Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Регулируемый стабилизатор на 7805 схема

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на микроконтроллерах. Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Стабилизированное зарядное устройство

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.

Измерение мультиметром напряжения на блоке питания

Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди, да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.

Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0.33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Схема подключения 7805

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.

Схема снижения с 12 вольт до 5

И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.

Стабилизатор снижение с 12 до 5 вольт — схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.

Автомобильное зарядное устройство в прикуриватель

Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:

Схема автомобильной зарядки на 7805

Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:

При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Радиатор для стабилизаторов

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:

Маломощный стабилизатор 78l05 цоколевка

Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3.3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1. 7 — 3 вольта больше выходного.

Микросхема 7833 — схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.

Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:

Схема стабилизатор на 7805 для 5В

При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала — AKV.

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального линейного стабилизатора 78L05.

Описание стабилизатора 78L05

Данный стабилизатор не дорогой и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

Микросхема — стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C.

Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 — КР1157ЕН5, а для 7805 — 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.

Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подаче входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема лабораторного блока питания отличается своей оригинальностью, из-за нестандартного применения микросхемы TDA2030, источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.

Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем подбора подходящего сопротивления резистора R3 или R4.

Бестрансформаторный блок питания на 5 вольт

данная схема бестрансформаторного источника питания характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.

Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора — гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05

Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на КТ315. Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые в бесперебойниках.

Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4…R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.

Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем уменьшения или увеличения сопротивление резистора R2.

Скачать datasheet на 78L05 (161,0 Kb, скачано: 6 190)

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального 78L05 .

L05 схемы самодельных устройств

Регуляторы напряжения имеют разные типы. Это интегральная схема, основной целью которой является регулирование нерегулируемого входного напряжения и обеспечение постоянного регулируемого выходного напряжения. Общим типом классификации является 3 терминальных стабилизатора напряжения и 5 или многопозиционный стабилизатор напряжения.

Эти регуляторы обеспечивают постоянное выходное напряжение. Фиксированный регулятор напряжения может быть положительным регулятором напряжения или отрицательным регулятором напряжения. Положительный стабилизатор напряжения обеспечивает постоянное положительное выходное напряжение.

Описание стабилизатора 78L05

Данный стабилизатор не дорогой () и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

Микросхема — стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Единственное различие заключается в полярности выходных напряжений. Регулируемый стабилизатор напряжения — это своего рода регулятор, регулируемое выходное напряжение которого может варьироваться в диапазоне. Есть два варианта одного и того же; известный как положительный регулируемый регулятор напряжения и отрицательный регулируемый регулятор.

Могут быть определенные условия, в которых может потребоваться переменное напряжение. Схема подключения показана ниже. Требуемое выходное напряжение может быть рассчитано с использованием уравнения. Таким образом, приведенное выше уравнение можно переписать как. Регулировка нагрузки составляет 1 процент, а линейное регулирование — 01% на вольт. Это означает, что выходное напряжение изменяется только на 01% для каждого напряжения входного напряжения. Отверстие пульсации составляет 80 дБ, что эквивалентно 10.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C.

Больше схем на регулируемых регуляторах напряжения

Как показано на блоке-схеме выше, встроенные опорное напряжение. Существует много этапов усиления напряжения для используемого здесь операционного усилителя. Таким образом, ток, протекающий через делитель потенциала, может быть записан как. Таким образом, выходное напряжение можно записать в виде. Это повышение температуры может быть в основном обусловлено чрезмерным внешним напряжением, температурой окружающей среды или даже потерей тепла.

Штырьки 1, 2 и 3 — вход, выход и земля. В противном случае он прекратит регулирование. Кроме того, существует максимальное входное напряжение из-за чрезмерной рассеиваемой мощности. В переключающих регуляторах выходное напряжение регулируется путем управления временем переключения схемы обратной связи; то есть путем регулировки рабочего цикла. Регуляторы, рассмотренные выше, являются линейными регуляторами напряжения, которым необходим последовательный транзистор для регулирования в активной области.

Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 — КР1157ЕН5, а для 7805 — 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.

Стабилизаторы для питания микросхем

Несмотря на то, что они выбраны для разных целей, у них есть недостаток в рассеянии мощных транзисторов серии. Пропускной резистор серии должен выдерживать большую нагрузку при увеличении тока нагрузки. Это приводит к тому, что транзисторы серии проходят громоздкими с более объемным радиатором. Это, в свою очередь, также увеличивает общую стоимость. Такие линейные регуляторы также нуждаются в понижающем трансформаторе, который снова увеличивает размер всей схемы.

Большие ряби, производимые схемой, должны быть устранены, и для этого требуются конденсаторы с большим размером фильтра. Все эти проблемы могут быть решены с помощью регулятора напряжения переключения. Вся операция полностью отличается по сравнению с линейным регулятором напряжения. Здесь транзистор транзистора серии не используется в качестве усилителя, а как переключатель. То есть вместо транзистора, работающего в активной области, происходит переход между областью насыщения или областью отсечения.

Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подачи входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

Типовая схема включения стабилизатора напряжения в техвыводном корпусе с фиксированным выходным напряжением

Таким образом, рассеиваемая мощность уменьшается и, следовательно, может выдерживать большие нагрузки при низком напряжении с менее громоздкими теплоотводами. Таким образом, этот регулятор находит свое широкое применение в персональных компьютерах. Базовый коммутационный регулятор предназначен для работы в трех конфигурациях. Их принципиальные схемы и пояснения приведены ниже.

Продолжаем собирать блок питания своими руками

Регулятор напряжения переключения — Типы. Пошаговый регулятор переключения Как показано на рисунке выше, прямоугольные импульсы подаются на основание транзистора. В течение каждого цикла импульса транзистор изменяется между насыщением и отключением. Компоненты переменного тока входного напряжения для фильтра блокируются, и компонент постоянного тока пропускается через фильтр. По мере переключения транзистора среднее значение всегда будет меньше входного напряжения. Вот почему мы называем это «понижающим» переключающим регулятором.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема отличается своей оригинальностью, из-за нестандартного применения микросхемы , источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.

Когда транзистор насыщен, ток течет через индуктор. Когда транзистор переключится на отсечку, на катушке индуктора будет индуцировано большое напряжение из-за внезапного коллапса магнитного поля вокруг него. Таким образом, ток продолжает течь в одном направлении. Эта схема называется «ступенчатым» переключающим регулятором, потому что напряжение, индуцированное индуктором, будет больше входного напряжения. Регулятор переключения полярности. Как показано на рисунке выше, когда транзистор насыщен, ток течет через индуктор.

Виды стабилизаторов напряжения

Поскольку транзистор отключен, единственный путь проходит через конденсатор. Если проверяется направление зарядного тока через конденсатор, выходное напряжение оказывается отрицательным. Простой коммутационный регулятор разработан с использованием сочетания схем, которые мы уже знаем. Работа начинается с релаксационного генератора, который генерирует прямоугольную волну. Квадратная волна задается как входной сигнал интегратору и создает выходную треугольную волну. Это задается как вход для положительного вывода треугольника в импульсный преобразователь.

Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем подбора подходящего сопротивления резистора R3 или R4.

Затем выходной импульс будет управлять базовым транзистором. Рабочий цикл этих импульсов определит выходное напряжение. Когда выходное напряжение увеличивается, схема компаратора создает более высокое выходное напряжение, и поэтому инвертирующий вход треугольника в импульсный преобразователь будет иметь высокое значение. Это уменьшит импульсы на базовом входе транзистора. Поскольку рабочий цикл меньше, отфильтрованное выходное напряжение меньше, что, как правило, отменяет почти все первоначальное увеличение выходного напряжения.

Стабилизатор с плавным выходом на номинальное напряжение

Это означает, что любое попытка увеличения выходного напряжения создает отрицательное напряжение обратной связи, которое почти исключает первоначальное увеличение. Обратное происходит, если выходное напряжение падает. В системе достаточно усиления разомкнутого контура, чтобы обеспечить хорошо отрегулированное выходное напряжение.

Бестрансформаторный блок питания на 5 вольт

данная характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.

Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора — гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Коммутационные регуляторы доступны в различных конфигурациях, таких как конфигурация обратного хода, подача вперед, двухтактная и неизолированная односторонняя или однополярная. Является регулятором напряжения 5 В, который ограничивает выход напряжения до 5 В и потребляет 5 В регулируемый источник питания. Он поставляется с возможностью добавления радиатора.

Если напряжение около 5 В, то оно не производит никакого тепла и, следовательно, не нуждается в радиаторе. Если вход напряжения больше, то избыточное электричество выделяется как тепло от. Это стандарт, от имени последние две цифры 05 обозначает количество напряжения, которое он регулирует.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05

Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на . Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Регулировка выходного напряжения

Сохраните это изображение для справки. Линейные регуляторы экономичны и недороги, что также является еще одним фактором его репутации и почти доступно в любом электронном магазине. Теперь онлайн-продавцы дней предлагают их по гораздо более низкой цене для навальных заказов.

Регулятор напряжения является одним из наиболее важных и часто используемых электрических компонентов. Регуляторы напряжения отвечают за поддержание постоянного напряжения в электронной системе. Колебания напряжения могут привести к нежелательному воздействию на электронную систему, поэтому для поддержания постоянного постоянного напряжения необходимо в соответствии с требованием напряжения в системе.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые в бесперебойниках.

Предположим, что если простой светодиод может принимать максимум от 3 В до макс, что произойдет, если вход напряжения превысит 3 В?, Конечно, диод будет гореть. Это также характерно для всех электронных компонентов, таких как светодиоды, конденсаторы, диоды и т.д. малейшее увеличение напряжения может привести к отказу всей системы, повредив другие компоненты. Во избежание повреждения в таких ситуациях регулятор напряжения используется для регулируемого источника питания.

Ну так и зачем всё это нужно то?

В зависимости от используемого регулятора напряжения мы можем получить регулируемое положительное или отрицательное напряжение в зависимости от того, какое напряжение мы хотим. Прежде чем мы сможем подключить схему, позвольте нам сначала разобрать схему выводов регулятора напряжения, что жизненно важно для подключения схемы.

Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4. R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Параллельное включение стабилизаторов

Регулятор напряжения представляет собой трехконтактное устройство. Выходное напряжение любого источника напряжения, который вы хотите отрегулировать вниз, подается на этот вывод. Так, например, если у вас есть 10 вольт от трансформатора, который вы хотите отрегулировать до 5 вольт, выход трансформатора подается на вход регулятора, так что регулятор может регулировать его до желаемого напряжения. Помните, что входное напряжение должно быть больше напряжения, которое регулятор регулирует. Для того, чтобы регулятор выдавал 5 вольт, ввод напряжения должен быть как минимум на 2 вольта выше, поэтому он должен быть не менее 7 вольт. 7 вольт будет работать идеально.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.

Однако для экспериментальных целей и простоты получения деталей мы будем использовать 9-вольтовую батарею в качестве нашего входного напряжения. Он подключается к земле в нашей цепи. Без заземления схема не могла быть полной, потому что напряжение не имело бы электрического потенциала, и схема не имела бы обратного пути.

Это контакт, который выдает регулируемое напряжение, которое в этом случае составляет 5 вольт. В конце этого эксперимента, когда наша схема подключена, мы будем считывать напряжение с помощью мультиметра, и он должен выдавать близко к 5 вольтам. Хорошо, теперь давайте построим схему.

Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем уменьшения или увеличения сопротивление резистора R2.

(161,0 Kb, скачано: 3 935)

Отрегулированное напряжение питания очень важно для многих электронных устройств, поскольку полупроводниковые компоненты, применяемые в них, могут быть чувствительны для скачков и шумов нерегулируемого напряжения. Электронные приборы, питаемые от сети сначала преобразуют переменное напряжение в постоянное благодаря диодному мосту или другому подобному элементу. Но это напряжение не стоит использовать в чувствительных схемах.

В данном случае нужен регулятор (или стабилизатор) напряжения. И одним из самых популярных и распространенных регуляторов на сегодняшний день является регулятор серии 7805.

Микросхема 7805 расположена в трехвыводном корпусе TO-220 с выводами вход, выход, земля (GND). Также контакт GND представлен на металлическом основании микросхемы для крепления радиатора. Данный стабилизатор поддерживает входное напряжение до 40 В, а на выходе обеспечивает 5 В. Максимальный ток нагрузки 1.5 А. Внешний вид регулятора напряжения 7805 с расположением выводов представлен на изображении ниже.

Благодаря стабилизатору напряжения серии 7805 выход фиксируется на определенном уровне без ощутимых скачков и шумов. Чтобы эффективно минимизировать шумы на выходе и максимально сделать выходное напряжение стабильным, регулятор 7805 нужно правильно «обвязать», то есть подключить к его входу и выходу блокиовочные, сглаживающие конденсаторы. Схема подключения конденсаторов к микросхеме 7805 (U1) показана ниже.

Здесь конденсатор C1 представляет собой байпасный или блокировочный конденсатор и используется для гашения на землю очень быстрых по времени входных скачков. C2 является фильтрующим конденсатором, позволяющим стабилизировать медленные изменения напряжения на входе. Чем больше его значение, тем больше уровень стабилизации, но не стоит брать это значение слишком большим, если не хотите, чтобы он разряжался дольше после включения. Конденсатор C3 также стабилизирует медленные изменения напряжения, но уже на выходе. Конденсатор C4, как и C1, гасит очень быстрые скачки, но уже после регулятора и непосредственно перед нагрузкой.

Типичная схема включения регулятора напряжения 7805 представлена ниже. Здесь переменное напряжение выпрямляется диодным мостом и подается на регулятор с требуемой обвязкой из конденсаторов для более качественной стабилизации выходного напряжения. В схему также добавлен диод D5, позволяющий избежать короткого замыкания и тем самым обезопасить регулятор. Если бы его не было, то выходной конденсатор имел бы возможность быстро разрядиться во время периода низкого импеданса внутри регулятора.

Таким образом, регулятор напряжения является очень полезным элементом в схеме, способным обеспечить правильное питание вашего устройства.

L7805cv схема регулируемый стабилизатор. Линейный стабилизатор напряжения LM7805. Самодельный блок питания на базе этого модуля. Схема подключения L7805CV

Интегральный стабилизатор L7805 CV – обычный трехвыводной стабилизатор положительного напряжения на 5В. Выпускается фирмой STMircoelectronics, примерная цена около 1 $. Выполнен в стандартном корпусе TO -220 (см. рисунок) , в котором выполнено много транзисторов, однако, предназначение у него совсем другое.

В маркировке серии 78ХХ последние две цифры обозначают номинал стабилизируемого напряжения, например:

  1. 7805 — стабилизация на 5 В;
  2. 7812 — стабилизация на 12 В;
  3. 7815 — стабилизация на 15 В и т.д.

Серия 79 предназначена для отрицательного выходного напряжения.

Используется для стабилизации напряжения в различных низковольтных схемах. Очень удобно использовать, когда необходимо обеспечить точность подаваемого напряжения, не требуется городить сложных схем стабилизации, а все это можно заменить одной микросхемой и парочкой конденсаторов.

Схема подключения L7805CV

Схема подключения L 7805 CV довольно проста, для работы необходимо согласно datasheet повесить конденсаторы по входу 0,33 мкФ, и по выходу 0,1 мкФ. Важно при монтаже или при конструировании, конденсаторы расположить максимально близко к выводам микросхемы. Делается это чтобы обеспечить максимальный уровень стабилизации и уменьшению помех.

По характеристикам стабилизатор L7805CV работоспособен при подаче входного постоянного напряжения в пределах от 7,5 до 25 В. На выходе микросхемы будет стабильное постоянное напряжение в 5 Вольт. В этом состоит вся прелесть микросхемы L7805CV.

Проверка работоспособности L7805CV

Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром , если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:

Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В, вообще, приведет к отсутствию напряжения на выходе стабилизатора.

, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств , как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Переделал усилитель на колонках на копеечный D-class модуль на PAM8403. Колонки играть стали громче, появился типа бас. Доволен. Но появилась одна проблема – если подавать питание на колонки от обычной (импульсной) зарядки на 5В шли большие искажения по питанию. На маленькой громкости еще слушать можно было, на большой невозможно. Решил спаять блок питания с линейной стабилизацией.


Схема такого БП простая:

Первый порыв – купить все детали в местной «Электронике» и быстренько спаять на макетке схему БП. Подсчитал только цену деталей стабилизатора – получилось около 700 р. Жаба придушала. Посмотрим готовые варианты на али и ебее. Тут все шоколадно. Есть копеечные конструкторы (самому на печатную плату паять), есть готовые модули по 110 р. Купил в итоге на ебее – там дешевле было. Дошло недели за три. Стабилизатор болтался на радиаторе – привинтил его покрепче.

Остальные детали – трансформатор, предохранитель, корпус, кнопку включения, ножки под корпус, usb-разъем в «Электронике». Ушло на все про все 500 р.

Характеристики модуля и стабилизатора LM7805:

1. Board size. 57mm*23mm

2. Input voltage input voltage polarity, AC and DC can, range. 7.5-20V

3. The output voltage 5V

4. The maximum output current. 1.2A

5. Provided fixed bolt hole, convenient installation

Как видно, на модуль можно подавать напряжение от 7.5V до 20V. На выходе – 5V.

Стабилизатор внутри устроен достаточно сложно:

Трансформатор купил такой ТП112 (7,2 Вт) 2*12В хх –

Кнопку включения на 220 В взял такую – достаточно большая.

Кнопка с фиксацией и подсветкой. Как подключить подсветку при нажатии – не понял (может подскажите, кто знает?). Сделал без подсветки.

Собрал стенд для тестирования:


Колонки играют без искажений на максимальной громкости. В БП ничего не греется сильно. Цель достигнута:


Попробовал зарядить телефон – ток 0.5А


При резисторе на 1 А – все совсем печально:


Вывод – данный БП как зарядник использовать не получиться. Видимо трансформатор нужно ставить мощнее.

Собрал все в корпус:


Дырочку сверху сделал для того, чтобы было видно светодиод – индикатор на модуле для индикации работы. С обратной стороны дырочку заклеил прозрачной пленкой.

Спасибо за внимание.

Планирую купить +14 Добавить в избранное Обзор понравился +23 +38
Эта небольшая статья посвящена трехвыводному стабилизатору напряжения L7805 . Микросхема выпускается в двух видах, в пластмассе – ТО-220 и металле – ТО-3. Три вывода, смотреть слева на право – ввод, минус, выход.

Последних две цифры указывают на стабилизированное напряжение микросхемы – 7805-5 вольт соответственно, 7806-6в…. 7824-наверняка уже догадываемся сколько. Также вас могут заинтересовать жилетки для хора мальчиков , подробнее на сайте по ссылке.

Вот схема подключения стабилизатора , которая подходит для всех микросхем этой серии:

На конденсаторы малой емкости не смотрим, желательно поставить побольше.
Ну а это стабилизатор изнутри:


Офигеть, да? И все это помещается…. .Чудо техники.

Итак, нас интересуют вот эти характеристики. Output voltage – выходное напряжение. Input voltage – входное напряжение. Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для презеционной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4.75 – 5.25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать одного Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7.5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и есть большой плюс стабилизаторов.

