ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Общие сведения
И. К. Айвазовский. Чесменский бой
Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.
Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.
Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава
Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.
Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава
Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.
Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава
Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.
Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.
Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.
Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава
Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.
Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава
Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.
Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.
Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.
Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.
Историческая справка
С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.
Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)
Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.
Жан-Батист Био (1774–1862)
Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.
Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.
Электрический ток. Определения
Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:
I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах
Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:
I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах
Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).
Размерность тока в системе СИ определяется как
[А] = [Кл] / [сек]
Особенности протекания электрического тока в различных средах. Физика явлений
Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей
Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках
При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.
Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.
Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода
С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.
В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.
Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали
Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.
Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.
Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.
Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.
Хромированная пластмассовая душевая головка
Электрический ток в жидкостях (электролитах)
Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.
Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.
Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.
Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.
Электрический ток в газах
Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.
Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В
Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.
Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.
Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.
Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.
Тихий разряд. Вольт-амперная характеристика.
Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.
Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.
Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)
Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.
При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.
Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.
Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.
Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.
Электрический ток в вакууме
Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава
Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.
Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава
Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.
Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.
Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.
Современный видеопроектор
Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.
При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.
Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов
В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.
Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.
Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.
Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава
Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.
Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.
Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.
Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.
Электрический ток в биологии и медицине
Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения
Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.
С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.
При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.
Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.
Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.
Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.
Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.
Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.
Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах
В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.
Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.
К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.
Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.
Автоматический дефибриллятор для обучения лиц, не являющихся медработниками
Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.
У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.
Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.
Характеристики электрического тока, его генерация и применение
Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.
Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава
Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.
Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.
Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.
Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава
В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.
Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.
Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.
Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.
Объектив лазера в приводе компакт-диска
В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.
Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.
Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.
Стрелочный мультиметр со снятой верхней крышкой
Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.
Измерение силы электрического тока
Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.
По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.
Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной
Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.
Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:
- мгновенное,
- амплитудное,
- среднее,
- среднеквадратичное (действующее).
Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.
Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.
Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.
Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.
Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.
Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.
Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.
Измерение тока с помощью осциллографа
Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).
Общая схема эксперимента №1 представлена ниже:
Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.
Опыт 1
Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:
IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,
что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен
IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА
Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).
Опыт 2
Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:
IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,
что приблизительно соответствует показаниям мультиметра (1,55 мА).
Опыт 3
Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.
Опыт 4
Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.
Техника безопасности при измерении тока и напряжения
Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии
- Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
- Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
- Не производить измерения токов в труднодоступных местах или на высоте.
- При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
- Пользоваться исправным измерительным инструментом.
- В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
- Пользоваться измерительным прибором с исправными щупами.
- Строго следовать рекомендациям производителя по использованию измерительного прибора.
Автор статьи: Сергей Акишкин
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления. Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Общие сведения
И. К. Айвазовский. Чесменский бой
Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.
Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.
Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава
Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.
Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава
Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.
Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава
Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.
Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.
Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.
Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава
Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.
Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава
Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.
Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.
Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.
Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.
Историческая справка
С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.
Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)
Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.
Жан-Батист Био (1774–1862)
Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.
Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.
Электрический ток. Определения
Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:
I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах
Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:
I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах
Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).
Размерность тока в системе СИ определяется как
[А] = [Кл] / [сек]
Особенности протекания электрического тока в различных средах. Физика явлений
Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей
Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках
При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.
Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.
Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода
С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.
В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.
Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали
Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.
Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.
Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.
Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.
Хромированная пластмассовая душевая головка
Электрический ток в жидкостях (электролитах)
Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.
Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.
Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.
Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.
Электрический ток в газах
Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.
Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В
Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.
Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.
Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.
Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.
Тихий разряд. Вольт-амперная характеристика.
Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.
Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.
Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)
Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.
При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.
Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.
Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.
Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.
Электрический ток в вакууме
Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава
Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.
Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава
Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.
Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.
Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.
Современный видеопроектор
Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.
При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.
Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов
В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.
Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.
Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.
Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава
Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.
Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.
Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.
Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.
Электрический ток в биологии и медицине
Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения
Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.
С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.
При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.
Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.
Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.
Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.
Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.
Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.
Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах
В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.
Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.
К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.
Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.
Автоматический дефибриллятор для обучения лиц, не являющихся медработниками
Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.
У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.
Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.
Характеристики электрического тока, его генерация и применение
Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.
Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава
Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.
Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.
Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.
Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава
В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.
Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.
Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.
Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.
Объектив лазера в приводе компакт-диска
В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.
Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.
Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.
Стрелочный мультиметр со снятой верхней крышкой
Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.
Измерение силы электрического тока
Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.
По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.
Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной
Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.
Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:
- мгновенное,
- амплитудное,
- среднее,
- среднеквадратичное (действующее).
Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.
Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.
Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.
Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.
Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.
Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.
Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.
Измерение тока с помощью осциллографа
Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).
Общая схема эксперимента №1 представлена ниже:
Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.
Опыт 1
Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:
IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,
что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен
IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА
Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).
Опыт 2
Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:
IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,
что приблизительно соответствует показаниям мультиметра (1,55 мА).
Опыт 3
Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.
Опыт 4
Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.
Техника безопасности при измерении тока и напряжения
Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии
- Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
- Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
- Не производить измерения токов в труднодоступных местах или на высоте.
- При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
- Пользоваться исправным измерительным инструментом.
- В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
- Пользоваться измерительным прибором с исправными щупами.
- Строго следовать рекомендациям производителя по использованию измерительного прибора.
