Таблица для расчета мощности автомата при электромонтажных работах
Электромонтажные работы проводимые нами всегда качественные и доступные.
Мы сможем помочь в расчете мощности автоматов (автоматических выключателей) и в их монтаже.
Как выбрать автомат?
Что нужно учитывать?
- первое, при выборе автомата его мощность,
определяется суммарная мощность подключаемых на постоянной основе к защищаемой автоматом проводке/сети нагрузок. Полученная суммарная мощность увеличивается на коэффициент потребления, определяющий возможное временное превышение потребляемой мощности за счет подключения других, первоначально неучтенных электроприборов.
- второе тип подключения
Пример того как можно просчитать нагрузку в кухни
- электрочайник (1,5кВт),
- микроволновки (1кВт),
- холодильника (500 Ватт),
- вытяжки (100 ватт).
Суммарная потребляемая мощность составит 3,1 кВт. Для защиты такой цепи можно применить автомат 16А с номинальной мощностью 3,5кВт.
Суммарная мощность снимаемая с проводки при подключении всех указанных электроприборов в этом случае составит 4,6кВт, что больше мощности 16 Амперного авто выключателя, который, при включении всех приборов просто отключится по превышению мощности и оставит все приборы без электропитания, Включая холодильник.
Выбор автоматов по мощности и подключению
Лучше обратится к специалистам чем допустить ошибку
На все виды услуг мы предоставляем гарантию.
Возможно будет полезным: монтаж розеток и выключателей, монтаж люстр, Полноценный ремонт электросетей
Вызов электрика в городе Черкассы, все виды электромонтажа.
тел. (067)473-66-78
тел. (093)251-57-61
тел. (0472)50-19-75
Станьте нашим клиентом и вы убедитесь в качестве наших услуг.
Номинальные значения рабочей мощности и тока электродвигателей
Классы компонентов: 1.6.1.1.1. Модульные автоматические выключатели (ВАМ, МСВ), 1.6.5.1. Модульные контакторы, 1.6.1.2.1. Мотор-автоматы (автоматические выключатели защиты двигателей, MPCB), 1.6.1.3.1. Автоматические выключатели в литом корпусе (MCCB), 1.6.5.2. Контакторы, 1.6.5.3. Пускатели, 1.6.5.4. Реле перегрузки и аксессуары к ним, 1.12. Электродвигатели и приводная техника
Значения тока, приведенные ниже, относятся к стандартным трехфазным четырехполюсным асинхронным электродвигателям с КЗ ротором (1500 об/мин при 50 Гц, 1800 об/мин при 60 Гц). Данные значения представлены в качестве ориентира и могут варьироваться в зависимости от производителя электродвигателя и количества полюсов.
Мощность электродвигателя | Номинальный ток электродвигателя: стандартные значения обозначены синим цветом (в соответствии с МЭК 60947-4-1, приложение G) |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|
220В | 230В | 240В | 380В | 400В | 415В | 440В | 500В | 660В | 690В | |
0,06 кВт | 0,37 | 0,35 | 0,34 | 0,21 | 0,2 | 0,19 | 0,18 | 0,16 | 0,13 | 0,12 |
0,09 кВт | 0,54 | 0,52 | 0,5 | 0,32 | 0,3 | 0,29 | 0,26 | 0,24 | 0,18 | 0,17 |
0,12 кВт | 0,73 | 0,7 | 0,67 | 0,46 | 0,44 | 0,42 | 0,39 | 0,32 | 0,24 | 0,23 |
0,18 кВт | 1 | 1 | 1 | 0,63 | 0,6 | 0,58 | 0,53 | 0,48 | 0,37 | 0,35 |
0,25 кВт | 1,5 | 1,4 | 0,9 | 0,85 | 0,82 | 0,74 | 0,68 | 0,51 | 0,49 | |
0,37 кВт | 2 | 1,9 | 1,8 | 1,2 | 1,1 | 1,1 | 1 | 0,88 | 0,67 | 0,64 |
0,55 кВт | 2,7 | 2,6 | 2,5 | 1,6 | 1,5 | 1,4 | 1,3 | 1,2 | 0,91 | 0,87 |
0,75 кВт | 3,5 | 3,3 | 3,2 | 2 | 1,9 | 1,8 | 1,7 | 1,5 | 1,15 | 1,1 |
1,1 кВт | 4,9 | 4,7 | 4,5 | 2,8 | 2,7 | 2,6 | 2,4 | 2,2 | 1,7 | 1,6 |
1,5 кВт | 6,6 | 6,3 | 6 | 3,8 | 3,6 | 3,5 | 3,2 | 2,9 | 2,2 | 2,1 |
2,2 кВт | 8,9 | 8,5 | 8,1 | 5,2 | 4,9 | 4,7 | 4,3 | 3,9 | 2,9 | 2,8 |
3 кВт | 11,8 | 11,3 | 10,8 | 6,8 | 6,5 | 6,3 | 5,7 | 5,2 | 4 | 3,8 |
4 кВт | 15,7 | 15 | 14,4 | 8,9 | 8,5 | 8,2 | 7,4 | 6,8 | 5,1 | 4,9 |
5,5 кВт | 20,9 | 20 | 19,2 | 12,1 | 11,5 | 11,1 | 10,1 | 9,2 | 7 | 6,7 |
7,5 кВт | 28,2 | 27 | 25,9 | 16,3 | 15,5 | 14,9 | 13,6 | 12,4 | 9,3 | 8,9 |
11 кВт | 39,7 | 38 | 36,4 | 23,2 | 22 | 21,2 | 19,3 | 17,6 | 13,4 | 12,8 |
15 кВт | 53,3 | 51 | 48,9 | 30,5 | 29 | 28 | 25,4 | 23 | 17,8 | 17 |
18,5 кВт | 63,8 | 61 | 58,5 | 36,8 | 35 | 33,7 | 30,7 | 28 | 22 | 21 |
22 кВт | 75,3 | 72 | 69 | 43,2 | 41 | 39,5 | 35,9 | 33 | 25,1 | 24 |
30 кВт | 100 | 96 | 92 | 57,9 | 55 | 53 | 48,2 | 44 | 33,5 | 32 |
37 кВт | 120 | 115 | 110 | 69 | 66 | 58 | 53 | 40,8 | 39 | |
45 кВт | 146 | 140 | 134 | 84 | 80 | 77 | 70 | 64 | 49,1 | 47 |
55 кВт | 177 | 169 | 162 | 102 | 97 | 93 | 85 | 78 | 59,6 | 57 |
75 кВт | 240 | 230 | 220 | 139 | 132 | 127 | 116 | 106 | 81 | 77 |
90 кВт | 291 | 278 | 266 | 168 | 160 | 154 | 140 | 128 | 97 | 93 |
110 кВт | 355 | 340 | 326 | 205 | 195 | 188 | 171 | 156 | 118 | 113 |
132 кВт | 418 | 400 | 383 | 242 | 230 | 222 | 202 | 184 | 140 | 134 |
160 кВт | 509 | 487 | 467 | 295 | 280 | 270 | 245 | 224 | 169 | 162 |
200 кВт | 637 | 609 | 584 | 368 | 350 | 337 | 307 | 280 | 212 | 203 |
250 кВт | 782 | 748 | 717 | 453 | 430 | 414 | 377 | 344 | 261 | 250 |
315 кВт | 983 | 940 | 901 | 568 | 540 | 520 | 473 | 432 | 327 | 313 |
355 кВт | 1109 | 1061 | 1017 | 642 | 610 | 588 | 535 | 488 | 370 | 354 |
400 кВт | 1255 | 1200 | 1150 | 726 | 690 | 665 | 605 | 552 | 418 | 400 |
500 кВт | 1545 | 1478 | 1416 | 895 | 850 | 819 | 745 | 680 | 515 | 493 |
560 кВт | 1727 | 1652 | 1583 | 1000 | 950 | 916 | 832 | 760 | 576 | 551 |
630 кВт | 1928 | 1844 | 1767 | 1116 | 1060 | 1022 | 929 | 848 | 643 | 615 |
710 кВт | 2164 | 2070 | 1984 | 1253 | 1190 | 1147 | 1043 | 952 | 721 | 690 |
800 кВт | 2446 | 2340 | 2243 | 1417 | 1346 | 1297 | 1179 | 1076 | 815 | 780 |
900 кВт | 2760 | 2640 | 2530 | 1598 | 1518 | 1463 | 1330 | 1214 | 920 | 880 |
1000 кВт | 3042 | 2910 | 2789 | 1761 | 1673 | 1613 | 1466 | 1339 | 1014 | 970 |
Как рассчитать мощность стабилизатора
Ох, эти непонятные кВт и кВА.
..Многие до сих путаются в мощностях стабилизаторов: киловатты (кВт) и киловольт-амперы (кВА), как они связаны между собой, как понять сколько киловатт (кВт) выдаёт стабилизатор и прочие вопросы. Сейчас постараемся всё подробно объяснить. Но чтобы разобраться, придётся вспомнить некоторые основы электротехники.
Для начала следует разобраться с параметрами электрических цепей. Нас будут интересовать, в первую очередь, напряжение (обозначается U, измеряется в вольтах, В) и сила тока (обозначается I, измеряется в амперах, А). Чтобы наглядно представить себе эти параметры, можно сравнить электричество с водой, а электрическую цепь с трубопроводом. В таком сравнении напряжение будет давлением воды, а сила тока — скорость течения воды по трубам.
