежный тестер напряжения для блока питания ПК
  • Простота тестирования блока питания ATX

Автор: axGear

  • ATX
  • Источники питания, совместимые с BTX и ITX, могут быть протестированы
  • Тестер источника питания – это надежный тестер напряжения для блоков питания ПК
  • Проверьте источник питания и избегайте повреждения компьютерного оборудования; батарейки не требуются
  • ПК / SPS подходит для амбициозных увлечений, а также для быстрой проверки работоспособности в специализированной торговле
  • ЖК-дисплей отображает состояние напряжения

По ASHATA

  • ⊙ ПРАКТИЧНОСТЬ И УДОБСТВО – Маленький и практичный тестер мощности
  • ⊙ ПРИМЕЧАНИЕ. Он также может измерять выходной провод P4 / P6 / P8 / SATA / IDE, а внешний DIE / SATA / P6 / P8 – это световой дисплей. Нет напряжения ЖК-дисплея
  • Теперь количество групп выходной мощности увеличивается
  • ЖК-дисплей отображает напряжение только при подключении к 24-контактному или 20-контактному разъему.
  • Чтобы измерить стабильность выходного напряжения источника питания, проигрыватель обычно использует мультиметр
  • Он может обнаруживать компьютерные блоки питания ATX, BTX, ITX, TFX и может отображать различные значения напряжения и PG на ЖК-экране для быстро определить производительность блока питания компьютера.
  • ⊙ ПРОСТОТА В ИСПОЛЬЗОВАНИИ – Этот тестер мощности необходимо подключить только к разъему ATX блока питания, чтобы легко и интуитивно узнать, нормальный ли выходной сигнал каждого блока питания.
  • Он имеет ЖК-дисплей, интуитивно понятный и точный дисплей напряжения (+/- 0.01V), автоматическая сигнализация неисправности, полный тестовый интерфейс, маленький и красивый внешний вид и другие тестовые функции
  • Но для обычного пользователя это все еще немного хлопотно.
  • ⊙ АВТОМАТИЧЕСКАЯ СИГНАЛИЗАЦИЯ – Когда тестовое значение вашего источника питания выходит за пределы нормального диапазона, тестер источника питания подает звуковой сигнал тревоги, легко узнать.
  • Это ваш лучший выбор и надежный помощник для быстрого определения мощности ПК.
  • Если у одного из них есть проблемы, оборудование компьютерной системы может работать ненормально или даже сгореть
  • ⊙ СО СВЕТОДИОДНЫМ ДИСПЛЕЕМ – Мы разработали портативный компьютерный тестер мощности для рынка блоков питания, который может судить о качестве блок питания

от Soapow

  • Внешний DIE / SATA / P6 / P8 – световой дисплей, без напряжения ЖК-дисплея
  • Может обнаруживать мощность компьютера ATX, BTX, ITX, TFX и может отображать напряжение и значение PG каждой группы ЖК-дисплеев, быстро определять производительность мощности компьютера.
  • На ЖК-дисплее отображаются различные параметры, такие как выходное напряжение и PG. Когда каждый параметр превышает нормальное значение, зуммер издает предупреждающий звук, а соответствующее значение мигает
  • Этот тестер мощности необходимо подключить только к разъему ATX блока питания, чтобы легко и интуитивно узнать, в норме ли выходной сигнал каждого блока питания.
  • Он может измерять напряжение каждой группы источника питания 3,3 В / + 5 В / + 12 В / -12 В / SB + 5 В / PG
  • При возникновении неисправности зуммер автоматически подает сигнал тревоги и выходной провод P4 / P6 / P8 / SATA / IDE

Автор Yencoly

  • На ЖК-дисплее отображаются различные параметры, такие как выходное напряжение и PG.Когда каждый параметр превышает нормальное значение, зуммер издаст предупреждающий звук, и соответствующее значение будет мигать.
  • Может определять мощность компьютера ATX, BTX, ITX, TFX и может отображать напряжение и значение PG каждой группы ЖК-дисплеев, быстро определить производительность компьютера.
  • Этот тестер мощности необходимо подключить только к разъему ATX блока питания, чтобы легко и интуитивно узнать, в норме ли выходной сигнал каждого блока питания.
  • Может измерять напряжение каждой группы блока питания 3.3V / + 5V / + 12V / -12V / SB + 5V / PG
  • Внешний DIE / SATA / P6 / P8 – световой дисплей, нет напряжения ЖК-дисплея
  • При возникновении неисправности зуммер автоматически подаст сигнал и провод P4 / P6 / P8 / SATA / IDE

По Ciglow

  • Предотвратите электрические катастрофы, периодически проверяя источники питания, чтобы обнаружить проблемы до того, как они повредят ваш компьютер, контролируйте выходное напряжение.
  • Тестер блока питания 1 * 20/24-pin для блоков питания ATX / SATA / HDD.
  • Зеленый светодиод загорается, когда устройство работает нормально.
  • Этот новый тестер блока питания ATX может тестировать 4PIN / 6PIN / 8PIN разъемы питания HDD и 20PIN / 24PIN FLOPPY, очень мощный.
  • Прочный пластик, съемная конструкция, может тестировать ПК, 20/24 контактов, блок питания, ATX, SATA, жесткий диск.

По Sutinna

  • Позволяют быстро диагностировать или исключить проблемы с блоком питания, что следует в первую очередь проверить при диагностике проблем с компьютером.
  • Незаменимый инструмент для любого компьютерного техника.
  • Он проверяет напряжение на всех проводах, чтобы убедиться, что источник питания работает должным образом.
  • Имеется подробная инструкция по эксплуатации продукта.
  • Прост в использовании, просто подключите разъемы, и зеленые светодиоды загорятся, показывая, на какие контакты подается питание.

По FastUU

  • Пожалуйста, обращайтесь к нам, если у вас есть какие-либо вопросы по поводу вашей покупки.
  • ⇝ПРОФЕССИОНАЛЬНЫЙ ТЕСТЕР ИСТОЧНИКА ПИТАНИЯ ПК⇜Данный тестер питания ПК должен быть подключен только к разъему ATX блока питания, чтобы легко и интуитивно определить, нормальный ли выход каждого блока питания.
  • Примечание. подключен к ЖК-дисплею напряжение
  • ⇝АВТОМАТИЧЕСКАЯ СИГНАЛИЗАЦИЯ⇜Этот тестер питания компьютера может обнаруживать мощность компьютера ATX, BTX, ITX, TFX, когда каждый параметр превышает нормальное значение, зуммер издаст предупреждающий звук, соответствующее значение будет мигать , и выходной провод P4 / P6 / P8 / SATA / IDE.
  • Может обнаруживать мощность компьютера ATX, BTX, ITX, TFX и может отображать напряжение и значение PG каждой группы ЖК-дисплеев, быстро обнаруживая производительность компьютера.
  • «ОБЛАСТЬ ПРИМЕНЕНИЯ» Этот компьютерный тестер блока питания поддерживает блок питания 20Pin, 24Pin ATX, поддерживает питание SATA, поддерживает 4Pin, 8Pin интерфейс P4, поддерживает 6-контактный разъем питания видеокарты PCI-E, поддерживает интерфейс питания Xeco, поддерживает дисковод гибких дисков Интерфейс питания, поддерживает стандартный 4-контактный интерфейс питания Интерфейс SATA
  • Внешний DIE / SATA / P6 / P8 – световой дисплей, без напряжения ЖК-дисплея.
  • ⇝ИНТУИТИВНЫЙ ЖК-ДИСПЛЕЙ⇜ ЖК-дисплей отображает различные параметры, такие как выходное напряжение и PG, он может отображать напряжение и значение PG для каждой группы ЖК-дисплеев, очень легко читается
  • ⇝100% ОБЕСПЕЧЕНИЕ КАЧЕСТВА⇜Мы очень уверены в качество этого тестера питания компьютера ПК, и предоставить 30-дневную гарантию или возврат средств

По Поме

  • Он проверяет напряжение на всех проводах, чтобы убедиться, что источник питания работает должным образом.
  • Прост в использовании, просто подключите разъемы, и зеленые светодиоды загорятся, показывая, на какие контакты подается питание.
  • Имеется подробная инструкция по эксплуатации продукта.
  • Позволяют быстро диагностировать или исключить проблемы с блоком питания, что следует в первую очередь проверить при диагностике проблем с компьютером.
  • Незаменимый инструмент для любого компьютерного техника.

Автор Yiqigou

  • Проверка напряжения: + 12В, -12В, + 5В, -5В, +3.3V, 5V Stand by (SB) 12V Power Good (PG).
  • Когда ваш блок питания PG Numerical неисправен, тестер блока питания подаст звуковой сигнал.
  • Тестер питания представляет собой мощное оборудование для проверки мощности, может обнаруживать компьютерные блоки питания ATX, BTX, ITX, TFX
  • ЖК-дисплеи показывают состояние напряжения
  • ATX, BTX и ITX-совместимые, блоки питания могут быть протестированы
  • Интерфейс подключения: Floppy, HDD, COROM, SATA, 4pin (P4), 8pin (Dual-CPU), 6pin (PCI-E).
  • PC / SPS подходит для амбициозного пользователя-хобби, а также для быстрой проверки работоспособности в специализированной торговле.
  • Тестер блока питания SD – надежный тестер напряжения для блока питания ПК.