Автор статьи: Сергей Акишкин
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
1 ватт сколько ампер – таблица, как амперы перевести в ватты, онлайн калькулятор
По формуле или еще проще
Выбираем в магазине две вещи, которые должны использоваться «в тандеме», например, утюг и розетку, и внезапно сталкиваемся с проблемой — «электропараметры» на маркировке указаны в разных единицах.
Как же подобрать подходящие друг к другу приборы и устройства? Как амперы перевести в ватты?
Смежные, но разные
Сразу надо сказать, что прямого перевода единиц сделать нельзя, поскольку обозначают они разные величины.
Ватт — указывает на мощность, т.е. скорость, с которой потребляется энергия.
Ампер — единица силы, говорящая о скорости прохождения тока через конкретное сечение.
Чтобы электрические системы работали безотказно, можно рассчитать соотношение амперов и ваттов при определенном напряжении в электросети. Последнее — измеряется в вольтах и может быть:
- фиксированным;
- постоянным;
- переменным.
С учетом этого и производится сопоставление показателей.
«Фиксированный» перевод
Зная, помимо величин мощности и силы, еще и показатель напряжения, перевести амперы в ватты можно по следующей формуле:
P=I*U
При этом P — это мощность в ваттах, I — сила тока в амперах, U — напряжение в вольтах.
Онлайн калькулятор
Для того, чтобы постоянно быть «в теме» можно составить для себя «ампер-ватт»-таблицу с наиболее часто встречаемыми параметрами (1А, 6А, 9А и т. п.).
Такой «график соотношений» будет достоверным для сетей с фиксированным и постоянным напряжением.
«Переменные нюансы»
Для расчета при переменном напряжении в формулу включается еще одно значение — коэффициент мощности (КМ). Теперь она выглядит так:
P=I*U*КМ
Сделать процесс перевода единиц измерения более быстрым и простым поможет такое доступное средство, как онлайн-калькулятор «ампер в ватты». Не забывайте, что если надо ввести в графу дробное число, производится это через точку, а не через запятую.
Таким образом, на вопрос «1 ватт — сколько ампер?», с помощью калькулятора можно дать ответ — 0,0045. Но он будет справедливым только для стандартного напряжения в 220в.
Используя представленные в интернете калькуляторы и таблицы, вы сможете не мучиться над формулами, а легко сопоставить разные единицы измерения.
Это поможет подобрать автоматические выключатели на разную нагрузку и не тревожиться за свои бытовые приборы и состояние электропроводки.
Ампер – ватт таблица:
12 | 24 | 48 | 64 | 110 | 220 | 380 | Вольт | ||
5 Ватт | 0,83 | 0,42 | 0,21 | 0,10 | 0,08 | 0,05 | 0,02 | 0,01 | Ампер |
6 Ватт | 1 | 0,5 | 0,25 | 0,13 | 0,09 | 0,05 | 0,03 | 0,02 | Ампер |
7 Ватт | 1,17 | 0,58 | 0,29 | 0,15 | 0,11 | 0,06 | 0,03 | 0,02 | Ампер |
8 Ватт | 1,33 | 0,67 | 0,33 | 0,17 | 0,13 | 0,07 | 0,04 | 0,02 | Ампер |
9 Ватт | 1,5 | 0,75 | 0,38 | 0,19 | 0,14 | 0,08 | 0,04 | 0,02 | Ампер |
10 Ватт | 1,67 | 0,83 | 0,42 | 0,21 | 0,16 | 0,09 | 0,05 | 0,03 | Ампер |
20 Ватт | 3,33 | 1,67 | 0,83 | 0,42 | 0,31 | 0,18 | 0,09 | 0,05 | Ампер |
30 Ватт | 5,00 | 2,5 | 1,25 | 0,63 | 0,47 | 0,27 | 0,14 | 0,03 | Ампер |
40 Ватт | 6,67 | 3,33 | 1,67 | 0,83 | 0,63 | 0,36 | 0,13 | 0,11 | Ампер |
50 Ватт | 8,33 | 4,17 | 2,03 | 1,04 | 0,78 | 0,45 | 0,23 | 0,13 | Ампер |
60 Ватт | 10,00 | 5 | 2,50 | 1,25 | 0,94 | 0,55 | 0,27 | 0,16 | Ампер |
70 Ватт | 11,67 | 5,83 | 2,92 | 1,46 | 1,09 | 0,64 | 0,32 | 0,18 | Ампер |
80 Ватт | 13,33 | 6,67 | 3,33 | 1,67 | 1,25 | 0,73 | 0,36 | 0,21 | Ампер |
90 Ватт | 15,00 | 7,50 | 3,75 | 1,88 | 1,41 | 0,82 | 0,41 | 0,24 | Ампер |
100 Ватт | 16,67 | 3,33 | 4,17 | 2,08 | 1,56 | ,091 | 0,45 | 0,26 | Ампер |
200 Ватт | 33,33 | 16,67 | 8,33 | 4,17 | 3,13 | 1,32 | 0,91 | 0,53 | Ампер |
300 Ватт | 50,00 | 25,00 | 12,50 | 6,25 | 4,69 | 2,73 | 1,36 | 0,79 | Ампер |
400 Ватт | 66,67 | 33,33 | 16,7 | 8,33 | 6,25 | 3,64 | 1,82 | 1,05 | Ампер |
500 Ватт | 83,33 | 41,67 | 20,83 | 10,4 | 7,81 | 4,55 | 2,27 | 1,32 | Ампер |
600 Ватт | 100,00 | 50,00 | 25,00 | 12,50 | 9,38 | 5,45 | 2,73 | 1,58 | Ампер |
700 Ватт | 116,67 | 58,33 | 29,17 | 14,58 | 10,94 | 6,36 | 3,18 | 1,84 | Ампер |
800 Ватт | 133,33 | 66,67 | 33,33 | 16,67 | 12,50 | 7,27 | 3,64 | 2,11 | Ампер |
900 Ватт | 150,00 | 75,00 | 37,50 | 13,75 | 14,06 | 8,18 | 4,09 | 2,37 | Ампер |
1000 Ватт | 166,67 | 83,33 | 41,67 | 20,33 | 15,63 | 9,09 | 4,55 | 2,63 | Ампер |
1100 Ватт | 183,33 | 91,67 | 45,83 | 22,92 | 17,19 | 10,00 | 5,00 | 2,89 | Ампер |