Важное замечание, трубопровод может находиться под давлением, но краны перекрыты, и вода по трубам не течёт. Таким образом, переходя к электричеству, есть напряжение, а тока нет — это случай, когда не включен ни один прибор. Как только мы включаем любой прибор (это аналогично открыванию вентилей в водопроводе), по цепи потечёт электрический ток.
Любой электроприбор обладает такой характеристикой, как сопротивление (обозначается R, измеряется в омах, Ом). Сопротивление прибора характеризует величину тока, который появится в сети после включения этого прибора. Если сопротивление прибора маленькое, то потечёт большой ток, если сопротивление большое — ток будет маленьким. В аналогии с водой прибор можно рассматривать как фильтр. Если это фильтр грубой очистки, то он практически не повлияет на скорость течения воды, его сопротивление низкое. А если это фильтр тонкой очистки, то он создаст серьёзное препятствие на пути воды, и скорость потока значительно снизится — его сопротивление большое.
Теперь потихоньку переходим к мощности. Как же всё-таки рассчитать мощность стабилизатора? Из курса физики ещё известно, что электрическая мощность определяется как произведение силы тока на напряжение: P = I×U. Поскольку U всегда должно быть 220 В, то именно ток фактически определяет мощность, а он, в свою очередь, определяется сопротивлением нагрузки.
И когда мы говорим о постоянном напряжении, всё достаточно банально. Например, напряжение в цепи 12 В; подключили какой-то прибор и измерили ситу тока в цепи — получилось 3, А, значит мощность равна 12 вольт×3 ампера = 36 Вт (ватт).
Но напряжение в наших розетках переменное, с частотой 50 Гц (50 раз в секунду) оно по синусоиде меняет свое значение с + на — и наоборот. И мощность, как произведение тока и напряжения, надо рассматривать уже более детально:
Здесь синяя линия — напряжение, ток — красная линия, меняется синхронно с напряжением. Их произведение, мощность, обозначена чёрной линией (как помним, минус на минус даёт плюс, и даже когда напряжение и ток имеют отрицательные значения, мощность остаётся положительной).
Это случай, когда подключена чисто активная нагрузка, которая не создаёт задержки тока, и ток меняется синхронно с изменением напряжения. В этом случае формула P = I × U остаётся верна, и произведение тока на напряжение будет давать ватты (Вт).
Но, как известно, существуют элементы, которые задерживают ток — это, в первую очередь, конденсаторы, катушки индуктивности, дроссели, трансформаторы. Эти элементы есть почти в любом приборе. И вот что происходит, если эти элементы задерживают ток:
Как видим, ток (красная линия) смещён относительно напряжения (синяя линия), и в некоторые моменты мощность (чёрная линия) становится отрицательной.
Физически это означает, что в эти моменты времени мы не потребляем мощность, а наоборот, выбрасываем её назад в электросеть!
Получается, что ток остался таким же, что в предыдущем случае, а потребили мы меньше мощности, часть выбросив назад в электросеть. А коль ток остался таким же, то электросчетчик накрутил нам столько-же, провода так же нагрелись, а мощности потребили меньше.
Вот теперь формула P = I × U перестала нам давать ватты (Вт). Поскольку ватты — это именно та мощность, которую мы потребили, а, коль скоро, часть мощности мы выбросили назад, то потребили мы меньше, чем развили. Другими словами, развиваем мы полную мощность, а используем её не всю.
Выходит, что у любого прибора в цепи переменного напряжения есть не один параметр мощности, а два: полная (развиваемая) мощность, и потребляемая (активная) мощность.
Полная мощность вычисляется по старой формуле P = I × U, но она уже не даёт Ватты, а она даёт Вольт-Амперы (произведение вольт на амперы). А вот чтобы вычислить ватты (мощность со знаком +, потребляемую мощность), нужно вспомнить тригонометрию. Если ток смещён относительно напряжения на угол fi, то мощность со знаком + (активную, потребляемую мощность) можно вычислить по формуле Pа = I × U × Cos(fi) — именно она измеряется в Ваттах (Вт). Выбрасываемая назад мощность вычисляется по формуле Pр = I × U / Cos(fi) — измеряется в ВАРах (вольт-ампер-реактивных) и называется реактивной мощностью.
Параметр Cos(fi) принято называть коэффициентом реактивной мощности или просто коэффициентом мощности.
Вот типичные значения коэффициента мощности разных приборов:
Обогреватели, лампочки накаливания — 1,0;
Телевизор — 0,9…0,95;
Микроволновка — 0,8;
Электродвигатель (насос, циркулярка, компрессор холодильника) — 0,7.
Теперь небольшой пример. Для ограничения мощности подключения используются автоматы защиты, которые отключаются при достижении током порогового значения. Пусть какая-то вымышленная дача подключена автоматом на 40, А:
Сколько обогревателей мощностью 1 кВт можно подключить к этой электросети? А сколько насосов аналогичной мощности?
Считаем. Цепь с напряжением 220 В. Полная мощность, которую можно развить в этой цепи до срабатывания автомата защиты 40×220 = 8800 ВА.
Полная мощность обогревателя P = 1 кВт × Cos(fi), как помним, у обогревателя Cos(fi) = 1, а значит его полная мощность P = 1×1 = 1 кВА = 1000 ВА. И сможем включить мы в сеть таких обогревателей 8800 / 1000 = 8 штук.
А вот коэффициент мощности насоса уже 0,7, а значит его полная мощность P = 1 кВт / 0,7 = 1,428 кВА = 1428 ВА. И включить насосов в эту сеть мы сможем лишь 8800 / 1428 = 6 шт.
Вот такой парадокс получается, что вроде и приборы все на 1 кВт, но одних можно включить в сеть 8 штук, а вторых лишь 6 штук.
Теперь перейдём к стабилизаторам. Их мощность задаётся по величине полной мощности (активная + реактивная, кВА), а значит однозначного ответа на вопрос: «какова мощность этого стабилизатора напряжения в киловаттах (кВт, ну или в ваттах, Вт)?», нет и быть не может!
Как и в предыдущем примере, киловатты стабилизатора определяются исходя из коэффициента мощности подключенной к нему нагрузки. Если подключаем чисто активную нагрузку (Cos(fi) = 1), то его мощность в ВА равна мощности в Вт. А вот если нагрузка имеет коэффициент мощности менее 1 (Cos(fi) < 1), то и мощность стабилизатора в ваттах (Вт) будет меньше.
Но и это ещё не все. Как мы все знаем, в любой системе должен выполняться закон сохранения энергии. Стабилизатор не исключение. Количество энергии на входе стабилизатора должно быть равно количеству энергии на выходе. Количество энергии это мощность (полная) в единицу времени, т. е. I × U. Отсюда можно записать следующее равенство:
Iвх × Uвх = Iвых × Uвых
Теперь представим ситуацию. Человек получил разрешение на подключение своей дачи к электросети с мощностью отбора 9 киловатт (кВт). Электрики должны ограничить потребление. Мощность — величина вычисляемая, но не измеряемая, её ограничить нельзя. А значит будут ограничивать величину измеряемую — амперы! Электрики прикинули, что при Cos(fi) = 1, 9000 Вт — это 9000 ВА. А при напряжении 220 В 9000 ВА — это ток в 9000 / 220 = 40,9, А, и повесили ограничительный автомат в 40 А.
Но человек жалуется, что напряжение у него не 220 В, а лишь 150 В — насосы не тянут, лампы горят в полнакала, обогреватели еле греют. И принимает решение купить стабилизатор напряжения. Поскольку разрешенная мощность у него 9 кВт, то он берёт стабилизатор на 10 кВт (с запасом).
Стабилизатор должен выдать человеку 10 кВА? Почему же у него не работает всего 3 обогревателя по 2 кВт каждый? Ведь он купил стабилизатор на 10 кВт!
А давайте прикинем с точки зрения сохранения энергии. Максимум, на что человек может рассчитывать — это взять из электросети всего 40, А (ограничительный автомат). А напряжение там всего 150 В. А на выходе стабилизатор выдаёт 220 В. Давайте подставим эти данные в закон сохранения энергии:
40 А × 150 В = Iвых × 220 В
Отсюда, Iвых = 40×150 / 220 = 27, А при напряжении на выходе в 220 В. Если теперь посчитать мощность выхода на стабилизаторе, получим 220×27 = 5940 ВА. Грубо говоря, стабилизатор мощностью 10 кВА, выдаст всего 5,9 кВА!!!
А уж если подключать к нему насосы с коэффициентом мощности 0,7, то подключить к нему можно всего 4 насоса по 1 кВт!
Стабилизатор тут, конечно же, ни причём. Вся «соль» в том, что при разрешённой мощности в 9 кВт, реально забрать с линии можно лишь 150 В × 40, А = 6000 ВА (6 кВА). А стабилизатор лишь поднимает напряжение за счёт тока (уменьшая максимальную силу тока выхода).
Теперь вы должны понимать, что выходная мощность стабилизатора напряжения определяется типом нагрузки, подключенной к стабилизатору, входным напряжением и ограничением входного тока (автоматы).