от Thermaltake

  • Показания напряжения для всех шин (+ 12V / 5V / + 3.3V / 5VSB / 12V)
  • Простая в использовании система поиска и устранения неисправностей быстро определит, является ли источник нестабильности источником питания
  • Увеличенная ЖК-панель показывает все напряжения в пределах 1 / 10 вольт для быстрого и легкого поиска и устранения неисправностей
  • Поддерживает все блоки питания ATX вплоть до ATX12V 2.3
  • Встроенная система диагностики выходных разъемов, низкое напряжение, высокое напряжение, отсутствие напряжения, сигнализация PG
  • Встроенная сигнализация для уведомления пользователя о нестабильной или ненормальной активности источника питания

Автор: JacobsParts

  • Блок питания автоматически включается при подключении
  • Прост в использовании, просто вставьте разъемы, и зеленые светодиоды загораются, показывая, на какие контакты подается питание
  • Проверяет заземление, +3.Линии 3 В, + 5 В, + 12 В, -5 В и -12 В
  • Проверяет питание 20/24-контактного ATX (материнская плата), питание SATA (жесткий диск), питание Molex (старый жесткий диск), Mini-molex (гибкий диск) питания и 6-контактные разъемы PCI-e (видеокарта)

Автор: JacobsParts

  • Комплектация: 1x цифровой тестер источника питания
  • Источник напряжения: 20/24-контактный (разъем ATX) • Тест напряжения: + 3,3 В, + 5 В, + VSB и + 12 В
  • Размер: 4,75 ″ x 2.5 ″ / 12,07 см x 6,35 см; Цвет: черный
  • С легкостью проверьте блок питания компьютера и не повредите компьютерное оборудование • Батареи не требуются
  • Совместимость с блоками питания ATX, BTX, ITX

По ASTUBIA

  • Аккумулятор LR44 Напряжение: 1,5 В.
  • Химический состав: Щелочная, с добавлением 0% ртути.
  • Батарейки-пуговицы Совместимы с: LR44, CR44, SR44, 357, SR44W, AG13, G13, A76, A-76, PX76, 675, 1166a, LR44H, V13GA, GP76A, L1154, RW82B, EPX76, SR44SW, 303, SR44 , S303, S357, SP303, SR44SW.
  • Батарея таблеточного типа LR44 является полностью совместимыми батареями. Обратите внимание, что дата на упаковке – это дата изготовления, а срок годности батарей – три года, у вас есть достаточно времени для их использования.
  • Использование в: часах, калькуляторе, фонариках, лазерных ручках, пультах дистанционного управления, игрушках, бытовой электронике. Обратите внимание, что дата на упаковке – это дата изготовления, а срок годности батарей – три года. у вас есть достаточно времени, чтобы их использовать.

От CRJ Electronics

  • Материнская плата больше не нужна для использования источника питания ATX
  • Перемычка источника питания ATX / EPS, совместимая с 20/24-контактным разъемом
  • Перемычка 18AWG более высокого калибра для надежности в сценариях длительного использования

от EVGA

  • 100% японские конденсаторы OVP, UVP, OCP, OPP, SCP и двойная защита OTP
  • Гидравлический вентилятор подшипника и режим EVGA Auto ECO для бесшумной работы и увеличения срока службы
  • 7-летняя ограниченная и беспрецедентная служба поддержки клиентов EVGA
  • Сертификат 80 PLUS Gold, КПД 90% (115 В переменного тока) 92% (220 В ~ 240 В переменного тока) или выше при типичных нагрузках
  • Полностью модульный для уменьшения беспорядка и улучшения воздушного потока

По E-выдающемуся

  • Совместимость с 20- и 24-контактными разъемами.
  • Очень подходит для надежности при длительном использовании.
  • Совместимость с 20- и 24-контактными разъемами.
  • Может включать питание без материнской платы.
  • ProductName: 24-контактный мостовой соединитель для блока питания ATX. Тип интерфейса: 24-контактный.
Похожие сообщения:

Автор: ARESGAME

  • Полная защита, включая OVP / UVP / OPP / SCP
  • Бесшумный и прочный 120-миллиметровый вентилятор
  • Все кабели черные, без кетчупа и горчичного цвета
  • Сертифицировано 80 plus Bronze, с КПД 85% или выше и очень стабильным выходным напряжением
  • Блок питания для игровых ПК ATX, 650 Вт

от EVGA

  • 10-летняя гарантия
  • EVGA 750 G3: новое поколение мощности
  • с сертификатом 80 Plus Gold, с КПД 90% (115 В переменного тока) / 92 процента (220 В переменного тока до 240 В переменного тока) или выше при типичных нагрузках
  • Защита для тяжелых условий эксплуатации, включая OVP, UVP, OCP, OPP и SCP
  • Размер вентилятора / подшипник: 130 мм Гидравлический динамический подшипник для сверхтихой работы

от EVGA

  • EVGA 750 BQ «Отличное качество, отличная цена»
  • Сертификат 80 PLUS Bronze, эффективность 85% или выше при типичных нагрузках
  • Размер вентилятора / подшипник: 140-мм тефлоновый подшипник с наносталевым покрытием Тихий и интеллектуальный автоматический вентилятор для почти бесшумной работы
  • 5-летняя гарантия
  • Средства защиты для тяжелых условий эксплуатации, включая OVP, UVP, OCP, OPP и SCP

Автор: ARESGAME

  • Структура DC-DC обеспечивает очень стабильное выходное напряжение
  • Полумодульный игровой блок питания ATX 850 Вт
  • Полная защита, включая OVP / UVP / OPP / SCP / OCP
  • Сертификат 80 plus Gold, с КПД 90% или выше по сравнению с типовым нагрузки
  • Бесшумный и надежный 140-мм вентилятор

от EVGA

  • 100% японские конденсаторы, конструкция резонансной цепи LLC + конструкция преобразователя постоянного тока для улучшения 3.3В / 5В
  • Сертификат 80 plus Gold, с КПД 90% или выше при типичных нагрузках
  • Полностью модульный, чтобы уменьшить беспорядок и улучшить воздушный поток
  • Стабильность
  • Сверхпрочные защиты, включая OVP (защита от перенапряжения), UVP ( Защита от пониженного напряжения), OCP (защита от перегрузки по току), OPP (защита от перегрузки по мощности), SCP (защита от короткого замыкания) и OTP (защита от перегрева)
  • 10-летняя ограниченная гарантия и беспрецедентная поддержка клиентов EVGA
  • Вентилятор с двойным шарикоподшипником и режим EVGA eco для исключительной надежности и бесшумной работы

Автор: soulsens

  • Обратите внимание, что вам понадобится дополнительный адаптер Microsoft (не входит в комплект) при подключении к старой версии контроллера Xbox One.
  • Идеально подходит для различных игр, таких как Halo 5 Guardians, Metal Gear Solid, Call of Duty, Star Wars Battlefront, Overwatch, World of Warcraft Legion и т.д. его превосходная функция шумоподавления может улавливать звуки с большой чувствительностью и удалять шум, что позволяет четко доставлять или получать сообщения во время игры. поворотный регулятор громкости и отключение микрофона с помощью клавиш эффективно предотвращают переплетение 49-дюймового кабеля и позволяют легко регулировать громкость и отключать микрофон с помощью легкого управления громкостью с помощью одной клавиши отключения звука.
  • Длинный гибкий микрофон, очень удобный для регулировки угла наклона микрофона.
  • Стерео сабвуфер окружающего звучания: Чистый звук при работе из прочной латуни, великолепная изоляция окружающего шума и высокоточный 40-миллиметровый магнитный неодимовый динамик, точность акустического позиционирования повышают чувствительность динамика, обеспечивая яркое звуковое поле, четкость звука, звук, создающий ощущение удара. Светодиодные индикаторы на чашках наушников подчеркивают игровую атмосферу.
  • Многоплатформенная совместимость: поддержка PlayStation 4, нового Xbox One, ПК, Nintendo 3DS, ноутбука, PSP, планшета, iPad, компьютера, мобильного телефона Мути-точечный головной луч, соответствующий техническим характеристикам человеческого тела, может уменьшить нарушение слуха и пот тепла.Кожаный материал, приятный для кожи, для более длительного ношения

Автор: SDTC Tech

  • Тестовый стартер позволяет включать блок питания без подключения к материнской плате.
  • Инструмент перемычки для запуска 24-контактного блока питания ATX / EPS совместим с 20/24 контактным разъемом.
  • В перемычке используется кабель 1007 18AWG, обеспечивающий надежность при длительном использовании.
  • Часто используется при сборке / тестировании систем водяного охлаждения ПК, майнеров BTC, тестовых ламп, вентиляторов, жестких дисков или самого источника питания и т. Д.
  • 24-контактный штекер перемычки может запускать и запускать любой блок питания ATX / EPS самостоятельно.

от EVGA

  • 5-летняя гарантия
  • EVGA 850 BQ – «отличное качество, отличная стоимость
  • Сертификат 80 плюс бронза, эффективность 85% или выше при типичных нагрузках
  • Сверхпрочные защиты, включая OVP, UVP, OCP, OPP и SCP
  • Размер вентилятора / подшипник: 140-миллиметровый подшипник из тефлоновой наностали – тихий и интеллектуальный автоматический вентилятор для почти бесшумной работы

От Duracell

  • ГАРАНТИЯ ХРАНЕНИЯ 10 ЛЕТ
  • НАРУШЕНИЕ ГОРЬКОГО ВКУСА ПРИ ПРОГЛАТЫВАНИИ: Нетоксичное горькое покрытие помогает предотвратить случайное проглатывание.
  • ДОЛГОВЕЧНАЯ МОЩНОСТЬ: Надежное и эффективное питание для таких устройств, как брелки, пульты дистанционного управления, термометры и многие другие.
  • ДЕТСКАЯ УПАКОВКА: Практически невозможно открыть без ножниц.
  • # 1 БРЕНД НАДЕЖНЫХ АККУМУЛЯТОРОВ