1200 Ватт | 200 | 100,00 | 50,00 | 25,00 | 78,75 | 10,91 | 5,45 | 3,16 | Ампер |
1300 Ватт | 216,67 | 108,33 | 54,2 | 27,08 | 20,31 | 11,82 | 5,91 | 3,42 | Ампер |
1400 Ватт | 233 | 116,67 | 58,33 | 29,17 | 21,88 | 12,73 | 6,36 | 3,68 | Ампер |
1500 Ватт | 250,00 | 125,00 | 62,50 | 31,25 | 23,44 | 13,64 | 6,82 | 3,95 | Ампер |
И ещё видео по теме:
youtube.com/embed/LcnUyC_CjJM”/>
Прибор для измерения силы тока. Как измерить силу тока мультиметром
Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в
Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.
Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.
1. Прибор для измерения силы тока.
Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.
На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «PА» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».
Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит.
Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.
2. Измерение силы тока мультиметром.
Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.
Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.
Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.
Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:
красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.
В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.
Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.
Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.
Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».
Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.
Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.
Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.
И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.
Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.
Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.
Удачи!
Перевод Вольт-Амперы в Ватты, перевести ВА в кВт.
К каталогу товаров
Как правильно рассчитать мощность ИБП если указаны Вольт Амперы (ВА). Вольт-Амперы или ВА — это единица измерения полной электрической мощности. Полная электрическая мощность — это геометрическая сумма активной и реактивной мощности. Что же такое активная и реактивная мощность вы сможете подробно узнать из стати приведенной ниже, которая инженерным языком это подробно объясняет. На практике используют коэффициент 0,6-0,8 (в основном 0,6).
Стабилизатор напряжения на 7кВт купить в Москве >>>
Стабилизатор напряжения на 7кВт купить в Киеве>>>
Пример:
Мощность ИБП в вольт-амперах = 1000 ВА
Мощность ИБП в ваттах 1000 * 0,6 = 600 Вт
Величина коэффициента зависит от типа источника бесперебойного питания и производителя. Современные ИБП, благодаря новым технологиям, могут давать коэффициент 0,9.
Вольт-амперы или ВА — это единица измерения полной электрической мощности. Полная электрическая мощность — это геометрическая сумма активной и реактивной мощности. Что же такое активная и реактивная мощность? Активная мощность — характеризует скорость необратимого превращения электрической энергии в другие виды энергии (например, световую или тепловую). К активным видам потребителей можно отнести все виды электроламп, и нагревательные элементы. Реактивная мощность — характеризуется скорость передачи электроэнергии от источника тока к потребителю и обратно. К реактивным видам потребителей можно отнести все виды электродвигателей.
Полная мощность будет равняться S2=A2+R2, именно эта мощность и указывается в качестве характеристики дизельной электростанции. Как перевести эти загадочные Вольт-амперы в привычные нам киловатты? Для дизельных электростанций малой и средней мощности существует определенный поправочный коэффициент, который составляет 0,8.
Пример: возьмем дизельную электростанцию J 88K/Nexys, ее мощность в кВА в режиме основного использования составляет 80 кВА, в режиме резервного использования — 88 кВА (о основной и резервной мощности можно прочитать в словаре). Соответственно, мощность в киловаттах в ре
В вольтамперах (VА) измеряют полную мощность.
В ваттах – активную.
В ВАРах – реактивную.
Связь между ними через сдвиг фазы между током и напряжением. Поэтому перевести нельзя – это разные величины. Если нагрузка активная – то полная мощность равна активной. Если нагрузка чисто реактивная (например конденсатор с малыми потерями), то активная мощность будет равна нулю, а полная вполне себе ненулевая. Если на бесперебойнике написано 650 ВА, значит такой и может быть полная потребляемая мощность.