Почему мощность батареи «Тесла» в «кВт·ч», а не в «А·ч»:
Параметр, который люди действительно хотят знать в электромобиле — это диапазон пробега в километрах (или милях).
Цифры в «кВт·ч» или «Ампер-часы» предлагают не самую полезную для нас с вами информацию. Оценить возможности транспортного средства по одной ёмкости аккумулятора будет сложно.
Тоже самое касается и выбора телефонов — почему знать цифру в «мАч» [1] недостаточно, мы уже говорили здесь.
Однако с такой характеристикой производителю легче достичь рекламных целей и продемонстрировать сравнение на бытовом уровне. Ниже вы узнаете, для чего всё это вообще нужно.
Зачем указывать ёмкость батареи Тесла в «кВт·ч»?
Менеджеры компании Tesla ранее заявляли, что это хороший маркетинговый ход.
«Просто так удобнее для всех, поскольку «кВт·ч» является лучшим способом из имеющихся сравнить разные батареи», — заявляют управляющие.
Прежде всего, компания хочет снизить входной порог потребителя. Как известно, батареи Тесла используются и в электромобилях, и в домашних, промышленных системах.
Даже далёкие от техники люди имеют некоторое представление о потреблении энергии. Эти «нормы» и «единицы» энергопотребления указываются в «кВт·ч». Всем привычно оперировать «киловатт-часами» в быту, так как счёт за электричество в месяц тоже выставляется в киловатт-часах .
Почему ещё выбирают для мощности Тесла кВт·ч, а не А·ч?
«кВт·ч» является стандартной единицей энергии, которая и указывается в батарее «Тесла».
Номинальная мощность аккумулятора «Тесла» в киловатт-часах — это мера того, сколько энергии она может хранить. Косвенно она пропорциональна дальности пробега. То есть может применяться в сравнительных характеристиках.
«Ампер-часы» не являются единицей энергии. Легко сравнить энергопотребление разных аккумуляторов с такой величиной не получится.
У вас может быть два аккумулятора с одинаковым значением ампер-часов, но разной энергоёмкостью. Просто эти блоки работают при разных напряжениях, отсюда и отличия в возможностях транспортного средства.
В некоторых отраслях промышленности используются «ампер-часы». Например, батареи для сотовых телефонов обычно рассчитаны в «мА·ч». Это неправильно, но допустимо, если известно напряжение батареи.
В смартфонах «2000 мАч» всегда будет меньше «2500 мАч», если обе батареи имеют напряжение 3,7 В.
Аккумулятор Tesla полностью независим от стандартов, запатентован, его внутреннее напряжение не является чем-то таким, о чём мы (потребители) должны заботиться. Следовательно, его рейтинг в «А·ч» будет бессмысленным показателем.
Мы не можем сравнивать ёмкость аккумулятора Тесла, например, с BMW i3. Однако мы можем сравнить батареи по мощности у Теслы в «кВт·ч».
В любых устройствах 90 кВт·ч — это всегда больше 70 кВт·ч, каким бы напряжение не было.
***
Подведём итоги. Показатель «кВт·ч» является мерой энергии, которую можно сравнить с другими видами питания.
Например, электричество продаётся в киловаттах. В то же время «Ампер-часы» не удастся сравнить, когда вы не знаете напряжение батареи (Вольт * Ампер = Ватт).
Всегда будет технически правильным измерение ёмкости аккумулятора по величине «кВт·ч», а не по «А·ч». Будь это батарея Тесла или любая другая.
Узнайте больше о Tesla
Напишите в комментарии, согласны ли вы с тем, что на одинаковом аккумуляторе два разных электромобиля пройдут неравные расстояния? Вопросы по работе интернет-магазина отправляйте в сообщениях нам ВКонтакте @NeovoltRu или любым другим удобным способом.
Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.
Как подобрать автоматический выключатель для электрокотла
Назначение
Автоматический выключатель для электрического котла защищает питающий кабель от тепловой перегрузки. Причиной плавления изоляции является длительный перегрев проводов, вызванный избыточным током. Это может привести к короткому замыканию.
Как правило, предохранитель устанавливается на счетчике, на провод, ведущий к защищаемому оборудованию.
Чтобы правильно выбрать проходной выключатель с автоматом нужно подобрать сечение провода, рассчитать номинальный ток электрического котла и учесть характер использования подключаемого оборудования.
Провод
Для подключения электрического котла нужно проложить выделенный кабель. Даже, если котел мощностью до 3 кВт на 220 В, не стоит включать его в сеть через обычную розетку – вы нагрузите внутренние провода электрической разводки без особой на то надобности.
Электрическое оборудование и проборы мощностью свыше 1,5 кВт рекомендуется подключать через медный провод. Медные провода более долговечны, чем алюминиевые, и при одинаковой нагрузке вам потребуется меньший диаметр сечения.
Сечение токопроводящего провода подбирается на основании номинальной мощности подключаемого оборудования и напряжения сети.
Сечение провода по мощности для 220 В будет более толстым, чем для напряжения 380 В с аналогичной мощностью электрического котла.
Расчет сечения провода можно сделать самостоятельно. Для упрощения задачи предлагаем итоговую таблицу сечения алюминиевых и медных жил.
Таблица сечения проводов
Площадь сечения жилы, мм2 | Медный провод | Алюминиевый провод | ||||||
Однофазная сеть 220 В | Трехфазная сеть 380 В | Однофазная сеть 220 В | Трехфазная сеть 380 В | |||||
Номинальный ток, А | Мощность, кВт | Номинальный ток, А | Мощность, кВт | Номинальный ток, А | Мощность, кВт | Номинальный ток, А | Мощность, кВт | |
1,5 |
19 | 4,3 | 16 | 10,0 | – | – | – | – |
2,5 | 27 | 6,0 | 25 | 16,6 | 20 | 4,5 | 19 | 11,9 |
4 | 38 | 8,5 | 30 | 18,7 | 28 | 6,3 | 23 | 14,6 |
6 | 46 | 10,3 | 40 | 25,0 | 36 | 8,1 | 30 | 18,7 |
10 | 70 | 15,7 | 50 | 31,2 | 50 | 11,2 | 39 | 24,3 |
16 | 85 | 19,0 | 75 | 46,8 | 60 | 13,4 | 55 | 34,3 |
25 | 115 | 25,8 | 90 | 56,2 | 85 | 19,0 | 70 | 43,7 |
35 | 135 | 30,2 | 115 | 71,8 | 100 | 22,4 | 85 | 53,0 |
50 | 175 | 39,2 | 145 | 90,5 | 135 | 30,2 | 110 | 68,6 |
70 | 215 | 48,2 | 180 | 112,3 | 165 | 37,0 | 140 | 87,4 |
95 | 260 | 58,2 | 220 | 13,7 | 200 | 48,0 | 170 | 106,1 |
Мощность электрического котла, кВт | Питание 220 В | Питание 380 В | ||||
Сечение медного провода, мм2 | Номинальный ток, А | Ток предохранителя, А | Сечение медного провода, мм2 | Номинальный ток, А | Ток предохранителя, А | |
3,0 | 2 × 1,5 | 13,9 | 16 | 4 × 1,5 | 4,38 | 6 |
4,5 | 2 × 2,5 | 20,1 | 25 | 4 × 1,5 | 7,2 | 10 |
6,0 | 2 × 4,0 | 26,8 | 32 | 4 × 2,5 | 9,6 | 10 |
7,5 | 2 × 6,0 | 33,5 | 40 | 4 × 2,5 | 12,0 | 16 |
9,0 | 2 × 6,0 | 40,2 | 50 | 4 × 4,0 | 14,4 | 16 |
10,5 | – | – | – | 4 × 4,0 | 16,9 | 20 |
12,0 | – | – | – | 4 × 6,0 | 19,2 | 20 |
15,0 | – | – | – | 4 × 10 | 24,0 | 25 |
18,0 | – | – | – | 4 × 10 | 28,8 | 32 |
21,0 | – | – | – | 4 × 10 | 33,7 | 40 |
24,0 | – | – | – | 4 × 10 | 38,5 | 40 |
30,0 | – | – | – | 4 × 16 | 48,1 | 50 |
36,0 | – | – | – | 4 × 16 | 57,7 | 63 |
Времятоковая характеристика автоматических выключателей
В течение нескольких миллисекунд при запуске электрического котла пусковой ток превышает номинальный в 4,5 раза (для 220 В) или в 1,5 раза для сети 380 В. Этого времени недостаточно, чтобы повредить проводку контура, поэтому такое превышение не представляет угрозы. Чтобы в это время не срабатывал автомат, нужно подобрать нужную времятоковую характеристику.
Для защиты электрических котлов выбирают чаще всего времятоковую характеристику типа С (от 5 до 10 номиналов тока), реже типа В (от 3 до 5 номинальных значений).
Полюсность автоматических выключателей
Для сети номинальной мощностью 220 В устанавливаются однополюсные или двухполюсные конструкции.
Для трехфазной сети 380 В – трехполюсные или четырехполюсные автоматы.
В электрических сетях старого традиционного типа при меняют одно- и трехполюсные автоматы.
Двух- и четырехполюсные автоматы применяют в современных сетях с разделенными проводами для ноля (N) и заземления (PE).