от EVGA

  • EVGA 850 G3: новое поколение мощности
  • ПРИМЕЧАНИЕ. Заказчик должен знать, сколько мощности требуется для его системы; В зависимости от количества компонентов и мощности, потребляемой каждым из них, заказчику необходимо будет купить достаточно мощный источник питания для питания всего оборудования
  • Сверхмощные средства защиты, включая OVP, UVP, OCP, OPP и SCP
  • Размер вентилятора / Подшипник: 130-миллиметровый гидравлический динамический подшипник для бесшумной работы
  • 7-летняя гарантия, ПРИМЕЧАНИЕ: Пожалуйста, обратитесь к руководству пользователя в виде PDF-документа в разделе описания продукта.
  • Сертификат 80 PLUS Gold, 90% (115 В переменного тока) / 92 процентная эффективность (от 220 до 240 В переменного тока) или выше при типичных нагрузках

от EVGA

  • 10 лет
  • Сертификат 80 Plus Gold с КПД 90% (115 В переменного тока) / 92 процента (220 В ~ 240 В переменного тока) или выше при типичных нагрузках
  • Средства защиты для тяжелых условий эксплуатации, включая OVP, UVP, OCP, OPP, SCP и OTP
  • Размер вентилятора / подшипник: 135-миллиметровый гидродинамический подшипник
  • EVGA 650 G + «Новый золотой стандарт производительности и стоимости» цитируется: «Нам обещали золото, а этот – платину»

Автор: ARESGAME

  • Сертификат 80 plus Bronze, с КПД 85% или выше и очень стабильным выходным напряжением
  • Все кабели черные, без кетчупа и горчичного цвета
  • Бесшумный и прочный 120-мм вентилятор
  • Игровой блок питания ATX мощностью 500 Вт
  • Полная защита, включая OVP / УВП / ОПП / SCP

Магия и оболочка

  • Название продукта: 24-контактный разъем ATX для включения / выключения.Модель провода: 1007-18awg.
  • Подходит для тестирования блока питания ПК или других связанных компонентов.
  • Гнездовой патч-корд, длина: 50 см / 19,69 дюйма. Интерфейс: Стандартный штекер ATX 24Pin. Цвет: красный, черный.
  • 20/24-контактный кабель переключателя питания ATX / EPS позволяет легко включать и выключать питание ATX.
  • Красный светодиод показывает состояние переключателя питания.

от EVGA

  • Сертификат 80 PLUS Gold, КПД 90% (115 В переменного тока) / 92% (220 В ~ 240 В переменного тока) или выше при типичных нагрузках
  • 7-летняя ограниченная гарантия и беспрецедентная поддержка клиентов EVGA сверхтихая работа и увеличенный срок службы
  • Полностью модульная конструкция для уменьшения беспорядка и улучшения воздушного потока
  • Конденсаторы 100% японского производства + OVP, UVP, OCP, OPP, SCP и двойная защита OTP

Автор: ARESGAME

  • Все кабели черного цвета, без кетчупа и горчичного цвета.
  • Сертификат 80 plus Bronze, с КПД 85% или выше и очень стабильным выходным напряжением.
  • Полумодульный игровой блок питания ATX 750 Вт
  • Полная защита, включая OVP / UVP / OPP / SCP
  • Бесшумный и прочный 120-мм вентилятор

от EVGA

  • Средства защиты для тяжелых условий эксплуатации, включая OVP, UVP, OCP, OPP и SCP
  • EVGA 650 BQ «отличное качество, отличное соотношение цены и качества»
  • Сертификат 80 plus Bronze, эффективность 85% или выше при типичных нагрузках
  • Размер вентилятора / Подшипник: 140-миллиметровая тефлоновая нано-сталь Подшипник тихий и интеллектуальный автоматический вентилятор для почти бесшумной работы

По основам Amazon

  • питание 3 В и емкость 225 мАч; обеспечивает надежную работу
  • Модель батареи с гравировкой для легкой идентификации
  • Пакет из (4) сменных литиевых батарей типа «таблетка» CR2032 для небольших устройств
  • 8-летний срок хранения без утечек, идеально подходит для часов, калькуляторов, брелоков, Apple TV пульты дистанционного управления и другая небольшая электроника
  • Замена для BR2032, DL2032 и ECR2032
  • Размер каждой батареи 0.Диаметром 8 дюймов и толщиной 0,1 дюйма; с ограниченной годовой гарантией Amazon Basics

от Coolwin

  • Включить блок питания без материнской платы.
  • Может включать блок питания без материнской платы
  • Совместим с 20- и 24-контактными разъемами
  • Запуск и включение любого блока питания ATX / EPS самостоятельно.
  • Отлично подходит для майнеров BTC (Antminer, Block Erupter, Avalon и т. Д.)

Автор: WSDMAVIS

  • Незаменимый инструмент для ремонта мобильных телефонов.Совместимость со стабильным источником питания с высокой точностью и кабина может использоваться для ремонта любого мобильного телефона и домофона.
  • 650 мм.
  • Подходит для iPhone 6s 6 5s 5 4s 4, с USB. Длина кабеля: прибл.
  • Положительный и отрицательный двухполюсный выход (или вход), положительный и отрицательный полюса каждой группы проводов эффективно блокируются для предотвращения коротких замыканий .
  • Выходные линии зажима типа «крокодил» позволяют заряжать мобильные телефоны, зажимая ножки питания. Крючки четырех разных цветов подходят для телефона с ножками питания.
  • Универсальный комплект тестовых концов профессионального качества. Отлично подходит для источников питания постоянного тока, мультиметров и испытательного оборудования.

от EVGA

  • 10-летняя гарантия
  • Защита для тяжелых условий эксплуатации, включая OVP, UVP, OCP, OPP и SCP
  • EVGA 850 G3: новое поколение мощности
  • Размер вентилятора / подшипник: 130 мм Гидравлический динамический подшипник для сверхтихой работы
  • Сертификат 80 PLUS Gold, КПД 90% (115 В переменного тока) / 92 процента (220 В ~ 240 В переменного тока) или выше при типичных нагрузках
Похожие сообщения:

от EVGA

  • Сертификат 80 PLUS Gold, с КПД 90% (115 В переменного тока) / 92% (220 В ~ 240 В переменного тока) или выше при типичных нагрузках
  • 10 лет
  • Размер вентилятора / подшипник: 135 мм гидравлический динамический подшипник
  • EVGA 1000 G + – « Новый золотой стандарт производительности и ценности »- JonnyGURU процитировал:« Нам обещали золото, но этот – платину ».
  • Сверхмощные средства защиты, включая OVP, UVP, OCP, OPP, SCP и OTP

Автор: ARESGAME

  • Блок питания для игрового ПК ATX на 550 Вт
  • Полная защита, включая OVP / UVP / OPP / SCP
  • Все кабели черные, а не кетчупа и горчичного цвета
  • Бесшумный и надежный 120-миллиметровый вентилятор
  • Сертификат 80 плюс бронза, эффективность 85% или выше и очень стабильное выходное напряжение

от EVGA

  • Полностью модульная конструкция для уменьшения беспорядка и улучшения воздушного потока
  • Конденсаторы 100% японского производства + OVP, UVP, OCP, OPP, SCP и двойная защита OTP
  • 7-летняя ограниченная гарантия и беспрецедентная поддержка клиентов EVGA
  • Сертификат 80 PLUS Gold, с КПД 90% (115 В переменного тока) / 92% (220 В ~ 240 В переменного тока) или выше при типичных нагрузках
  • Гидравлический вентилятор с динамическим подшипником и режим EVGA Auto ECO для бесшумной работы и увеличения срока службы

Автор: NILINLEI

  • Сенсорная микродвижущая плечевая кнопка: эта плечевая кнопка геймпада использует сенсорный микропереключатель, без задержки предварительной загрузки, оптимизированный и настроенный для ускорения времени отклика в игре.
  • Вращение коромысла высокой интенсивности: используется автоматический тестер качания сжатия, который может выдерживать вращение качания высокой интенсивности, строго выполнять испытание на вращение коромысла и нажатие кнопки, а также испытание на вращение для обеспечения высокого качества и долговечности.
  • Дизайн раскладки клавиш: этот игровой контроллер выполняет дизайн компоновки клавиш ABXY, знакомое положение клавиш, нет необходимости специализироваться на ручке, позволяет вам ознакомиться с работой игрового контроллера.
  • Мы очень рады вам помочь.
  • Сервис: Мы искренние продавцы, если у вас есть какие-либо вопросы или проблемы, пожалуйста, обращайтесь к нам. с обычными мобильными телефонами с экраном 3,56,3 дюйма, обеспечивая при этом легкий и портативный.

от EVGA

  • Конденсаторы 100% японского производства обеспечивают долгосрочную надежность
  • 10 лет
  • Размер вентилятора / подшипник: 140 мм двойной шарикоподшипник
  • EVGA 750 P2 – «Платиновые характеристики» – Полностью модульная конструкция для уменьшения беспорядка и улучшения воздушного потока
  • 80 PLUS Platinum сертифицированный, с КПД 92% (115 В переменного тока) / 94% (220 В ~ 240 В переменного тока) или выше при типичных нагрузках

от EVGA

  • EVGA 1000 G3 «Следующее поколение мощности»
  • Гарантия 10 лет
  • Рабочая температура от 0 ° до 50 ° C
  • Размер вентилятора / подшипник: 130-миллиметровый гидравлический динамический подшипник для сверхтихой работы
  • Сертификат 80 PLUS Gold, с КПД 90 процентов (115 В переменного тока) / 92 процента (220 В ~ 240 В переменного тока) или выше при типичных нагрузках
  • Средства защиты для тяжелых условий эксплуатации, включая OVP, UVP, OCP, OPP и SCP

По coolerguys

  • СООТВЕТСТВУЕТ БЕЗОПАСНОСТИ: Имеет сертификат CE и признан UL.
  • ВОЗМОЖНОСТЬ ПО ВСЕМУ МИРУ: Номинальное входное напряжение 110–240 В переменного тока, поэтому его можно использовать во всем мире.
  • ПРОСТОЕ ПОДКЛЮЧЕНИЕ: Подключайте любые стандартные 3- или 4-контактные вентиляторы PWM напрямую к этому источнику питания.