К каталогу товаров
К каталогу товаров
назад
Тематический контроль по теме «Сила тока. Единицы силы тока. Амперметр. Измерение силы тока», 8 класс
Вытоптова Татьяна Александровна, КГКОУ «Вечерняя (сменная) общеобразовательная школа №2», с. Шипуново Алтайского края, учитель физики. Тематический контроль по теме «Сила тока. Единицы силы тока. Амперметр. Измерение силы тока». Физика 8 класс. Аннотация к тесту Тест служит для текущей проверки знаний учащихся по физике 8 класса. Он состоит из заданий, каждое из которых охватывает материал двух-трех уроков. В заданиях содержится от трех до десяти вопросов, расположенных в порядке нарастающей трудности. На каждый вопрос приведено от двух до пяти ответов, среди которых один (реже два) являются правильными, а остальные – неполные, неточные или неверные. К тесту прилагается контрольная карточка (см. слайд 2). При составлении теста использовалась литература: Постникова А.В. Проверка знаний учащихся по физике: 7-8 кл. Дидакт. Материал. Пособие для учителя.
СИЛА ТОКА, НАПРЯЖЕНИЕ, СОПРОТИВЛЕНИЕ 8 класс 2 1 3 4 Сила тока. Единицы силы тока. Амперметр. Измерение силы тока Тест №4
Вариант 1 Сколько миллиампер в 0.25 А? 250 мА; 2. 25 мА; 3. 2,5 мА; 4. 0,25 мА; 5. 0,025 мА II. Выразите 0.25 мА в микроамперах. 250 мкА; 2. 25 мкА; 3. 2,5 мкА; 4. 0,25 мкА; 5. 0,025 мкА Рассмотрите рис.1 и ответьте на следующие вопросы. III. На какую силу тока рассчитан амперметр? 5 А; 2. 3 А; 3. 0,5 А; 4. 2 А; 5. 4 А. IV. Какова цена деления шкалы амперметра? 0,2 А; 2. 2 А; 3. 0,5 А; 4. 4 А; 5. 0,1 А. V. Какова сила тока в цепи? 1,5 А; 2. 2,5 А; 3. 0,5 А; 4. 2 А; 5. 0,2 А. VI . Изменится ли показание амперметра, если его включить в другом месте этой же цепи, например между источником тока и электрической лампой? Не изменится. 2. Увеличится. 3. Уменьшится. Рис.1 VII. Как направлен ток в электрической лампе? От а к б. 2. От б к а.
VIII. Какая из схем соответствует цепи, изображенной на рис.1 1. а. 2. б. 3. в. 4. г. IX. Где на этой схеме у амперметра знак «+»? 1. У m. 2. У n. X. Какое направление имеет ток в амперметре? 1. От m к n. 2. От n к m. На рис.2 изображены схемы, по которым собраны приборы. Рис.2 Рис. 1
Вариант 2 Выразите 0.025 А в миллиамперах. 250 мА; 2. 25 мА; 3. 2,5 мА; 4. 0,25 мА; 5. 0,025 мА II. Сколько микроампер 0,025 мА? 250 мкА; 2. 25 мкА; 3. 2,5 мкА; 4. 0,25 мкА; 5. 0,025 мкА Рассмотрите рис.1 и ответьте на следующие вопросы. III. На какую силу тока рассчитан амперметр? 5 А; 2. 3 А; 3. 0,5 А; 4. 2 А; 5. 4 А. IV. Какова цена деления шкалы амперметра? 0,2 А; 2. 2 А; 3. 0,5 А; 4. 4 А; 5. 0,1 А. V. Какова сила тока в цепи? 1,5 А; 2. 2,5 А; 3. 0,5 А; 4. 2 А; 5. 0,2 А. VI . Изменится ли показание амперметра, если его включить в другом месте этой же цепи, например между источником тока и выключателем? Не изменится. 2. Увеличится. 3. Уменьшится. Рис.1 VII. Как направлен ток в электрической лампе? От а к б. 2. От б к а.
VIII. Какая из схем соответствует цепи, изображенной на рис.1 1. а. 2. б. 3. в. 4. г. IX. Где на этой схеме у амперметра знак «+»? 1. У m. 2. У n. X. Какое направление имеет ток в амперметре? 1. От m к n. 2. От n к m. На рис.2 изображены схемы, по которым собраны приборы. Рис.2 Рис. 1
Вариант 3 Сколько ампер в 250 мА? 250 А; 2. 25 А; 3. 2,5 А; 4. 0,25 А; 5. 0,025 А II. Сколько микроампер 0.025 мА? 250 мкА; 2. 25 мкА; 3. 2,5 мкА; 4. 0,25 мкА; 5. 0,025 мкА Рассмотрите рис.1 и ответьте на следующие вопросы. III. На какую силу тока рассчитан амперметр? 5 А; 2. 3 А; 3. 0,5 А; 4. 2 А; 5. 4 А. IV. Какова цена деления шкалы амперметра? 0,2 А; 2. 2 А; 3. 0,5 А; 4. 4 А; 5. 0,1 А. V. Какова сила тока в цепи? 1,5 А; 2. 2,5 А; 3. 0,5 А; 4. 2 А; 5. 0,2 А. VI . Изменится ли показание амперметра, если его включить в другом месте этой же цепи, например между источником тока кнопкой? Не изменится. 2. Увеличится. 3. Уменьшится. Рис.1 VII. Как направлен ток в электрическом звонке? От а к б. 2. От б к а.