Схемы подключения проводов к автоматическим выключателям с различным количеством полюсов
При покупке электрического котла в интернет-магазине “EcoСистема” мы проводим точные расчеты и даем рекомендации по подбору сопутствующего оборудования для правильной установки и подключения электрических котлов.
сколько потребляет электричества типовой агрегат для отопления
Возможно, для кого-то окажется новостью тот факт, что газовое котельное оборудование нуждается не только в газе, но и в электричестве. И вместе с расходом газа следует учитывать и электропотребление газового котла, являющегося сердцем вашей отопительной системы.
Сейчас обязательно найдется читатель, который станет возражать и будет прав. А правота его в том, что есть все же котлы на газе без подключения к электросети. Это классические напольные агрегаты с открытой камерой сгорания, они требуют отдельного помещения и строгого соблюдения в нем жестких правил пожарной безопасности.
Энергонезависимые котлы используются в настоящее время в удаленных от городов селах, на дачах — там, где случаются перебои в подаче электричества. Или при желании сэкономить на покупке техники. Мы же поговорим о современном газовом отопительном оборудовании, а оно работает только при наличии качественного надежного электропитания.
Содержание статьи:
Для чего газовому котлу электропитание?
С появлением закрытых камер сгорания газовые агрегаты стали зависимыми от электрических сетей. Потребление электроэнергии в таких котлах определяется составом и количеством электроники в его внутренностях.
И устанавливать их уже разрешается не только в изолированной котельной, но и в кухнях, санузлах. С точки зрения безопасности они имеют высокий уровень защиты.
Стрелками отмечены основные электрические потребители настенного газового котла – вентилятор нагнетания воздуха и встроенный циркуляционный насос. В системах с напольным котлом насос устанавливается отдельно, а в целом в отопительной системе можно использовать не один, а несколько насосов, и все они будут потреблять электроэнергию
Перечислим, что же конкретно требует энергопотребления:
- электророзжиг;
- циркуляционный насос;
- вентилятор в закрытой камере сгорания;
- автоматика (регулировка подачи газа, а также датчики тяги, давления газа, воды и пр. ).
Газовый котел на электророзжиге возгорается автоматически от электрической искры. Запального фитиля, который постоянно горит в других системах розжига, вообще нет, газ зря на его горение не расходуется.
В момент появления электрической искры какая-то электроэнергия тратится, но и сам момент длится долю секунды. При этом электричества расходуется мизер, экономия газа за счет отсутствующего запальника перекрывает эти затраты. Единственный минус — при отсутствии электричества котельное оборудование не запустить.
Если же электропитание в сети пропадет внезапно, то сработает отсекатель газа. При появлении питания электророзжиг повторно перезапустит отопительную систему без человеческого участия.
Циркуляционный насос — вот он и поднимает резко электропотребление! Но минимизировать затраты при работе газового котла реально, если использовать во всех комнатах термостаты, встроив их в общую схему питания насоса и функционирования котла.
Еще экономический результат значительно увеличивает программатор. Термостат помогает всего лишь поддерживать стабильно заданную температуру, а программатор способен задавать дневной/ночной режим работы, изменения по дням недели и т.п.
Современная автоматика газового котла нуждается в электричестве и представляет собой сложнейшие электронные приборы, которые без вмешательства человека регулируют подачу топлива и силу пламени газовых горелок, контролируют температуру, диагностируют поломки
Вентилятор (турбина) в закрытой камере сгорания тоже расходует электричество, но меньше, чем циркулярный насос. Расходы оправдываются улучшением дымоудаления. Котел с не выжигает кислород в помещении, не пропускает наружу оксид углерода и шумит меньше.
Автоматика в газовом котле увеличивает его конечную стоимость, но с ней управление системой отопления сводится к выставлению желаемой температуры и нажатию всего лишь одной кнопки.
Электроэнергия нужна для работы контроллера, регулирующего подачу газа, и множества датчиков. Расход ее зависит от того, насколько сложна автоматика, но в целом речь идет о малозатратном энергопотреблении.
Расход электричества газовым котлом в цифрах
Обычно все в первую очередь интересуются расходом газа. А вопрос о том, сколько электричества потребляет типовой газовый котел, как бы уходит на второй план. Давайте с ним разберемся.
Энергозависимый газовый котел подключают к сети переменного тока со стандартными характеристиками: 220 В и 50 Гц. Для устойчивой работы агрегата важно, чтобы напряжение за отметку 195 В не падало. При более низком напряжении электрические компоненты забарахлят и начнут отключаться.
Минимум потребления электроэнергии
Потребность в электроэнергии на различных стадиях работы разная. Минимальное электрическое потребление газового котла — 65 Вт. Это в фазе работы циркулярного насоса, а в момент электророзжига — 120 Вт, т.е. почти вдвое выше. Если включен вентилятор, то и он потребляет электроэнергию — еще 30-35 Вт.
Удобство запуска котла, экономия газа и безопасность в связи с отсутствием постоянно горящего запальника – главные плюсы газового котла с электророзжигом, несмотря на то, что электророзжиг требует расхода электроэнергии
Делаем выводы. Для электророзжига требуется 120 Вт, затем при работающем насосе и вентиляторе расход электроэнергии будет составлять:
65 + 30(35) = 105(110) Вт
Это минимальный суточный расход электроэнергии. Здесь не учтено потребление электричества другими элементами отопительного агрегата — той же автоматикой. Пусть незначительно, но итоговый результат увеличится.
И следует также заметить, что цифры приведены в расчете на одноконтурный аппарат, т.е. учтено только отопление без горячего водоснабжения. Если брать такой же по тепловой мощности, но , электропотребление будет выше.
О чем говорит техпаспорт газового котла?
В характеристиках любого газового котла есть информация об электропотреблении. Изучив техническую документацию на продукцию Bosch, Baxi, Vaillant, Ariston и другую видим, что электрическая мощность напольных агрегатов находится в пределах от 100 до 200 Вт, а напольных – от 15 до 160 Вт.
Но так как в отопительных системах с напольными котлами часто используются отдельно установленные циркуляционные насосы. Важно не забывать про них и учитывать дополнительное электропотребление.
А вот наглядное сравнение электропотребления при наличии ГВС (двухконтурный котел) и без ГВС (одноконтурный котел): напольный одноконтурный мощностью 30 кВт потребляет 15 Вт, двухконтурный тоже мощностью 30 кВт — уже 150 Вт.
Из технических данных видно, что чем больше тепловая мощность газового котла, тем выше и его потребность в электрической энергии
Разные производители неоднозначно описывают в характеристиках газовых котлов их электропотребление.
Это может быть одной общей строкой или подробно:
- потребление электричества насосом;
- электрическая мощность без насоса;
- потери при останове;
- потребление в режиме ожидания.
Расход по всем пунктам указывается в Вт.
Расчет электропотребления на примере
Чтобы посчитать киловатты потребляемой газовым котлом электроэнергии, делаем классический расчет энергопотребления — такой, как и для прочих электроприборов. Основываемся на электрической мощности котла, указанной в техническом паспорте. Данный параметр производитель задает максимальным значением, превышающим в реальности средний фактический показатель.
Пример.
Допустим, у нас есть одноконтурный газовый котел Baxi Luna 31.310 Fi, его полезная тепловая мощность — 31 кВт, электропотребление — 165 Вт.
Рассчитываем ежедневное потребление электрической энергии на подготовку . Умножаем потребляемую мощность на количество часов работы котла.
Допустим, отопление не выключается круглые сутки:
165 Вт × 24 часа = 3960 Вт×ч или 3,96 кВт×ч — это максимальное суточное потребление электроэнергии
Теперь рассчитываем, сколько электроэнергии в киловатт-часах потребляет газовый котел отопления в месяц. Умножаем количество потребленных киловатт в сутки на число дней в месяце (30 дней):
3,96 кВт×ч×30 дней = 118,8 кВт×ч — это максимальное месячное потребление электроэнергии.
Энергозависимому котлу не нужен естественный приток воздуха, так как работает принудительная вентиляция. Его система управления полностью автоматизирована, а в режим энергосбережения включена защита от замерзания – периодически котел включается для прогрева, и циркуляционный насос прогоняет воду в системе
И, наконец, надо получить потребление электроэнергии за год или за отопительный сезон. Поскольку речь идет об одноконтурном котле и, соответственно, отоплении без ГВС, возьмем продолжительность отопительного сезона равной 7 месяцам.
Тогда: 118,8 кВт×ч×7 = 831,6 кВт×ч — максимальное потребление электроэнергии за весь отопительный сезон.
Для двухконтурного котла надо в расчет закладывать 12 месяцев — хотя и в экономичном режиме, но котел работает и в летние месяцы.
Как сократить затраты на электроэнергию?
Будем исходить из того, что, во-первых, расход электроэнергии прямо зависит от тепловой мощности отопительного котла. И, во-вторых, большую часть потребляемого электричества забирает себе циркуляционный насос, который гоняет в трубах теплоноситель, чтобы трубы и прогревались размеренно.
Котел, как правило, всегда работает ночью с 23:00 до 06:00. Используйте многотарифный счетчик учета электроэнергии, в ночные часы действуют пониженные расценки
Назовем ряд конкретных предложений для тех, кто все же хотел бы сократить затраты на электроэнергию:
- Остановить выбор на энергонезависимом агрегате. Скорее всего, это будет напольный вариант. По функциональным возможностям и комфорту, увы, он не в состоянии конкурировать со своими энергозависимыми моделями-аналогами.
- Купить энергозависимый аппарат, но малой мощности. Тут, конечно, есть существенное ограничение — нельзя не учитывать количество отапливаемых квадратных метров. Если, к примеру, надо отапливать 180-200 м² частного дома, то газовый котел нужен мощностью 20-24 кВт. И никак не меньше.
- Внимательно изучать ассортиментные линейки разных брендов. Каждой модели присущи нюансы и, возможно, для какой-то из них вы увидите в технических характеристиках наиболее привлекательные цифры по электропотреблению.
- Проанализируйте, из чего складывается сумма общих затрат на оплату электричества. Возможно, доля этих затрат, приходящаяся на газовый котел, ничтожно мала, и надо переключить внимание на другие объекты, действительно чрезмерно потребляющие электроэнергию.
- А как вам использование альтернативной энергии — допустим, солнечных батарей или коллекторов на крыше дома?
И все же в погоне за экономией электричества не доводите собственные действия до абсурда. Не забывайте о том, что газовые агрегаты съедают мало электроэнергии, так как их основной топливный ресурс — не электричество, а природный или сжиженный газ.
ИБП для газового котла и его электропотребление
При пропаже электричества в сети газовый агрегат переключится на аварийный рабочий, что грозит поломкой дорогостоящих комплектующих. И на выручку в таких ситуациях придет ИБП (бесперебойник).
Насколько долго сможет проработать газовый котел при отсутствии электричества в сети, зависит от емкости аккумуляторного блока. Выбирайте или ИБП со встроенным внутрь аккумулятором, или ИБП с возможностью подключения к нему нужного количества аккумуляторных секций
Тип «line-interactive» — наиболее пользующиеся спросом ИБП, если верить многочисленным отзывам покупателей. В их составе есть стабилизатор напряжения, который в состоянии реагировать на перепады напряжения в сети в пределах 10%, при превышении этого значения следует переход на питание от аккумуляторной батареи.
Тип «off-line» — это бесперебойники без стабилизатора напряжения. Они выручают при внезапном отключении электроэнергии, но не защищают от колебания сетевого напряжения.
Тип «on-line» — самые совершенные ИБП. В них плавно происходит переключение с питания от сети на питание от аккумулятора и наоборот. Единственный недостаток — не всем по карману их цена.
В момент запуска газового котла потребление электричества увеличивается не менее чем в два, а то и в три-четыре раза. Пусть это кратковременный миг, длящийся секунду или две, все равно берем отопления по максимуму и с запасом мощности. Для газового котла электрической мощностью 100 Вт нужен ИБП мощностью не менее 300 Вт (с запасом — до 450-500 Вт).
Что касается емкости аккумуляторной батареи, то, допустим, одной батареи емкостью 50 Ач хватит при электропотреблении 100 Вт на 4-5 часов работы. Для обеспечения 9-10 часов работы нужно иметь две таких батареи и т.д.
В этой таблице показано время автономной работы газового котла в часах в зависимости от электропотребления газового котла (электрической мощности в Вт), емкости аккумуляторной батареи (емкость, Ач) и количества одновременно подключенных батарей (одна, две, три или четыре)
И, наконец, будет ли ИБП потреблять электроэнергию на свои нужды? Тут все зависит от КПД. Если взять КПД = 80%, то для нашего ИБП мощностью 300 Вт потребление совместно с нагрузкой будет:
300 Вт / 0,8 = 375 Вт, где 300 Вт — это нагрузка, остальные 75 Вт — потребление самим ИБП.
Приведенный пример расчета условный и применим для простых бесперебойников, а именно для того момента, когда скачки сетевого напряжения становятся выше определенного уровня — более 10%. Когда в сети стандартные 220 в, ИБП не потребляет практически ничего.
Детальные расчеты по расчету мощности ИБП, емкости аккумуляторных батарей и дополнительным затратам электричества в связи с установкой в отопительную сеть ИБП лучше доверить электрику.
Выводы и полезное видео по теме
Как выбрать газовый котел (в видео есть информация про энергозависимые котлы и их комплектующие, которым требуется для работы электричество):
Сколько электричества потребляет газовый котел (автор видео делает замер ваттметром):
Автономное электропитание для газового котла (опыт домашнего «умельца»):
При покупке газового котла ставьте задачу уменьшения электропотребления на одно из последних мест. Расход на оплату электричества несравненно ниже, чем очевидный плюс – экономия до 30% потребляемого газа.
Главное, чтобы в вашей местности не было проблем с внезапным отключением электричества на длительное время. Ну и, несомненно, автоматика котлов дает больше возможностей для настройки и контроля агрегата в процессе его эксплуатации.
Оставляйте, пожалуйста, комментарии в находящемся ниже блоке, задавайте вопросы, публикуйте фото по теме статьи. Поделитесь, сколько энергии потребляет ваш газовый агрегат во время работы. Не исключено, что ваши советы по экономии и правилам эксплуатации котла пригодятся посетителям сайта.
Потребляемая мощность кондиционера в кВт
На чтение 2 мин. Просмотров 13 Обновлено
Функциональность любой климатической техники определяется несколькими параметрами, одним из них является потребляемая мощность кондиционера. Единицы измерения мощности кондиционера — Вт и БТЕ\ч. Этот показатель влияет на размер счетов за электроэнергию, а также на способ подключения прибора к сети питания: напрямую, через собственный пакетник или просто, вставив вилку в розетку.
Мощность потребления или мощность охлаждения?
Это два совершенно разных показателя, вводящих в заблуждение многих покупателей.
Потребляемая мощность кондиционера в кВт раза в 3 ниже, чем мощность охлаждения. Значит, если на корпусе указано 3 киловатта, то потребляет кондиционер приблизительно 900 ватт. Что намного меньше микроволновки или фена.
Посему, при охлаждающей мощности кондиционера в кВт 2 – 4, можно безбоязненно запитывать его от обычной электророзетки.
Кстати, потребляемая мощность кондиционера, как правило, измеряется в ваттах, так как даже до 1 киловатта редко дотягивает в бытовых моделях.
Потребляемая мощность
Показатель мощности потребления кондиционера вычисляется, согласно международным стандартам, в лабораторных условиях при установленной температуре на улице +35 и внутри комнаты +27 градусов Цельсия.
Интересно, что при изменении температуры средняя мощность охлаждения меняется. Так, при температуре на улице -15 градусов она может упасть на 50 – 60%, тогда как мощность потребления кондиционера остается неизменной.
В связи с потребляемой мощностью кондиционера в кВт, у многих потребителей возникает вопрос о том, сколько же электричества за год потребляет кондиционер? Для этого высчитывается суммарное количество использованной электроэнергии. Данный показатель измеряется в кВт.ч\год или kWh\annum. Умножив его на цену одного киловаттчаса, мы получаем сумму, в которую приблизительно обойдется эксплуатация прибора за год. Суммарное количество потребленной электроэнергии также вычисляется в лабораторных условиях. При этом рекомендуемой температурой внутри помещений устанавливается +26,5 градусов Цельсия.
Если же потребитель привык охлаждать воздух до +24, его кондиционер «съест» значительно больше электричества. Показатель напрямую зависит и от кВт мощности кондиционера.
Потребляемая мощность и способ подключения кондиционера
В домах современной постройки электропроводка выдерживает до 16А тока, в старых же — не более 10А. Чтобы не допустить перегрузки, потребляемый ток должен быть на треть меньше, чем максимально допущенный.
То есть, если 1500 – 2400 Вт мощность кондиционера на потребление (охлаждающая в таком случае 5 – 9 кВт), его рабочий ток составляет от 7 до 11 Ампер. Для него можно не тянуть специальный кабель, но только, если к этому кабелю не подключаются другие мощные электроприборы.
Таблица номинальных значений усилителей генератора, однофазная расширенная таблица номинальных характеристик усилителей генератора
, одна фаза расширеннаяЭто новое всплывающее окно в верхней части окна браузера GeneratorJoe. НАЖМИТЕ ЧТОБЫ ЗАКРЫТЬ ОКНО
ФАЗОВЫЙ АМПЕР – 100% КОЭФФИЦИЕНТ МОЩНОСТИ * (Расширенная таблица) (кВт, умноженное на 1000) разделенное по Volts
1 ФАЗНЫЙ АМПЕР – 100% КОЭФФИЦИЕНТ МОЩНОСТИ * (Расширенная таблица) (кВт, умноженное на 1000) разделенное по Volts Конвертировать умножить кВт на ватты кВт (x) 1000 МОЩНОСТЬ (ВАТТ) = ВОЛЬТ, умноженный на АМПЕР АМПЕР = МОЩНОСТЬ (ВАТТ) деленная на ВОЛЬТВОЛЬТ = МОЩНОСТЬ (ВАТТ) разделить на AMPS* Все указанные значения являются приблизительными. |
Авторские права GeneratorJoe Inc. и GeneratorJoe. Все права защищены.
Это новое всплывающее окно в верхней части окна браузера GeneratorJoe. НАЖМИТЕ ЧТОБЫ ЗАКРЫТЬ ОКНО
| Преобразование тока (I) при различном напряжении (В).Истинная мощность (PкВт ) фиксированная (10 кВт). Один этап. Коэффициент мощности (PF) равен 0,8.