от EVGA

  • Конденсаторы 100% японского производства, + конструкция преобразователя постоянного тока для улучшения 3,3 В
  • /5 В
  • Сертификат 80 PLUS Gold, с КПД 90% или выше при типичных нагрузках
  • Вентилятор с двойным шарикоподшипником и режим EVGA ECO для ультра- тихая работа и увеличенный срок службы
  • 10-летняя ограниченная гарантия и беспрецедентная поддержка клиентов EVGA
  • Стабильность
  • Полностью модульная конструкция для уменьшения беспорядка и улучшения воздушного потока

От CRJ Electronics

  • 20/24-контактный кабель переключателя питания ATX / EPS позволяет легко включать и выключать источник питания ATX
  • Идеально подходит для использования в системах водяного охлаждения для включения и выключения импульсного насоса водяного охлаждения
  • Общая длина кабеля (включая разъемы ): 22 ″
  • Переключатель питания с красной светодиодной подсветкой указывает, когда источник питания включен
  • Высококачественная конструкция с черной оплеткой высокой плотности и проводом 18 AWG

от EVGA

  • Размер вентилятора / подшипник: 140 мм двойной шарикоподшипник
  • Непревзойденная 10-летняя поддержка клиентов EVGA
  • Сертификация 80 PLUS Titanium, КПД 94% (115 В переменного тока) / 96% (220 В переменного тока ~ 240 В переменного тока) или выше при типичных нагрузках
  • Heavyduty защиты, включая OVP (защита от перенапряжения), UVP (защита от пониженного напряжения), OCP (защита от перегрузки по току), OPP (защита от перенапряжения), SCP (защита от короткого замыкания) и OTP (защита от перегрева)
  • EVGA 1000 T2 – «Ничто не сравнится с титаном»

Лучшие бренды

Покупка товара у известного производителя, который обеспечивает высокую стоимость бренда, является одним из самых важных моментов.Основываясь на моем исследовании, вот лучшие бренды, которые делают лучшие тестеры блоков питания для ПК.

  • Fuhengli
  • Optimal Shop
  • Comidox
  • Kingwin
  • axGear
  • ASHATA
  • Soapow
  • Yencoly
  • Ciglow
  • Buyer7

  • Sutinna’s
  • Хотя цель этого списка – помочь вам выбрать лучший вариант для ваших нужд. Это руководство поможет вам принять осознанное решение о покупке.Вот несколько вещей, которые следует учитывать при выборе тестеров блоков питания ПК.

    1. Характеристики

    Нет смысла покупать тестеры блоков питания для ПК, которые не соответствуют вашим потребностям. Иногда даже самый лучший вариант не имеет всех необходимых вам вариантов. Вот почему перечислите все ваши требования к функциям и убедитесь, что выбранный вами вариант идет со всеми из них.

    2. Бюджет

    Бюджет играет важную роль, если бы не бюджет, разве все не купили бы самый дорогой вариант? Однако, прежде чем вы определитесь с бюджетом, я бы порекомендовал вам составить список функций, которые вам понадобятся.Если функция, которая вам нужна больше всего, недоступна в рамках вашего бюджетного диапазона, тогда нет смысла покупать ее, не так ли?

    Мой совет – убедитесь, что продукт обладает всеми необходимыми функциями, а затем определитесь с бюджетом. Если выбранный вами продукт не обладает всеми необходимыми функциями, вам следует подумать об увеличении бюджета.

    3. Цена – качество

    Бывают случаи, когда вам встречаются различные тестеры блоков питания ПК, которые должны иметь все необходимые вам функции.Однако разница в цене должна существовать. В такой ситуации рекомендуется оценить каждую функцию и убедиться, что вы не переплачиваете за функцию, которую не собираетесь использовать.

    4. Торговая марка, поддержка клиентов и гарантия

    Покупка продукта известного бренда очень важна. Это не только гарантирует высокое качество сборки, но и обеспечивает лучшую поддержку клиентов.

    Вы также должны убедиться, что на него есть приличная гарантия, она действительно поможет в случае выхода продукта из строя из-за производственных дефектов.Кроме того, ремонт в течение гарантийного срока, как правило, бесплатный (в зависимости от условий обслуживания).

    5. Отдельные обзоры продуктов

    Вам не нужно просматривать отдельные обзоры тестеров блоков питания каждого ПК в этом списке. Однако выберите 2–3 варианта, в которых есть все технические аспекты, в соответствии с вашими потребностями. Когда вы будете готовы, перейдите на YouTube / Amazon и посмотрите видео / отзывы клиентов, чтобы убедиться, что существующие покупатели довольны продуктом.

    Часто задаваемые вопросы

    Какие тестеры блоков питания для ПК самые лучшие?

    Согласно моим исследованиям, наилучшим вариантом является EVGA Supernova 1600 G +, 80+ Gold 1600 Вт, полностью модульная, 10-летняя гарантия, включая бесплатный тестер при включении питания, блок питания 220-GP-1600-X1.

    Является ли EVGA надежным брендом?

    Это один из лучших брендов, он не только выпускает самые популярные тестеры блоков питания для ПК, но также известен своим исключительным сервисом.

    Какой самый дешевый, но мощный тестер блоков питания ПК?

    По моему мнению, EVGA 220-G3-0750-X1 Super Nova 750 G3, 80 Plus Gold 750 Вт, полностью модульный, экономичный режим с новым вентилятором HDB, 10-летняя гарантия, включает самопроверку при включении, компактный размер 150 мм, блок питания является одним из самых дешевых доступных вариантов, но при этом обладает всеми функциями.

    Идут ли сделки?

    Некоторые из опций в нашей статье в настоящее время доступны по сниженной цене. Тем не менее, проверьте список продуктов, чтобы найти дополнительную информацию.

    Какие бренды следует учитывать при покупке?

    На основании моего исследования это 5 ведущих брендов: EVGA, EVGA, EVGA, EVGA и EVGA.

    Стоит ли покупать его в Интернете или перейти в офлайн-магазин?

    Покупки в Интернете имеют несколько преимуществ, таких как сниженная цена, быстрая доставка на дом.Однако, если вы торопитесь или можете найти товар по более низкой цене на офлайн-рынке, подумайте о посещении офлайн-магазина.

    Приговор

    Выбрать подходящий продукт – непростая задача, и для многих из них это может занять много времени. Тем не менее, с помощью этого руководства моя цель – помочь вам, ребята, найти идеальные тестеры блоков питания ПК для ваших нужд.

    Я провел огромное исследование, чтобы убедиться, что перечисленные мной варианты являются одними из лучших. Как уже упоминалось выше, я также опросил многих экспертов, чтобы убедиться в высоком качестве представленных моделей.

    Я надеюсь, что вы сможете найти подходящие тестеры блоков питания ПК для вашего использования. Если вы все еще не можете его найти, не стесняйтесь оставлять комментарии ниже или свяжитесь со мной.

    Как собрать ПК – Блок питания

    Выбор компонентов: PSU

    Выбор блока питания – это больше, чем просто знание того, сколько энергии вам понадобится для питания вашей сборки, но также и то, какие функции лучше всего подходят для вашей сборки и строительные предпочтения. Есть также ряд функций, которые могут вам понадобиться в блоке питания, например, режим Zero RPM, который позволяет блоку питания работать совершенно бесшумно, совместимость с Corsair Link, которая позволяет контролировать ваш блок питания, модульность, позволяющая удалять неиспользуемые кабели и другие уровни эффективности, позволяющие сэкономить деньги на счетах за электроэнергию.

    Что подойдет к моему шасси?

    Большинство шасси имеют стандартный форм-фактор ATX. И хотя есть также корпуса для материнских плат micro ATX и mini ITX, они, как правило, также используют стандартный блок питания ATX.

    Стандартный блок питания ATX всегда имеет задние размеры 150 мм x 86 мм:

    Может варьироваться глубина блока:

    Итак, первое, что нужно сделать: проверьте, сколько места у вас есть для источник питания.Учтите, что кабели должны выходить из передней части блока питания, и вам понадобится доступ к этим кабелям.

    Следующее, что часто задают, это “какой должна быть ориентация блока питания?” На большинстве изображений вы увидите вентилятор блока питания вверх, но суть в том, что блок питания может быть установлен либо вентилятором вверх, либо вниз. Так что это не должно вызывать беспокойства, пока всасывающий вентилятор не заблокирован.

    Немодульный, полумодульный или полностью модульный?

    Модульность блока питания определяет, какие кабели, если они есть, могут быть удалены из корпуса блока питания.Если источник питания не является модульным, это означает, что ни один из выходных кабелей постоянного тока не может быть удален. Для многих это нормально. Возможно, вам понадобятся все кабели или вам нужно где-то спрятать лишние кабели. Но когда источник питания является модульным, то есть вы можете удалить определенные кабели постоянного тока из корпуса, вам не нужно беспокоиться о том, чтобы скрыть неиспользуемые кабели. Зачем прятать неиспользуемые кабели? Ну, во-первых, это выглядит хорошо. Другое преимущество – воздушный поток. Каждая лишняя деталь, которая проходит через воздушный поток внутри шасси, будет нарушать этот воздушный поток; даже если это что-то такое маленькое, как кабель питания.Когда у вас есть полумодульный источник питания, обычно кабели, которые нельзя отсоединить, – это кабели, которые понадобятся каждому пользователю, независимо от того, какой ПК он собирает. Возьмем модульную серию CX, например:

    CX500M, изображенный выше, имеет два фиксированных кабеля: 24-контактный, который требуется для любой стандартной материнской платы ATX, и 8-контактный, который используется для дополнительного питания ЦП. Кроме этих двух, все остальные кабели являются модульными. Значение: каждый кабель SATA, Molex или PCIe может быть добавлен или удален в зависимости от строящейся машины, на которую будет подавать этот блок питания.