При большой нагрузке, а эта микросхема способна дать мощность аж 15 Ватт, стаб лучше снабдить радиатором и по возможности или по хотению, для большего и быстрого охлаждения, прикрутить ему кулер, как в компе.
Вот и нормальная схема стабилизатора:

Технические параметры

Корпус… to-220
Максимальный ток нагрузки, А… 1.5
Диапазон допустимых входных напряжений, В… 40
Выходное напряжение, В… 5
в помощь.

Для того, чтобы стабилизатор не перегревать, нужно придерживаться нужного минимального напряжения на входе микросхемы, то есть если у нас L7805, то на вход пускаем 7-8 вольт, если 12 – 14-15 вольт.
Это связано с тем, что излишнюю мощность стабилизатор будет рассеивать на себе. Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

Устройства, которые входят в схему блока питания, и поддерживают стабильное выходное напряжение, называются стабилизаторами напряжения. Эти устройства рассчитаны на фиксированные значения напряжения выхода: 5, 9 или 12 вольт. Но существуют устройства с наличием регулировки. В них можно установить желаемое напряжение в определенных доступных пределах.

Большинство стабилизаторов предназначены на определенный наибольший ток, который они выдерживают. Если превысить эту величину, то стабилизатор выйдет из строя. Инновационные стабилизаторы оснащены блокировкой по току, обеспечивающей выключение устройства при достижении наибольшего тока в нагрузке и защищены от перегрева. Вместе со стабилизаторами, которые поддерживают положительное значение напряжения, есть и устройства, действующие с отрицательным напряжением. Они применяются в двухполярных блоках питания.

Стабилизатор 7805 изготовлен в корпусе, подобном транзистору. На рисунке видны три вывода. Он рассчитан на напряжение 5 вольт и ток 1 ампер. В корпусе есть отверстие для фиксации стабилизатора к радиатору. Модель 7805 является устройством положительного напряжения.

Зеркальное отображение этого стабилизатора — это его аналог 7905, предназначенный для отрицательного напряжения. На корпусе будет положительное напряжение, на вход поступит отрицательное значение. С выхода снимается -5 В. Чтобы стабилизаторы работали в нормальном режиме, нужно подавать на вход 10 вольт.

Распиновка

Стабилизатор 7805 имеет распиновку, которая показана на рисунке. Общий вывод соединен с корпусом. Во время установки устройства это играет важную роль. Две последние цифры обозначают выдаваемое микросхемой напряжение.

Стабилизаторы для питания микросхем

Рассмотрим методы подключения к питанию цифровых приборов, сделанных самостоятельно, на микроконтроллерах. Любое электронное устройство требует для нормальной работы правильное подключение питания. Блок питания рассчитывается на определенную мощность. На его выходе устанавливается конденсатор значительной величины емкости для выравнивания импульсов напряжения.

Блоки питания без стабилизации, применяемые для роутеров, сотовых телефонов и другой техники, не сочетаются с питанием микроконтроллеров напрямую. Выходное напряжение этих блоков изменяется, и зависит от подключенной мощности. Исключением из этого правила являются зарядные блоки для смартфонов с USB портом, на котором выходит 5 В.

Схема работы стабилизатора, сочетающаяся со всеми микросхемами этого типа:

Если разобрать стабилизатор и посмотреть его внутренности, то схема выглядела бы следующим образом:

Для электронных устройств не чувствительных к точности напряжения, такой прибор подойдет. Но для точной аппаратуры нужна качественная схема. В нашем случае стабилизатор 7805 выдает напряжение в интервале 4,75-5,25 В, но нагрузка по току не должна быть больше 1 А. Нестабильное входное напряжение колеблется в интервале 7,5-20 В. При этом выходное значение будет постоянно равно 5 В. Это является достоинством стабилизаторов.

При возрастании нагрузки, которую может выдать микросхема (до 15 Вт), прибор лучше обеспечить охлаждением вентилятором с установленным радиатором.

Работоспособная схема стабилизатора:

Технические данные:

  • Наибольший ток 1,5 А.
  • Интервал входного напряжения – до 40 вольт.
  • Выход – 5 В.

Во избежание перегрева стабилизатора, необходимо поддерживать наименьшее входное напряжение микросхемы. В нашем случае входное напряжение 7 вольт.

Лишнюю величину мощности микросхема рассеивает на себе. Чем выше входное напряжение на микросхеме, тем выше потребляемая мощность, которая преобразуется в нагревание корпуса. В итоге микросхема перегреется и сработает защита, устройство отключится.

Стабилизатор напряжения 5 вольт

Такое устройство имеет отличие от аналогичных приборов в своей простоте и приемлемой стабилизации. В нем использована микросхема К155J1А3. Этот стабилизатор использовался для цифровых устройств.

Устройство состоит из рабочих узлов: запуска, источника образцового напряжения, схемы сравнения, усилителя тока, ключа на транзисторах, накопителя индуктивной энергии с коммутатором на диодах, фильтров входа и выхода.

После подключения питания начинает действовать узел запуска, который выполнен в виде стабилизатора напряжения. На эмиттере транзистора возникает напряжение 4 В. Диод VD3 закрыт. В итоге включается образцовое напряжение и усилитель тока.

Ключ на транзисторах закрыт. На выходе усилителя образуется импульс напряжения, который открывает ключ, пропускающий ток на накопитель энергии. В стабилизаторе включается схема отрицательной связи, устройство переходит в режим работы.

Все применяемые детали тщательно проверяются. Перед установкой на плату резистора, его значение делают равным 3,3 кОм. Стабилизатор вначале подключают на 8 вольт с нагрузкой 10 Ом, далее, при необходимости устанавливают его на 5 вольт.

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на . Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.

Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди , да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.

Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0.33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.

И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.

Стабилизатор снижение с 12 до 5 вольт – схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.

Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:

Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:

При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:

Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3.3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1.7 – 3 вольта больше выходного.

Микросхема 7833 – схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.

Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:

При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала – AKV.

Стабилизатор напряжения 7805 схема включения

78xx — семейство трёхвыводных линейных интегральных стабилизаторов положительного напряжения первого поколения. Базовое семейство 78xx включает микросхемы на девять фиксированных выходных напряжений от +5 до +24 Вольт, обозначаемых четырёхзначными кодами 7805, 7806 … 7824 (третий и четвёртый знаки — выходное напряжение). ИС μA78G (без цифрового суффикса) — регулируемый четырёхвыводной стабилизатор на напряжения +5…+30 В. Допустимое входное напряжение ограничено +35 В (40 В для 7824), допустимый выходной ток ИС в корпусе TO-220 ограничен 1 А. Схема имеет встроенную защиту от перегрева и встроенную односкатную защиту выходного транзистора от перегрузок.

Существует связанное с данным семейство 79xx для регуляторов отрицательного напряжения. Интегральные схемы 78xx и 79xx могут использоваться вместе, чтобы обеспечить как положительные, так и отрицательные напряжения питания в той же цепи.

Первые ИС этого семейства были выпущены в начале 1970-х годов Fairchild Semiconductor под обозначениями μA7805…μA7824, и представляли собой развитие ИС LM109 Роберта Видлара. Впоследствии выпуск 78хх освоили различные производители. В настоящее время (2012 год), кроме базового семейства 7805, выпускаются его варианты на бо́льшие и меньшие выходные токи (78ххM, 78xxL и другие) в корпусах ТО-220, ТО-92, SOP8L, D2PAK.

Содержание

Внутреннее устройство [ править | править код ]

Биполярные ИС семейства 78xx изготавливаются по планарно-эпитаксиальной технологии, оптимизированной под производство мощных выходных транзисторов. В ИС применяются мощные и слаботочные npn-транзисторы, боковые pnp-транзисторы (в источнике тока), подложечный pnp-транзистор (в усилителе ошибки), поверхностные стабилитроны (диоды Зенера) и сопротивления величиной от 0,2 Ом (датчик выходного тока) до 20 К. Единственный слой алюминия, соединяющего эти компоненты, имеет толщину до 1 мкм. Площадь кристалла зависят от максимального выходного тока: «большие» кристаллы военных серий на токи 1-1,5 А имеют размер 1,6×1,7 мм (67×73 мил) или 2×2 мм (80×80 мил) при толщине 0,3 мм (12 мил) [1]

Все ИС семейства строятся по одной и той же схеме компенсационного стабилизатора. Принципиальные схемы ИС на разные напряжения различаются величиной верхнего резистора в делителе выходного напряжения, принципиальные схемы ИС на разные выходные токи — сопротивлением датчика выходного тока (от 0,2 до 2 Ом). Величины прочих сопротивлений в ИС разных подсемейств разных производителей могут несущественно различаться. Графическое представление принципиальных схем обычно предельно упрощено. Один транзистор схемы может в действительности состоять из множества параллельно включенных транзисторных структур, один резистор — из нескольких последовательно включенных резисторов и включенных параллельно с ними технологических стабилитронных перемычек. На схемах обычно не указывается важнейшие параметры «аналоговых» транзисторов — относительные площади их эмиттерных переходов.

Регулирующим (проходным) элементом схемы служит составной транзистор Дарлингтона npn-структуры (Т15, Т16), включенный эмиттерным повторителем, источником опорного напряжения — бандгап по модифицированной схеме Видлара. Обратная связь по напряжению замыкается через делитель напряжения (R20, R21), подключенный между общим проводом и выходом схемы. Нижнее сопротивление этого делителя (R21) обычно равно 4 кОм, верхнее (R20, от 1 до 21 кОм) зависит от напряжения стабилизации (от 5 до 24 В). Усилитель ошибки сравнивает напряжение на средней точке делителя с напряжением на выходе бандгапа; если напряжение на средней точке отклоняется от искомой величины (+4,0 В, а в маломощных ИС 78Lxx 2,5 В), то усилитель корректирует ток выходного транзистора, шунтируя источник стабильного тока на Т11.

Встроенные схемы защиты [ править | править код ]

В мощных ИС подсемейств 78xx, 78Mxx и им подобным реализована односкатная схема защиты выходных транзисторов от выхода за пределы области безопасной работы (ОБР) по току и напряжению. При малых падениях напряжения между входом и выходом (до 10 В) транзистор Т14 работает в режиме ограничителя тока: если падение напряжения на датчике (R16) превышает примерно 0,6 В (напряжение на открытом переходе база-эмиттер, Uбэ), Т14 плавно открывается и шунтирует (но не прерывает) базовый ток регулирующего транзистора. При больших падениях напряжения между входом и выходом пороговое значение тока линейно снижается. Так как пороговое Uбэ уменьшается с ростом температуры, то и порог срабатывания с ростом температуры снижается. В маломощных ИС подсемейства 78Lxx напряжение вход-выход не учитывается, схема защиты реагирует только на выходной ток.

Схема защиты от перегрева расположена «выше по течению» и работает независимо от защиты по ОБР: при температуре кристалла порядка +125 °С напряжение на последовательно включенных эмиттерных переходах Т2, Т3 падает настолько, что цепь защиты перехватывает управление выходным транзистором, и напряжение на выходе падает.

Встроенный подложечный диод защищает схему от воздействия обратного тока, протекающего от выхода ко входу при нормальном выключении устройства, поэтому обычно защищать микросхему внешним обратным диодом не нужно. Некоторые производители указывают характеристики встроенного обратного диода в явном виде: например, в ИС семейства NCP7800 омическое сопротивление обратной цепи равно 1 Ом, а предельный обратный ток в коротком (несколько мс) импульсе не должен превышать 5 А (протекание постоянного обратного тока не оговаривается). Этого запаса может быть недостаточным при мгновенном закорачивании входной цепи, например, при срабатывании тиристорной защиты блока питания. В схемах, в которых возможно такое закорачивание и в которых к выходу ИС 78хх подключены значительные ёмкости, следует защищать микросхемы внешними обратно включенными диодами.

Защиты от перенапряжения по входу не существует. Излишек входного напряжения можно погасить, включив на входе ИС 78хх балластный резистор — при условии, что минимального тока, протекающего через этот резистор в наихудших условиях, достаточно, чтобы напряжение на входе ИС никогда не поднималось выше допустимого максимума.

Интегральный стабилизатор L7805 CV – обычный трехвыводной стабилизатор положительного напряжения на 5В. Выпускается фирмой STMircoelectronics, примерная цена около 1 $. Выполнен в стандартном корпусе TO -220 (см. рисунок) , в котором выполнено много транзисторов, однако, предназначение у него совсем другое.

В маркировке серии 78ХХ последние две цифры обозначают номинал стабилизируемого напряжения, например:

  1. 7805 — стабилизация на 5 В;
  2. 7812 — стабилизация на 12 В;
  3. 7815 — стабилизация на 15 В и т.д.

Серия 79 предназначена для отрицательного выходного напряжения.

Используется для стабилизации напряжения в различных низковольтных схемах. Очень удобно использовать, когда необходимо обеспечить точность подаваемого напряжения, не требуется городить сложных схем стабилизации, а все это можно заменить одной микросхемой и парочкой конденсаторов.

Схема подключения L7805CV

Схема подключения L 7805 CV довольно проста, для работы необходимо согласно datasheet повесить конденсаторы по входу 0,33 мкФ, и по выходу 0,1 мкФ. Важно при монтаже или при конструировании, конденсаторы расположить максимально близко к выводам микросхемы. Делается это чтобы обеспечить максимальный уровень стабилизации и уменьшению помех.

По характеристикам стабилизатор L7805CV работоспособен при подаче входного постоянного напряжения в пределах от 7,5 до 25 В. На выходе микросхемы будет стабильное постоянное напряжение в 5 Вольт. В этом состоит вся прелесть микросхемы L7805CV.

Проверка работоспособности L7805CV

Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром, если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:

Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В , вообще, приведет к отсутствию напряжения на выходе стабилизатора.

При работе на больших нагрузках, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств, как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики LM стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа LM на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт?

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Блок питания – для новичков в радиоделе

Почему блок питания Хорошее питающее напряжение очень важно при любых экспериментах с электрическими цепями, равно как и при сборке устройства по готовой схеме Проблемы с питанием могут сильно сказаться на работе устройства, поэтому блок питания, пусть на первом этапе не столь «крутой», окажется полезен в дальнейшем Поначалу я предлагаю умерить требования к блоку питания и выполнить его со следующими параметрами: регулируемое напряжение 5-15 В, допустимый ток 200 мА

Что нам потребуется для этого устройства: кусок макетной платы, микросхема стабилизатора напряжения 7805, нестабилизированный сетевой адаптер с параметрами, скажем, 18 В и 1 А Кроме того понадобится переменный резистор, обычные резисторы и некоторые конденсаторы, номиналы которых мы определим, проводя эксперименты за компьютером Возможно, понадобятся некоторые разъемы Цель этой первой работы – узнать, как устроен блок питания, попутно собрав полезное устройство

Если финансы вам позволяют к этому набору можно добавить модуль вольтметра:

Рис 31 Цифровой вольтметр

Но это не обязательно Можно выходное напряжение измерять мультиметром Ничуть не хуже В качестве сетевого адаптера можно использовать БПН18-07:

Рис 32 Сетевой адаптер на 18 В

Микросхема стабилизатора напряжения выглядит как обычный мощный транзистор:

Рис 33 Микросхема стабилизатора напряжения

Хотя сетевой адаптер мы используем готовый, рассмотрим, как он устроен Вероятнее всего он имеет трансформатор и выпрямитель

Работа трансформатора основана на том, что при протекании переменного тока по катушке индуктивности вокруг неё появляется электромагнитное поле, которое может взаимодействовать с расположенной рядом другой катушкой, наводя в ней ЭДС Для усиления эффекта связи между катушками, их наматывают на общем сердечнике Ш-образной или О-образной формы первую катушку наматывают на каркасе и называют первичной обмоткой, вторую катушку очень часто наматывают поверх первой и называют вторичной обмоткой (хотя она может располагаться и на другом каркасе) Величина наведённой ЭДС вторичной обмотки зависит в первую очередь от соотношения количества витков первичной и вторичной обмоток Если количество витков вторичной обмотки больше, чем первичной, то трансформатор получается повышающим, иначе понижающим

В адаптере, о котором идёт речь, трансформатор понижающий Расчёт трансформатора достаточно сложен, но основные  моменты таковы: мы определяем выходные параметры трансформатора, которые зависят от наших нужд, это напряжение и ток выходной обмотки Они определяют требуемую мощность вторичной обмотки, по которой определяется входная мощность с учётом коэффициента полезного действия трансформатора КПД трансформатора имеет разное значение для трансформаторов разной мощности и конструкции По вычисленной

мощности первичной обмотки можно выбрать, с учётом характеристик сердечника, его размеры также можно определить ток в первичной обмотке Ток первичной и вторичной обмоток определяет диаметр провода, которым наматываются катушки трансформатора Обычно это медный провод в эмалевой изоляции Но при намотке обмоток для создания электрической прочности слои намотанного провода изолируют дополнительными прокладками из специальной бумаги Определив количество витков первичной и вторичной обмоток и диаметр провода, проводят расчёт, который показывает, уместятся ли обмотки в окне железного сердечника на каркасе Если нет, то выбирают сердечник большего размера

Для выпрямителя адаптера, как правило, выбирают мостовую схему Эта схема позволяет использовать не один полупериод выпрямленного напряжения, а оба Вот как это выглядит:

Рис 34 Работа сетевого адаптера

Сравнивая с рисунком, где показана работа диода в качестве выпрямителя, вы видите разницу: на сопротивлении нагрузки выпрямителя R1 видны обе полуволны выпрямленного напряжения

Но, если у вас есть осциллограф, которым вы умеете пользоваться, и если вы подключите осциллограф к выходу сетевого адаптера, вы не увидите никаких полуволн Опять не соответствие программы и реальности В данном случае нет

Мы говорили, что после выпрямления переменного напряжения мы не получаем ещё постоянное напряжение, напряжение на выходе схемы, показанной на рисунке выше, остаётся переменным, поскольку меняется по величине Чтобы устранить это изменение, на выход выпрямителя добавляется конденсатор Он имеет свойство накапливать заряд и отдавать его в цепь нагрузки В следующих главах мы познакомимся ближе с конденсатором и индуктивностью, с переменным током и теми процессами, которые в них происходят

А сейчас добавим конденсатор в схему:

Рис 35 Работа выпрямителя с конденсатором

Теперь напряжение на резисторе нагрузки R1 через некоторое время устанавливается и не меняется (почти не меняется) по величине А, значит, через нагрузку протекает постоянный ток

Если в предыдущей схеме был трансформатор, а источник переменного напряжения соответствовал розетке бытовой электрической сети, где 220 В переменного напряжения частоты

50 Гц, то в последней схеме я вторичную обмотку трансформатора заменил источником переменной ЭДС V1 Напряжение на вторичной обмотке я задал 15 В (действующее значение, на что указывает параметр Vrms) Если измерить вольтметром напряжение, показанное на экране виртуального осциллографа, то оно окажется не 15 В Почему так И об этом мы поговорим позже

Вернёмся к блоку питания Для его обустройства мы применим микросхему серии 7805 Это микросхема стабилизатора напряжения Если посмотреть описание микросхемы, то можно увидеть схему включения:

Рис 36 Схема включения микросхемы L7805

И прочитать, что на выходе микросхемы, обозначено на рисунке Vo, получается постоянное напряжение 5 В Но мы собирались получить от блока питания разные напряжения в диапазоне от 5 до 15 вольт

Поможет в этом изменение схемы включения

                                                                      

Рис 37 Регулируемый блок питания из микросхемы стабилизатора напряжения

На двух рисунках показано напряжение на выходе регулятора при крайних положениях движка переменного резистора Видно, что напряжение на выходе меняется от 5 до 15 вольт Резистор R3

– это резистор нагрузки

Ещё лучшие результаты можно получить при использовании микросхемы КР142ЕН22А Но, прежде чем начинать что-то паять, до того, как вы начнёте эксперименты на макетной плате, и это было главной задачей, давайте внимательнее рассмотрим схему, используя уже полученные знания

В первую очередь нас интересует, какой должен быть резистор R1 То, что его сопротивление равно 300 Ом, мы знаем Но нужно знать и допустимую мощность рассеивания Когда оба резистора полностью включены, то ток через них минимальный В этом случае напряжение максимально и равно 15 В Каков же ток 15/800 = 18 мА На резисторе R2 падает 10 В И мощность, рассеивая на нём, около 02 Вт Мощность, рассеиваемая на резисторе  R1 в этом случае, скорее всего меньше, поскольку напряжение на нём сохраняется равным 5 В

В случае, когда движок переменного резистора находится в другом крайнем положении, а величина сопротивления переменного резистора равна нулю, ток через резистор R1 определяется его величиной и напряжением 5 В: 5/300 = 0016 А Ток ещё меньше, напряжение меньше, чем было на резисторе R2, а, значит, и мощность рассеивания меньше 02 Вт Таким образом резисторы R1 и R2 можно использовать с мощностью рассеивания от 025 Вт и выше

Но не будем забывать, что микросхема U1 тоже обладает активным сопротивлением, что на ней тоже рассеивается мощность Мы задали максимальный ток в нагрузке равным 02 А Он будет протекать через микросхему и при выходном напряжении 15 В, и при напряжении 5 В Но мы знаем, что напряжение источника питания V1 (закон Кирхгофа) распределится на всех включённых в цепь элементах Часть этого напряжения будет падать на микросхеме, а часть на сопротивлении нагрузки R3 (остальные резисторы подключены параллельно R3, то есть, на них то  же напряжение) Когда на сопротивлении нагрузки 5 В, то оставшиеся 13 В должны падать на микросхеме При этом через неё протекает ток 02 А, если мы выбираем такой выходной ток А это означает, что на микросхеме будет рассеиваться мощность 13*02 = 26 Вт в виде тепла В паспортных данных на микросхему можно прочесть, что допустимая мощность рассеивания для

неё составляет не более 1-16 Вт (микросхема L7805 имеет встроенный ограничитель по рассеиваемой мощности) без теплоотвода при нормальной температуре окружающей среды

Теплоотвод в простейшем случае представляет собой пластину из металла (металл хорошо проводит и ток, и тепло) Чем больше поверхность пластины, тем больше тепла она может рассеять (до определённых пределов) С целью уменьшения габаритов теплоотвода пластину можно согнуть в виде буквы «П» Теплоотвод передаёт тепло, выделяемое микросхемой (или транзистором), окружающему воздуху, поэтому площадь соприкосновения играет определяющую роль Промышленно изготавливаемые теплоотводы, радиаторы, делают ребристыми или игольчатыми, получая максимальную поверхность при минимальных габаритах

То, какую поверхность должен иметь теплоотвод при заданной мощности рассеивания, определяется либо из таблиц, либо рассчитывается Расчёт ведётся с учётом переходных тепловых сопротивлений от кристалла до окружающей среды Для уменьшения теплового сопротивления между корпусом охлаждаемого элемента и радиатором место установки тщательно шлифуют и покрывают теплопроводящей пастой В последнее время для дополнительного охлаждения используют вентиляторы (кулеры)

При расчёте теплового режима учитывают несколько тепловых сопротивлений, которые, подобно электрическому сопротивлению, вызывают падение температуры от кристалла (о  температуре которого мы заботимся) до среды Как и электрические сопротивления, тепловые, соединённые последовательно, суммируются Например, в справочных данных на микросхему L7805 указано суммарное сопротивление от кристалла до среды равное 50 градусов/ватт Прибавляя температуру среды 30 градусов, мы получим 80 градусов/ватт То есть, при рассеиваемой мощности 1 ватт температура кристалла 80 градусов, что приемлемо при максимально допустимой температуре 125 градусов Но уже при рассеиваемой мощности 2 ватта температура становится равной 160 градусов Из трёх слагаемых теплового сопротивления: кристалл-корпус, корпус-радиатор, радиатор-среда, – мы можем управлять только последним, определяемым площадью поверхности радиатора

Радиатор с площадью поверхности около 40 см2 можно изготовить из пластины алюминия толщиной 2 мм, с размерами 3×7 см (учитываются обе поверхности), согнув пластину буквой «П» Меньшие габариты будет иметь ребристый теплоотвод:

Рис 38 Ребристый теплоотвод

Рассмотренный ранее блок питания удовлетворит вас на ближайшее время при экспериментах, описанных в следующих главах, но в дальнейшем, скорее всего, вам потребуется более мощный блок питания, например, на основе микросхемы КР142ЕН22А Поэтому сейчас нет смысла доводить конструкцию до окончательного вида, можно оставить блок питания в сборке на макетной плате Но в этом случае хорошо бы обойтись без радиатора

Камнем преткновения служит рассеиваемая микросхемой мощность Как можно её уменьшить Для правильной работы микросхемы стабилизатора на нем должно падать не менее 3 В Но при токе 02 А рассеиваемая мощность не превысит 1 Вт Поэтому, используя другой адаптер, мы можем добиться того, что разница между напряжением на входе (напряжением на выходе адаптера) и напряжением на выходе не превысит 3 вольт

Рис 39 Адаптер с переключаемым выходным напряжением

У этого адаптера выходное напряжение переключается: 1,5 3,0 4,5 6,0 7,5 9,012,0 В Даже при использовании 12 В мощность рассеивания не превысит 15 Вт (при токе 02А) Правда, мы изменили диапазон стабилизированных напряжений 5-9 В Но это не самая большая потеря, поскольку во многих случаях можно использовать адаптер без стабилизатора

Поскольку мы изменили требования к блоку питания, вернёмся к схеме, чтобы привести её в должный вид, определить окончательные номиналы элементов и добавить ряд элементов схемы, которые увеличат её надёжность

Вот окончательная схема:

Рис 310 Окончательная схема блока питания

Конденсаторы C1-C3 служат для уменьшения «пульсаций» Если бы мы тщательнее рассмотрели выпрямленное напряжение на выходе адаптера, то увидели бы, что…

Рис 311 Пульсации на выходе выпрямителя

Амплитуда пульсаций на рисунке невелика, но с ростом потребляемого нагрузкой тока эти пульсации возрастают Для уменьшения пульсаций применяют конденсаторы Чем больше ёмкость конденсатора, тем меньше уровень пульсаций Но конденсатор на выходе выпрямителя очень большой ёмкости может сам стать причиной выхода из строя диодов Этот момент мы рассмотрим в следующей главе Наилучшее решение – использовать те номиналы, что даны в справочных данных микросхемы, приведённых изготовителем

Диоды D1-D2 на схеме стабилизатора предохраняют микросхему от появления отрицательных напряжений при выключении стабилизатора Через диоды конденсаторы быстро разряжаются при выключении сетевого адаптера

Конденсаторы C1-C3 могут быть электролитическими алюминиевыми 100мкФx16 В Вместе с тем падение напряжения на конденсаторах C2 и C3 меньше Если бы это было критично, то следовало взять конденсаторы с меньшим рабочим напряжением, они могут оказаться меньших габаритов

Полезно параллельно конденсатору C3 включить керамический конденсатор ёмкостью 01 мкФ Переменный резистор R2 можно взять такой:

Рис 312 Переменный резистор 200 Ом типа СП3-4АМ

А можно использовать подстроечный резистор – не так часто вы будете менять напряжение, а подстроечный резистор хорошо «впишется» в конструкцию на макетной плате:

Рис 313 Подстроечный резистор 200 Ом типа СП3-19а

Для удобства соединения стабилизатора с сетевым адаптером используйте разъём:

Рис 314 Разъем питания на плату

Для подключения к блоку питания других устройств, а данный блок питания предназначен для проведения экспериментов, удобно использовать два монтажных провода разного цвета, запаянных в макетную плату

Пожалуй, мы всё обсудили и проверили относительно схемы первого устройства и деталей, которые нужно купить Можно приступить к реализации первого проекта

Как и в случае с принципиальной схемой – прежде чем идти в магазин за покупками, мы рассмотрели все аспекты работы схемы – так и с макетной платой, прежде чем включать паяльник и начинать пайку, мы рассмотрим конструкцию устройства

Возьмите макетную плату, установите на ней детали так, чтобы устройством было удобно пользоваться:

Рис 315 Первая примерка макетной платы

Если не считать положение подстроечного резистора и разъёма, расположение остальных деталей в данном случае может быть произвольным Иногда, всё зависит от назначения устройства, приходится учитывать взаимное влияние элементов схемы, но не сейчас

Поэтому после «первой примерки» попробуем нарисовать соединения деталей согласно схеме

Это можно сделать разными путями Позже мы рассмотрим, как воспользоваться возможностями компьютера, а сейчас используем либо графический редактор, что достаточно удобно, либо лист бумаги и карандаш, что достаточно привычно Ниже выделены провода, которые пересекаются

Рис 316 Соединение элементов схемы

При монтаже макета удобно использовать длинные выводы резисторов и конденсаторов в качестве монтажных проводов С другой стороны, если вы решите измерить ток в цепи при таком монтаже, то это трудно будет сделать На рисунке выше достаточно много соединений, которые пересекаются В этом случае обязательно понадобится монтажный провод Но, перемещая детали на плате, возможно, удастся избежать этого Не спешите запаять детали Сделайте несколько вариантов размещения, выбирая наиболее удачный Так, переместив диод D2 за микросхему U1 перед конденсатором C1, вы избежите пересечения проводов Рядом с ним найдётся место и для

диода D1, и тогда провод от конденсатора С3, который прежде пересекал провод от диода, останется свободным А расположив иначе резистор R1, его можно положить вдоль кромки платы поверх проводов, идущих от конденсаторов C2 и C3, вы полностью избежите пересечения проводов

Такая работа по размещению  элементов схемы не только  создаст ряд удобств при пайке, не только будет залогом надёжной работы устройства, но даст вам необходимый опыт монтажа, сокращая количество ошибок Ошибки монтажа всегда неприятны Кроме того, этот этап работы достаточно интересен сам по себе, чтобы доставить вам удовольствие Сделав рисунок, ещё раз внимательно проверьте правильность соединений в соответствии со схемой Производя пайку по рисунку, не забывайте поглядывать на принципиальную схему, проверяя, какие элементы соединяются в данный момент

Многие начинающие радиолюбители считают достаточным повторение готовых схем Но далеко не всегда готовые схемы имеют хорошее описание На принципиальной схеме блока питания не показан радиатор Если включить блок питания, проверяя его работу на максимальном токе, то микросхема, скорее всего, успеет сгореть, прежде чем вы заметите, что она перегревается А тот факт, что стабилизатор L7805 выглядит как обычный транзистор, не соотносится с внутренним содержанием микросхемы

Рис 317 Принципиальная схема L7805

Схема устройства хорошо продумана и достаточно сложна

Иногда готовые схемы имеют непредумышленные ошибки Так, например,  если  перевернуть диод D1, то схема работать не будет В описании работы схемы, скорее всего, будет упоминание о назначении диодов – предотвращать появление отрицательного напряжения – но как правильно должен быть включён диод… только принципиальная схема может дать ответ на этот вопрос Вы уже знаете, что при прямом включении диода падение напряжения на нём не более 1 В И вас обязательно должно насторожить, что диод включён в прямом направлении на выходе стабилизатора напряжения с выходным напряжением 5 В

Источник: Гололобов ВН,- Самоучитель игры на паяльнике (Об электронике для школьников и не только), – Москва 2012

Интегральные стабилизаторы для микроконтроллеров

Компенсационные стабилизаторы положительного напряжения популярной серии «78хх» были разработаны в 1976 г. на фирме Texas Instruments. В дальнейшем появились их модификации (Табл. 6.3) и аналогичные разработки других фирм. Выходные напряжения стандартизованы согласно ряду: 1.5; 1.8; 2.5; 2.7; 2.8; 3.0; 3.3; 4; 5; 6; 8; 9; 12; 15; 18; 24 В. Изготовители различаются по первым буквам в названии, например, L7812 (STMicroelectronics), КА7805 (Samsung), NJM78L03 (NJRCorporation), LM7805 (Fairchild), UTC7805 (UnisonicTechnologies). Встранах СНГ эти стабилизаторы известны по микросхемам серии КР142ЕНхх.

Важный нюанс. Допустимое падение напряжения между входом и выходом стабилизатора (£/Вх-вых) зависит от тока нагрузки. Так, например, для микросхем серии «7805» оно составляет 1 В при токе 20 мА и 2 В при токе 1 А. В кратких справочных данных обычно указывают только последний параметр (2 В/1 А), а полные нагрузочные характеристики приводятся только в графиках даташитов. Следовательно, внимательно их изучая, можно избежать ненужной перестраховки.

Все современные интегральные стабилизаторы имеют защиту от короткого замыкания в нагрузке, от температурного перегрева кристалла и от выхода рабочей точки из зоны безопасной работы [6-17].

Кроме стабилизаторов фиксированного напряжения существуют интегральные регулируемые стабилизаторы. Первые их образцы разработал Роберт Добкин (Robert Dobkin) в 1977 г. на фирме National Semiconductor. Типичными представителями этого направления являются микросхемы серии «317», выходное напряжение которых определяется делителем на двух резисторах.

На Рис. 6.6, а…р показаны схемы регулируемых и нерегулируемых интегральных стабилизаторов положительного напряжения.

Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (начало):

а) типовая схема включения интегрального стабилизатора DAL Серия микросхем «78Lxx» идеально подходит для несложных любительских конструкций, содержащих МК и имеющих ток потребления до 100 мА. Встроенная в DA1 защита от короткого замыкания ограничивает выходной ток на уровне 0.1…0.2 А, что во многих случаях спасает МК при аварии. Входное напряжение фильтруют элементы L1, C1, С2, причём катушка индуктивности может отсутствовать. Конденсаторы C1, С4 устанавливают вблизи (0…70 мм) от выводов стабилизатора DA1, чтобы предотвратить самовозбуждение последнего. Ёмкость конденсатора С2 должна быть в несколько раз больше, чем ёмкость конденсатора СЗ, иначе надо ставить защитный диод VD1 (показан пунктиром). Главное, чтобы при выключении питания выходное напряжение +5 В снижалось по времени быстрее, чем входное +6.5…+15 В (для этого и увеличивают ёмкость конденсатора С2), иначе может выйти из строя микросхема DA1. Если нет уверенности, то подобный диод рекомендуется ставить и в других аналогичных схемах;

б) стабилизатор DA1 (фирма Maxim/Dallas) не относится к серии «78хх». Он отличается названием и функциональностью. В частности, в микросхеме DA1 имеется вход для выключения стабилизатора (вывод 4) и вход для плавного регулирования напряжения (вывод 5). Микросхемы МАХ603 и МАХ604 взаимозаменяемые и обеспечивают соответственно +5 и +3.3 В на выходе;

в) LDO-стабилизатор на микросхеме DA1 с максимальным током нагрузки 1 А (аналог К1184ЕН1). В семействе LM2940 существуют микросхемы с выходным напряжением 5; 8; 9; 10; 12; 15 В, а в семействе LP2950 — с напряжением 3.0; 3.3; 5 В;

г) UltraLDO-стабилизатор на микросхеме DA1 в SMD-корпусе. Напряжение UВХ-вых не более 0.12 В при токе нагрузки 50 мА и не более 7 мВ при токе нагрузки 1 мА. Существуют модификации данного стабилизатора с выходным напряжением согласно ряду: 1.5; 1.8; 2.5; 2.85; 3.0; 3.2; 3.3; 3.6; 3.8; 4.0; 4.7; 4.85; 5.0 В;

Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (продолжение):

д) регулируемый стабилизатор напряжения на микросхеме DAI серии «317». 

е) напряжение +13 В получается сложением двух напряжений стабилизаторов DAI и DA2

ж) индикатор HL1 светится зелёным цветом при нормальном напряжении батареи/аккумулятора GB1 в пределах 6.8…9 В. Ниже 6.8 В его свечение прекращается, что является сигналом к замене батареи или подзарядке аккумулятора;

з) стандартный приём увеличения выходного напряжения стабилизатора DA1 на 0.1…0.3 В. Это может потребоваться при некондиционных параметрах микросхемы DA I или для тестирования работы МК при повышенном питании. Резистором R1 в небольших пределах регулируется выходное напряжение на линейном участке ВАХ диода VD1 (ток 5… 10 мА). Резистор RI не обязателен, если микросхему DAI серии «78LC05», «78-L05» заменить аналогичной из серии «7805», имеющей потребление тока через вывод GND в пределах 3…8 мА;

и) стабилизатор напряжения DAI дополнен усилителем тока на звуковой микросхеме DA2, которая используется как повторитель напряжения с нагрузкой до 3 А. Питание микросхемы DA2должно быть повышенным +9…+12 В, хотя и не обязательно стабилизированным;

Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (продолжение):

к) высокое входное напряжение 60 В сначала понижается до 23 В (DA1), а затем до 5 В (DA2). Разность напряжений между входом и выходом микросхемы DAI не должна превышать 40 В. При большом токе нагрузки может потребоваться установка микросхем DAI, DA2 на радиаторы;

л) резистором RI плавно подстраивается напряжение в верхнем, более мощном канале. Если средний вывод резистора RI в результате вращения его движка электрически соединится с общим проводом, то в двух каналах будут идентичные напряжения +5 В. Стабилизаторы DAI, DA2 могут иметь как одинаковые, так и разные выходные напряжения;

м) блок питания с условным названием «Ступенька» состоит из последовательно включённых стабилизаторов напряжения DA1…DA3. Ток нагрузки, просуммированный по трём цепям + 12, +9 и +5 В, не должен превышать максимально допустимого тока для микросхемы DA1

н) получение двух одинаковых напряжений от одного общего источника +7…+15 В. Это полезно, например, для развязки аналоговых и цифровых цепей МК или для отдельного питания высокочувствительного входного усилителя;

Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (окончание):

о) получение трёх разных стабилизированных напряжений для питания процессорного ядра, а также внутренней и внешней периферии у новых современных МК. Помехозащитный фильтр FBI (фирма Murata Manufacturing) имеет малые габариты. Он может быть заменён однозвенным LC-фильтром на дискретных элементах;

п) получение хорошо стабилизированного напряжения +5 В и «квазистабилизированного» напряжения +2.8…+3.2 В. Диоды VD1…VD3 снижают выходное напряжение, но оно будет зависеть от протекающего через них тока и температуры окружающей среды. Диодов может быть не три, а два, причем как обычных, так и диодов Шоттки. Резистор R1 служит для начальной нагрузки потоку, чтобы зафиксировать рабочую точку диодов на крутой вертикальной ветви ВАХ, начиная с 10 мА;

р) двухканальный стабилизатор напряжения DA1 (фирма STMicroelectronics) обеспечивает питанием сразу два выходных тракта +5.1 и +12 В. Ток нагрузки в каждом канале может составлять 0.75… 1 А.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

Smd стабилизатор напряжения 5 вольт

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального линейного стабилизатора 78L05.

Описание стабилизатора 78L05

Данный стабилизатор не дорогой и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

Микросхема — стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C.

Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 — КР1157ЕН5, а для 7805 — 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.

Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подаче входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема лабораторного блока питания отличается своей оригинальностью, из-за нестандартного применения микросхемы TDA2030, источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.

Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем подбора подходящего сопротивления резистора R3 или R4.

Бестрансформаторный блок питания на 5 вольт

данная схема бестрансформаторного источника питания характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.

Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора — гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05

Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на КТ315. Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые в бесперебойниках.

Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4…R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.

Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем уменьшения или увеличения сопротивление резистора R2.

Скачать datasheet на 78L05 (161,0 Kb, скачано: 6 182)

L7805-CV линейный стабилизатор постоянного напряжения

L7805-CV — практически для любого радиолюбителя собрать источник питания со стабилизирующим выходным напряжением на микросхеме 7805 и аналогичных из этой серии, не представляет никакой сложности. Именно об этом линейном регуляторе входного постоянного напряжения пойдет речь в данном материале.

На рисунке выше, представлена типичная схема линейного стабилизатора L7805 с положительной полярностью 5v и номинальным рабочим током 1.5А. Данные микросхемы приобрели такую известность, что за их производство взялись большинство мировых компаний. А вот на снимке ниже, представлена схема немного усовершенствованная, за счет увеличения емкости конденсаторов С1-С2.

Как правило, между радиотехниками и электронщиками этот чип называют сокращенно, не называя впереди стоящих буквенных обозначений указывающих на производителя. Ведь и так понятно для каждого, что это — стабилизатор, последняя цифра, которого указывает его напряжение на выходе.

Кто еще не сталкивался с данными электронными компонентами на практике и мало, что о них знает, то вот вам для наглядности небольшое видео по сборке схемы:

Стабилизатор напряжения 5v! На микросхеме L7805CV

Одно из важных условий — высокое качество компонентов

На самом деле при покупке комплектующих изготовитель играет значительную роль. Когда вы приобретаете любые электронные компоненты, всегда обращайте внимание на бренд детали, а также поинтересуйтесь кто их поставляет. Лично меня устраивает продукция компании «STMicroelectronics», производителя микроэлектронных компонентов.

Безымянные стабилизаторы или от мало известных фирм, как правило всегда стоят дешевле, чем аналогичные от известных брендов. Но и качество таких деталей не всегда на должном уровне, особенно сказывается в их работе существенный разброс напряжения на выходе.

Практически мне много раз попадались микросхемы L7805 выдававшие выходное напряжение в пределах 4,6v, вместо 5v, а другие из этой же серии давали наоборот больше — 5,3v. К тому же, такие образцы частенько могут создавать приличный фон и повышенное потребление мощности.

Схема источника тока выполненная на микросхемах из серии L78xx

Значение выходного тока обусловлено постоянным резистором R*, включенным параллельно с конденсатором 0,1uF, именно это сопротивление в свою очередь создает нагрузку для L7805. Причем, стабилизатор не имеет заземления. На «землю» идет только один вывод сопротивления нагрузки Rн. Принцип действия такой схемы включения обязывает L7805-CV выдавать в нагрузку определенную величину тока, посредством регулирования выходного напряжения.

Величина тока на выходе источника L78хх

Неприятный момент, который можно наблюдать в схеме, это суммирование тока покоя Id с током на выходе. Параметры тока покоя обозначены в документации на микросхему. В основном такие стабилизаторы имеют постоянную величину тока покоя, составляющую 8мА. Это значение является наименьшим током выходной цепи чипа. Следовательно, при попытке создать источник тока, у которого значение будет меньше, чем 8мА, никак не получится.

Здесь можно скачать документацию на микросхему L78xx L78_DataSheet.pdf

В лучшем случае от L7805 можно получить выходные токи в пределах от 8мА до 1А. Впрочем, при работе на токах превышающие значение 750-850 мА, категорически рекомендуем устанавливать микросхему на радиатор. Но и работать на таких токах все же не оправдано. Обозначенный в документации ток в 1А — это его максимальное значение. В фактических условиях чип наверняка выйдет из строя из-за перегрева. Поэтому, оптимальный выходной рабочий ток должен находится в пределах от 20 мА до 750 мА.

Корректность выходного тока и величина напряжения

В тоже время не постоянность тока покоя формируется как Δ >

Оптимальное сопротивление нагрузки

Одновременно с этим нужно принять во внимание значение сопротивления нагрузки. Здесь все просто, то есть используя закон Ома можно все высчитать. Например:

Исходя их таких несложных расчетов мы выяснили, какое должно быть напряжение на нагрузке с сопротивлением 100 Ом, чтобы создать выходной ток 100 мА. Согласно эти расчетам получается, что оптимальным вариантом будет использовать микросхему 7812 либо 7815, рассчитанную на 12v и 15v в соответствии, с целью иметь запас.

Заключение

Естественно, в такой схеме источника тока присутствуют ограничительные моменты. Хотя она может быть полезна для большого количества решений, в которых высокая точность не играет особой роли. Отсутствие какой либо сложности в схеме, дает возможность изготовить источник тока практически в любых условиях, тем более комплектующие для нее приобрести не составит труда.

Серия микросхем AMS1117 это линейные стабилизаторы с малым падением напряжения. Если заказать в Китае отладочную плату, питающуюся от USB и имеющую потребители на 3,3В (например микроконтроллеры STM32 или всевозможные датчики и индикаторы), то скорее всего на этой плате будет установлен стабилизатор AMS1117-3.3. Выпускается Advanced Monolithic Systems.
Например на фото стабилизатор AMS1117-3.3 в корпусе SOT-223 установленный на отладочной плате с STM32F103C8T6.

AMS1117 выпускаются на разные напряжения: 1,2 В; 1,5 В; 1,8 В; 2,5 В; 2,85 В; 3,3 В и 5 В.
Кроме того есть модификация AMS1117, которая двумя внешними резисторами настраивается на нужное напряжение в диапазоне от 1,2 В до 5 В.

AMS1117 схема включения

Схема включения стабилизатора на фиксированное напряжение проще некуда:

Схема включения стабилизатора программируемого резисторами такая же как например у LM317:

На рисунке также приведена формула позволяющая рассчитать выходное напряжение для заданных резисторов.

В документации на стабилизатор указаны графики зависимости опорного напряжения и тока подстроечного входа от температуры. Из этих графиков видно, что при подогреве AMS1117 выходное напряжение будет подрастать. И если влияние тока подстроечного входа можно компенсировать снизив сопротивления резисторов, то изменение опорного напряжения ни как не компенсировать.

AMS1117 цоколевка

AMS1117 описание характеристик

  • Максимальный выходной ток – 1 А;
  • Максимальное входное напряжение – 15 В;
  • Температурный диапазон работы T = -20 .. +125°С;
  • Максимальная рассеиваемая мощность для корпуса SOT-223 – Pmax = 0,8 Вт;
  • Максимальная рассеиваемая мощность для корпуса TO-252 – Pmax = 1,5 Вт;
  • Тепловое сопротивление кристалл-корпус для корпуса SOT-223 – Rt = 15°С/Вт;
  • Тепловое сопротивление кристалл-корпус для корпуса TO-252 – Rt = 3°С/Вт;
  • Выключение при перегреве кристалла – T = 155°С;
  • Тепловой гистерезис – ΔT = 25°С.

AMS1117 внутренняя структура

Интересно, что стабилизаторы с фиксированным напряжением отличаются от «подстраевымых» только наличием двух дополнительных резисторов определяющих напряжение. Судя по рисунку структуры стабилизатора из документации задающие резисторы присутствуют на кристалле, а выбор того на какое напряжение будет запрограммирован стабилизатор определяется перемычками.

AMS1117 аналоги

Конечно у такого популярного стабилизатора есть аналоги: LD1117A, IL1117A и минский «Транзистор» выпустил серию аналогов К1254ЕН.

Так же аналогом является LM1117 но есть отличия:

  • LM1117 можно настраивать на напряжения от 1,25 В до 13,8 В;
  • Кроме подстраиваемого LM1117 бывает на напряжения 1,8 В; 2,5 В; 3,3 В и 5 В;
  • У версии в корпусе SOT-223 максимальный ток 800мА.

AMS1117 применение

Стабилизатор AMS1117 можно применять в тех же схемах, что и LM317. Только нужно помнить про максимальные напряжения и выходной ток стабилизатора.

12 thoughts on “ Стабилизатор AMS1117-3.3 схема включения, описание, применение и аналоги LM1117 ”

Очень удобная вещь. С AMS, правда, не сталкивался, а вот с LM1117 — довольно часто. Там, где от 12-вольтового аккумулятора надо получить 5 вольт небольшой мощности — ей самое место. И это не только мне понятно, их монтируют в большинство прикуривателей с USB-выходом(ами). Часто парами на 5В и 3,3В, реже, еще и 2,5В добавлено, для полного комплекта.
Я их использую с маленькими 220/6 трансформаторами… досталась партия японских, еще при Советах, щас таких не достать, а вот LM1117 сколько угодно. Гармоничное сочетание.

Ну рассеиваемая мощность у AMS1117 будет поменьше чем у LM317, конечно если нужно рассеивать большие мощности, то лучше импульсный стабилизатор.

Ну рассеиваемая мощность у LM317 будет поменьше, чем у LM350, а у LM350 поменьше, чем у LM338… продолжить? Они и выпускаются разные, для разных задач. Плюс, каждую можно снабдить усилителем тока на биполярном транзисторе соответствующей мощности. Но помимо мощности, существуют такие понятия, как цена, размер, падение напряжения и др. Применение же импульсной техники диктуется, как правило, не рассеиваемой мощностью, а КПД (первично) и размерами (вторично) данных устройств. Все остальное у них неважно.

Производитель заявляет максимальное напряжение в 15В, у вас на первой схеме от 5 до 18В. кому верить?

Верить — производителю, 18В — ошибка.

Не в тему конечно но скажу — L1084S(NIKOS) запитана 18В на выходе 3.5-15.5В.

Не очень понял следующее:
1. Напряжение измеряется между двумя точками. На схеме клемма Uвых соединена с общей «землей»?
2. Что имеется ввиду, когда рекламируется низкий перепад напряжения напряжения на стабилизаторе. Например входное напряжение 15 В, а выходное 3 В. На каком участке цепи падает 12 Вольт? И разве 12 Вольт это маленький перепад? Ведь в схеме нет трансформатора и преобразователя в переменное напряжение? Наверное, имеется ввиду сохранение работоспособности при при минимальном (1,5…2 В) превышении входного напряжения на выходным?

На схеме так скорее всего обозначили самый большой вывод микросхемы, который является и теплоотводом. Земли в этой микросхеме нет вообще.
Под низким перепадом, скорее всего тут имеют ввиду что он возможен. В LM317 из 5 вольт 3.3 получить может и не полУчится. У нее перепад должен быть 2 вольта и более. А здесь из 5 получаем 3.3, а может и из меньшего получим.

Не ПЕРЕПАД а ПАДЕНИЕ!)) почувствуй разницу

Совершенно верно: низкое падение напряжения обозначает, что стабилизатор сохраняет работоспособность при минимальном превышении входного напряжения над выходным.

Добрый день. Я столкнулся стабилизатором LM1117 D38.Обычно пишется 3.3 или 1.8.кто может сказать сколько вольт?

Зачем делают импульсные стабилизаторы напряжения. — Радиомастер инфо

Рассказано о назначении стабилизаторов, основных типах – линейных и импульсных, достоинствах и недостатках. Показаны испытания и результаты.

Для наглядности рассмотрим структурную схему, из анализа которой, назначение стабилизатора становится наиболее понятным.

Допустим, для питания нагрузки нужно постоянное напряжение 5В. Мы можем сделать выпрямитель, который из напряжения сети сформирует постоянное напряжение 5В при напряжении сети 230В. Но напряжение сети может изменяться и если не предпринять никаких мер, то и напряжение на выходе выпрямителя отклонится от нужного значения 5В. Для того, чтобы этого не произошло, нужен стабилизатор. Отсюда основная задача стабилизатора – поддерживать неизменное напряжение на выходе при изменении входного. Стабилизатор еще выполняет и другие функции, а именно, поддерживает постоянным напряжение в нагрузке при изменении тока в ней и уменьшает пульсации выпрямленного напряжения.

Наиболее простыми являются линейные стабилизаторы. Их принцип работы понятен из приведенной ниже схемы.

При отклонении напряжения на выходе от нормы с делителя напряжения R2, R3 на регулирующий элемент R1 подается управляющий сигнал. R1 изменяет свое сопротивление до тех пор, пока напряжение на выходе не придет в норму. Понятно, что разница между входным и выходным напряжением падает на R1, при больших токах это приводит к выделению значительной мощности и понижает КПД линейного стабилизатора. В качестве R1, как правило, используется транзистор. Для обеспечения его работы в схеме есть источник образцового напряжения (стабилитрон) и усилитель сигнала ошибки.  Схемы линейных стабилизаторов выполняются на отдельных элементах и в виде микросхем. Наиболее распространены микросхемы серии 7805, 7808, 7812, КР142ЕН5 и т.д. Подробнее можно посмотреть здесь и здесь.

Ниже приведены результаты испытаний линейного стабилизатора напряжения на микросхеме 7805. Напряжение на входе 7,3В, ток 1,08А. Напряжение на выходе 5,1В, ток 1,01А. Пульсации на осциллографе, подключенном к нагрузке, отсутствуют. Мощность на входе равна 7,3В х 1,08А = 7,9Вт. Полезная мощность в нагрузке равна: 5,1В х 1,01А = 5,2Вт. КПД = 5,2 : 7,9 = 0,66 или 66%.

Напряжение на входе 19В, ток 1,08А. Напряжение на выходе 5,1В, ток 1,02А. Пульсации на осциллографе практически отсутствуют. Мощность на входе равна 19В х 1,08А = 20,5Вт. Полезная мощность в нагрузке равна: 5,1В х 1,02А = 5,2Вт. КПД = 5,2 : 20,5 = 0,25 или 25%.

Чтобы повысить КПД стабилизаторов широко используются импульсные стабилизаторы. Принцип их работы заключается в том, что постоянное входное напряжение преобразуется в импульсное, с частотой от десятков до сотен кГц. Это импульсное напряжение на выходе с помощью индуктивности, диода и конденсатора фильтра снова преобразуется в постоянное напряжение. Величина напряжения на выходе зависит от длительности импульсов и поддерживается постоянной за счет обратной связи управляющей длительностью импульсов генератора. Структурная схема импульсного стабилизатора приведена ниже.

Мощный ключ VT1 в такой схеме имеет два устойчивых состояния – полностью открыт или полностью закрыт. При этом величина выходного напряжения прямо пропорциональна времени открытого состояния ключа. Падение напряжения на нем минимально, и он практически не греется, что существенно повышает КПД таких стабилизаторов. Подробнее о работе импульсных стабилизаторов можно посмотреть здесь .

Ниже приведены результаты испытаний импульсного стабилизатора напряжения на микросхеме 2576Т-5,0.

Напряжение на входе 7,5В, ток 0,84А. Напряжение на выходе 5,В, ток 0,98А. Мощность на входе равна 7,5В х 0,84А = 6,3Вт. Полезная мощность в нагрузке равна: 5 В х 0,98А = 4,9Вт. КПД = 4,9 : 6,3 = 0,78 или 78%. Как видно на осциллограмме, положительные импульсы широкие и небольшие по амплитуде. Это самый низкий КПД для импульсного стабилизатора.

Напряжение на входе 18,2В, ток 0,34А. Напряжение на выходе 5,В, ток 0,99А. Мощность на входе равна 18,2В х 0,34А = 6,2Вт. Полезная мощность в нагрузке равна: 5 В х 0,99А = 5Вт. КПД = 5 : 6,2 = 0,88 или 80%. Положительные импульсы по амплитуде выше, а по длительности меньше, чем в предыдущем случае. По сравнению с КПД линейного стабилизатора 25% при близком напряжении (там было 19В) это в разы лучше.

У линейного стабилизатора больше 19В повышать напряжение на входе не было возможности так как микросхема перегружалась и у нее срабатывала защита. У импульсного стабилизатора повышать напряжение можно. У 2576 до 40В, а у 2576HV до 60В. При этом КПД еще повышается.

Рассчитанный по методике, приведенной выше, при 24,2В КПД импульсного стабилизатора составляет 90%. При этом микросхема практически не греется, так как в последнем рассмотренном примере на ней выделяется мощность 0,6 Вт. У линейного стабилизатора при 19В мощность на микросхеме более 15Вт. Разница впечатляет. Для наглядности результаты сведены в таблицу при минимальных напряжениях на входе:

И при максимальных напряжениях на входе:

Но у импульсных стабилизаторов тоже есть недостатки. Конструктивно немного сложнее, чем линейный стабилизатор. Требуется индуктивность и быстрый диод на выходе. Но самое главное пульсации выше и есть помехи. Как видно на фото ниже они достигают 0,1В при токе 1А.

Для устранения указанных недостатков нужно применять дополнительные фильтры, например, как рекомендовано в документации микросхем 2576:

В любом случае, выигрыш КПД в разы по сравнению с линейными стабилизаторами делает импульсные стабилизаторы напряжения наиболее распространенными в последнее время. А повышение рабочей частоты, например, до 180кГц в микросхемах XL4016, делает возможным получать токи в нагрузке до 8А при небольших габаритах блока с радиатором в целом.

Используя такой импульсный стабилизатор напряжения с возможностью регулировки выходного тока и небольшой вольтметр-амперметр можно изготовить регулируемый блок питания для многих приборов и зарядное устройство для аккумуляторов включая автомобильные. Подробнее как это сделать показано здесь.