Преобразование тока (I), когда истинная мощность (PкВт ) различна. Напряжение (В) фиксированное (380 В). Один этап. Коэффициент мощности (PF) равен 0,8.
|
Киловатт в Ампер | Конвертер кВт в Ампер
Киловатты и амперы – единицы измерения двух различных параметров электричества. В то время как первый количественно определяет количество мощности, потребляемой нагрузкой в любой момент времени, последний количественно определяет количество тока, потребляемого нагрузкой. Вы можете использовать следующий калькулятор для преобразования киловатт в амперы (квт в амперы). Введите кВт, напряжение, , тип напряжения и коэффициент мощности для расчета.
киловатт в ампер конвертер единиц
Как перевести киловатты в амперы?
Поскольку киловатт (кВт) – это мера мощности, а Ампер (ампер или А) – мера силы тока, кВт нельзя напрямую преобразовать в ампер или наоборот. Ниже приведены формулы, используемые для преобразования киловатт в амперы (кВт в амперы) .
Один киловатт = 1000 Вт
DC – киловатты (кВт) в амперы (амперы)
Для любой цепи постоянного тока, Ток, I = 1000 x кВт / В постоянного тока
Где Vdc – приложенное постоянное напряжение.
Следовательно, ток можно рассчитать из DC – кВт, разделив киловатт на напряжение и умножив его на 1000.
Однофазный переменный ток – от кВт до А
Для любой однофазной цепи переменного тока, Ток, I = 1000 x кВт / (Vac x P. F.)
Где Vac – среднеквадратичное значение приложенного переменного напряжения, а P.F. – коэффициент мощности нагрузки
Следовательно, ток может быть рассчитан из переменного тока – кВт путем деления кВт на произведение действующего значения приложенного напряжения переменного тока и коэффициента мощности и умножения его на 1000.
Трехфазный переменный ток – от кВт до А
Для трехфазной цепи переменного тока , если межфазное напряжение известно , ампер можно рассчитать из кВт по следующей формуле.
Для любой трехфазной цепи переменного тока, Ток, I = 1000 x кВт / (√3 x V L x P.F.)
Где V L – среднеквадратичное значение приложенного сетевого напряжения, а P.F. коэффициент мощности нагрузки
Следовательно, токи можно рассчитать из переменного тока – кВт, разделив кВт на √3, умноженное на произведение действующего значения приложенного сетевого напряжения на коэффициент мощности, и умножив его на 1000.
Для трехфазной цепи переменного тока: , если известно фазное напряжение , можно рассчитать ампер из кВт по следующей формуле.
Для любой трехфазной цепи переменного тока, Ток, I = 1000 x кВт / (3 x В ф. x P.F.)
Где V ph – среднеквадратичное значение приложенного фазного напряжения, а P.F. коэффициент мощности нагрузки
Следовательно, ампер можно рассчитать из переменного тока – кВт, разделив кВт на 3 произведения среднеквадратичного значения приложенного фазного напряжения на коэффициент мощности и умножив полученное значение на 1000.
Другие калькуляторы кВт и ампер
Вт и вольт-ампер – что такое кВА и как она рассчитывается?
Вы когда-нибудь задумывались, почему некоторые номинальные мощности выражаются в Ваттах, некоторые – в АМПЕРАХ или АМПАРАХ, некоторые – в ВОЛЬТАХ, а некоторые – в кВА? На этой странице простым языком объясняется разница между номинальной мощностью и описывается, когда каждый из них следует использовать в вашем центре обработки данных и при планировании сетевой архитектуры.
КВА – это просто 1000 вольт ампер. вольт – электрическое давление. А, – электрический ток. Термин, называемый полной мощностью (абсолютное значение комплексной мощности, S), равен произведению вольт и ампер.
С другой стороны, ватт (Вт) – это мера реальной мощности. Реальная мощность – это фактическая мощность, которая может быть получена из цепи. Когда напряжение и ток в цепи совпадают, реальная мощность равна полной мощности.Однако, чем меньше совпадают волны тока и напряжения, реальная мощность передается меньше, даже если в цепи по-прежнему течет ток. Разница между реальной и полной мощностью и, следовательно, ваттами и вольтами ампер возникает из-за неэффективности передачи электроэнергии.
Результирующая неэффективность передачи электроэнергии может быть измерена и выражена в виде отношения, называемого коэффициентом мощности . Коэффициент мощности – это отношение (число от 0 до 1) активной и полной мощности. В случае коэффициента мощности 1,0 реальная мощность равна полной мощности. В случае коэффициента мощности 0,5 активная мощность примерно вдвое меньше полной мощности.
Развертывание систем с более высоким коэффициентом мощности приводит к меньшим потерям электроэнергии и может помочь повысить эффективность использования энергии (PUE). Большинство источников бесперебойного питания (ИБП) будут указывать средний коэффициент мощности и нагрузочную способность ИБП в реальном времени в дополнение к кВА.
Пример: У вас есть ИБП на 500 кВА (полная мощность) с 0.Коэффициент мощности 9. Итоговая реальная мощность составляет 450 киловатт.
Некоторые полезные коэффициенты преобразования и формулы
- ВА = напряжение x амперы
- Вт = напряжение (среднеквадратичное значение) x амперы (среднеквадратичное значение) x коэффициент мощности (PF) ( трехфазная цепь умножила бы напряжение на квадратный корень из 3 или приблизительно 1,732)
- 1 BTU (британская тепловая единица) = Вт x 3,413
- 1 BTU = 1055. 053 джоулей (Дж)
- 1 ватт = 3,413 БТЕ / час
- 1 тонна = 200 БТЕ / мин
- 1 тонна = 12000 БТЕ / час
- 1 тонна = 3,517 киловатт
Калькулятор преобразования из вольт в ватты, из ваттов в амперы, из вольт в амперы
Наш онлайн-калькулятор / средство преобразования может преобразовывать ватты в амперы, вольт в ватты и вольт в амперы. Калькулятор работает, заполняя любое из двух из трех полей (вольт амперы ватты) для вычисления значения третьего поля.Этот инструмент может преобразовать любое значение, если вы вводите два других значения.
Пример преобразования
Пример 1: Чтобы преобразовать вольт в амперы для блока питания 24 В VA50, введите 24 В и 50 Вт. Щелкните Рассчитать.
Пример 2: Чтобы преобразовать ватты в амперы для источника питания 12 В постоянного тока 500 мА, введите 12 В и 0,5 А. Щелкните Рассчитать.
Часто задаваемые вопросы (FAQ)
- Как перевести из вольт в ватты?
Формула для преобразования напряжения в ватты: ватт = ампер x вольт. - Как перевести ватты в усилители?
Формула для преобразования ватт в амперы при фиксированном напряжении: ампер = ватт / вольт. - Как преобразовать напряжение в ток?
Формула для преобразования вольт в амперы при фиксированной мощности: ампер = ватт / вольт. - Как перевести ампер в ватт?
Формула для преобразования ампер в ватты при фиксированном напряжении: ватты = амперы x вольт.
Преобразование ватт в амперы (подробный пример)
Вот один из примеров того, как этот калькулятор обычно используется установщиками систем безопасности в качестве калькулятора усилителя.Установщику необходимо рассчитать расстояние, на которое можно проложить кабель питания от видеорегистратора видеонаблюдения до камеры видеонаблюдения, камеры видеонаблюдения HD и даже одной из новейших камер видеонаблюдения UHD 4K. Сначала им нужно рассчитать, сколько ампер выдает источник питания 24 В переменного тока. Обычно блоки питания 24 В переменного тока имеют номинальные значения ВА (амперы напряжения), а не амперы. Например, источник питания 24VAC50 – это 24 вольт, 50 вольт-ампер (ватты также известны как вольт-амперы). В приведенном выше калькуляторе установщик введет значение 24 в поле вольт и значение 50 в поле ватт.
Определения электрических терминов
Вот некоторые полезные электрические термины, относящиеся к вычислению вольт в ватт, ватт в ампер и из вольт в амперы.
- Вольт – единица измерения электрической силы или давления, которая заставляет электрический ток течь в цепи. Один вольт – это давление, необходимое для протекания тока в один ампер против одного ома сопротивления. Концепция аналогична напору воды.
- Ватт – единица измерения прилагаемой электрической мощности в цепи.Ватты также известны как вольт-амперы и представляют собой электрическую единицу измерения, обычно используемую в цепях переменного тока. Ватты рассчитываются путем умножения силы тока (измеренного в амперах) на электрическое давление (измеренное в вольтах).
- Ампер (Ампер) – единица измерения силы тока в электрической цепи. Один ампер – это величина тока, когда один вольт электрического давления прикладывается к одному ому сопротивления. Амперы используются для измерения расхода электроэнергии аналогично тому, как GPM (галлоны в минуту) используются для измерения объема протекающей воды.
- Ом – прибор для измерения сопротивления течению в электрическом токе. Электрические проводники (например, проволока) оказывают сопротивление потоку тока. Это похоже на то, как трубка или шланг оказывает сопротивление потоку воды. Один Ом – это величина сопротивления, которая ограничивает ток до одного ампера в цепи с одним вольт электрическим давлением.
- Закон Ома – Закон Ома гласит, что когда электрический ток течет по проводнику (например, кабелю), сила тока (в амперах) равна движущей его электродвижущей силе (вольты), деленной на сопротивление проводника.
Онлайн-инструменты и калькуляторы
Пожалуйста, посетите нашу страницу Калькуляторы, конвертеры и инструменты для дополнительных онлайн-приложений.
Об этом инструменте
Этот онлайн-калькулятор был создан Майком Халдасом для профессионалов CCTV Camera Pros. CCTV Camera Pros – прямой поставщик оборудования для видеонаблюдения для дома, бизнеса и правительства. Если у вас есть какие-либо вопросы об этом инструменте или о чем-либо, связанном с системами камер видеонаблюдения, свяжитесь с Майком по адресу mike @ cctvcamerapros.нетто
Мощность генератора, кВА, таблица преобразования
кВА (киловольт-ампер) – это рейтинг, наиболее часто используемый для определения выходной мощности генератора. Чем выше номинальная мощность в кВА, тем большую мощность производит генератор. Для обеспечения достаточной мощности вашего оборудования вам понадобится генератор с подходящей KVA. Наша диаграмма зависимости мощности генератора от киловатт-амперной характеристики поможет вам определить правильное преобразование киловатт-ампер-ампер в киловатт или ампер, которое соответствует вашим потребностям в мощности. Учитывая различные факторы, влияющие на силу тока, обратите внимание, что эта таблица предназначена для использования в качестве оценки, а не для точного расчета вашей потребности в силе тока.
Таблица преобразования мощности генератора в кВА в силу тока 80% КОЭФФИЦИЕНТ МОЩНОСТИ | |||||||||||
кВ • А | кВт | 208В | 220 В | 240 В | 380 В | 440В | 480 В | 600 В | 2400 В | 3300В | 4160V |
6,3 | 5 | 17,5 | 16,5 | 15,2 | 9,6 | 8,3 | 7.6 | 6,1 | |||
9,4 | 7,5 | 26,1 | 24,7 | 22,6 | 14,3 | 12,3 | 11,3 | 9,1 | |||
12,5 | 10 | 34,7 | 33 | 30,1 | 19,2 | 16,6 | 15,1 | 12 | |||
18.7 | 15 | 52 | 49,5 | 45 | 28,8 | 24,9 | 22,5 | 18 | |||
25 | 20 | 69,5 | 66 | 60,2 | 38,4 | 33,2 | 30,1 | 24 | 6 | 4,4 | 3,5 |
31,3 | 25 | 87 | 82.5 | 75,5 | 48 | 41,5 | 37,8 | 30 | 7,5 | 5,5 | 4,4 |
37,5 | 30 | 104 | 99 | 90,3 | 57,6 | 49,8 | 45,2 | 36 | 9,1 | 6,6 | 5,2 |
50 | 40 | 139 | 132 | 120 | 77 | 66.5 | 60 | 48 | 12,1 | 8,8 | 7 |
62,5 | 50 | 173 | 165 | 152 | 96 | 83 | 76 | 61 | 15,1 | 10,9 | 8,7 |
75 | 60 | 208 | 198 | 181 | 115 | 99,5 | 91 | 72 | 18.1 | 13,1 | 10,5 |
93,8 | 75 | 261 | 247 | 226 | 143 | 123 | 113 | 90 | 22,6 | 16,4 | 13 |
100 | 80 | 278 | 264 | 240 | 154 | 133 | 120 | 96 | 24,1 | 17,6 | 13,9 |
125 | 100 | 347 | 330 | 301 | 192 | 166 | 150 | 120 | 30 | 21.8 | 17,5 |
156 | 125 | 433 | 413 | 375 | 240 | 208 | 188 | 150 | 38 | 27,3 | 22 |
187 | 150 | 520 | 495 | 450 | 288 | 249 | 225 | 180 | 45 | 33 | 26 |
219 | 175 | 608 | 577 | 527 | 335 | 289 | 264 | 211 | 53 | 38 | 31 |
250 | 200 | 694 | 660 | 601 | 384 | 332 | 301 | 241 | 60 | 44 | 35 |
312 | 250 | 866 | 825 | 751 | 480 | 415 | 376 | 300 | 75 | 55 | 43 |
375 | 300 | 1040 | 990 | 903 | 576 | 498 | 451 | 361 | 90 | 66 | 52 |
438 | 350 | 1220 | 1155 | 1053 | 672 | 581 | 527 | 422 | 105 | 77 | 61 |
500 | 400 | 1390 | 1320 | 1203 | 770 | 665 | 602 | 481 | 120 | 88 | 69 |
625 | 500 | 1735 | 1650 | 1504 | 960 | 830 | 752 | 602 | 150 | 109 | 87 |
750 | 600 | 2080 | 1980 | 1803 | 1150 | 996 | 902 | 721 | 180 | 131 | 104 |
875 | 700 | 2430 | 2310 | 2104 | 1344 | 1274 | 1052 | 842 | 210 | 153 | 121 |
1000 | 800 | 2780 | 2640 | 2405 | 1540 | 1330 | 1203 | 962 | 241 | 176 | 139 |
1125 | 900 | 3120 | 2970 | 2709 | 1730 | 1495 | 1354 | 1082 | 271 | 197 | 156 |
1250 | 1000 | 3470 | 3300 | 3009 | 1920 | 1660 | 1504 | 1202 | 301 | 218 | 174 |
1563 | 1250 | 4350 | 4130 | 3740 | 2400 | 2080 | 1885 | 1503 | 376 | 273 | 218 |
1875 | 1500 | 5205 | 4950 | 4520 | 2880 | 2490 | 2260 | 1805 | 452 | 327 | 261 |
2188 | 1750 | 5280 | 3350 | 2890 | 2640 | 2106 | 528 | 380 | 304 | ||
2500 | 2000 | 6020 | 3840 | 3320 | 3015 | 2405 | 602 | 436 | 348 | ||
2812 | 2250 | 6780 | 4320 | 3735 | 3400 | 2710 | 678 | 491 | 392 | ||
3125 | 2500 | 7520 | 4800 | 4160 | 3740 | 3005 | 752 | 546 | 435 | ||
3750 | 3000 | 9040 | 5760 | 4980 | 4525 | 3610 | 904 | 654 | 522 | ||
4375 | 3500 | 10550 | 6700 | 5780 | 5285 | 4220 | 1055 | 760 | 610 | ||
5000 | 4000 | 12040 | 7680 | 6640 | 6035 | 4810 | 1204 | 872 | 695 |
Запросить цену Узнать больше Подпишитесь на электронную почту
Расчет KVA для AMP для генераторов
Один кВА равен 1000 вольт-ампер и рассчитывается путем умножения напряжения на ампер.KVA конвертируются в AMP. Наша диаграмма KVA to AMP позволяет вам точно видеть, в какие кВт или напряжение преобразуется данный номинальный KVA, чтобы вы могли безопасно и адекватно питать свой генератор, не беспокоясь о перегрузке по мощности, которая потенциально может повредить ваш генератор и подключенное к нему оборудование.
Поскольку генераторы бывают разных размеров и разной выходной мощности, KVA будут иметь разную мощность, которую они обеспечивают. Воспользуйтесь нашей легко читаемой таблицей силы тока генератора, чтобы оценить, сколько энергии вам нужно для вашего оборудования.Имейте в виду, что в нашей таблице преобразования силы тока указан коэффициент мощности 80% по сравнению с полной мощностью. Это означает, что 80% входящей мощности выполняет полезную работу.
Lex Products ™ предлагает решения по распределению энергии, в которых вы нуждаетесь в портативных источниках питания. Lex Products ™ обладает знаниями, опытом, высококачественными продуктами и таблицами конверсии, чтобы помочь вам выполнить работу правильно, от военной сферы до индустрии развлечений и всего остального. Свяжитесь с Lex Products ™ сегодня, чтобы получить индивидуальные конфигурации или рекомендации по потребностям в питании.
Однофазный и трехфазный переменный ток
В однофазной системе переменного тока присутствует только одно синусоидальное напряжение.
Большая часть мощности переменного тока производится и распределяется как трехфазная мощность с тремя синусоидальными напряжениями, сдвинутыми по фазе на 120 градусов друг к другу.
Приведенные ниже диаграмма и таблица могут использоваться для преобразования силы тока между однофазным и трехфазным оборудованием и наоборот.
Загрузите и распечатайте схему однофазного и трехфазного переменного тока
Пример – Электропитание электрического нагревателя
10 кВт мощности требуется для электрического нагревателя.Доступный источник питания: 230 В, одно- или трехфазный. Из приведенной выше таблицы мы можем оценить ток в двух вариантах примерно как
- 43 A с одной фазой 230 В
- 25 A с тремя фазами 230 В
Полная мощность – это подаваемая мощность в электрическую цепь – обычно от поставщика энергии до сети – для покрытия потребления активной и реактивной мощности в нагрузках.Для чисто резистивных нагрузок полная мощность равна 1 ВА = 1 Вт .
Для полного стола с трехфазной сбалансированной нагрузкой – поверните экран!