    Полностью модульный блок питания, такой как серия RM (это блок питания, показанный в самом начале этого сообщения в блоге), НЕ имеет фиксированных кабелей. Лучшая часть этого – во время начальной сборки ПК. Вы можете прикрепить болтами все свое оборудование, включая блок питания, без каких-либо кабелей, которые мешали бы вам. Затем, в качестве последнего шага сборки, вы можете добавить любые необходимые кабели и скрыть их любым способом. Даже спрятать кабели проще, потому что вы можете оставить кабель отсоединенным от блока питания и всего, что вам нужно для питания, пока вы не закончите его скрывать.

    Если вас беспокоит бюджет, помните, что модульность не всегда бесплатна. Тот CX500M, который вы видите там, продается примерно за 70 долларов. Если вам нужно больше мощности, но у вас есть только 70 долларов, которые можно потратить на блок питания, вы можете вместо этого приобрести CX600, который не является модульным. Так что убедитесь, что вы расставили приоритеты!

    Какая мощность мне нужна?

    Теперь, когда вы знаете, какой физический размер может поместиться в вашем шасси, пришло время подумать, сколько энергии вам понадобится. Первое, что нужно помнить, это то, что блок питания компьютера выдает ровно столько энергии, сколько требуется.Таким образом, даже если у вас есть блок питания на 1000 Вт, если вашему компьютеру нужно только 350 Вт, блок питания будет выдавать только 350 Вт. Это не значит, что вы должны получить максимально возможный блок питания, даже если вы знаете, что ваш компьютер не будет потреблять столько энергии, но лучше получить что-то большее, чем то, что вам нужно, чем что-то, что едва достаточно.

    Для начала попробуем разобраться, сколько энергии нам нужно. На самом деле это не так уж сложно. И CPU, и GPU получают коэффициент, называемый расчетной тепловой мощностью или TDP.Это число относится к максимальному количеству тепловых ватт, которое система охлаждения должна отводить и поддерживать максимальную рабочую температуру процессора или графического процессора или ниже. Вы можете легко определить максимальную потребляемую мощность вашего процессора и графического процессора, используя очень простой поиск в Google. Даже в Википедии есть таблицы, в которых перечислено большинство ядер ЦП, поэтому я считаю, что это хороший справочник.

    Шесть ядер ЦП, показанные ниже, являются мощными и потребляют много энергии при 100% нагрузке. Шестиядерные процессоры Phenom II на базе AMD Thuban (слева) и шестиядерные процессоры Intel Gulftown Core i7 (справа) имеют TDP 125 Вт и 130 Вт соответственно, согласно их производителям.

    Конечно, ЦП – не единственный компонент на материнской плате, который рассеивает мощность. Мы должны пойти дальше и разрешить 75 Вт для компонентов на самой материнской плате. Хотя это число может варьироваться, 75 Вт – это неплохое консервативное число, которое является адекватной приблизительной оценкой для использования при выборе блока питания.

    Современные графические процессоры могут потреблять огромное количество энергии. Некоторые карты с двумя графическими процессорами рассчитаны на почти 400 Вт для своего TDP. Nvidia Titan рассчитана на TDP 250 Вт, а Radeon HD 7990 с двумя графическими процессорами на одной карте имеет TDP 375 Вт !.

    Опять же, информация о TDP доступна в Интернете. Введите «Nvidia Titan TDP» или «Radeon HD 7990 TDP» в Google или Bing, и вы поймете, что мы имеем в виду.

    Планируете ли вы использовать два или более графических процессора с использованием SLI или CrossFire? Если да, то соответственно умножьте TDP вашего графического процессора. Также убедитесь, что вы подсчитали количество разъемов питания PCIe, которые вам понадобятся для вашей видеокарты. Если у вас есть две карты, для каждой из которых требуется два разъема питания PCIe, блок питания только с двумя разъемами питания PCIe не будет работать, если вы не используете адаптеры.

    Большинство других элементов, которые входят в состав компьютера, потребляют относительно мало дополнительной энергии. На этикетке большинства этих компонентов указано требование к питанию, которое можно найти на веб-сайте производителя.

    Теперь возьмите свои числа и сложите их все. Поскольку это число является максимальной потребляемой мощностью всех ваших добавленных компонентов, вы не собираетесь, чтобы потребовалось блока питания такого размера, но это не значит, что вам не следует рассматривать один такой большой или больший, если бюджет позволяет.Почему?

    Обычно максимальная эффективность вашего блока питания составляет от 40% до 60% от его максимальной производительности. Взгляните на этот график, который представляет эффективность RM750 от 20% до 100% нагрузки:

    Здесь мы видим, что пиковая эффективность соответствует 50% нагрузке и чуть более 90% эффективности при питании от сети 115 В переменного тока.

    Еще одна вещь, которую следует учитывать, это то, что вы, вероятно, будете почти полностью загружены, когда играете в игры. Большую часть времени, когда вы используете свой компьютер, у вас будет нагрузка от 90 до 120 Вт, так что вы не хотите слишком сходить с ума.Итак, используя приведенный выше график, мы видим, что наша эффективность составляет около 88,5% при таких низких нагрузках, что все же лучше, чем эффективность 87%, которую мы наблюдаем при полной нагрузке.

    Еще одна вещь, которую следует учитывать при использовании блоков питания Corsair, – это когда вентилятор действительно включается. В типичной комнате с температурой 25 ° C (77 ° F) вентилятор RM750 включается при нагрузке 40% (300 Вт). Оказавшись там, вентилятор обычно вращается со скоростью менее 700 об / мин, пока вы находитесь под нагрузкой 60% (450 Вт).

    Вот посмотрите на кривую шума вентилятора для RM750:

    Теперь предположим, что то, что мы вычислили ранее, определило, что наша максимальная нагрузка будет 450 Вт.Итак, мы хотим блок питания на 450 Вт? Давайте посмотрим на кривую эффективности:

    При нагрузке 50% и 100% 450 Вт является более эффективным источником питания, чем 750 Вт при нагрузках 50 и 100%. Но при 100% нагрузке 450 Вт все равно менее эффективен, чем 750 Вт. А при 120 Вт 450 Вт настолько же эффективен, как 750 Вт при 120 Вт.

    А шум вентилятора?

    Вентилятор 450 Вт работает тише, дольше, чем вентилятор 750 Вт, но если мы подсчитали, что наша максимальная нагрузка будет 450 Вт, наш вентилятор будет громче, чем вентилятор 750 Вт при мощности выше 370 Вт. .Он даже не без вентилятора между 180 Вт и 300 Вт, в то время как RM750 все равно не будет шума вентилятора при нагрузках до 300 Вт. Поэтому, если бы я выбрал блок питания, потому что мне нужен был самый тихий и эффективный блок питания, я бы выбрал 750 Вт.

    А как насчет HX, AX или AXi и как насчет разной эффективности?

    Нет никаких сомнений в том, что у Corsair есть несколько линеек блоков питания на выбор. Хотя обе серии RM и HX имеют рейтинг 80 Plus Gold, на первый взгляд, можно считать, что серия RM является лучшим выбором, поскольку она полностью модульная, а серия HX – только полумодульная.Но HX рассчитан на 50 ° C, а не на 40 ° C, и использует все японские конденсаторы, поэтому HX более надежен, чем RM. Он имеет более жесткое регулирование напряжения и 7-летнюю гарантию вместо 5-летней. Итак, хотя RM – фантастический источник питания, HX намного лучше. А зачем вам лучший блок питания? К счастью, об этом есть запись в блоге!

    Есть еще вопрос эффективности. 80 плюс бронза против золота. 80 плюс золото против платины. Каждый уровень эффективности требует разной степени эффективности при различных условиях нагрузки.Например, 80 Plus Gold означает, что блок питания имеет КПД не менее 87% при нагрузке 20%, КПД 90% при нагрузке 50% и КПД 87% при полной нагрузке. 80 Plus Platinum имеет эффективность 90%, 92% и 89% при нагрузках 20%, 50% и 100% соответственно.

    Хотя окупаемость инвестиций спорна (и я привел здесь несколько примеров), когда источник питания более эффективен, он не только потребляет меньше энергии от стены, но и выделяет меньше тепла. Меньшее количество тепла означает, что вентилятор в блоке питания не должен работать так много или быстро, и поэтому блок питания, как правило, работает тише.

    А еще есть ссылка

    Как вы можете называть себя супер-ботаником, если вы не можете точно сказать, сколько энергии выдает ваш блок питания, играя в Battlefield 4, по сравнению с Candy Crush Saga? Хм? Что ж, с Corsair Link вы МОЖЕТЕ! Программное обеспечение Link отслеживает и позволяет контролировать различные компоненты Corsair. Температуру и скорость вращения вентилятора можно контролировать на всем компьютере, а также можно изменять цвет маленьких световых полосок, которые вы можете наклеить внутри корпуса.С серией блоков питания RM вы можете увидеть, с какой скоростью вращается ваш вентилятор и сколько энергии вырабатывает ваша шина +12 В (а поскольку шина +12 В составляет 95% от того, что использует ваш компьютер, у вас есть довольно хорошее представление о том, как сколько энергии вы используете. Источники питания AXi предоставляют вам гораздо больше возможностей для контроля и управления. Вы можете контролировать +12 В, + 3,3 В и + 5 В, общую выходную мощность, общую потребляемую мощность, внутреннюю температуру блока питания, а также а также скорость вентилятора.Вы даже можете изменить скорость вентилятора.Например: если вы позволите вентилятору блока питания всегда вращаться, он может не вращаться так быстро при более высоких нагрузках, потому что вы поддерживаете циркуляцию воздуха.