VIII. Какая из схем соответствует цепи, изображенной на рис.1 1. а. 2. б. 3. в. 4. г. IX. Где на этой схеме у амперметра знак «+»? 1. У m. 2. У n. X. Какое направление имеет ток в амперметре? 1. От m к n. 2. От n к m. На рис.2 изображены схемы, по которым собраны приборы. Рис.2 Рис. 1
Вариант 4 Выразите 250 мА в амперах. 250 А; 2. 25 А; 3. 2,5 А; 4. 0,25 А; 5. 0,025 А II. Сколько миллиампер 25 мкА? 250 мА; 2. 25 мА; 3. 2,5 мА; 4. 0,25 мА; 5. 0,025 мА Рассмотрите рис.1 и ответьте на следующие вопросы. III. На какую силу тока рассчитан амперметр? 5 А; 2. 3 А; 3. 0,5 А; 4. 2 А; 5. 4 А. IV. Какова цена деления шкалы амперметра? 0,2 А; 2. 2 А; 3. 0,5 А; 4. 4 А; 5. 0,1 А. V. Какова сила тока в цепи? 1,5 А; 2. 2,5 А; 3. 0,5 А; 4. 2 А; 5. 0,2 А. VI . Изменится ли показание амперметра, если его включить в другом месте этой же цепи, например между звонком и кнопкой? Не изменится. 2. Увеличится. 3. Уменьшится. Рис.1 VII. Какое направление имеет ток в электрическом звонке? От а к б. 2. От б к а.
VIII. Какая из схем соответствует цепи, изображенной на рис.1 1. а. 2. б. 3. в. 4. г. IX. Где на этой схеме у амперметра знак «+»? 1. У m. 2. У n. X. Какое направление имеет ток в амперметре? 1. От m к n. 2. От n к m. На рис.2 изображены схемы, по которым собраны приборы. Рис.2 Рис. 1
как перевести амперы в ватты
Сколько в ампере ватт? Для того, чтобы ответить на этот, в общем-то, несложный вопрос, нам необходимо еще раз коротко рассмотреть такие физические величины, как сила тока (А), напряжение (В) и мощность (Вт). Они очень тесно связаны между собой и не могут существовать друг без друга.
Зависимость от электрического поля
Нам хорошо известно, что создание и поддержание электрического тока полностью зависит от электрического поля. Сила тока напрямую зависит от величины электрического поля. Для лучшего
понимания этой зависимости попробуем охарактеризовать эти понятия в количественном выражении.Сила тока – это не совсем удачное название для данного процесса. Оно появилось в то время, когда далеко не совсем было понятно, что это такое. Ведь это вовсе не сила, как таковая, а количество электронов (электричества), которое протекает через поперечное сечение проводника за одну секунду. Эту величину можно было бы отобразить в виде количества электронов, проходящих через проводник за секунду. Однако заряд электрона – очень маленькая величина. Она непригодна для применения на практике.
Например: через нить накаливания лампочки обычного карманного фонарика за одну секунду проходит 2х1018электронов. Поэтому единицей измерения величины электрического заряда стали считать заряд, который имеют 6,25х1018 электронов. Этот заряд получил название кулон. Поэтому окончательно единицей считают такой ток, при котором за одну секунду через поперечное сечение проводника проходит заряд в 1 кулон. Такая единица получила название ампер и по сей день используется в электротехнике для измерения силы тока.
Для того, чтобы определить зависимость электрического тока от электрического поля необходимо уметь измерять величину поля. Ведь поле – это сила, которая действует на какой-либо заряд, электрон, или кулон. Именно наличие такой силы и характерно для электрического поля.
Измерение силы поля
Измерить силу поля очень трудно, ведь в разных местах проводника оно неодинаковое. Пришлось бы проводить большое число сложный измерений в различных точках. В связи с этим величина поля характеризуется не силой, действующей на заряды, а работой, совершаемой ею, при перемещении одного кулона из одного конца проводника – до другого. Работа электрического поля называется напряжением. Еще ее называют разность потенциалов (+ и -) на концах проводника. Единицей напряжения называют вольт.
Таким образом, можно сделать вывод, что понятие электрического тока характеризуется двумя основными величинами: сила тока – это непосредственно электрический ток, напряжение – величина поля, при котором создается сам ток. Получается, что сила напрямую зависит от напряжения.
Что такое мощность
И, наконец, коротко рассмотрим, что же такое мощность. Мы уже знаем, что U (напряжение) – работа, которая выполняется при перемещении 1 кулона. I – это сила тока, или количество кулонов, проходящих за одну секунду. Таким образом I х U – есть показатель полной работы, выполненной за 1 секунду. Фактически, это и есть мощность электрического тока. Единицей измерения мощности является ватт.
Как перевести ватты в амперы
- Ватт = Ампер х Вольт или Р = I х U
- Ампер = Ватты/Вольт или I = P/U
В качестве наглядного примера можно рассмотреть такой вариант
- 4,6 Ампер = 1000Вт/220В
- 2,7 Ампер = 600Вт/220В
- 1,8 Ампер = 400Вт/220В
- 1,1 Ампер = 250Вт/220В
Перевести миллиампера в амперы – Перевод единиц измерения
›› Перевести миллиамперы в амперы
Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php
›› Дополнительная информация в конвертере величин
Сколько миллиампер в 1 ампер?