Материал статьи продублирован на видео:

Amazon.com: SMAKN L7805 LM7805 3-контактный стабилизатор напряжения 5 В Стабилизатор напряжения Модуль питания: домашнее аудио и кинотеатр


Цена: 6 долларов.66 + Депозит без импортных пошлин и доставка в Российскую Федерацию $ 19,61 Подробности
  • Размер доски: 5.7 см * 2,3 см
  • Входное напряжение: полярность входного напряжения, переменного и постоянного тока может быть в диапазоне: 7,5-20 В
  • Выходное напряжение 5 В
  • Максимальный выходной ток: 1,2 А
  • Легкая установка
Поставщики регуляторов положительного напряжения

7805t To220h, все поставщики регуляторов положительного напряжения 7805t To220h качества на Alibaba.com

Страна / регион: Китай Основные продукты:

LED, LED ДИОДЫ, Светодиодные чипы, LED COB, ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ

Общий доход:

1 миллион долларов США – 2 доллара США.5 миллионов

Топ-3 рынка:

Центральная Америка 16% , Восточная Европа 15% , Северная Америка 12%

Страна / регион: Китай Основные продукты:

Модуль Интернета вещей, электронные компоненты, ИС, транзистор, микроконтроллер

Общий доход:

10 миллионов долларов США – 50 миллионов долларов США

Топ-3 рынка:

Восточная Азия 20% , Восточная Европа 20% , Северная Америка 13%

Страна / регион: Китай Основные продукты:

Низкое напряжение продукты

Общий доход:

10 миллионов долларов США – 50 миллионов долларов США

Топ-3 рынка:

Южная Америка 36.5% , Западная Европа 23,0% , Юго-Восточная Азия 11,0%

Страна / регион: Китай Основные продукты:

Промышленные ИБП, Емкостные ИБП, Модульные ИБП, Высокочастотные ИБП, Низкочастотные ИБП

Общий доход:

5 миллионов долларов США – 10 миллионов долларов США

Топ-3 рынка:

Внутренний рынок 50% , Юго-Восточная Азия 5%

Страна / регион: Китай Основные продукты:

стальной баллон, алюминиевый баллон, медицинский кислород , регулятор , вентиль баллона, газовая смесь

Общий доход:

50 миллионов долларов США – 100 миллионов долларов США

Топ-3 рынка:

Средний Восток 20% , Восточная Европа 15% , Западная Европа 10%

Страна / регион: Китай Основные продукты:

датчик давления, датчик давления, датчик давления, манометр, клапан давления

Общий доход:

2 доллара США.5 миллионов – 5 миллионов долларов США

Топ-3 рынка:

Внутренний рынок 49% , Средний Восток 16% , Восточная Азия 12%

7805 регулятор напряжения.Регулятор напряжения

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств … Он обеспечивает постоянное напряжение на выходе схемы, практически не зависящее от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78XX. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластиковых корпусах ТО-220 (справа). У таких стабилизаторов три контакта: вход, земля (общий) и выход.



Вместо «ХХ» производители указывают напряжение стабилизации, которое нам даст этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот схема подключения таких стабилизаторов. Эта схема подходит для всех регуляторов 78XX.


Характеристики стабилизаторов

LM

Какое напряжение нужно подать, чтобы стабилизатор работал должным образом? Для этого ищем даташит на стабилизаторы и внимательно его изучаем.Нас интересуют эти характеристики:

Выходное напряжение – выходное напряжение

Входное напряжение – входное напряжение

Ищем наш 7805. Он дает нам выходное напряжение 5 вольт. Производители отметили желаемое входное напряжение 10 вольт. Но бывает, что выходное стабилизированное напряжение иногда либо немного занижено, либо немного завышено.

Для электронных безделушек доли вольта не ощущаются, а вот для точного (прецизионного) оборудования схемы лучше собрать своими руками.Здесь мы видим, что стабилизатор 7805 может выдать нам одно из напряжений в диапазоне 4,75 – 5,25 Вольт, но должны соблюдаться условия, чтобы выходной ток в нагрузке не превышал 1 Ампер. Нестабилизированное постоянное напряжение может «колебаться» в диапазоне от 7,5 до 20 вольт, при этом на выходе всегда будет 5 вольт.

Рассеиваемая мощность на стабилизаторе может доходить до 15 Вт, что является приличным значением для такой небольшой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет потреблять приличный ток, думаю, стоит подумать об охлаждении стабилизатора.Для этого его необходимо через пасту КПТ на радиатор насадить. Чем больше ток на выходе стабилизатора, тем больше должен быть радиатор. Было бы идеально, если бы радиатор еще обдувался вентилятором.


LM на практике

Посмотрим на нашу подопечную, а именно на стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.


Соберем по схеме

Берем свою Макетную плату и быстро собираем предложенную выше схему подключения.Два желтых – это конденсаторы, но они не обязательны.


Итак, провода 1, 2 – вот сюда подаем нестабилизированное входное постоянное напряжение, снимаем 5 вольт с проводов 3 и 2.

На блоке питания выставляем напряжение в пределах от 7,5 Вольт до 20 Вольт. В данном случае я выставил напряжение 8,52 Вольт.


А что мы получили на выходе этого стабилизатора? 5,04 Вольт! Это значение, которое мы получим на выходе этого стабилизатора, если подать напряжение в диапазоне от 7.От 5 до 20 вольт. Работает отлично!


Посмотрим еще один стабилизатор. Думаю, вы уже догадались, сколько это вольт.


Собираем по схеме выше и замеряем входное напряжение. Согласно даташиту, вы можете подавать на него входное напряжение от 14,5 до 27 вольт. Ставим 15 Вольт с копейками.


А вот и выходное напряжение. Блин, каких-то 0,3 Вольт на 12 Вольт не хватает.Для радиооборудования, работающего от 12 вольт, это не критично.


Как сделать блок питания на 5, 9,12 вольт?

Как сделать простой и высокостабильный блок питания на 5, 9 или даже 12 вольт? Все очень просто. Для этого нужно прочитать эту небольшую статью и на выходе поставить на радиатор стабилизатор! Вот и все! Схема будет примерно такая для блока питания на 5 Вольт:


Два электролитических конденсатора для устранения пульсаций и высокостабильный источник питания 5 В к вашим услугам! Чтобы получить блок питания на более высокое напряжение, нам также необходимо получить более высокое напряжение на выходе трансформатора.Добиваться того, чтобы напряжение на конденсаторе С1 было не меньше, чем указано в даташите на описываемый стабилизатор.

Чтобы регулятор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в паспорте. Например, для регулятора 7805 это напряжение составляет 7,5 вольт, а для регулятора 7812 желаемое входное напряжение можно рассматривать как 14,5 вольт. Это связано с тем, что разница напряжений, а значит, и мощность, стабилизатор будет рассеивать сам по себе.

Как вы помните, формула мощности P = IU, где U – напряжение, а I – ток. Следовательно, чем выше входное напряжение стабилизатора, тем больше энергии он потребляет. А лишняя мощность греет. В результате нагрева такой стабилизатор может перегреться и перейти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вообще сгорает.

Заключение

Все больше и больше электронных устройств требуют качественного, стабильного питания без скачков напряжения.Выход из строя того или иного модуля электронного оборудования может привести к неожиданным и не очень приятным последствиям. Используйте достижения электроники на свое здоровье, и не беспокойтесь о питании своих электронных безделушек.

Купить регулятор напряжения

.

Эти встроенные стабилизаторы недорого можно купить целым комплектом на Алиэкспресс по цене это ссылка на сайт. Здесь есть абсолютно любые значения, даже для отрицательного напряжения.

Интегральный стабилизатор напряжения L7805 CV представляет собой обычный 3-контактный стабилизатор положительного напряжения 5 В.Выпускается компанией STMircoelectronics, ориентировочная цена составляет около $ 1. Он выполнен в стандартном корпусе ТО-220 (см. Рисунок), в котором выполнено много транзисторов, однако его назначение совершенно другое.

В серии 78XX с маркировкой последние две цифры указывают на номинальное стабилизированное напряжение , например:

  1. 7805 – стабилизация на 5 В;
  2. 7812 – стабилизация на 12 В;
  3. 7815 – стабилизация на 15 В и т. Д.

Серия 79 рассчитана на отрицательное выходное напряжение.

Применяется для стабилизации напряжения в различных низковольтных цепях. Очень удобно использовать, когда необходимо обеспечить точность подаваемого напряжения, не требуется городить сложные схемы стабилизации, и все это можно заменить одной микросхемой и парой конденсаторов.

Схема подключения L7805CV

Схема подключения L 7805 CV достаточно простая, для работы необходимо, согласно даташиту, на входе 0 вешать конденсаторы.33 мкФ, а на выходе 0,1 мкФ. Важно при установке или проектировании разместить конденсаторы как можно ближе к выводам микросхемы. Это сделано для обеспечения максимального уровня стабилизации и уменьшения помех.

По характеристикам Регулятор L7805CV работает при подаче входного постоянного напряжения в диапазоне от 7,5 до 25 В. На выходе микросхемы будет стабильное постоянное напряжение 5 вольт. В этом вся прелесть микросхемы L7805CV.

L7805CV Проверка работоспособности

Как проверить работает ли микросхема ? Для начала можно просто прозвонить выводы мультиметром, если хотя бы в одном случае наблюдается короткое замыкание, то это однозначно свидетельствует о неисправности элемента. При наличии источника питания 7 В и выше можно собрать схему по приведенному выше даташиту, и подать питание на вход, на выходе мультиметром фиксируем напряжение 5 В, соответственно элемент абсолютно исправен.Третий способ более трудоемкий, если у вас нет источника питания. Однако в этом случае вы получите параллельно блок питания 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисунку ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации 18 – 20 и выпрямительный мост, еще обвес с двумя стандартными конденсаторами на стабилизатор и все, блок питания на 5 В готов. Номиналы конденсаторов здесь завышены по сравнению с схемой переключения L7805 в даташите, это связано с тем, что лучше сгладить пульсации напряжения после выпрямительного моста.Для более безопасной работы желательно добавить индикацию для визуализации включения устройства. Тогда схема будет выглядеть так:

Если в нагрузке много конденсаторов или любая другая емкостная нагрузка, можно защитить стабилизатор обратным диодом, чтобы избежать выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкий дизайн и удобство использования, в случае если вам нужен блок питания такой же стоимости. Цепи, чувствительные к значениям напряжения, должны быть снабжены такими стабилизаторами для защиты элементов, чувствительных к скачкам напряжения.

Характеристики стабилизатора L7805CV, его аналогов

Основные настройки Стабилизатор L7805CV:

  1. Входное напряжение – от 7 до 25 В;
  2. Рассеиваемая мощность – 15 Вт;
  3. Выходное напряжение – 4,75 … 5,25 В;
  4. Выходной ток – до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, эти значения действительны при определенных условиях. А именно: температура микросхемы находится в диапазоне от 0 до 125 градусов Цельсия, входное напряжение 10 В, выходной ток 500 мА (если иное не указано в условиях, столбце Условия испытаний), а стандартный перевес составляет конденсаторы на входе 0.33 мкФ и на выходе 0,1 мкФ.

Из таблицы видно, что стабилизатор хорошо себя ведет, когда на вход подается от 7 до 20 В, а на выходе стабильно будет выходное от 4,75 до 5,25 В. С другой стороны, подача более высоких значений дает неплохие результаты. к и без того более значительному изменению выходных значений, поэтому выше 25 В не рекомендуется, а снижение входного до менее 7 В, как правило, приведет к отсутствию напряжения на выходе стабилизатора.

, более 5 Вт, на микросхему необходимо установить радиатор во избежание перегрева стабилизатора, конструкция позволяет это сделать без вопросов. Для более точной (прецизионной) методики, естественно, такой стабилизатор не подходит, так как имеет значительное изменение номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, в мощных схемах нет смысла использовать стабилизацию на основе широтно-импульсной симуляции, а вот для питания небольших устройств L7805 вполне подходит для телефонов, игрушек, магнитол и других гаджетов .Отечественный аналог – КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог тоже находится в этой же категории.

Устройства, которые подключаются к цепи питания и поддерживают стабильное выходное напряжение, называются стабилизаторами напряжения. Эти устройства рассчитаны на фиксированное выходное напряжение: 5, 9 или 12 вольт. Но есть устройства с регулировкой. Их можно установить на желаемое напряжение в определенных доступных пределах.

Большинство стабилизаторов рассчитаны на определенный максимальный ток, который они могут выдержать.Если это значение будет превышено, стабилизатор выйдет из строя. Инновационные стабилизаторы оснащены блокировкой тока, которая обеспечивает отключение устройства при достижении максимального тока в нагрузке и защищена от перегрева. Наряду со стабилизаторами, поддерживающими положительное значение напряжения, существуют устройства, работающие с отрицательным напряжением. Они используются в биполярных источниках питания.

Регулятор 7805 выполнен в корпусе, аналогичном транзистору. На рисунке показаны три контакта.Он рассчитан на 5 вольт и 1 ампер. В корпусе есть отверстие для крепления стабилизатора к радиатору. Модель 7805 – это устройство с положительным напряжением.

Зеркальное отображение этого регулятора является его аналогом 7905 для отрицательного напряжения. На корпусе будет положительное напряжение, на входе будет получено отрицательное значение. -5 В. снимается с выхода. Чтобы стабилизаторы работали в штатном режиме, на вход необходимо подать 10 вольт.

Распиновка

Стабилизатор 7805 имеет распиновку, как показано на рисунке.Общий вывод подключен к корпусу. Это играет важную роль при установке устройства. Последние две цифры указывают напряжение, создаваемое микросхемой.

Стабилизаторы питания микросхем

Рассмотрим способы подключения к питанию цифровых устройств собственного производства на микроконтроллерах. Любое электронное устройство требует правильного подключения к источнику питания для нормальной работы. Блок питания рассчитан на определенную мощность. На его выходе установлен конденсатор значительной емкости для выравнивания импульсов напряжения.

Источники питания без стабилизации, используемые для маршрутизаторов, сотовых телефонов и другого оборудования, не могут быть объединены с питанием микроконтроллеров напрямую. Выходное напряжение этих устройств варьируется и зависит от подключенной мощности. Исключением из этого правила является зарядное устройство для смартфона с USB-портом на 5 В.

Схема стабилизатора, совмещенного со всеми микросхемами этого типа:

Если разобрать стабилизатор и посмотреть его внутренности, то схема будет выглядеть так:

Для электронных устройств, не чувствительных к погрешности напряжения, такое устройство подходит.Но для точного оборудования требуется качественная схема. В нашем случае стабилизатор 7805 выдает напряжение в диапазоне 4,75-5,25 В, но токовая нагрузка не должна быть больше 1 А. Нестабильное входное напряжение колеблется в диапазоне 7,5-20 В. В этом случае выходное значение будет постоянно равным 5 Ом. В этом преимущество стабилизаторов.

При увеличении нагрузки, которую может отдавать микросхема (до 15 Вт), лучше предусмотреть охлаждение устройства вентилятором с установленным радиатором.

Схема рабочего стабилизатора:

Технические данные:

  • Максимальный ток 1,5 А.
  • Диапазон входного напряжения до 40 вольт.
  • Выход – 5 В.

Во избежание перегрева стабилизатора необходимо поддерживать минимальное входное напряжение микросхемы. В нашем случае входное напряжение 7 вольт.

Чип рассеивает лишнюю мощность на себе. Чем выше входное напряжение на микросхеме, тем больше потребляемая мощность, которая преобразуется в нагрев корпуса.В результате микросхема перегреется и сработает защита, прибор выключится.

Стабилизатор напряжения 5 вольт

Такое устройство отличается от аналогичных устройств простотой и приемлемой стабилизацией. В нем используется микросхема K155J1A3. Этот стабилизатор использовался для цифровых устройств.

Устройство состоит из рабочих блоков: пускового устройства, источника опорного напряжения, схемы сравнения, усилителя тока, транзисторного ключа, индуктивного накопителя энергии с диодным переключателем, входного и выходного фильтров.

После подключения источника питания начинает работать пусковой агрегат, который выполнен в виде стабилизатора напряжения. На эмиттере транзистора появляется напряжение 4 В. Диод VD3 закрыт. В результате включаются опорное напряжение и усилитель тока.

Транзисторный ключ закрыт. На выходе усилителя формируется импульс напряжения, размыкающий ключ, пропускающий ток к накопителю энергии. В стабилизаторе включается отрицательная цепь связи, устройство переходит в рабочий режим.

Все бывшие в употреблении детали тщательно проверяются. Перед установкой резистора на плату его значение принимают равным 3,3 кОм. Стабилизатор сначала подключают на 8 вольт при нагрузке 10 Ом, затем при необходимости выставляют на 5 вольт.

Положительное напряжение при 5В. Выпускается компанией STMircoelectronics, ориентировочная цена составляет около $ 1. Он выполнен в стандартном корпусе ТО-220 (см. Рисунок), в котором выполнено много транзисторов, однако его назначение совершенно другое.

В серии 78XX с маркировкой последние две цифры указывают на номинальное стабилизированное напряжение , например:

  1. 7805 – стабилизация на 5 В;
  2. 7812 – стабилизация на 12 В;
  3. 7815 – стабилизация на 15 В и др.

Серия 79 рассчитана на отрицательное выходное напряжение.

Применяется для стабилизации напряжения в различных низковольтных цепях. Очень удобно использовать, когда необходимо обеспечить точность подаваемого напряжения, не требуется городить сложные схемы стабилизации, и все это можно заменить одной микросхемой и парой конденсаторов.

Схема подключения L7805CV

Схема подключения L 7805 CV достаточно простая, для работы необходимо, согласно даташиту, на входе 0 вешать конденсаторы.33 мкФ, а на выходе 0,1 мкФ. Важно при установке или проектировании разместить конденсаторы как можно ближе к выводам микросхемы. Это сделано для обеспечения максимального уровня стабилизации и уменьшения помех.

По характеристикам Регулятор L7805CV работает при подаче входного постоянного напряжения в диапазоне от 7,5 до 25 В. На выходе микросхемы будет стабильное постоянное напряжение 5 вольт. В этом вся прелесть микросхемы L7805CV.

L7805CV Проверка работоспособности

Как проверить работает ли микросхема ? Для начала можно просто прозвонить выводы мультиметром, если хотя бы в одном случае наблюдается короткое замыкание, то это однозначно свидетельствует о неисправности элемента. При питании от 7 В и выше можно собрать схему по приведенному выше даташиту и подать питание на вход, на выходе мультиметром фиксируем напряжение 5 В, соответственно элемент абсолютно функциональный.Третий способ более трудоемкий, если у вас нет источника питания. Однако в этом случае вы получите параллельно блок питания 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисунку ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации 18 – 20 и выпрямительный мост, еще обвес с двумя стандартными конденсаторами на стабилизатор и все, блок питания на 5 В готов. Номиналы конденсаторов здесь завышены по сравнению с схемой переключения L7805 в даташите, это связано с лучшим сглаживанием пульсаций напряжения после выпрямительного моста.Для более безопасной работы желательно добавить индикацию для визуализации включения устройства. Тогда схема будет выглядеть так:

Если в нагрузке много конденсаторов или любая другая емкостная нагрузка, можно защитить стабилизатор обратным диодом, чтобы избежать выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкий дизайн и удобство использования, в случае если вам нужен блок питания такой же стоимости. Цепи, чувствительные к значениям напряжения, должны быть снабжены такими стабилизаторами для защиты элементов, чувствительных к скачкам напряжения.

Характеристики стабилизатора L7805CV, его аналогов

Основные настройки Стабилизатор L7805CV:

  1. Входное напряжение – от 7 до 25 В;
  2. Рассеиваемая мощность – 15 Вт;
  3. Выходное напряжение – 4,75 … 5,25 В;
  4. Выходной ток – до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, эти значения действительны при определенных условиях. А именно: температура микросхемы находится в диапазоне от 0 до 125 градусов Цельсия, входное напряжение 10 В, выходной ток 500 мА (если иное не указано в условиях, столбце Условия испытаний), а стандартный перевес составляет конденсаторы на входе 0.33 мкФ и на выходе 0,1 мкФ.