    В заключение …

    Надеюсь, сегодня я показал вам, что вы можете сузить выбор блоков питания, исходя из двух критериев: на сколько общей мощности способен блок питания и насколько громким он становится на разных уровнях. загружает? И помните, что больший блок питания НЕ означает, что вы собираетесь использовать больше энергии, поэтому, если позволяет бюджет, вы можете уйти с чем-то более тихим, чем то, что может предложить блок питания меньшего размера. Отсюда вы можете определить, насколько эффективным должен быть ваш блок питания, учитывая, сколько денег он сэкономит вам на счетах за электроэнергию и насколько холоднее будет работать блок питания, что также может определить звуковой профиль Блок.И не забудьте принять во внимание такие функции, как модульность и возможность мониторинга программного обеспечения Corsair Link.

    Руководство покупателя источника питания

    : КПД

    Оперативность, результативность, результативность!

    «Сколько я получу, если вложу столько?»

    Хотя это правильный вопрос, нам, вероятно, следует его немного перефразировать. Обычно вы называете соотношение между мощностью, потребляемой (от стенной бородавки), и количеством мощности, которая выводится (на компьютер) эффективностью.Чем меньше мощность, которую должен потреблять блок питания для вывода определенной целевой мощности, тем выше его эффективность.

    Пока мы занимаемся этим, мы хотели бы прояснить очень распространенное заблуждение относительно эффективности. Если у вас есть блок питания мощностью 500 Вт с КПД 75 процентов, это не значит, что он может выводить на ПК только 375 Вт. Вместо этого он должен потреблять 666 Вт от стены, чтобы обеспечить компьютер мощностью 500 Вт. Итак, правильная версия нашего вопроса: «Сколько энергии мой компьютер потребляет от стены, когда ему требуется определенное количество энергии?»

    Пример:

    Предположим, мы действительно продвигаем наш ПК, и ему требуется 600 Вт.Наш блок питания имеет КПД 80%. Вот что он действительно извлекает из сети:

    600 Вт / 0,80 = 750 Вт

    В идеале, наш компьютер будет потреблять около 750 Вт от стены под нагрузкой. Остальные 150 Вт попросту тратятся впустую и обычно рассеиваются блоком питания в виде тепла.

    Нет ничего постоянного, даже потери

    Однако наш приведенный выше пример верен только в идеальном мире, и поскольку у нас нет сверхэффективной технологии Star Trek, все обычно не так однозначно.Компьютер используется в различных состояниях, от холостого хода до полного открытия дроссельной заслонки, если хотите, со всеми оттенками между ними. Очевидно, что он будет использовать наименьшее количество энергии в режиме ожидания на рабочем столе, больше при обычном использовании и при полной нагрузке (3D-графика или интенсивные вычисления). Таким образом, мы не можем ожидать постоянного потребления энергии. Вместо этого мы должны принять как минимум два состояния, а именно простоя и нагрузку. Теперь давайте посмотрим на эффективность нашего гипотетического блока питания мощностью 600 Вт при различных нагрузках.

    Угу; что это? Кажется, что наше красивое и простое объяснение на этом графике не по форме.Глядя на кривую, мы видим, что пиковый КПД блока питания достигает примерно 50% от номинальной мощности.

    Итак, умный наблюдатель предположил бы, что простое увеличение мощности блока питания в два раза должно решить проблему. Хотя в принципе это правильно, наш полезный друг кое-что забыл: состояние ожидания. И вот тут-то и возникают проблемы с современными импульсными блоками питания. Если их нагрузка упадет ниже 10%, КПД упадет до 50 или 60%, а возможно, даже меньше. Как ни странно, эта ситуация только усугубляется механизмами энергосбережения, реализованными в современных компонентах ПК.Например, мощная система с хорошей видеокартой может потреблять всего 65 Вт в режиме ожидания, но потребляет хорошие 500 Вт под нагрузкой. Таким образом, вы должны убедиться, что блок питания не подвергается перенапряжению или недооценке.

    Пример:

    На этот раз, допустим, наш блок питания мощностью 600 Вт подает в систему 65 Вт. Какой нагрузке это соответствует?

    (100% / 600 Вт) * 65 Вт = 10,83%

    Теперь взгляните на нашу диаграмму, и вы увидите, что все выглядит не очень хорошо.Повторим наш расчет, на этот раз предполагая КПД 68%.

    65 Вт / 0,68 = 95,6 Вт

    Несмотря на то, что системе действительно требуется всего 65 Вт, блок питания потребляет почти 100 Вт от стены и превращает оставшиеся 30 Вт в тепло. И это цифры для более эффективного из двух гипотетических источников питания! Чтобы не забегать вперед, на этой диаграмме было – это – пара кривых эффективности, одна для дешевого блока питания, а другая – для более дорогого.И разве вы не знали, что якобы дешевый (и вымышленный) блок питания DragonMegaHyperCombatUltra за 30 баксов оказывается очень мощным, когда система простаивает, что в конечном итоге увеличивает ваши счета за электроэнергию.

    Опять же, это лишь гипотетический пример. В качестве следующего трюка мы хотели бы показать вам, что на самом деле происходит . Оказывается, мы легко можем учесть влияние эффективности в наших расчетах. Да, и так же легко доказать, что дешевые блоки питания часто оказываются намного дороже, чем вы думаете в долгосрочной перспективе.

    Лучший блок питания для компьютерных игр в 2021 году

    Лучший блок питания, вероятно, не будет в верхней части вашего списка для вашего следующего проекта сборки игрового ПК, но это по-прежнему одно из самых важных решений, которые вы примете. Блок питания – это сердце вашего ПК; он питает все компоненты вашей машины, и если ваш блок питания выходит из строя, он может забрать с собой все остальное.

    От центрального процессора до вашей драгоценной видеокарты – все в вашем ПК оснащено лучшим блоком питания, который вы можете купить, поэтому вам следует обратить особое внимание, когда придет время выбирать следующий блок питания.Помните, что без правильного источника питания вы рискуете превратить свой драгоценный игровой ПК в дорогостоящее пресс-папье.

    Не хотите строить?

    Если сборка ПК не является частью вашего набора навыков, посмотрите наши руководства по лучшим игровым ПК и лучшим игровым ноутбукам, которые могут дать вам максимальную отдачу от затраченных средств и избавить вас от головной боли.

    Хорошего блока питания хватит на несколько сборок системы. Итак, сделайте хорошее вложение сейчас, и вам не придется тратить лишние деньги при следующем обновлении.Не бойтесь переборщить – несколько лет назад блоки питания большой емкости были менее эффективны при более легких нагрузках, но теперь это не так. Если вы выберете современный блок питания Gold или более высокой эффективности, у вас не будет низкой эффективности при малых нагрузках, независимо от его мощности.

    Intel в своей новейшей спецификации ATX (v2.53) установила некоторые требования к эффективности при низкой нагрузке, согласно которым каждый блок питания должен иметь КПД более 70% при мощности 10 Вт (<500 Вт) или 2% от максимальной. расчетные нагрузки.Это требование вступает в силу с июля 2020 года, поэтому каждый блок питания, соответствующий спецификации ATX12V v2.53, должен быть эффективен и при более легких нагрузках.

    Помимо требований к низкой эффективности, Intel также включила некоторые новые требования к синхронизации блоков питания в свою последнюю спецификацию, касающиеся альтернативного спящего режима (ASM), который обеспечивает сверхбыстрое пробуждение системы из спящего режима. Современный режим ожидания Microsoft – это пример ASM. Хотя при написании этих строк нет материнских плат, совместимых с ASM, блоки питания служат для многих сборок систем, но всегда стоит ориентироваться на будущее.

    Лучший блок питания для компьютерных игр

    (Изображение предоставлено Corsair)

    1. Corsair RM750x (2021)

    Лучший блок питания для высокопроизводительных видеокарт

    Технические характеристики

    Производитель (OEM): CWT

    Макс. Выход постоянного тока: 750 Вт

    Эффективность: 80 PLUS Gold

    Форм-фактор: ATX12V v2.4, EPS 2.92

    Шум: Cybenetics A- (25-30 дБА)

    Охлаждение: 140-мм вентилятор Mag Lev (NR140ML)

    Модульность: полностью модульная

    Разъемы EPS: 2

    Разъемы PCIe: 4 (на два кабеля)

    Гарантия: 10 лет

    Причины для покупки

    + Высокая общая производительность + вентилятор с магнитной левитацией + Полностью модульный + десятилетний гарантия

    Причины, по которым следует избегать

    – Точки срабатывания высокого OCP на второстепенных рельсах – Профиль скорости вентилятора может быть более ослаблен – В кабельных конденсаторах

    Пришло время компании Corsair внести некоторые изменения в свою популярную линейку источников питания RMx с тех пор, как конкуренция в этом сегменте рынка ужесточилась со стороны таких компаний, как Seasonic Focus GX, XPG Core Reactor, Super Flower Leadex V и т. д.

    Действительно, задача непростая, поскольку существующие блоки RMx производились всего три года и обеспечивали отличную производительность наряду с бесшумной работой. В большинстве случаев, когда вы пытаетесь улучшить что-то уже хорошее, многое может пойти не так, но, к счастью, это не относится к новой линейке Corsair RMx.

    Новая линейка Corsair RMx (2021) состоит из пяти моделей мощностью от 550 до 1000 Вт, и основные отличия от предыдущих моделей:

    • Вентилятор с магнитной левитацией для увеличения срока службы при высоких рабочих температурах
    • Современный режим ожидания совместимость для быстрого выхода из спящего режима
    • Высокая эффективность при легких и очень легких нагрузках
    • Три разъема EPS с блоками питания мощностью 1000 и 850 Вт
    • Сертификат 80 PLUS Gold

    Новый RM750x значительно превосходит своего предшественника по производительности, хотя и теряет средний уровень шума из-за бесшумной работы старой модели.Тем не менее, новую модель нельзя назвать шумной, потому что она имеет рейтинг Cybenetics A- со средним уровнем шума, близким к 28 дБА.