Полная мощность (ВА) | Ток (амперы) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Однофазный (вольт) | Трехфазная сбалансированная нагрузка 120157 | 208 | 230 | 240 | 208 | 230 | 240 | 277 | 347 | 380 | 400 | 415 | 480 | 50 | 2 415 | 480 | 503 | 0,48 | 0,43 | 0,42 | 0,28 | 0,25 | 0,24 | 0,21 | 0,17 | 0,15 | 0,14 | 0,14 | 0,12 | 0,10 |
150 | 0,72 | 0,65 | 0,63 | 0,42 | 0,38 | 0,36 | 0,31 | 0,25 | 0,23 | 0.22 | 0,21 | 0,18 | 0,14 | ||
200 | 1,7 | 1,0 | 0,87 | 0,83 | 0,56 | 0,50 | 0,48 | 0,42 | 0,33 | 0,30 | 0,29 | 0,28 | 0,24 | 0,19 | |
250 | 2,1 | 1,2 | 1,1 | 1,0 | 0,69 | 0.63 | 0,60 | 0,52 | 0,42 | 0,38 | 0,36 | 0,35 | 0,30 | 0,24 | |
300 | 2,5 | 1,4 | 1,3 | 1,3 | 0,83 | 0,75 | 0,72 | 0,63 | 0,50 | 0,46 | 0,43 | 0,42 | 0,36 | 0,29 | |
350 | 2.9 | 1,7 | 1,5 | 1,5 | 1,0 | 0,88 | 0,84 | 0,73 | 0,58 | 0,53 | 0,51 | 0,49 | 0,42 | 0,34 | |
400 | 3,3 | 1,9 | 1,7 | 1,7 | 1,1 | 1,0 | 1,0 | 0,83 | 0,67 | 0,61 | 0,58 | 0.56 | 0,48 | 0,38 | |
450 | 3,8 | 2,2 | 2,0 | 1,9 | 1,2 | 1,1 | 1,1 | 0,94 | 0,75 | 0,68 | 0,65 | 0,63 | 0,54 | 0,43 | |
500 | 4,2 | 2,4 | 2,2 | 2,1 | 1,4 | 1,3 | 1.2 | 1,0 | 0,83 | 0,76 | 0,72 | 0,70 | 0,60 | 0,48 | |
550 | 4,6 | 2,6 | 2,4 | 2,3 | 1,5 | 1,4 | 1,3 | 1,1 | 0,92 | 0,84 | 0,79 | 0,77 | 0,66 | 0,53 | |
600 | 5,0 | 2,9 | 2.6 | 2,5 | 1,7 | 1,5 | 1,4 | 1,3 | 1,0 | 0,91 | 0,87 | 0,83 | 0,72 | 0,58 | |
650 | 5,4 | 3,1 | 2,8 | 2,7 | 1,8 | 1,6 | 1,6 | 1,4 | 1,1 | 1,0 | 0,94 | 0,90 | 0,78 | 0.63 | |
700 | 5,8 | 3,4 | 3,0 | 2,9 | 1,9 | 1,8 | 1,7 | 1,5 | 1,2 | 1,1 | 1,0 | 1,0 | 0,84 | 0,67 | |
750 | 6,3 | 3,6 | 3,3 | 3,1 | 2,1 | 1,9 | 1,8 | 1,6 | 1,2 | 1.1 | 1,1 | 1,0 | 0,90 | 0,72 | |
800 | 6,7 | 3,8 | 3,5 | 3,3 | 2,2 | 2,0 | 1,9 | 1,7 | 1,3 | 1,2 | 1,2 | 1,1 | 1,0 | 0,77 | |
850 | 7,1 | 4,1 | 3,7 | 3,5 | 2,4 | 2.1 | 2,0 | 1,8 | 1,4 | 1,3 | 1,2 | 1,2 | 1,0 | 0,82 | |
900 | 7,5 | 4,3 | 3,9 | 3,8 | 2,5 | 2,3 | 2,2 | 1,9 | 1,5 | 1,4 | 1,3 | 1,3 | 1,1 | 0,87 | |
950 | 7,9 | 4.6 | 4,1 | 4,0 | 2,6 | 2,4 | 2,3 | 2,0 | 1,6 | 1,4 | 1,4 | 1,3 | 1,1 | 0,91 | |
1000 | 8,3 | 4,8 | 4,3 | 4,2 | 2,8 | 2,5 | 2,4 | 2,1 | 1,7 | 1,5 | 1,4 | 1,4 | 1,2 | 1.0 | |
1100 | 9,2 | 5,3 | 4,8 | 4,6 | 3,1 | 2,8 | 2,6 | 2,3 | 1,8 | 1,7 | 1,6 | 1,5 | 1,3 | 1,1 | |
1200 | 10 | 5,8 | 5,2 | 5,0 | 3,3 | 3,0 | 2,9 | 2,5 | 2,0 | 1.8 | 1,7 | 1,7 | 1,4 | 1,2 | |
1300 | 11 | 6,3 | 5,7 | 5,4 | 3,6 | 3,3 | 3,1 | 2,7 | 2,2 | 2,0 | 1,9 | 1,8 | 1,6 | 1,3 | |
1400 | 12 | 6,7 | 6,1 | 5,8 | 3,9 | 3.5 | 3,4 | 2,9 | 2,3 | 2,1 | 2,0 | 1,9 | 1,7 | 1,3 | |
1500 | 13 | 7,2 | 6,5 | 6,3 | 4,2 | 3,8 | 3,6 | 3,1 | 2,5 | 2,3 | 2,2 | 2,1 | 1,8 | 1,4 | |
1600 | 13 | 7.7 | 7,0 | 6,7 | 4,4 | 4,0 | 3,8 | 3,3 | 2,7 | 2,4 | 2,3 | 2,2 | 1,9 | 1,5 | |
1700 | 14 | 8,2 | 7,4 | 7,1 | 4,7 | 4,3 | 4,1 | 3,5 | 2,8 | 2,6 | 2,5 | 2,4 | 2,0 | 1.6 | |
1800 | 15 | 8,7 | 7,8 | 7,5 | 5,0 | 4,5 | 4,3 | 3,8 | 3,0 | 2,7 | 2,6 | 2,5 | 2,2 | 1,7 | |
1900 | 16 | 9,1 | 8,3 | 7,9 | 5,3 | 4,8 | 4,6 | 4,0 | 3,2 | 2.9 | 2,7 | 2,6 | 2,3 | 1,8 | |
2000 | 17 | 9,6 | 8,7 | 8,3 | 5,6 | 5,0 | 4,8 | 4,2 | 3,3 | 3,0 | 2,9 | 2,8 | 2,4 | 1,9 | |
2500 | 21 | 12 | 11 | 10 | 6,9 | 6.3 | 6,0 | 5,2 | 4,2 | 3,8 | 3,6 | 3,5 | 3,0 | 2,4 | |
3000 | 25 | 14 | 13 | 13 | 8,3 | 7,5 | 7,2 | 6,3 | 5,0 | 4,6 | 4,3 | 4,2 | 3,6 | 2,9 | |
3500 | 29 | 17 | 15 | 15 | 9.7 | 8,8 | 8,4 | 7,3 | 5,8 | 5,3 | 5,1 | 4,9 | 4,2 | 3,4 | |
4000 | 33 | 19 | 17 | 17 | 11 | 10 | 9,6 | 8,3 | 6,7 | 6,1 | 5,8 | 5,6 | 4,8 | 3,8 | |
4500 | 38 | 22 | 20 | 19 | 12 | 11 | 11 | 9.4 | 7,5 | 6,8 | 6,5 | 6,3 | 5,4 | 4,3 | |
5000 | 42 | 24 | 22 | 21 | 14 | 13 | 12 | 10 | 8,3 | 7,6 | 7,2 | 7,0 | 6,0 | 4,8 | |
5500 | 46 | 26 | 24 | 23 | 15 | 14 | 13 | 11 | 9 .2 | 8,4 | 7,9 | 7,7 | 6,6 | 5,3 | |
6000 | 50 | 29 | 26 | 25 | 17 | 15 | 14 | 13 | 10 | 9,1 | 8,7 | 8,3 | 7,2 | 5,8 | |
6500 | 54 | 31 | 28 | 27 | 18 | 16 | 16 | 14 | 11 | 9 .9 | 9,4 | 9,0 | 7,8 | 6,3 | |
7000 | 58 | 34 | 30 | 29 | 19 | 18 | 17 | 15 | 12 | 11 | 10 | 9,7 | 8,4 | 6,7 | |
7500 | 63 | 36 | 33 | 31 | 21 | 19 | 18 | 16 | 12 | 11 | 11 | 10 | 9.0 | 7,2 | |
8000 | 67 | 38 | 35 | 33 | 22 | 20 | 19 | 17 | 13 | 12 | 12 | 11 | 9,6 | 7,7 | |
8500 | 71 | 41 | 37 | 35 | 24 | 21 | 20 | 18 | 14 | 13 | 12 | 12 | 10 | 8 .2 | |
9000 | 75 | 43 | 39 | 38 | 25 | 23 | 22 | 19 | 15 | 14 | 13 | 13 | 11 | 8,7 | |
9500 | 79 | 46 | 41 | 40 | 26 | 24 | 23 | 20 | 16 | 14 | 14 | 13 | 11 | 9.1 | |
10000 | 83 | 48 | 43 | 42 | 28 | 25 | 24 | 21 | 17 | 15 | 14 | 14 | 12 | 9,6 |
Номограмма электрической мощности
Номограмма ниже может использоваться для оценки зависимости мощности от напряжения и силы тока.