Ответ – 1000.
Мы предполагаем, что вы конвертируете между миллиампер и ампер .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
миллиампер или
амперы
Базовой единицей СИ для электрического тока является ампер.
1 ампер равен 1000 миллиампер или 1 ампер.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать миллиамперы в амперы.
Введите свои числа в форму для преобразования единиц!
›› Таблица конвертации миллиампер в амперы
1 миллиампер в ампер = 0.001 ампер
10 миллиампер в ампер = 0,01 ампер
50 миллиампер в ампер = 0,05 ампер
100 миллиампер в ампер = 0,1 ампер
200 миллиампер в ампер = 0,2 ампера
500 миллиампер в ампер = 0,5 ампер
1000 миллиампер в ампер = 1 ампер
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из амперы в миллиамперы или введите любые две единицы ниже:
›› Преобразователи электрического тока общие
миллиампер на электростатический блок
миллиампер на килоампер
миллиампер на декаампер
миллиампер на ватт / вольт
миллиампер на франклин / секунду
миллиампер на микроампер
миллиампер на абамп
миллиампер на пикоампер
миллиампер на вольт / ом
›› Определение: Миллиампер
Префикс системы СИ “милли” представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.
Итак, 1 миллиампер = 10 -3 ампер.
›› Определение: Amp
В физике ампер (символ: A, часто неофициально сокращается до ампер) – это базовая единица СИ, используемая для измерения электрических токов. Нынешнее определение, принятое 9-й ГКПМ в 1948 году, гласит: «Один ампер – это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины и пренебрежимо малого круглого сечения, и помещенных на расстоянии одного метра в вакууме, будет производить между этими проводниками сила, равная 2 × 10 -7 ньютон на метр длины ».
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
Перевести амперы в миллиампера – Перевод единиц измерения
›› Перевести амперы в миллиамперы
Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php
›› Дополнительная информация в конвертере величин
Сколько ампер в 1 миллиамперах?
Ответ – 0,001.
Мы предполагаем, что вы конвертируете между ампер и миллиампер .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
ампер или
миллиампер
Базовая единица СИ для электрического тока – это ампер.
1 ампер равен 1 ампера или 1000 миллиампер.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать амперы в миллиамперы.
Введите свои числа в форму для преобразования единиц!
›› Таблица преобразования ампер в миллиампер
1 ампер в миллиампер = 1000 миллиампер
2 ампера в миллиампер = 2000 миллиампер
3 ампера в миллиампер = 3000 миллиампер
4 ампера в миллиампер = 4000 миллиампер
5 ампер в миллиампер = 5000 миллиампер
6 ампер в миллиампер = 6000 миллиампер
7 ампер в миллиампер = 7000 миллиампер
8 ампер в миллиампер = 8000 миллиампер
9 ампер в миллиампер = 9000 миллиампер
10 ампер в миллиампер = 10000 миллиампер
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из от миллиампер до ампер или введите любые две единицы ниже:
›› Преобразователи электрического тока общие
ампер на гектоампер
ампер на электромагнитный блок
ампер на биот
ампер на электростатический блок
ампер на декаампер
ампер на франклин / секунду
ампер на аттоампер
ампер на кулон в секунду
ампер на микроампер
от
ампер на микроампер
от
ампер на микроампер
›› Определение: Amp
В физике ампер (символ: A, часто неофициально сокращается до ампер) – это базовая единица СИ, используемая для измерения электрических токов.Нынешнее определение, принятое 9-й ГКПМ в 1948 году, гласит: «Один ампер – это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины и пренебрежимо малого круглого сечения, и помещенных на расстоянии одного метра в вакууме, будет производить между этими проводниками сила, равная 2 × 10 -7 ньютон на метр длины ».
›› Определение: Миллиампер
Префикс системы СИ “милли” представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.
Итак, 1 миллиампер = 10 -3 ампер.
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
Перевести миллиампер в ватт / вольт – Перевод единиц измерения
›› Перевести миллиамперы в ватт / вольт
Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php
›› Дополнительная информация в конвертере величин
Сколько миллиампер в 1 ватт / вольт?
Ответ – 1000.
Мы предполагаем, что вы конвертируете между миллиампер и ватт / вольт .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
миллиампер или
ватт / вольт
Базовой единицей СИ для электрического тока является ампер.
1 ампер равен 1000 миллиампер или 1 ватт / вольт.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать миллиампер в ватт / вольт.
Введите свои числа в форму для преобразования единиц!
›› Таблица быстрой конвертации миллиампер в ватт / вольт
1 миллиампер в ватт / вольт = 0,001 ватт / вольт
10 миллиампер в ватт / вольт = 0,01 ватт / вольт
50 миллиампер в ватт / вольт = 0.05 ватт / вольт
100 миллиампер в ватт / вольт = 0,1 ватт / вольт
200 миллиампер в ватт / вольт = 0,2 ватт / вольт
500 миллиампер в ватт / вольт = 0,5 ватт / вольт
1000 миллиампер в ватт / вольт = 1 ватт / вольт
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из ватт / вольт в миллиампер или введите любые две единицы ниже:
›› Преобразователи электрического тока общие
миллиампер в вольт / ом
миллиампер в ампер
миллиампер в гектоамп
миллиампер в франклин / секунду
миллиампер в гилберте
миллиампер в дециамп
миллиампер в гигаамп
миллиампер в электростатическом блоке
миллиампер до
миллиампер в декама
›› Определение: Миллиампер
Префикс системы СИ “милли” представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.
Итак, 1 миллиампер = 10 -3 ампер.
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
Перевести миллиампер в ампер – Преобразование единиц измерения
›› Перевести миллиамперы в амперы
Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php
›› Дополнительная информация в конвертере величин
Сколько миллиампер в 1 ампер?
Ответ – 1000.
Мы предполагаем, что вы конвертируете между миллиампер и ампер .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
миллиампер или
amp
Базовой единицей СИ для электрического тока является ампер.
1 ампер равен 1000 миллиампер, или 1 ампер.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать миллиамперы в амперы.
Введите свои числа в форму для преобразования единиц!
›› Таблица преобразования из миллиампер в ампер
1 миллиампер на ампер = 0,001 ампер
10 мА на А = 0,01 А
50 мА на А = 0,05 А
100 мА на А = 0,1 А
200 мА на А = 0.2 ампер
500 мА на А = 0,5 А
1000 мА на А = 1 А
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из ампер в миллиампер или введите любые две единицы ниже:
›› Преобразователи электрического тока общие
миллиампер в кулон в секунду
миллиампер в килоампер
миллиампер в аттоампер
миллиампер в декаампер
миллиампер в электромагнитный блок
миллиампер в пикоампер
миллиампер в сантиамп
миллиампер в статический ампер от
миллиампер до
миллиампер в секунду
›› Определение: Миллиампер
Префикс системы СИ “милли” представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.
Итак, 1 миллиампер = 10 -3 ампер.
›› Определение: Amp
В физике ампер (символ: A, часто неофициально сокращается до ампер) – это базовая единица СИ, используемая для измерения электрических токов. Нынешнее определение, принятое 9-й ГКПМ в 1948 году, гласит: «Один ампер – это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины и пренебрежимо малого круглого сечения, и помещенных на расстоянии одного метра в вакууме, будет производить между этими проводниками сила, равная 2 × 10 -7 ньютон на метр длины ».
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
Перевести миллиампера в амперы
Укажите значения ниже для преобразования миллиампер [мА] в амперы [A] или наоборот .
Миллиампер
Определение: Миллиампер (обозначение: мА) – это часть, кратная основной единице измерения электрического тока в системе СИ – ампера. Он определяется как одна тысячная ампера.
История / происхождение: Миллиампер берет свое начало от ампера. Префикс «милли» указывает одну тысячную от предшествующей базовой единицы, в данном случае ампера. Амперу может предшествовать любой из метрических префиксов, чтобы указать единицы требуемой величины.
Текущее использование: Миллиампер, как часть единицы СИ, используется во всем мире, часто для небольших измерений электрического тока. Есть много устройств, которые измеряют единицы в миллиамперах, таких как гальванометры и амперметры, хотя эти устройства не измеряют исключительно миллиамперы.
Ампер
Определение: Ампер (символ: A), часто называемый просто ампер, является базовой единицей электрического тока в Международной системе единиц (СИ).Ампер формально определяется на основе фиксированного значения элементарного заряда e, равного 1,602176634 × 10 -19 , когда он выражается в единицах C, который равен A · с. Второй определяется на основе частоты цезия ΔνCs. Это определение действует с 2019 года и является значительным изменением по сравнению с предыдущим определением ампера.
История / происхождение: Ампер назван в честь Андре-Мари Ампер, французского математика и физика. В системе единиц сантиметр-грамм-секунда ампер был определен как одна десятая единицы электрического тока времени, которая теперь известна как абампер.Размер единицы был выбран таким, чтобы она удобно помещалась в системе единиц метр-килограмм-секунда. До 2019 года ампер формально определялся как постоянный ток, при котором сила 2 × 10 -7 ньютонов на метр длины создавалась между двумя проводниками, где проводники параллельны, имеют бесконечную длину, помещены в вакуум. , и имеют незначительное круглое сечение. В единицах измерения заряда СИ, кулонах, один ампер определяется как один кулон заряда, проходящий через заданную точку за одну секунду.Это определение было трудно реализовать с высокой точностью, и поэтому оно было изменено на более интуитивное и легкое для понимания. Раньше, поскольку определение включало ссылку на силу, необходимо было определить килограммы, метр и секунду в системе СИ, прежде чем можно было определить ампер. Теперь это зависит только от определения второго. Одним из потенциальных недостатков переопределения является то, что проницаемость вакуума, диэлектрическая проницаемость вакуума и импеданс свободного пространства были точными до переопределения, но теперь будут подвержены экспериментальной ошибке.
Использование тока: В качестве базовой единицы измерения электрического тока в системе СИ, ампер используется во всем мире почти для всех приложений, связанных с электрическим током. Ампер может быть выражен в виде ватт / вольт или Вт / В, так что ампер равен 1 Вт / В, поскольку мощность определяется как произведение тока и напряжения.
Таблица преобразования миллиампер в ампер
Миллиампер [мА] | Ампер [A] |
---|---|
0,01 мА | 1.0E-5 A |
0.1 мА | 0,0001 A |
1 мА | 0,001 A |
2 мА | 0,002 A |
3 мА | 0,003 A |
5 мА | |
5 мА 9040 10 мА | 0,01 A |
20 мА | 0,02 A |
50 мА | 0,05 A |
100 мА | 0,1 A |
1000106 9066 9066 9066 Как преобразовать миллиампер в ампер 1 мА = 0.001 A Пример: преобразование 15 мА в A: Популярные преобразования единиц токаПреобразование миллиампер в другие единицы измерения токаМиллиампер Преобразование в амперы (мА в А)Введите ниже электрический ток в миллиамперах, чтобы получить значение, переведенное в амперы. Как перевести миллиамперы в амперыЧтобы преобразовать миллиампер в ампер, разделите электрический ток на коэффициент преобразования. Поскольку один ампер равен 1000 миллиампер, вы можете использовать эту простую формулу для преобразования: амперы = миллиамперы ÷ 1,000 Электрический ток в амперах равен миллиамперам, разделенным на 1000. Например, вот как преобразовать 5000 миллиампер в амперы, используя формулу выше.5000 мА = (5000 ÷ 1000) = 5 А Миллиамперы и амперы – единицы измерения электрического тока.Продолжайте читать, чтобы узнать больше о каждой единице измерения. Один миллиампер равен 1/1000 ампера, что представляет собой электрический ток, равный расходу одного кулона в секунду. Миллиампер кратен амперам, который является базовой единицей СИ для электрического тока. В метрической системе «милли» является префиксом для 10 -3 . Миллиампер иногда также называют миллиампером.Миллиамперы могут быть сокращены как мА ; например, 1 миллиампер можно записать как 1 мА. Ампер, обычно называемый «ампер», представляет собой постоянный электрический ток, равный расходу одного кулона в секунду. Раньше ампер определялся как постоянный ток, который при пропускании через два прямых и параллельных проводника, расположенных на расстоянии одного метра друг от друга, создаст силу, равную 0.0000002 ньютона на метр длины. В 2019 году ампер был переопределен как электрический ток, соответствующий потоку элементарных зарядов 1 / (1,602 176 634 × 10 -19 ) в секунду. [1] Ампер – это основная единица СИ для электрического тока в метрической системе. Ампер иногда также называют усилителем. Амперы можно обозначить как A ; например, 1 ампер можно записать как 1 А. Закон Ома гласит, что ток между двумя точками на проводнике пропорционален напряжению и обратно пропорционален сопротивлению. Используя закон Ома, можно выразить ток в амперах как выражение, используя сопротивление и напряжение. I A = V V R Ом Ток в амперах равен разности потенциалов в вольтах, деленной на сопротивление в омах. мА в А – Преобразование из Миллиампер в АмперМиллиамперМиллиампер (обозначение: мА) является частью основной единицы измерения электрического тока в системе СИ – ампера. Он определяется как одна тысячная ампера. Миллиампер берет свое начало от ампера. Префикс «милли» указывает одну тысячную от предшествующей базовой единицы, в данном случае ампера. Амперу может предшествовать любой из метрических префиксов, чтобы указать единицы требуемой величины. Как часть единицы СИ, миллиампер используется во всем мире, часто для небольших измерений электрического тока. Есть много устройств, которые измеряют единицы в миллиамперах, таких как гальванометры и амперметры, хотя эти устройства не измеряют исключительно миллиамперы. АмперАмпер (символ: A), часто называемый просто ампер, является базовой единицей электрического тока в Международной системе единиц (СИ). Формально ампер определяется как постоянный ток, при котором сила 2 × 10 -7 ньютонов на метр длины будет создаваться между двумя проводниками, где проводники параллельны, имеют бесконечную длину, помещены в вакуум и имеют пренебрежимо малые круглые сечения.В единицах измерения заряда СИ, кулонах, один ампер определяется как один кулон заряда, проходящий через заданную точку за одну секунду. Ампер назван в честь Андре-Мари Ампера, французского математика и физика. В системе единиц сантиметр-грамм-секунда ампер был определен как одна десятая единицы электрического тока времени, которая теперь известна как абампер. Размер единицы был выбран таким, чтобы она удобно помещалась в системе единиц метр-килограмм-секунда.Текущее определение ампера существует с 1948 года, но может измениться в ближайшем будущем. Ампер, как основная единица измерения электрического тока в системе СИ, используется во всем мире почти для всех приложений, связанных с электрическим током. Ампер может быть выражен в виде ватт / вольт или Вт / В, так что ампер равен 1 Вт / В, поскольку мощность определяется как произведение тока и напряжения. Определение некоторых базовых единиц СИ может измениться в ближайшем будущем. Международный комитет мер и весов (CIPM) предложил новое определение некоторых базовых единиц СИ в попытке улучшить систему.Хотя определения некоторых единиц могут измениться, фактический размер единиц останется прежним; изменение определения не окажет большого влияния на повседневное использование этих единиц. Ампер – одна из единиц, которую необходимо пересмотреть из-за сложности поддержания высокой точности на практике. |