    Единственная область, которая требует небольшого улучшения, – это КПД при высоких нагрузках, что является основной причиной не очень конкурентоспособной средней эффективности. Тем не менее, КПД при легких нагрузках заоблачен.

    И, наконец, очень приветствуется обновление вентилятора. Он повышает надежность даже в суровых условиях, когда у большинства винтовочных вентиляторов и вентиляторов с гидродинамическими подшипниками в долгосрочной перспективе возникнут проблемы.Благодаря двум разъемам EPS и четырем разъемам PCIe в двух кабелях, этот блок питания сможет работать с мощной игровой системой с мощностью, достаточной для работы с GeForce RTX 3080.

    (Изображение предоставлено Seasonic)

    2. Seasonic Prime Titanium TX- 1000

    Лучший блок питания мощностью 1 кВт

    Технические характеристики

    Производитель (OEM): Seasonic

    Макс. Выход постоянного тока: 1000 Вт

    Эффективность: 80 PLUS Titanium

    Форм-фактор: ATX12V v2.4, EPS 2.92

    Шум: Cybenetics A- (25-30 дБА)

    Охлаждение: 135 мм вентилятор FDB (HA13525M12F-Z)

    Модульность: Полностью модульная

    Разъемы EPS: 2

    Разъемы PCIe: 6 (все на выделенных кабелях)

    Гарантия: 12 лет

    Причины для покупки

    + Высокая производительность и бесшумная работа + Высококачественные компоненты и верх качество сборки + Полностью модульная конструкция + 12-летняя гарантия

    Причины, по которым следует избегать

    – Высокая настройка OCP на всех рельсах, особенно на второстепенных – Высокий пусковой ток при 115 В

    Seasonic сорвала джекпот со своей платформой Prime, которая начинается с Gold эффективность и вплоть до Titanium.Несколько влиятельных брендов уже использовали базовую платформу Seasonic в своих собственных блоках питания, в том числе Asus с его ROG Thor 1200W, линейкой Corsair AX и Antec с ее легендарной линией Signature.

    Если бы Seasonic могла производить больше этих устройств, я бы ожидал, что больше брендов выстроятся в очередь на их поставку, несмотря на их высокие цены. Большинство покупателей, к сожалению, отдают предпочтение малоэффективным и более доступным блокам питания. Тем не менее, когда OEM-производитель достаточно уверен, чтобы предоставить платформу с двенадцатилетней гарантией, вы знаете, что это пуленепробиваемый продукт.

    Seasonic TX-1000 – отличный блок питания с первоклассным качеством сборки. Помимо отличной пайки, он также повсюду использует японские конденсаторы, в том числе много полимерных крышек, помимо электролитических, и вентилятор с гидродинамическим подшипником.

    Инженеры Seasonic сделали все возможное, чтобы обеспечить заоблачный КПД во всех регионах нагрузки и одновременно бесшумную работу, а также повышенную надежность. С точки зрения производительности этот блок питания относится к высшей лиге, поскольку он обеспечивает жесткое регулирование нагрузки на всех рельсах, имеет потрясающее подавление пульсаций без использования раздражающих встроенных колпачков, а также его время работы велико.Вдобавок ко всему, эффективность шины 5VSB высока, а при малых нагрузках блок питания показывает одни из самых высоких показателей эффективности, которые мы когда-либо видели.

    Еще одним достоинством TX-1000 является наличие шести разъемов PCIe на выделенных кабелях. У вас не возникнет проблем с питанием энергоемких видеокарт, если следует избегать использования одного кабеля с двумя разъемами PCIe.

    (Изображение предоставлено Corsair)

    3. Corsair CX450

    Лучший дешевый блок питания

    Технические характеристики

    Производитель (OEM): CWT или Great Wall

    Макс.Выход постоянного тока: 450 Вт

    Эффективность: 80 PLUS Bronze

    Форм-фактор: ATX12V v2.4, EPS 2.92

    Шум: Cybenetics A- (25-30 дБА – CWT) | Стандарт + (35-40 дБА – Great Wall)

    Охлаждение: 120-мм вентилятор на винтовом подшипнике (HA1225M12F-Z [CWT] или D12SM-12 [Great Wall])

    Модульность: Нет

    Разъемы EPS: 1

    Разъемы PCIe : 1

    Гарантия: 5 лет

    Причины для покупки

    + Современная платформа + Полный комплект защиты + Вентилятор подшипника винтовки + Пятилетняя гарантия

    Причины, по которым следует избегать

    – Немодульный

    Член Corsair с наименьшей производительностью Бюджетная линейка CX – это CX450.Все модели CX производятся двумя разными OEM-производителями: Great Wall или Channel Well Technology (CWT), и каждый из них использует свою платформу.

    Единственный способ отличить их – это номера RPS, условные обозначения, присвоенные каждой модели. Обе конфигурации имеют фиксированные кабели, чтобы снизить цену. Тем не менее, они используют современные платформы с резонансными преобразователями LLC и модулями регулирования напряжения для создания второстепенных рельсов и высококачественных вентиляторов.

    Редко можно встретить такую ​​современную платформу в этой ценовой категории.Самым странным является то, что устройства Corsair CXM, в которых используются полумодульные кабели, чтобы кто-то мог подумать, что они принадлежат к более высокой категории, на самом деле используют платформу с более низкими характеристиками.

    Между двумя версиями Corsair CX450 модель, созданная Great Wall, более эффективна, чем CWT, особенно при малых нагрузках, и имеет более эффективную шину 5VSB. С другой стороны, у него более агрессивный профиль вентилятора, поэтому его выходная мощность увеличивается.

    На рынке США вы найдете только версию CWT, произведенную во Вьетнаме, а не в Китае, поэтому она избегает тарифов и сохраняет низкую цену.В других регионах также доступна платформа GW. В целом, Corsair CX450, в обоих вариантах, предлагает высокое соотношение производительности и цены, и это отличный выбор для массовых сборок со встроенными или маломощными видеокартами. В этом ценовом диапазоне вы не найдете такой современной и производительной платформы.

    Лучший процессор для игр | Лучшая видеокарта | Лучшие игровые материнские платы
    Лучший SSD для игр | Лучшая оперативная память DDR4 | Лучшие корпуса для ПК

    (Изображение предоставлено XPG)

    4.XPG Core Reactor 650 Вт

    Лучший блок питания 650 Вт

    Технические характеристики

    Производитель (OEM): CWT

    Макс. Выход постоянного тока: 650 Вт

    Эффективность: 80 PLUS Gold

    Форм-фактор: ATX12V v2.4, EPS 2.92

    Шум: Cybenetics A (20-25 дБА)

    Охлаждение: 120-мм вентилятор на гидравлическом подшипнике (HA1225h22F-Z) )

    Модульность: Полностью модульная

    Разъемы EPS: 2

    Разъемы PCIe: 4 (на два кабеля)

    Гарантия: 10 лет

    Причины для покупки

    + Высокая производительность и бесшумная работа + Хорошее качество сборки + Полностью модульная конструкция + Десятилетняя гарантия

    Причины, по которым следует избегать

    -Два разъема EPS на одном кабеле

    XPG потрясла лодку своей линейкой Core Reactor, впечатляющим набором блоков питания, использующим компетентную платформу, предоставленную Channel Well Technology.XPG взяла платформу CSE компании и обеспечила ей исключительные права, поэтому вы не увидите другого OEM-производителя, использующего CSE (кодовое название платформы).

    Пока что только основные бренды блоков питания, такие как Corsair и be quiet! обладают исключительными правами на OEM-платформы, поэтому этим шагом XPG демонстрирует серьезные намерения в отношении рынка лучших источников питания.

    XPG Core Reactor мощностью 650 Вт должен противостоять сильным противникам, таким как Corsair RM650x, Seasonic GX-650 и Asus Rog Strix 650.Тем не менее, ему удается лидировать в гонке, и это впечатляет. Тем более, что XPG исторически не была такой сильной стороной на этом рынке, очевидно, она наняла для этой работы подходящих людей.

    Core Reactor 650 не только обеспечивает высокую производительность, но и абсолютно бесшумный, со средним уровнем шума на выходе около 23 дБА. Более того, его средняя эффективность при 115 В близка к 89,5%, что соответствует категории эффективности Gold 650 Вт.

    Еще одним значительным преимуществом этого блока питания является компактность, которая делает процесс установки более управляемым.Полностью модульные кабели также помогут в этом. Говоря о кабелях, в них нет линейных конденсаторов, что затрудняет укоренение кабеля, чем должно быть.

    Единственным реальным недостатком этого устройства является пара разъемов EPS, размещенных на одном и том же кабеле. Обычно разъемы EPS следует устанавливать на специальные кабели для снижения падений напряжения и повышения безопасности, но на платформе не было достаточно разъемов для этого.

    (Изображение предоставлено Corsair)

    5. Corsair AX1600i

    Лучший блок питания мощностью более 1 кВт

    Технические характеристики

    Производитель (OEM): Flextronics

    Макс.Выходная мощность постоянного тока: 1600 Вт

    Эффективность: 80 PLUS Titanium

    Форм-фактор: ATX12V v2.4, EPS 2.92

    Шум: Cybenetics A (20-25 дБА)

    Охлаждение: 140-мм вентилятор на гидравлических подшипниках (NR140P)

    Модульность: полностью модульная

    Разъемы EPS: 2

    Разъемы PCIe: 10 (на восьми кабелях)

    Гарантия: 10 лет

    Причины для покупки

    + Мощный с максимальной производительностью во всех секциях + Высокое качество сборки + Бесшумная работа + Программное обеспечение

    Причины, по которым следует избегать

    -Сверхдорогой-Малое расстояние между периферийными разъемами

    Corsair AX1600i был первым настольным блоком питания, в котором использовалась передовая технология питания, но даже через несколько лет после его первого выпуска было мало других Блоки питания используют это.Короче говоря, AX1600i использует преобразователь PFC с тотемным полюсом, использующий полевые МОП-транзисторы на основе GaN, который может обеспечить КПД до 99% по сравнению с уровнями КПД 96%, которые могут обеспечить самые передовые традиционные преобразователи APFC. Хорошо, это технические детали, но что вам действительно нужно знать, так это то, что это примерно так же эффективно, как и блоки питания.