Из таблицы видно, что стабилизатор хорошо себя ведет, когда на вход подается от 7 до 20 В, а на выходе стабильно будет выходное от 4,75 до 5,25 В. С другой стороны, подача более высоких значений дает неплохие результаты. к и без того более значительному изменению выходных значений, поэтому выше 25 В не рекомендуется, а снижение входного до менее 7 В, как правило, приведет к отсутствию напряжения на выходе стабилизатора.

Более 5 Вт, на микросхему необходимо установить радиатор во избежание перегрева стабилизатора, конструкция позволяет это сделать без вопросов. Для более точной (прецизионной) методики, естественно, такой стабилизатор не подходит, так как имеет значительное изменение номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, в мощных схемах нет смысла использовать, стабилизация на основе широтно-импульсной симуляции нужна, а вот для питания небольших устройств L7805 вполне подходит для телефонов, игрушек, магнитол и др. гаджеты.Отечественный аналог – КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог тоже находится в этой же категории.

Стабилизаторы – это устройства, входящие в состав блока питания и позволяющие поддерживать стабильное напряжение на выходе блока питания. Стабилизаторы электрического напряжения предназначены для некоторого фиксированного выходного напряжения (например, 5 В, 9 В, 12 В), и есть регулируемые стабилизаторы напряжения, которые могут устанавливать необходимое напряжение в пределах, которые они позволяют.

Все стабилизаторы обязательно рассчитаны на какой-то максимальный ток, который они могут обеспечить. Если этот ток будет превышен, стабилизатор выйдет из строя. Современные стабилизаторы обязательно оснащены защитой от сверхтока, обеспечивающей отключение стабилизатора при превышении максимального тока в нагрузке и защитой от перегрева. Наряду со стабилизаторами положительного напряжения есть стабилизаторы отрицательного напряжения. В основном они используются в биполярных источниках питания.

7805 – стабилизатор

7805 – стабилизатор

Этот стабилизатор имеет маломощный аналог.

Распиновка
7805

Стабилизатор 7805 распиновка

При обсуждении электрических цепей часто используются термины «регулятор напряжения» и «регулятор тока». Но в чем разница между ними? Как работают эти стабилизаторы? Какая схема требует дорогостоящего регулятора напряжения, а где достаточно простого регулятора? Ответы на эти вопросы вы найдете в этой статье.

Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А. Это означает, что стабилизируется именно напряжение, и оно составляет до 5В. 1,5 А – это максимальный ток, который может выдерживать стабилизатор. Пиковый ток. То есть он может дать 3 миллиампера, 0,5 ампера и 1 ампер. Столько тока, сколько требуется для нагрузки. Но не более полутора. В этом основное отличие стабилизатора напряжения от стабилизатора тока.

Виды стабилизаторов напряжения

Существует всего 2 основных типа стабилизаторов напряжения:

Линейные регуляторы напряжения

Например, микросхемы БАНК или , LM1117 , LM350 .

Кстати, КРЕН – это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805, получила обозначение КР142ЕН5А. Ну есть еще КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и еще куча других. Для краткости все семейство микросхем стало называться «КРЕН». КР142ЕН5А затем превращается в КРЕН142.

Советский стабилизатор КР142ЕН5А. Аналог LM7805.


Стабилизатор LM7805

Самый распространенный вид.Их недостаток в том, что они не могут работать при напряжении ниже заявленного выходного напряжения. Если он стабилизирует напряжение на уровне 5 вольт, то ему нужно на вход как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «проседает», и мы уже не получим 5 В. Еще один недостаток линейных стабилизаторов – сильный нагрев под нагрузкой. Собственно, это принцип их работы – все, что выше стабилизированного напряжения, просто превращается в тепло. Если подать на вход 12 В, то 7 уйдет на нагрев корпуса, а 5 уйдет потребителю.В этом случае корпус нагревается настолько, что без радиатора микросхема просто сгорит. Все это приводит к еще одному серьезному недостатку – линейный стабилизатор нельзя использовать в устройствах с питанием от батареек. Энергия аккумуляторов будет потрачена на нагрев стабилизатора. Переключающие стабилизаторы лишены всех этих недостатков.

Стабилизаторы импульсного напряжения

Импульсные стабилизаторы – лишены линейных недостатков, но и дороже.Это уже не просто трехконтактный чип. Они похожи на доску с деталями.

Одна из разновидностей импульсного стабилизатора.

Импульсные стабилизаторы бывают трех типов: понижающие, повышающие и всеядные. Самые интересные – всеядные. Независимо от входного напряжения, выход будет именно тем, что нам нужно. Всеядному импульсу все равно, будет ли входное напряжение ниже или выше необходимого. Он автоматически переходит в режим повышения или понижения напряжения и сохраняет установленное на выходе.Если в характеристиках указано, что на стабилизатор можно вводить от 1 до 15 вольт, а на выходе будет стабильно 5, то так и будет. К тому же нагрев импульсных стабилизаторов настолько незначителен, что им можно пренебречь в большинстве случаев. Если ваша схема будет питаться от батареек или будет помещена в закрытый корпус, где недопустим сильный нагрев линейного стабилизатора, используйте импульсную. Я использую перестраиваемый импульсный стабилизатор напряжения за копейки, который заказываю с Алиэкспресс. Вы можете купить.

Хорошо.А как насчет стабилизатора тока?

Не буду открывать Америку, если скажу, что стабилизатор тока , стабилизирует ток.
Стабилизаторы тока иногда также называют драйверами светодиодов. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор представляет собой небольшую микросхему, все остальное нужно для обеспечения правильной работы. Но обычно драйвером называется сразу вся схема.


Так выглядит регулятор тока.Та же схема, что и стабилизатор, обведена красным. Все остальное на плате обвязка.

Итак. Драйвер устанавливает ток. Стабильный! Если написано, что на выходе будет ток 350мА, то будет ровно 350мА. Но выходное напряжение может меняться в зависимости от напряжения, требуемого потребителем. Не будем увлекаться теорией этого. как все это работает. Только помните, что вы не регулируете напряжение, драйвер сделает все за вас исходя из потребителя.

Ну зачем тебе все это?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока, и можете ориентироваться в их разновидностях. Возможно, вы до сих пор не понимаете, зачем эти вещи нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля. Как вы можете понять, для светодиода важно контролировать силу тока. Мы используем самый распространенный вариант подключения светодиодов: последовательно подключены 3 светодиода и резистор.Напряжение питания 12 вольт.

Резистором ограничиваем ток на светодиоды, чтобы они не перегорели. Пусть падение напряжения на светодиоде будет 3,4 вольта.
После первого светодиода остается 12-3,4 = 8,6 вольт.
На данный момент у нас достаточно.
На втором пропадет еще 3,4 вольта, то есть останется 8,6-3,4 = 5,2 вольта.
И хватит и на третий светодиод.
А после третьего останется 5,2-3,4 = 1,8 вольт.
Если вы хотите добавить четвертый светодиод, этого будет недостаточно.
Если напряжение питания поднять до 15В, то хватит. Но тогда и резистор нужно будет пересчитать. Резистор – простейший стабилизатор тока (ограничитель). Часто их размещают на одних и тех же лентах и ​​модулях. У него есть минус – чем ниже напряжение, тем меньше будет ток на светодиоде (закон Ома, с ним не поспоришь). Это означает, что если входное напряжение нестабильно (в автомобилях это обычно бывает), то сначала нужно стабилизировать напряжение, а затем можно ограничить ток резистором до требуемых значений.Если мы используем резистор в качестве ограничителя тока там, где напряжение нестабильно, нам необходимо стабилизировать напряжение.

Стоит помнить, что резисторы есть смысл устанавливать только до определенной силы тока. После определенного порога резисторы начинают сильно нагреваться и приходится устанавливать более мощные резисторы (почему именно силовой резистор описан в этом устройстве). Увеличивается тепловыделение, снижается КПД.

Также называется светодиодным драйвером … Часто у тех, кто в этом не очень разбирается, регулятор напряжения называют просто драйвером светодиода, а импульсный регулятор тока – good LED driver.Он сразу обеспечивает стабильное напряжение и ток. И почти не нагревается. Вот как это выглядит:


Интегральные стабилизаторы напряжения

широко используются в электронике, и особенно один из их видов – стабилизаторы с фиксированным выходным напряжением в трехконтактных корпусах. Они хороши тем, что не требуют внешних элементов (кроме фильтрующих конденсаторов), регулировок и имеют широкий диапазон токов нагрузки. Я не буду здесь приводить их технические характеристики, а приведу только основные данные и схемы возможных приложений.

Стандартные линейные стабилизаторы

выпускаются многими производителями и имеют не одно обозначение, рассмотрим их на примере наиболее типичного типа:

  • l78 серия (для положительного напряжения),
  • Серии
  • и L79 (для отрицательного напряжения).

В свою очередь стандартные регуляторы делятся на:

  • слаботочный с выходным током в районе 0,1 А (L78Lxx) – см. Рис. 1а,
  • со средним током около 0.5 А (L78Mxx) – см. Рис. 1b,
  • сильноточный 1 … 1,5 А (L78xx) – вид – Рис. 1в.

Низкая стоимость, простота использования, а также широкий выбор выходных напряжений и корпусов делают эти компоненты очень популярными при проектировании простых схем питания. Следует отметить, что данные регуляторы имеют ряд дополнительных функций, обеспечивающих безопасность эксплуатации. К ним относятся защита от сверхтока и температурная защита от перегрева микросхемы.

Рисунок 1

Встраиваемые стабилизаторы используют типы кузовов: КТ-26, КТ-27, КТ-28-2, ТО-220,
КТ-28-2, КТ-27-2, ТО-92, ТО-126, ТО-202 , близкие к показанным на рис.1.

Микросхемы серии 78xx

Это серия ИС линейных стабилизаторов с фиксированным выходным напряжением – 78xx (также известная как LM78xx).

Их популярность связана, как уже говорилось выше, с простотой использования и относительной дешевизной. При указании некоторых микросхем серии «хх» заменяется двузначным числом, обозначающим выходное напряжение стабилизатора (например, микросхема 7805 имеет выходное напряжение 5 вольт, а 7812 – выходное напряжение 12 В. ).Стабилизаторы 78-й серии имеют положительное рабочее напряжение по отношению к земле, а отрицательные серии 79хх имеют аналогичную систему обозначений. Их можно использовать для подачи как положительного, так и отрицательного напряжения питания на нагрузки в одной цепи.

Кроме того, популярность своей серии продиктована рядом преимуществ перед другими стабилизаторами напряжения:

  • Микросхемы данной серии не нуждаются в дополнительных элементах для обеспечения стабильного питания, что делает их удобными в использовании, экономичными и эффективно использующими пространство на печатной плате.Напротив, большинству других регуляторов требуются дополнительные компоненты, либо для установки правильного значения напряжения, либо для стабилизации. Некоторые другие варианты (например, импульсные регуляторы) требуют не только большого количества дополнительных компонентов, но могут потребовать большого опыта разработки.
  • Устройства этой серии защищены от превышения максимального тока, а также от перегрева и коротких замыканий, что в большинстве случаев обеспечивает высокую надежность. Иногда ограничение тока также используется для защиты других компонентов схемы,
  • Линейные регуляторы не создают ВЧ-помех в виде паразитных магнитных полей и пульсаций выходного ВЧ-напряжения.

К недостаткам линейных стабилизаторов можно отнести меньший КПД по сравнению с импульсными, но при оптимальном расчете он может превышать 60%.

Устройство интегрального стабилизатора показано на рис. 2

Рисунок 2

Требования к применению стабилизаторов:

    падение напряжения на нем не должно быть ниже 2 вольт,

    максимальный ток через него не должен превышать указанный в соотношении:

I max

P – допустимая рассеиваемая мощность микросхемы, U in-out – падение напряжения на микросхеме (U in-out = U in – U out).

Типовая схема включения регулятора напряжения в корпусе техпровода


с фиксированным выходным напряжением

Типовая схема включения интегрального стабилизатора напряжения в трехконтактном корпусе с фиксированным выходным напряжением представлена ​​на рис. 3.

Рисунок 3

Мы видим, что микросхемы этого типа не требуют дополнительных элементов, за исключением конденсаторов фильтрации напряжения, которые фильтруют напряжение питания и защищают стабилизатор от шума, проникающего со стороны нагрузки и источника напряжения питания.

Для обеспечения стабильной работы микросхем серии 78хх во всем диапазоне допустимых значений входных и выходных напряжений и токов нагрузки рекомендуется использовать конденсаторы, шунтирующие вход и выход стабилизатора. Это должны быть твердотельные (керамические или танталовые) конденсаторы емкостью до 2 мкФ на входе и 1 мкФ на выходе. При использовании алюминиевых конденсаторов их емкость должна быть более 10 мкФ. Необходимо подключать конденсаторы с максимально короткими проводниками как можно ближе к выводам стабилизатора.

и ток делителя I2 (возможна регулировка), в) стабилизатор напряжения.

Приложения для интегрированного стабилизатора напряжения

Микросхемы

позволяют создавать множество схем на основе стабилизаторов.

Регулировка выходного напряжения

Как я уже писал выше (см. Рис. 5б) линейные стабилизаторы позволяют изменять выходное напряжение. показано на рис. 7.

Функциональное регулирование выходного напряжения возможно аналогично.

Например, можно регулировать выходное напряжение в зависимости от температуры для использования в системах стабилизации температуры – термостатах.В зависимости от типа датчика температуры он может быть включен вместо резисторов R 1 или R 2.

Рисунок 7

Стабилизаторы параллельного включения

Рисунок 7

Особенность данного регулятора в том, что (для стабильной работы вентилятора) в начальный момент времени на вентилятор подается полное напряжение (12 В). После заряда конденсатора С1 напряжение на выходе будет определяться резистором R 2.

Стабилизатор с плавным выходом на

Рисунок 8

Данная схема отличается тем, что в начальный момент времени напряжение на выходе стабилизатора составляет 5В (для данного типа), после чего напряжение плавно повышается до значения, определяемого регулирующими элементами.

Собр. А. Сорокин,

Опции:

мин. входное напряжение, В:

Макс. входное напряжение, В: 35

Выходное напряжение, В: +5

Номинальный выходной ток, А: 1,5

Падение напряжения ввода / вывода, В: 2,5

Количество регуляторов в корпусе: 1

Ток потребления, мА: 6

Точность: 4%

Диапазон рабочих температур: 0 ° C… + 150 ° С

Это устройства, которые являются частью блока питания и позволяют поддерживать стабильное напряжение на выходе блока питания. Стабилизаторы электрического напряжения рассчитаны на какое-то фиксированное выходное напряжение (например, 5 В, 9 В, 12 В), и есть регулируемые стабилизаторы напряжения, которые могут устанавливать необходимое напряжение в пределах, в которых они позволяют.

Все стабилизаторы обязательно рассчитаны на какой-то максимальный ток, который они могут обеспечить.Если этот ток будет превышен, стабилизатор выйдет из строя. Современные стабилизаторы обязательно оснащены защитой от сверхтока, обеспечивающей отключение стабилизатора при превышении максимального тока в нагрузке и защитой от перегрева. Наряду со стабилизаторами положительного напряжения есть стабилизаторы отрицательного напряжения. В основном они используются в биполярных источниках питания.

7805 – стабилизатор , выполнен в корпусе, аналогичном транзистору, и имеет три вывода.См. Картинку. (Стабилизированное напряжение + 5В и ток 1А). Также в корпусе есть отверстие для крепления регулятора напряжения 7805 к радиатору охлаждения. 7805 – стабилизатор положительного напряжения. Его зеркальное отображение – 7905 – аналог 7805 по отрицательному напряжению … Т.е. на общем выходе будет +, а на входе -. С его выхода, соответственно, будет снято стабилизированное напряжение -5 вольт.
Также стоит отметить, что для нормальной работы на вход обоих стабилизаторов необходимо подать напряжение порядка 10 вольт.
Этот стабилизатор имеет маломощный аналог 78L05.

Распиновка

7805

Стабилизатор распиновка рядом. Если вы посмотрите на корпус 7805, как показано на фото выше, то пины имеют следующую распиновку слева направо: вход, общий, выход. «Обычный» штифт имеет контакт с корпусом. Это необходимо учитывать при установке. У кардана 7905 другая распиновка! Слева направо: общие, вход, выход. А на корпусе есть “вход”!

Практически все радиолюбительские самоделки и конструкции содержат стабилизированный источник питания.А если ваша схема работает от питающего напряжения 5 вольт, то оптимальным вариантом будет использование трехвыходного интегрального стабилизатора 78L05

.

В природе существует две разновидности 7805 с током нагрузки до 1А и маломощный 78L05 с током нагрузки до 0,1А. Кроме того, промежуточным вариантом является микросхема 78M05 с током нагрузки до 0,5А. Полные отечественные аналоги микросхемы – для 78Л05 КР1157ЕН5 и 7805 для 142ЕН5

.

Емкость C1 на входе необходима для отсечения высокочастотных помех при подаче входного напряжения.Емкость С2, но уже на выходе стабилизатора, задает стабильность напряжения при резком изменении тока нагрузки, а также значительно снижает степень пульсаций.

При проектировании требуется помнить, что для нормальной работы стабилизатора 78L05 входное напряжение должно быть не менее 7 и не выше 20 вольт.

Схема управления позволяет подавать и отключать питание, идущее на стабилизатор напряжения. Управляющий сигнал должен быть уровня TTL или CMOS.Схема может использоваться как выключатель питания под управлением микроконтроллера.


Ниже мы рассмотрим подборку наиболее интересных примеров практического использования интегрального стабилизатора 78L05.

Таким образом, конструкция лабораторного блока питания отличается изысканностью, в первую очередь за счет нестандартного использования микросхемы TDA2030, источником стабилизированного напряжения которой является 78L05.

TDA2030 включен как неинвертирующий усилитель.При таком подключении коэффициент усиления рассчитывается по формуле 1 + R4 / R3 и равен 6. Следовательно, напряжение на выходе блока питания при регулировке значения сопротивления R2 будет плавно изменяться от 0 до 30 вольт.

Повышенная стабильность, отсутствие перегрева радиодеталей – вот основные достоинства данной конструкции.

Индикатор включения сделан на светодиоде HL1, вместо трансформатора, на компонентах C1 и R1 используется схема гашения, на специализированной сборке диодный выпрямительный мост, для минимизации пульсаций используются конденсаторы, стабилитрон на 9 вольт и т. Д. стабилизатор напряжения 78L05.Необходимость использования стабилитрона обусловлена ​​тем, что напряжение на выходе диодного моста составляет около 100 вольт и это может повредить стабилизатор 78L05.

Диапазон напряжения в этой цепи составляет от 5 до 20 вольт. Изменение выходного напряжения осуществляется переменным сопротивлением R2. Максимальный ток нагрузки составляет около 1,5 ампера.

Устройство способно заряжать аккумуляторные батареи разных типов: литиевые, никелевые, а также свинцово-кислотные, используемые в источниках бесперебойного питания.

При зарядке аккумуляторов требуется стабильный зарядный ток, который должен составлять примерно 1/10 емкости аккумулятора. Постоянство зарядного тока задает стабилизатор 78L05. У зарядного устройства четыре диапазона зарядного тока: 50, пять вольт, затем для получения тока 50 мА необходимо сопротивление 100 Ом по закону Ома. Для удобства в конструкции зарядного устройства есть индикатор на двух биполярных транзисторах и светодиод. Светодиод гаснет, когда аккумулятор заряжен.

Повышение токов регулятора для IC-78xx

Обычно микросхемы регуляторов серии 78xx могут обеспечивать максимальные выходные токи до 1 А. Или, при обычном использовании, только до 0,6 А.

Но нам нужно больше тока. Вы должны купить новый, регулятор напряжения 78H05.

Но дорого. Как сделать?

Не беспокойтесь, вы можете использовать схему повышения напряжения для 7805 (78xx).

Цепь усилителя тока для 7805

В этой увеличивающейся цепи или цепи регулятора силовой транзистор используется для подачи максимального тока на нагрузку, для поддержания постоянного напряжения за счет небольшого тока, который все еще проходит через стабилизатор IC.

Скажем, мне нужен стабилизатор напряжения 12 В и текущее выходное напряжение 5 А, я должен использовать микросхему № 7812, и она может иметь номер транзистора MJ2955 или TIP2955. Входного напряжения вполне достаточно, думаю, около 20В, при этом падение напряжения на транзисторе примерно 8В. И это требует около 40 Вт энергии, что можно рассчитать = Vce x Ic. Когда это. Нам нужна охлаждающая подставка для Q1, она достаточно большая, очень горячая, может повредить.

Если вы хотите добавить ток к IC 79xx или отрицательное напряжение, вы также можете легко сделать, но простой NPN-транзистор типа 2N3055 – это всего лишь число.

Постоянное регулируемое питание 10 А с использованием 78XX – MJ15004

Если у вас много старого оборудования. Вы можете построить цепь питания постоянного тока на 10А.

Будьте проще, когда я увижу оборудование, которое у него уже было. Затем возьмите эту схему, посмотрите, как использовать интегральные схемы 78XX. У многих есть номер мощности транзистора M15004, который может увеличить ток. Достигните 10А.

Важным аспектом является использование трансформатора, который должен давать ток на 10А больше, чем.И используйте фильтр C-Filter размером 10000 мкФ. Подробности другие увидеть в цепи неторопливо сэр.

Увеличьте ток 7805

Но схема выше не имеет защиты от перегрузки
Нам нужно использовать схему ниже !!

Иногда мы хотим использовать. большой ток на регуляторе постоянного тока 5в 3а. Мы можем сделать это, используя положительное постоянное число 7805 регулятора напряжения IC1.

Узнать больше 7805 Лист данных


Q1- 2N3792 и Q2 -2N5956 схемы будут служить для увеличения тока для IC регулятор.

R2 действует как антинасыщение Q12N3792 и Q2-2N5956. Без R2 два транзистора не смогут работать. Выходной ток может быть только от IC1. R1 задает ток смещения к IC1. И текущий выход у вас на фоне слишком насыщенного.

C1 работает в фильтре входной мощности для сглаживания. А C2 служит для предотвращения вмешательства в необходимость выплаты (Vout).

Эта схема может помочь увеличить ток цепи питания, в которой так хорошо используется стабилизатор Ic.вы можете использовать другие микросхемы 7805,7809, IC-7812 и IC7815.
Q1 – это BFX88 или эквивалент
Q2 – BD132 или эквивалент

Вам также может понравиться
Сильноточный стабилизатор переменного напряжения 2–36 В 10A Вчера я не улучшал схему в моем блоге. Сегодня свинец сильноточного источника питания 10А и может регулировать напряжение или регулятор переменного напряжения от 2В до 36В. По выдающейся точке этой схемы. Есть немного оборудования и просто есть VR1 для управления выходом Volt.[…]
Сильноточный источник питания для радиолюбителей 12 В, 30 А, 25 А, 20 А, 15 А Необходим для тех, кто хочет использовать передатчики из автомобиля в своем доме, если вам нужен источник питания для радиолюбителей постоянного тока 12 В или постоянного тока. 13,8 В при достаточной мощности от 5 до 30 А. В зависимости от размера передатчика. […]

Эта схема требует достаточного источника питания. У тебя есть это? Если у вас его нет. Посмотрите: Learn Many Power supply circuit

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Преобразователь 12В в 5В | Понизить регулятор постоянного тока можно разными способами.

Если вы ищете источник питания 5 В постоянного тока для цифровой схемы. Но у вас есть источник 12В, аккумулятор. Я покажу вам понижающий стабилизатор преобразователя с 12 В на 5 В.

Во многих отношениях это зависит от имеющихся у вас деталей и другой пригодности.

Как выбрать преобразователь на 5 В

Мы должны использовать подходящую схему. Как? Экономия самая лучшая. Я использую эти рекомендации.

  • Сэкономьте – если он у меня в магазине, это хорошо.Кроме того, сэкономьте время на покупке, а не на долгое ожидание.
  • Простота сборки – простые и отработанные схемы всегда хороши.
  • Маленький размер – у некоторых проектов ограниченное пространство.

Сначала посмотрите на нагрузку!

Предположим, что нагрузка потребляет ток около 30 мА. Вы должны использовать преобразователь 5 В на 60 мА. Для этого случая достаточно. Когда ток небольшой, его легко построить. Кроме того, экономьте энергию.

Не следует использовать большую цепь источника тока 1А. Это похоже на езду на слоне, чтобы поймать кузнечика.Что расточительно и ненужно.

Например, схемы

  • Токовый выход на 3 А – если у вас есть нагрузка, которая использует ток более 2 А. Например, цифровая камера, GPS, Raspberry Pi, Arduino и другие.
  • Ниже 50 мА — Малая схема, например, цифровая КМОП
  • Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1 А
  • Схема преобразователя 12 В в 5 В 2 А

Стабилитрон 5 В – ниже 50 мА

Некоторые схемы потребляют ток от 20 мА до 50 мА (0.05A) только. Можно схему стабилизатора напряжения на стабилитроне.


Стабилитрон поддерживает фиксированное напряжение 5 В. Ему нужен резистор, чтобы ограничить ток и нагрузку.

Как рассчитать прибор

Запитать его от источника 12 В. Вы снова смотрите на схему. Есть три тока.

  • IZ = Максимальный ток стабилитрона
  • IR = Ток через R1
  • IL = Максимальный ток нагрузки

IR является постоянным в любое время.Даже IL изменится с 0 мА до запланированного максимального значения (50 мА). IZ нужно изменить, чтобы напряжение на выходе оставалось равным 5В.

Во-первых, используйте стабилитрон 5 В, потому что нам нужно 5 В, VZ. Тогда IR составляет около 50 мА.

R1 = (Vin – VZ) / IR
= (12В – 5В) / 50 мА
= 140 Ом
или около 150 Ом .

PR – Мощность R1.
PR = VR x IR
= 7 В x 50 мА
= 0,35 Вт или используйте 0,5 Вт.

Но мы забываем, мощность стабилитрона, PZ
PZ = VZ x IZ
Примечание: IZ составляет около IR, 50 мА.

PZ = 5 В x 50 мА
PZ = 0,25 Вт
Итак, мы используем стабилитрон 5 В 0,5 Вт .

Кроме того, C1 – это конденсатор фильтра для сглаживания постоянного напряжения.

100mA 5V схема преобразователя

В цифровых схемах, которые состоят из множества частей. Они могут использовать ток более 100 мА, но ниже 300 мА.

Мы можем использовать много схем. В предыдущей схеме он имеет слабый ток. Если хочешь 100мА. Вам нужно использовать стабилитрон с низким сопротивлением (R1) и большей мощностью.

Это лучшая идея.Если добавить в схему транзистор. Это увеличит более высокий ток больше. Но выходное напряжение составляет всего 4,4 В. Из-за некоторого падения напряжения на BE транзистора Q1 0,6В.

Нужно поменять стабилитрон 5,6В. Если у тебя его нет. Вы можете добавить диод и стабилитрон последовательно. Вы можете получить их как стабилитрон на 5,6 В.

Так как транзистор хорош для увеличения тока. Итак, мы можем изменить R1 на 1 кОм, как показано на схеме ниже. Для уменьшения тока смещения стабилитрон и база Q1.

200 мА, регулятор 5 В


Регулятор напряжения серии транзисторов 5 В

Если вы используете 2N2222 вместо BC548. Он может использовать 200 мА при нагрузке . Поскольку 2N2222 имеет токоприемник (Ic) около 0,8А в таблице данных. Но на практике он может использовать максимум 0,5 А.

500 мА, регулятор 5 В от 12 В


500 мА, транзистор 5 В и стабилизатор напряжения Зенера

Если вам нужно использовать с нагрузкой от 300 мА до 500 мА. Следует сменить транзистор на BD139.

Он имеет Ic около 2 А макс. Но я могу получить только около 0,5А. Пока работает. Может быть тепло. Так часто лучше работать с радиатором.

Конденсаторы C1, C2 используются для уменьшения пульсаций на выходе. А C3 уменьшит скачок напряжения.

Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1A

Многие друзья хотят преобразовать 12 В постоянного тока в 5 В постоянного тока при 1 А. Это популярная ставка в большинстве схем.

У меня есть два варианта на выбор. Это зависит от пригодности ваших деталей и времени.

Первый, 5V 1A транзисторный регулятор . Он аналогичен приведенным выше схемам.

Я использую силовой транзистор TIP41. Потому что он может получить максимум 4А в спецификации. Но на самом деле он может дать мне максимум 2А. Кроме того, его корпус выполнен из TO-220, поэтому его легко использовать с радиаторами любого размера.

Раньше мне нравилась эта схема. Если у меня есть все комплектующие в моем магазине. Я сделаю это первым.

Но в последнее время мне нравится использовать этот компонент, Регулятор 7805.

Второй, 7805 Популярный регулятор .

Это так просто, быстрее, чем другие. Потому что его корпус такой же, как у TIP41, без стабилитрона и резистора смещения.

Преобразователь 12 В в 5 В 1A с использованием 7805

Кроме того, он имеет низкий уровень пульсаций на выходе около 10 мВ, с электролитическими конденсаторами (C1, C4) на входе и выходе. И оба фильтрующих конденсатора, C2, C3, для уменьшения всплесков напряжения.

Примечание : 7805 распиновка

Так как это линейный регулятор. Так что пока работает. Напряжение на входе и выходе IC1 составляет около 7 В.

При полной нагрузке ток 1А. Таким образом, выходная мощность составляет около 7 Вт. Жарко. Надо установить его на достаточном количестве радиатора.

Преобразователь 12 В в 5 В, выход 1,5 А

Иногда нам нужен выходной ток около 1,5 А. У нас есть 3 способа сделать это.

  • Подключение 7805 параллельно
  • Аккумулятор 12 В к преобразователю постоянного тока 5 В 1,5 А
  • Транзистор более высокого тока для регулятора 7805
  • Транзистор 2 А Регулятор
Подключение 7805 параллельно

Если мы подключим 7805 параллельно.Это делает более высокий ток больше. Это подходит для тех, кто поддерживает или не имеет силовых транзисторов.

Но долго не годится. Можешь попробовать!
Оба IC-7805 должны быть абсолютно одинаковыми.

Аккумулятор 12 В на преобразователь постоянного тока 5 В 1,5 А

Если нам нужно использовать регулятор напряжения 12 В на 5 В. Это схема регулятора постоянного тока 5 В 1500 мА.

Это простая схема с использованием IC-7805, фиксированного стабилизатора 5 вольт и силового транзистора TIP41-NPN для увеличения тока до 2А.

Пример эксперимента

Я использую источник питания 7805 с аккумулятором 12 В. Для уменьшения постоянного напряжения на 5 вольт.

Пробую использовать в нагрузке резисторы 4,7 Ом 5Вт. В качестве принципов он будет использовать ток около 5 В / 4,7 Ом = 1 А.

Я измеряю ток около 0,7 А, а падение напряжения составляет 4,9 В, но его можно использовать. Как показано на рисунке 1


Тестирование чистого IC-7805 с током не более 1А.

Требуется транзистор для увеличения выходного тока.

Использую транзистор TIP41. В принципе может подавать ток около 2А. Которого достаточно использовать.

На принципиальной схеме.


Схема простейшего регулятора 5 В, 1,5 А

Затем я тестирую схему примерно с нагрузкой, резистором 2,4 Ом. Затем измерьте ток примерно 1,3 А, а падение напряжения составит 4,9 В. Его можно использовать как захотим.


Рисунок 3 Испытания при сильноточной нагрузке.

Продолжайте читать: Четыре небольших 5-вольтовых схемы регулятора постоянного тока »

Я подавал напряжение на диод-1N4007, чтобы компенсировать потерю транзистора между контактом BE.

Мы вставляем LED1 для индикации включения питания этой цепи, а последовательный резистор R1 используется для ограничения тока до безопасного значения.

C1, C3 – конденсаторы с фильтром для сглаживания входной и выходной последовательности постоянного тока.
C2, C4 – искровой ток шумового фильтра.

Во время работы Q1 будет очень жарко, поэтому мы должны установить его с большим радиатором.

Примечание: Имеет минусы. Если это короткое замыкание. IC-7805 может быть поврежден.

Транзистор более высокого тока для регулятора 7805

Если вы хотите, чтобы ток был больше 1 А, используйте 7805 в более чем двух схемах, указанных выше.
Требуется помощь от силового транзистора PNP со схемой ниже.


Принципиальная схема преобразователя с 12 В на 5 В 2a

Сильный ток будет протекать через силовой транзистор Q1, TIP42. В то время как 7805 получает более низкий ток. Потому что R1 снижает этот ток.

Таким образом, 7805 поддерживает фиксированное регулируемое напряжение, только 5 В. Хорошо работает без радиатора.

Пока Q1 работает. Это так жарко. Нам нужно установить его с достаточным количеством радиатора.

Если есть готовые запчасти.Этой схемой можно пользоваться долгое время.

Тогда, если вам нужен ток 3А. Просто используйте MJ2955 вместо TIP42.

Хотя эту схему можно хорошо использовать. Но минусы все же есть.
При коротком замыкании силовой транзистор может быть поврежден.

Посмотрите на ниже.

Преобразователь 12В в 5В 5А

Если вам нужен выход 5В 5А. Вы можете изменить предыдущую схему. Используйте TIP2955 вместо TIP42.

Может пропускать ток до 5А.

Или, если у вас есть другой, TIP42.Можно добавить параллельно. Выходной ток тоже будет до 5А.

Токовый выход 3А, преобразователь 5В

Это преобразователь 12В в 5В понижающий регулятор при нагрузке 3А.


Понижающий преобразователь с 12 В на 5 В Регулятор

Цифровая камера также может снимать фотографии и видео. Но у него есть недостаток – долго не разряжается аккумулятор. При использовании на открытом воздухе. Нам приходилось часто подзаряжать аккумулятор. Это пустая трата времени.

При покупке дополнительных запасных аккумуляторов.Стоит дорого и все равно часто менять как то же самое.

На его боковой стороне находится разъем для подключения адаптера постоянного тока 5В, ток 2А. Если доработать свинцово-кислотный аккумулятор на 12В, чтобы снизить напряжение до 5 вольт. Это хорошая идея.

Потому что этот аккумулятор дешевле и долго используется. Например, аккумулятор 12В на 10Ач можно брать фотоаппарат на 5 часов.

Как это работает


У нас есть много способов сделать это. Но я покажу вам эту схему ниже. Мне нравится линейная схема, чем схема с переключением режимов.

В схеме много компонентов. Как указано выше, эта схема может питать ток до 3 А с увеличивающимся током Q3-MJ2955. Кроме того, в нем много интересных деталей.

При перегрузке или коротком замыкании нагрузки. Тогда напряжение на R2 составляет около 0,6 В. Итак, Q2 получает напряжение смещения, он работает. После этого VBE Q3 становится низким, Q3 работает ниже до остановки.

Пока Q1 работает для подключения тока через LED1. Это указывает на перегрузку.

Список компонентов регулятора напряжения с 12 В до 5 В

IC1: LM7805, регулятор постоянного тока 5 В IC
Q1: BC558, 0.4A, 40V транзистор
Q2: BD140, 1.5A, 30V PNP транзистор
Q3: MJ2955 или TIP2955, 4A, 50V PNP, силовой транзистор
C1: 4700 мкФ, 25V, электролитический
LED1: светодиод любого цвета, как вам нравится
резисторы
R1 : 330 Ом 0,25 Вт
R2: 0,22 Ом 5 ​​Вт
R3: 470 Ом 0,5 Вт
R4: 47 Ом 1 Вт
R5: 18 Ом 1 Вт
Радиатор, провода и т. Д.

Приложение


У меня старый GPS Обычно я использую его в машине. Нам нужна схема преобразователя постоянного тока, которая может снизить напряжение с 12 В до 5 В при токе более 2 А.
Какая принципиальная схема может это сделать.

Мне нравится, что нужно покупать некоторые детали, так как они есть у меня в магазинах.



Как показано на рисунке 2, я собираю их на универсальной плате

Также См. Другие в более простой схеме . Регулятор 3A 5V с использованием LM350

Простая защита от перенапряжения 5V

Обычно вы можете использовать вышеуказанную схему. Потому что это просто и недорого.

Вы просто добавляете предохранитель F1 для защиты от перегрузки более 2А. Также, если в цепи запитывается высокое напряжение более 5,1 В. Он имеет слишком много токов через ZD1 и D1 в качестве сверхтока. Так что предохранитель внезапно сгорит.


Преобразователь 12 В в 5 В на 2 А с использованием 7805 и транзистор с защитой от перенапряжения

Источник питания 5 В 2 А с использованием 78S05

Другой способ, мой друг хочет схему источника питания 5 В 2 А . Чтобы модель была простой, используйте немного оборудования, строите легко.

Затем я выбрал для него эту схему.

Почему? В нем используется опорное оборудование, положительный стабилизатор напряжения 5В, / 2А в ТО220, 78S05. И мало деталей, видимых в схеме, качественная и малошумная.

Схема будет работать без дополнительных компонентов, но для защиты от обратной полярности , на входе предусмотрен диод 1N5402, дополнительное сглаживание обеспечивается C1-220uF 50V.

Выходной каскад включает C2-47uF 25V для дополнительной фильтрации.

Также адаптер 5 В постоянного тока

  1. Микропроцессорный регулятор постоянного тока 5 В 3 А от LM323K
  2. Импульсный источник питания 5 В 3 А от LM2576
  3. LM2673 -5 В 3A Регулятор напряжения переключения
  4. Верхний линейный регулятор источника питания 5 5A с 7812 и LM723

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Микросхема 7805 характеристики и распиновка.Использование стабилизатора напряжения в клеммной коробке. Параллельное соединение стабилизаторов

Стабилизаторы электрического напряжения – это устройства, которые являются частью блока питания и позволяют поддерживать стабильное напряжение на выходе блока питания. Стабилизаторы напряжения предназначены для некоторого фиксированного выходного напряжения (например, 5 В, 9 В, 12 В), и есть регулируемые стабилизаторы напряжения, которые могут устанавливать необходимое напряжение в пределах, которые они позволяют.

Можно подавать любое входное напряжение; выходное напряжение всегда будет 5 В.В этой схеме регулятора напряжения использовались два конденсатора, они не обязательны. Но лучше их использовать. Они помогли создать плавное регулируемое выходное напряжение.

Используйте электролитный конденсатор вместо керамического конденсатора. В противном случае это хороший стабилизатор напряжения, если вас устраивает 1А. В противном случае это может привести к перегреву. Диапазоны напряжения 5 В и 12 В широко используются во всевозможных простых электронных схемах, поэтому имеет смысл изучить эту простую конструкцию.

Все стабилизаторы обязательно рассчитаны на какой-то максимальный ток, который они могут обеспечить.Если этот ток будет превышен, стабилизатор выйдет из строя. Современные стабилизаторы обязательно оснащены токовой защитой, обеспечивающей отключение стабилизатора при превышении максимального тока в нагрузке и защитой от перегрева. Наряду со стабилизаторами положительного напряжения есть стабилизаторы отрицательного напряжения. В основном они используются в биполярных источниках питания.

Хорошо. А как насчет стабилизатора тока?

В основном есть два типа регуляторов напряжения: линейные и переключаемые.Названия происходят от того, как они работают и как они достигают стабилизации напряжения. Линейные контроллеры, как правило, немного дешевле в реализации, но они не так эффективны, как их более сложные варианты переключения.

Есть также несколько «дешевых и грязных» методов, которые используются в некоторых конструкциях. Ниже приводится краткое описание и пример каждого из них. Простой способ представить себе линейный стабилизатор – это представить его как активный последовательный резистор. Он будет изменять свой эффективный импеданс, чтобы выходное напряжение оставалось постоянным.Потенциал такой конструкции заключается в том, что она дешевая, простая в реализации и обеспечивает относительно чистую производительность. Недостатком является то, что регулятор рассеивает относительно большую мощность.

7805 – стабилизатор

7805 – стабилизатор , выполнен в корпусе, аналогичном транзистору, и имеет три вывода. См. Картинку. (Стабилизированное напряжение + 5В и ток 1А). Также в корпусе есть отверстие для крепления регулятора напряжения 7805 к радиатору охлаждения. 7805 – стабилизатор положительного напряжения.Его зеркальное отображение – 7905 – аналог 7805 по отрицательному напряжению … Т.е. на общем выходе будет +, а на входе -. С его выхода будет снято стабилизированное напряжение -5 вольт соответственно.
Также стоит отметить, что для нормальной работы на вход обоих стабилизаторов необходимо подать напряжение порядка 10 вольт.
У данного стабилизатора есть маломощный аналог.

Если вы думаете о линейном регуляторе как о последовательном резисторе, вы можете понять, как он рассеивает энергию.Падение напряжения на регуляторе такое же, как и на резисторе: разница между стороной входа и стороной выхода. Таким образом, если номинальная мощность 9 В поступает, а номинальная мощность 5 В отсутствует, имеется номинальное падение на 4 В. Это 400 мВт просто потраченной впустую энергии!

Большинство линейных регуляторов работают только сами с собой, входным и выходным конденсаторами. Хотя вы должны следовать рекомендациям в таблице данных, значение, которое вы выбираете для этих заголовков, обычно не так критично. Худший способ регулировать напряжение!

Распиновка
7805

Стабилизатор 7805 распиновка рядом.Если вы посмотрите на корпус 7805, как показано на фото выше, то пины имеют следующую распиновку слева направо: вход, общий, выход. «Обычный» штифт имеет контакт с корпусом. Это необходимо учитывать при установке. У кардана 7905 другая распиновка! Слева направо: общие, вход, выход. А на корпусе есть “вход”!

Есть две проблемы с этим слишком простым пониманием. Следовательно, нет никакого регулирования. Никогда не бывает ситуации, когда вместо регулятора следует использовать делитель напряжения.Стабилитроны – уникальные диоды, потому что они проводят ток как в прямом, так и в обратном направлении. Они работают в обратном направлении при определенном напряжении.

Он предохраняет стабилитрон от сгорания, когда он начинает проводить ток. Однако, если вам нужен ток более нескольких мА, они, вероятно, не являются разумным решением. Иногда люди используют их с датчиками для защиты от скачков напряжения и повреждения датчика. Иногда обсуждается идея использования регулятора. Или используется только конденсатор, чтобы сгладить шумовые помехи.Можно утверждать, что если напряжение остается выше минимума микросхемы и ниже максимального входа, то регулировать его не нужно.

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собственной сборки, в частности на. Ни для кого не секрет, что залог успешной работы любого устройства – его правильное питание. Конечно, источник питания должен обеспечивать мощность, необходимую для питания устройства, иметь на выходе электролитический конденсатор большой емкости, чтобы сглаживать пульсации, и желательно, чтобы он был стабилизирован.

Применения встроенного стабилизатора фиксированного напряжения

Во многих случаях это может быть правдой. Однако, если микросхема имеет какие-либо аналоговые функции, например аналого-цифровой преобразователь, то этот метод становится очень проблематичным. Поскольку они не могут превышать это значение, может вообще не потребоваться использование регулятора.

Линейные регуляторы напряжения

Однако, если бы использовался импульсный источник, эти элементы могли бы продлить срок службы. Стабилизаторы напряжения поддерживают стабильное напряжение, поэтому схемы могут работать предсказуемо.Выбор типа регулятора сводится к тому, как используется схема. Разделитель напряжения никогда не должен использоваться в качестве источника питания.

Последнее, я особо подчеркну, различные нестабилизированные источники питания, такие как зарядные устройства от сотовых телефонов, роутеров и подобного оборудования, не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Поскольку напряжение на выходе таких блоков питания меняется в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства с выходом USB, которые выдают 5 вольт, как зарядка от смартфонов.

Вопросы о том, чем отличаются регуляторы или какие из них следует выбрать для своего применения? Сам по себе микроконтроллер бесполезен. Чтобы что-то запустить, вам понадобится схема, в которой используется контроллер. С этой целью розничным торговцам электроникой предлагаются печатные платы, содержащие все необходимое.

Считается идеальным для новичков, а также используется старыми зайцами. Примечание: булавки подсчитываются в нижнем левом углу, если у вас есть осциллятор с шрифтом вверх. Контактный лист данных. Эти блокирующие конденсаторы следует располагать как можно ближе к контроллеру.Однако на практике определенные задачи были реализованы. На принципиальной схеме показано индивидуальное назначение 6-контактного разъема.


Многие начинающие изучать электронику, да и просто те, кому просто интересно, думаю, были шокированы тем, что на адаптере питания, например, от приставки Dandy , и любой другой подобной нестабилизированной может быть написано 9 вольт постоянного тока (или постоянного тока), а при измерении мультиметром щупами, подключенными к контактам вилки блока питания на экране мультиметра, всего 14, а то и 16.Такой блок питания можно при желании использовать для питания цифровых устройств, но необходимо собрать стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.

Импульсные стабилизаторы напряжения

Вот список необходимых компонентов. Компиляцию необходимых компонентов можно найти в списке для заказа. Дополнительное описание мини-системы можно найти здесь. Микроконтроллеру, как и любому компьютеру, нужен источник часов.Часы необходимы для выполнения внутренних процессов в процессоре в хронологическом порядке. Тактовая частота по существу определяет, насколько быстро работает микроконтроллер.

Подключение керамического резонатора выглядит так. Конденсаторы не требуются, они уже установлены, поэтому подключить керамический генератор – детская игра. Обратите внимание: керамические резонаторы доступны с двумя или тремя контактами. Только у трехконтактных есть внутренние конденсаторы.


Такой стабилизатор имеет простую схему подключения, из обвеса микросхемы, то есть из тех деталей, которые необходимы для его работы, нам понадобится всего 2 керамических конденсатора 0.33 мкФ и 0,1 мкФ. Схема подключения многим известна и взята из Даташита на микросхему:

Кварцевый состав выглядит так. Их размер зависит от данных кварца. Для расчета его размера используется следующая формула. Например, в схеме, описанной в этой главе. Его задача – создать стабильное напряжение питания 5 В. Это самый простой способ получить 5 В, определяемое по существующему напряжению. постоянный ток … Для целей данного руководства достаточно стандартной версии, которая может выдавать максимум 1 А.

Проще говоря, лишнее напряжение разрушается в виде тепла. Поэтому охлаждающий вентилятор для теплового подключения к радиатору. Если входное напряжение намного выше 12 В, в тепло преобразуется гораздо больше энергии, чем может быть рекуперировано на выходе. Потребление тока в цепи приводит к тепловым потерям, которые необходимо отводить. Если мы теперь возьмем входное напряжение 7 В, чтобы все еще соблюдалась минимальная разница в 2 В, мы придем к этим значениям.

Соответственно на вход такого стабилизатора подаем напряжение, либо подключаем к плюсу блока питания.А минус подключаем к минусу микросхемы, и подаем прямо на выход.


И получаем на выходе нужные нам стабильные 5 вольт, к которым при желании, если сделать соответствующий разъем, можно подключить кабель USB и зарядить свой телефон, мп3 плеер или любое другое устройство, которое можно заряжать от USB-порт.

Видно, что входное напряжение должно быть как можно более низким, чтобы потери оставались в определенных пределах. Кроме того, обычно бывает, что более низкого дифференциального напряжения также достаточно для меньшего расхода.В некоторых технических данных.

Следует также сказать, что существуют так называемые «низкий провал», «сверхнизкий провал» и т. Д., Которые имеют гораздо меньшую разницу между входным и выходным напряжением, в результате чего потери можно смещать еще больше. Доставка с соты – тема для продвинутых пользователей. Как правило, регулирование напряжения не применяется, поскольку контроллер работает в широком диапазоне напряжений питания.


Стабилизатор понижения с 12 до 5 вольт – схема

Автомобильная зарядка с выходом USB всем давно известна.Внутри он устроен по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.


Если вы покупаете заранее, купите более одного микроконтроллера. До тех пор, пока не будет неисправен первый контроллер или кто-то по ошибке не захочет убедиться в наличии ошибки в программе или контроллере, проходит немного времени. Цены на микроконтроллеры имеют четкий диапазон, часто однотипные, от 3 до 8 евро. Более новые или большие модели часто дешевле.

Поиск в Интернете того стоит.В последующих главах этого руководства вы должны получить следующие компоненты.

  • Однако 50 Ом должно подходить для любого применения.
  • В худшем случае подсветка слишком темная.
Эти компоненты часто необходимы, и такие большие пакеты обычно не дороже, чем покупка нескольких копий по отдельности. Это связано с тем, что подсчет 9 компонентов обходится поставщику дороже, чем снятие 100 с полки. В этом уроке обсуждается только программирование на ассемблере, потому что ассемблер лучше всего подходит для понимания оборудования.

В качестве примера для тех, кто хочет собрать аналогичное зарядное устройство своими руками или починить имеющееся, приведу его схему, дополненную индикацией включения на светодиоде:


Распиновка микросхемы 7805 в корпусе ТО-220 представлена ​​на следующих рисунках. При сборке следует помнить, что распиновка для микросхем в разных случаях разная:

Во-первых, нужен ассемблер, переводящий программы, написанные на языке ассемблера, в машинный код.Даже базовые вентиляторы не такие уж короткие, как, например, есть. Если вы хотите иметь прямой и интерактивный доступ к контроллеру, вы должны взглянуть на него. Обязательное условие – последовательное подключение, то есть чуть больше минимальной схемы.

В следующей главе будет только аппаратное и программное обеспечение, реализованное таким образом, чтобы. Программное обеспечение распознает устройство программирования, обнаруженное микроконтроллером, контроллер должен быть запитан. Техническое описание контроллера – самый важный документ для разработчика.


При покупке микросхемы в радиомагазине следует попросить стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуются работы на больших токах, микросхему необходимо установить на радиатор.

Доступны отверстия диаметром 2, 5 и 3 мм для оптимальной установки на шаговый двигатель. Показать товары в каталоге:. Напряжение питания 34 В постоянного тока максимум. Регулирует переменный ток омической или индуктивной нагрузки через закрытый потенциометр, нагреватели, лампы, ручные сверлильные станки и т. Д.

Линейные контроллеры очень распространены во всех мыслимых приложениях. Если требуются низкие токи, а эффективность имеет второстепенное значение, они по-прежнему являются лучшим выбором. Также с точки зрения стоимости линейные регуляторы могут быть хорошей альтернативой, если общая стоимость решения, включая кулер, может конкурировать с общей стоимостью коммутируемого решения. Однако этот номинальный ток является довольно теоретическим, поскольку тип используемого корпуса уже достигает своих пределов с этой потерей мощности, как будет показано ниже.

Конечно, эта микросхема существует и в других корпусах, например ТО-92, знакомом каждому по маломощным транзисторам. Этот регулятор работает при токах до 100 мА. Минимальное входное напряжение, при котором начинает работать регулятор, составляет 6,7 вольт, стандартное от 7 вольт. Фотография микросхемы в корпусе TO-92 приведена ниже:

Схема подключения L7805CV

С линейными регуляторами регулирование напряжения можно реализовать экономически эффективно, но из-за их низкого КПД они быстро достигают своего предела мощности.Текущий спрос обычно колеблется от двух до трехзначных миллиампер. С помощью этих основных данных можно легко рассчитать потери в линейном контроллере для максимального выходного тока 200 мА.

На рис. 2 показано тепловое изображение линейного контроллера без радиатора слева. Для следующего сравнения линейный регулятор был правильно установлен на радиаторе, обычном для этого типа применения. Ток нагрузки 400 мА соответствует выходной мощности 2 Вт и потере мощности 4.9 Вт. Хотя это значение приемлемо, необходимо учитывать, что может рассеиваться много тепла.

Распиновка микросхемы в корпусе ТО-92, как уже писалось выше, отличается от распиновки микросхемы в корпусе ТО-220. Мы можем видеть это на следующем рисунке, так как из него становится ясно, что ножки зеркально отражены по отношению к TO-220:


Конечно, выпускаются стабилизаторы на разные напряжения, например 12 вольт, 3.3 вольта и другие. Главное не забывать, что входное напряжение должно быть минимум на 1,7 – 3 вольта больше выходного.

Микросхема 7833 – схема

На следующем рисунке показана распиновка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы используются для питания дисплеев, карт памяти и других периферийных устройств в устройствах на микроконтроллерах, которым требуется более низкое напряжение, чем 5 В, основное питание микроконтроллера.


Стабилизатор для блока питания МК

Я использую стабилизатор в корпусе для питания устройств, собранных и отлаженных на макетной плате на микроконтроллерах, как на фото выше.Питание осуществляется от нерегулируемого адаптера через разъем на плате устройства. Его принципиальная схема показана на рисунке ниже:


При подключении микросхемы необходимо строго соблюдать распиновку. Если ноги перепутались, достаточно даже одной активации, чтобы стабилизатор отключился, поэтому при включении нужно быть осторожным. Автор материала AKV.


Регулятор напряжения

IC – Пост электроники

IC Регулятор напряжения

В стабилизаторе напряжения

IC используются интегральные схемы для регулирования напряжения.Одним из преимуществ регулятора напряжения IC является то, что в устройство могут быть встроены такие свойства, как тепловая компенсация, защита от короткого замыкания и защита от перенапряжения. Большинство обычно используемых стабилизаторов напряжения IC представляют собой трехконтактные устройства.

Схематическое обозначение трехконтактного IC-стабилизатора напряжения

На рисунке ниже показан схематический символ трехконтактного стабилизатора напряжения IC.

Типы ИС регуляторов напряжения

Существует четыре основных типа регуляторов напряжения IC:

  1. Регулятор постоянного положительного напряжения
  2. Регулятор постоянного отрицательного напряжения
  3. Стабилизатор напряжения
  4. Стабилизатор напряжения с двойным трекингом

Регулятор постоянного положительного напряжения

Этот IC-стабилизатор обеспечивает фиксированное положительное выходное напряжение.Хотя доступно множество типов регуляторов IC, наиболее популярными являются регуляторы серии 7800. Последние две цифры в номере детали указывают на постоянный ток. выходное напряжение. Например [см. Таблицу ниже], 7812 – регулятор + 12В, а 7805 – стабилизатор + 5В. Обратите внимание, что эта серия (серия 7800) обеспечивает фиксированные регулируемые напряжения от + 5 В до + 24 В.

Принципиальная схема стабилизатора постоянного положительного напряжения

На рисунке выше показана принципиальная схема стабилизатора постоянного положительного напряжения.Вы можете увидеть, как микросхема 7812 подключена для обеспечения постоянного постоянного тока. выход + 12В. Нерегулируемое входное напряжение Vi подключается к клемме IN IC, а клемма OUT IC обеспечивает +12 В. Конденсаторы, хотя и не всегда необходимы, иногда используются на входе и выходе. Выходной конденсатор (C2) в основном действует как сетевой фильтр для улучшения переходной характеристики. Входной конденсатор (C1) используется для предотвращения нежелательных колебаний.

Стабилизатор постоянного отрицательного напряжения

Этот IC-стабилизатор обеспечивает фиксированное отрицательное выходное напряжение.Для этой цели обычно используются регуляторы серии 7900 IC. Эта серия (7900) является аналогом серии 7800 с отрицательным напряжением [см. Таблицу ниже]. Обратите внимание, что серия 7900 обеспечивает фиксированное регулируемое напряжение от – 5 В до – 24 В.

Принципиальная схема стабилизатора постоянного отрицательного напряжения

Вы можете увидеть принципиальную схему фиксированного стабилизатора отрицательного напряжения ниже.

Вы можете увидеть, как 7912 IC подключается для обеспечения постоянного постоянного тока.на выходе – 12 В. Нерегулируемое отрицательное входное напряжение Vi подключено к клемме IN IC, а клемма OUT IC обеспечивает – 12 В. Конденсаторы, используемые в схеме, выполняют ту же функцию, что и в фиксированном положительном стабилизаторе.

Регулируемый регулятор напряжения

Регулируемый регулятор напряжения можно настроить на любой постоянный ток. выходное напряжение в двух указанных пределах. Самым популярным трехконтактным регулируемым стабилизатором напряжения является LM 317.

Принципиальная схема регулируемого регулятора напряжения

LM 317 – это трехконтактный регулируемый стабилизатор напряжения с положительной полярностью, рассчитанный на питание 1.5 А тока нагрузки в регулируемом диапазоне от 1,25 В до 37 В. На рисунке выше показан нерегулируемый источник питания, управляющий схемой LM 317. В техническом паспорте LM 317 приведена следующая формула выходного напряжения:

Эта формула действительна от 1,25 В до 37 В.

Двойной регулятор напряжения слежения

Регулятор с двойным трекингом обеспечивает равное положительное и отрицательное выходное напряжение. Этот регулятор используется, когда требуется разделенное напряжение питания.

Принципиальная схема двойного следящего регулятора напряжения

Микросхема RC 4195 обеспечивает постоянный ток. выходы + 15В и – 15В. Устройству требуется два нерегулируемых входных напряжения. Положительный вход может быть от + 18В до + 30В, а отрицательный – от -18В до -30В.

Добавить комментарий

Ваш адрес email не будет опубликован.