    Помимо PFC, AX1600i также использует два цифровых контроллера сигналов (DSC) для управления своими цепями. Один микроконтроллер (MCU) – это мост связи между системой и блоком питания, позволяющий пользователям также управлять некоторыми жизненно важными функциями блока питания (например, профилем скорости вращения вентилятора и выбором между несколькими или одиночными шинами +12 В, настройкой Пределы OCP и т. Д.) помимо задач мониторинга.

    AX1600i – достойный преемник легендарного AX1500i. Оба устройства произведены Flextronics с использованием передовых технологий, предлагая при этом лучшую производительность, которую можно купить за деньги сегодня, благодаря своей цифровой платформе. Помимо высокой эффективности, AX1600i также предлагает отличное регулирование нагрузки, отличную реакцию на переходные процессы, длительное время удержания и отличное подавление пульсаций.

    Несмотря на высокую производительность, он остается впечатляюще тихим в работе благодаря расслабленному профилю вентилятора и высококачественному вентилятору FDB.Наконец, с помощью программного обеспечения Corsair Link вы можете выбрать один из трех режимов вентилятора: производительный, сбалансированный и тихий, поэтому каждый пользователь сможет настроить блок питания в соответствии со своими потребностями. Вы заплатите немало, чтобы получить Corsair AX1600i, но ничто другое не может сравниться с этим блоком питания, когда дело доходит до общей производительности.

    (Изображение предоставлено: Fractal Design)

    6. Fractal Design Ion SFX 650 Gold

    Лучший блок питания с малым форм-фактором

    Технические характеристики

    Производитель (OEM): Seasonic

    Макс.Выход постоянного тока: 650 Вт

    Эффективность: 80 PLUS Gold

    Форм-фактор: SFX-L

    Шум: Cybenetics Standard + (35-40 дБА)

    Охлаждение: 120-мм вентилятор FDB (S1201512HB) ​​

    Модульность: полностью модульная

    Разъемы EPS: 1

    Разъемы PCIe: 4 (на два кабеля)

    Гарантия: 10 лет

    Причины для покупки

    + Мощный + Высокая общая производительность + Гибкие и полностью модульные кабели + Десятилетняя гарантия

    Причины для Избегайте

    – Агрессивный профиль скорости вращения вентилятора – Один разъем EPS – Высокие пусковые токи при входе 230 В

    В последнее время все больше и больше лучших производителей блоков питания перешли в категорию малых форм-факторов, область, которая начала вызывать гораздо больший интерес от геймеров тоже.Несколько лет назад блоки питания SFF были нишевыми продуктами, но появление элегантных небольших корпусов и стремление к меньшим системам увеличили конкуренцию в этой категории.

    Первым брендом, который серьезно отнеслись к источникам питания SFF, был SilverStone, у которого самый богатый портфель сопутствующих товаров. Тем временем Fractal нечего было показывать в этой категории до тех пор, пока не выпустила эти блоки SFX Gold.

    Однако использование термина «SFX» неточно, поскольку оба модуля Fractal Ion соответствуют неофициальному форм-фактору SFX-L, впервые представленному SilverStone.Из-за большей глубины, чем у SFX – на 30 мм, блоки SFX-L позволяют устанавливать более крупные охлаждающие вентиляторы и улучшать воздушный поток. Это означает, что они могут иметь более расслабленные профили скорости вращения вентилятора и быть тише, чем их стандартные аналоги SFX. Вдобавок ко всему, более крупные печатные платы также позволяют использовать блоки большей мощности – до 1000 Вт.

    Преимущества Ion SFX 650G перед его противником Corsair SFX – это более крупный 120-миллиметровый вентилятор, потому что он соответствует формату SFX-L, а также очень гибкие модульные кабели, которые действительно имеют значение при прокладке кабелей и процессах установки.Кроме того, в комплекте поставки вы найдете кронштейн адаптера SFX-to-ATX, который пригодится, если вы захотите использовать этот блок питания вместе с шасси ATX.

    (Изображение предоставлено Corsair)

    Как мы тестируем блоки питания

    Помимо опыта и обширных знаний в области электроники, для оценки блоков питания также требуется безумно дорогостоящего оборудования , которое не каждый может получить в свои руки. Вдобавок ко всему, даже если у вас есть подходящее оборудование, вам нужно знать, как с ним работать, и, прежде всего, вы должны правильно обслуживать его (AKA калибрует его через частые промежутки времени, чтобы гарантировать правильность ваших результатов).

    Вот почему так мало рецензентов БП, и еще меньше может дать хорошие обзоры БП. Рекомендации, которые мы перечисляем в этой статье, основаны на данных, которые мы собрали с использованием оборудования, показанного ниже:

    (Изображение предоставлено: Аристеидис Битциопулос)

    Мы используем новейшее оборудование для тестирования источников питания, включая Chroma electronic нагрузки, источники переменного тока Keysight, измерители мощности N4L, осциллографы Keysight и Picoscope для синхронизации блоков питания и измерения пульсаций, а также другое специализированное оборудование.

    Мы снимаем полные показания при нормальной рабочей температуре, 28-32 градуса Цельсия, и при высоких рабочих температурах (> 40C), которые обнаруживают малейшие проблемы, которые могут возникнуть с источником питания. Тестирование блока питания только при комнатной температуре не дает полной картины, и именно от этого страдает большинство обзоров блоков питания.

    Что касается измерения шума, то помимо высокоточного анализатора звука в нашем распоряжении также имеется полубезэховая камера с минимальным уровнем шума, близким к 6 дБА.Схема измерения шума изображена на фотографиях ниже.

    Изображение 1 из 2

    (Изображение предоставлено: Aristeidis Bitziopoulos) Изображение 2 из 2

    (Изображение предоставлено: Aristeidis Bitziopoulos)

    Лучший источник питания FAQ

    Какая мощность блока питания мне нужна для моего ПК?

    Вам не нужна степень в области ракетостроения, чтобы определить требования к мощности для вашей системы. Рекомендуемое системное энергопотребление, указанное в списке спецификаций для вашей текущей или будущей видеокарты, – отличное место для начала.Тем не менее, мы рекомендуем использовать онлайн-калькулятор мощности, чтобы получить наиболее точную цифру. Калькулятор источников питания OuterVision – наш лучший выбор.

    Какой уровень эффективности лучше всего подходит для блока питания?

    После того, как вы определите мощность, необходимую для вашего ПК, вам нужно будет решить, какую эффективность вы можете себе позволить. Все производители блоков питания придерживаются одной и той же системы оценки эффективности блоков питания: 80 Plus.

    Есть шесть оценок, на которые следует обратить внимание с вашим блоком питания:

    • бронза
    • Серебро
    • Золото
    • Платина
    • Титан

    Блок питания с сертификатом 80 Plus Titanium более эффективен, чем блок питания Bronze, что означает, что компоненты внутри тратят меньше энергии (тепла) во время преобразования переменного тока в постоянный.Они часто измеряются по трем уровням нагрузки: 20%, 50% и 100%. Большинство блоков питания, как правило, имеют самый высокий КПД – 50%, хотя блоки питания из титана, как правило, работают так же, если не лучше, при большой нагрузке.

    Более высокая эффективность также означает, что внутренние компоненты подвергаются меньшему нагреву и, вероятно, будут иметь более длительный срок службы. Они могут стоить немного дороже, но более мощные сертифицированные блоки питания, как правило, более надежны, чем другие. К счастью, большинство производителей предоставляют гарантии.

    Что мы ищем в блоке питания?

    Надежность, поддержка клиентов, гарантия и репутация производителя – это первое, на что вы должны обращать внимание при выборе лучших блоков питания.Поскольку не существует единого решения, подходящего для каждой сборки, мы выбрали несколько категорий, чтобы удовлетворить потребности большинства компьютерных геймеров. Для каждого мы также приняли во внимание бюджет, совместимость, уникальные функции и дизайн.

    Наш лучший выбор был сделан на основе комбинации перечисленных выше критериев и общей оценки эффективности. Хотя это ни в коем случае не однозначное решение для производительности блока питания, программа сертификации 80 PLUS обеспечивает некоторую форму стандартизации и требований к эффективности.Более эффективные блоки питания означают меньше тепла и меньшее потребление энергии.

    Нужен ли модульный блок питания?

    Это окупается с точки зрения защиты от любых обновлений в будущем. Модульный блок питания позволит вам добавлять дополнительные кабели по мере необходимости или удалять неиспользуемые, чтобы освободить ценное место внутри вашего корпуса. Это удобно, если вы настроены на более мощную видеокарту или хотите гибкости, позволяющей добавить другие периферийные соединения позже.

    Тем не менее, вы можете обойтись и без них, поскольку даже полумодульная или фиксированная конструкция кабеля будет работать с таким же успехом, если только несколько дополнительных кабелей будут лежать поблизости.Обычно их можно спрятать в задней части корпуса компьютера, чтобы они не попадали в поле зрения.

    В качестве предупреждения, совместимость является важным фактором, когда дело касается блоков питания. Использование кабелей от разных блоков питания может поставить под угрозу весь ваш компьютер, поэтому придерживайтесь тех, которые входят в комплект.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *