Полупроводниковая схемотехника
Полупроводниковая схемотехника
ОглавлениеПредисловие редактора переводаЧасть I. Основные положения 1. Пояснение применяемых величин 2. 2.1. ФИЛЬТР НИЖНИХ ЧАСТОТ 2.1.3. ДЛИТЕЛЬНОСТЬ ФРОНТА ИМПУЛЬСА И ЧАСТОТА СРЕЗА ФИЛЬТРА 2.2. ФИЛЬТР ВЕРХНИХ ЧАСТОТ 2.3. КОМПЕНСИРОВАННЫЙ ДЕЛИТЕЛЬ НАПРЯЖЕНИЯ 2.4. ПАССИВНЫЙ ПОЛОСОВОЙ RC-ФИЛЬТР 2.5. МОСТ ВИНА-РОБИНСОНА 2.6. ДВОЙНОЙ Т-ОБРАЗНЫЙ ФИЛЬТР 2.7. КОЛЕБАТЕЛЬНЫЙ КОНТУР 3. Диоды 3.2. СТАБИЛИТРОНЫ 3.3. ВАРИКАПЫ 4. Транзистор и схемы на его основе 4.2. СХЕМА С ОБЩИМ ЭМИТТЕРОМ 4.2.2. НЕЛИНЕЙНЫЕ ИСКАЖЕНИЯ 4.2.3. СХЕМА С ОБЩИМ ЭМИТТЕРОМ И ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ ПО ТОКУ 4.2.4. ОТРИЦАТЕЛЬНАЯ ОБРАТНАЯ СВЯЗЬ ПО НАПРЯЖЕНИЮ 4.2.5. УСТАНОВКА РАБОЧЕЙ ТОЧКИ 4.3. СХЕМА С ОБЩЕЙ БАЗОЙ 4.4. СХЕМА С ОБЩИМ КОЛЛЕКТОРОМ, ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ 4.5. ТРАНЗИСТОР КАК ИСТОЧНИК СТАБИЛЬНОГО ТОКА 4.5.2. БИПОЛЯРНЫЙ ИСТОЧНИК ПИТАНИЯ 4.5.3. СХЕМА «ТОКОВОГО ЗЕРКАЛА» 4.6. СХЕМА ДАРЛИНГТОНА 4.7. ДИФФЕРЕНЦИАЛЬНЫЕ УСИЛИТЕЛИ 4.7.2. РЕЖИМ БОЛЬШОГО СИГНАЛА 4.7.3. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ ПО ТОКУ 4. 7.4. НАПРЯЖЕНИЕ РАЗБАЛАНСА 4.8. ИЗМЕРЕНИЕ НЕКОТОРЫХ ПАРАМЕТРОВ ПРИ МАЛОМ СИГНАЛЕ 4.9. ШУМЫ ТРАНЗИСТОРА 4.10. ПРЕДЕЛЬНЫЕ ПАРАМЕТРЫ 5. Полевые транзисторы 5.2. ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ МАЛЫХ СИГНАЛОВ 5.3. ПРЕДЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ 5.4. ОСНОВНЫЕ СХЕМЫ ВКЛЮЧЕНИЯ 5.4.1. СХЕМА С ОБЩИМ ИСТОКОМ 5.4.2. СХЕМА С ОБЩИМ ЗАТВОРОМ 5.4.3. СХЕМА С ОБЩИМ СТОКОМ, ИСТОКОВЫЙ ПОВТОРИТЕЛЬ 5.5. ПОЛЕВОЙ ТРАНЗИСТОР КАК СТАБИЛИЗАТОР ТОКА 5.6. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ 5.7. ПОЛЕВОЙ ТРАНЗИСТОР В КАЧЕСТВЕ УПРАВЛЯЕМОГО СОПРОТИВЛЕНИЯ 6. Операционный усилитель 6.1. СВОЙСТВА ОПЕРАЦИОННОГО УСИЛИТЕЛЯ 6.2. ПРИНЦИП ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗИ 6.3. НЕИНВЕРТИРУЮЩИЙ УСИЛИТЕЛЬ 6.4. ИНВЕРТИРУЮЩИЙ УСИЛИТЕЛЬ 7. Внутренняя структура операционных усилителей 7.3. СТАНДАРТНАЯ СХЕМА ИНТЕГРАЛЬНОГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ 7.4. КОРРЕКЦИЯ ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ 7.4. 2. ПОЛНАЯ ЧАСТОТНАЯ КОРРЕКЦИЯ 7.4.3. ПОДСТРАИВАЕМАЯ ЧАСТОТНАЯ КОРРЕКЦИЯ 7.4.4. СКОРОСТЬ НАРАСТАНИЯ 7.4.5. КОМПЕНСАЦИЯ ЕМКОСТНОЙ НАГРУЗКИ 7.5. ИЗМЕРЕНИЕ ПАРАМЕТРОВ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 8. Простейшие переключающие схемы 8.1. ТРАНЗИСТОРНЫЙ КЛЮЧ 8.2. БИСТАБИЛЬНЫЕ РЕЛАКСАЦИОННЫЕ СХЕМЫ 8.2.2. ТРИГГЕР ШМИТТА 8.3. МОНОСТАБИЛЬНАЯ РЕЛАКСАЦИОННАЯ СХЕМА 8.4. НЕСТАБИЛЬНАЯ РЕЛАКСАЦИОННАЯ СХЕМА 9. Базовые логические схемы 9.1. ОСНОВНЫЕ ЛОГИЧЕСКИЕ ФУНКЦИИ 9.2. СОСТАВЛЕНИЕ ЛОГИЧЕСКИХ ФУНКЦИЙ 9.2.1. ТАБЛИЦА КАРНО 9.3. ПРОИЗВОДНЫЕ ОСНОВНЫХ ЛОГИЧЕСКИХ ФУНКЦИЙ 9.4. СХЕМОТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ ОСНОВНЫХ ЛОГИЧЕСКИХ ФУНКЦИЙ 9.4.1. РЕЗИСТИВНО-ТРАНЗИСТОРНАЯ ЛОГИКА (РТЛ) 9.4.2. ДИОДНО-ТРАНЗИСТОРНАЯ ЛОГИКА (ДТЛ) 9.4.3. ТРАНЗИСТОРНО-ТРАНЗИСТОРНАЯ ЛОГИКА (ТТЛ) 9.4.4. ИНТЕГРАЛЬНАЯ ИНЖЕКЦИОННАЯ ЛОГИКА 9.4.5. ЭМИТТЕРНО-СВЯЗАННАЯ ЛОГИКА (ЭСЛ) 9.4.6. n-КАНАЛЬНАЯ МОП-ЛОГИКА 9.4.7. КОМПЛЕМЕНТАРНАЯ МОП-ЛОГИКА (КМОП) 9.4.8. ОБЗОР 9. 4.9. СПЕЦИАЛЬНЫЕ СХЕМЫ ВЫХОДНЫХ КАСКАДОВ 9.5. ИНТЕГРАЛЬНЫЕ ТРИГГЕРЫ 9.5.2. ТРИГГЕРЫ ТИПА M-S (MASTER-SLAVE) 9.5.3. ДИНАМИЧЕСКИЙ ТРИГГЕР 9.6. ПОЛУПРОВОДНИКОВЫЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА 9.6.2. ПОСТОЯННЫЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА (ПЗУ) 9.6.3. ПРОГРАММИРУЕМЫЕ ЛОГИЧЕСКИЕ МАТРИЦЫ (ПЛМ) 10. Оптоэлектронные приборы 10.1. ОСНОВНЫЕ ПОНЯТИЯ ФОТОМЕТРИИ 10.2. ФОТОРЕЗИСТОР 10.3. ФОТОДИОДЫ 10.4. ФОТОТРАНЗИСТОРЫ 10.5. СВЕТОДИОДЫ 10.6. ОПТРОНЫ Часть II. Применения 11. Линейные и нелинейные аналоговые вычислительные схемы 11.2. СХЕМЫ ВЫЧИТАНИЯ 11.2.2. СХЕМА ВЫЧИТАНИЯ НА ОПЕРАЦИОННОМ УСИЛИТЕЛЕ 11.3. БИПОЛЯРНОЕ УСИЛИТЕЛЬНОЕ ЗВЕНО 11.4. СХЕМЫ ИНТЕГРИРОВАНИЯ 11.4.1. ИНВЕРТИРУЮЩИЙ ИНТЕГРАТОР 11.4.2. ЗАДАНИЕ НАЧАЛЬНЫХ УСЛОВИЙ 11.4.3. СУММИРУЮЩИЙ ИНТЕГРАТОР 11.4.4. НЕИНВЕРТИРУЮЩИЙ ИНТЕГРАТОР 11.5. СХЕМЫ ДИФФЕРЕНЦИРОВАНИЯ 11.5.3. СХЕМА ДИФФЕРЕНЦИРОВАНИЯ С ВЫСОКИМ ВХОДНЫМ СОПРОТИВЛЕНИЕМ 11. 6. РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 11.7. ФУНКЦИОНАЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ 11.7.2. ЭКСПОНЕНТА 11.7.3. ВЫЧИСЛЕНИЕ СТЕПЕННЫХ ФУНКЦИЙ С ПОМОЩЬЮ ЛОГАРИФМОВ 11.7.4. ФУНКЦИИ SIN X И COS X 11.7.5. ПЕРЕСТРАИВАЕМЫЕ ФУНКЦИОНАЛЬНЫЕ СХЕМЫ 11.8. АНАЛОГОВЫЕ СХЕМЫ УМНОЖЕНИЯ 11.8.2. УМНОЖЕНИЕ С ПОМОЩЬЮ ЛОГАРИФМИЧЕСКИХ ФУНКЦИОНАЛЬНЫХ ГЕНЕРАТОРОВ 11.8.3. СХЕМА УМНОЖЕНИЯ, ИСПОЛЬЗУЮЩАЯ ИЗМЕНЕНИЕ КРУТИЗНЫ ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ 11.8.4. СХЕМА УМНОЖЕНИЯ С ИЗОЛИРОВАННЫМИ ЗВЕНЬЯМИ 11.8.5. БАЛАНСИРОВКА СХЕМ УМНОЖЕНИЯ 11.8.6. СХЕМЫ ЧЕТЫРЕХКВАДРАНТНОГО УМНОЖЕНИЯ 11.8.7. ПРИМЕНЕНИЕ СХЕМЫ УМНОЖЕНИЯ ДЛЯ ДЕЛЕНИЯ И ИЗВЛЕЧЕНИЯ КВАДРАТНЫХ КОРНЕЙ 11.9. ПРЕОБРАЗОВАНИЕ КООРДИНАТ 11.9.2. ПРЕОБРАЗОВАНИЕ ДЕКАРТОВЫХ КООРДИНАТ В ПОЛЯРНЫЕ 12. Управляемые источники и схемы преобразования полного сопротивления 12.1. ИСТОЧНИКИ НАПРЯЖЕНИЯ, УПРАВЛЯЕМЫЕ НАПРЯЖЕНИЕМ 12.2. ИСТОЧНИКИ НАПРЯЖЕНИЯ, УПРАВЛЯЕМЫЕ ТОКОМ 12.3. ИСТОЧНИКИ ТОКА, УПРАВЛЯЕМЫЕ НАПРЯЖЕНИЕМ 12. 3.2. ИСТОЧНИКИ ТОКА С ЗАЗЕМЛЕННОЙ НАГРУЗКОЙ 12.3.3. ЭТАЛОННЫЕ ИСТОЧНИКИ ТОКА НА ТРАНЗИСТОРАХ 12.3.4. ПЛАВАЮЩИЕ ИСТОЧНИКИ ТОКА 12.4. ИСТОЧНИКИ ТОКА, УПРАВЛЯЕМЫЕ ТОКОМ 12.5. ПРЕОБРАЗОВАТЕЛЬ ОТРИЦАТЕЛЬНОГО СОПРОТИВЛЕНИЯ (NIC) 12.6. ГИРАТОР 12.7. ЦИРКУЛЯТОР 13. Активные фильтры 13.1.1. ФИЛЬТР БАТТЕРВОРТА 13.1.2. ФИЛЬТР ЧЕБЫШЕВА 13.1.3. ФИЛЬТРЫ БЕССЕЛЯ 13.1.4. ОБОБЩЕННОЕ ОПИСАНИЕ ФИЛЬТРОВ 13.2. ПРЕОБРАЗОВАНИЕ НИЖНИХ ЧАСТОТ В ВЕРХНИЕ 13.3. РЕАЛИЗАЦИЯ ФИЛЬТРОВ НИЖНИХ И ВЕРХНИХ ЧАСТОТ ПЕРВОГО ПОРЯДКА 13.4. РЕАЛИЗАЦИЯ ФИЛЬТРОВ НИЖНИХ И ВЕРХНИХ ЧАСТОТ ВТОРОГО ПОРЯДКА 13.4.2. ФИЛЬТР СО СЛОЖНОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.4.3. ФИЛЬТР С ПОЛОЖИТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.4.4. ФИЛЬТР НИЖНИХ ЧАСТОТ С ОМИЧЕСКОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.5. РЕАЛИЗАЦИЯ ФИЛЬТРОВ ВЕРХНИХ И НИЖНИХ ЧАСТОТ БОЛЕЕ ВЫСОКОГО ПОРЯДКА 13.6. ПРЕОБРАЗОВАНИЕ ФИЛЬТРА НИЖНИХ ЧАСТОТ В ПОЛОСОВОЙ ФИЛЬТР 13. 6.1. ПОЛОСОВОЙ ФИЛЬТР ВТОРОГО ПОРЯДКА 13.6.2. ПОЛОСОВОЙ ФИЛЬТР ЧЕТВЕРТОГО ПОРЯДКА 13.7. РЕАЛИЗАЦИЯ ПОЛОСОВЫХ ФИЛЬТРОВ ВТОРОГО ПОРЯДКА 13.7.2. ПОЛОСОВОЙ ФИЛЬТР СО СЛОЖНОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.7.3. ПОЛОСОВОЙ ФИЛЬТР С ПОЛОЖИТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.7.4. ПОЛОСОВОЙ ФИЛЬТР С ОМИЧЕСКОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.8. ПРЕОБРАЗОВАНИЕ ФИЛЬТРОВ НИЖНИХ ЧАСТОТ В ЗАГРАЖДАЮЩИЕ ПОЛОСОВЫЕ ФИЛЬТРЫ 13.9. РЕАЛИЗАЦИЯ ЗАГРАЖДАЮЩИХ ФИЛЬТРОВ ВТОРОГО ПОРЯДКА 13.9.1. ЗАГРАЖДАЮЩИЙ LRC-ФИЛЬТР 13.9.2. АКТИВНЫЙ ЗАГРАЖДАЮЩИЙ ФИЛЬТР С ДВОЙНЫМ Т-ОБРАЗНЫМ МОСТОМ 13.9.3. АКТИВНЫЙ ЗАГРАЖДАЮЩИЙ ФИЛЬТР С МОСТОМ ВИНА-РОБИНСОНА 13.10. ФАЗОВЫЙ ФИЛЬТР 13.10.2. РЕАЛИЗАЦИЯ ФАЗОВОГО ФИЛЬТРА ПЕРВОГО ПОРЯДКА 13.10.3. РЕАЛИЗАЦИЯ ФАЗОВОГО ФИЛЬТРА ВТОРОГО ПОРЯДКА 13.11. ПЕРЕСТРАИВАЕМЫЙ УНИВЕРСАЛЬНЫЙ ФИЛЬТР 14. Широкополосные усилители 14.1. ЗАВИСИМОСТЬ КОЭФФИЦИЕНТА УСИЛЕНИЯ ПО ТОКУ ОТ ЧАСТОТЫ 14.2. ВЛИЯНИЕ ВНУТРЕННИХ ЕМКОСТЕЙ ТРАНЗИСТОРА И ЕМКОСТЕЙ МОНТАЖА 14. 3. КАСКОДНАЯ СХЕМА 14.5. СИММЕТРИЧНЫЙ ШИРОКОПОЛОСНЫЙ УСИЛИТЕЛЬ 14.5.2. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ИНВЕРТОРОМ 14.5.3. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С КОМПЛЕМЕНТАРНОЙ КАСКОДНОЙ СХЕМОЙ 14.5.4. ДВУХТАКТНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ 14.6. ШИРОКОПОЛОСНЫЙ ПОВТОРИТЕЛЬ НАПРЯЖЕНИЯ 14.6.2. ДВУХТАКТНЫЙ ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ 14.7. ШИРОКОПОЛОСНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 15. Усилители мощности 15.1. ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ КАК УСИЛИТЕЛЬ МОЩНОСТИ 15.2. КОМПЛЕМЕНТАРНЫЙ ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ 15.2.2. КОМПЛЕМЕНТАРНЫЙ ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ В РЕЖИМЕ AB 15.2.3. СПОСОБЫ ЗАДАНИЯ НАПРЯЖЕНИЯ СМЕЩЕНИЯ 15.3. СХЕМЫ ОГРАНИЧЕНИЯ ТОКА 15.4. КОМПЛЕМЕНТАРНЫЙ ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ ПО СХЕМЕ ДАРЛИНГТОНА 15.5. РАСЧЕТ МОЩНОГО ОКОНЕЧНОГО КАСКАДА 15.6. СХЕМЫ ПРЕДВАРИТЕЛЬНЫХ УСИЛИТЕЛЕЙ НАПРЯЖЕНИЯ 15.7. ПОВЫШЕНИЕ НАГРУЗОЧНОЙ СПОСОБНОСТИ ИНТЕГРАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 16. Источники питания 16. 1. СВОЙСТВА СЕТЕВЫХ ТРАНСФОРМАТОРОВ 16.2. ВЫПРЯМИТЕЛИ 16.2.1. ОДНОПОЛУПЕРИОДНЫЙ ВЫПРЯМИТЕЛЬ 16.2.2. МОСТОВОЙ ВЫПРЯМИТЕЛЬ 16.2.3. МОСТОВОЙ ВЫПРЯМИТЕЛЬ ДЛЯ ДВУХ СИММЕТРИЧНЫХ ОТНОСИТЕЛЬНО ЗЕМЛИ ВЫХОДНЫХ НАПРЯЖЕНИЙ 16.3. ПОСЛЕДОВАТЕЛЬНАЯ СТАБИЛИЗАЦИЯ НАПРЯЖЕНИЯ 16.3.2. СХЕМА С РЕГУЛИРУЮЩИМ УСИЛИТЕЛЕМ 16.3.3. ИНТЕГРАЛЬНЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ 16.3.4. СТАБИЛИЗАТОР С МАЛЫМ НАПРЯЖЕНИЕМ ПОТЕРЬ 16.3.5. СТАБИЛИЗАЦИЯ НАПРЯЖЕНИЙ, СИММЕТРИЧНЫХ ОТНОСИТЕЛЬНО ЗЕМЛИ 16.3.6. СТАБИЛИЗАТОР НАПРЯЖЕНИЯ С ИЗМЕРИТЕЛЬНЫМИ ВЫВОДАМИ 16.3.7. ЛАБОРАТОРНЫЕ ИСТОЧНИКИ ПИТАНИЯ 16.3.8. ОКОНЕЧНЫЙ КАСКАД ЛАБОРАТОРНОГО ИСТОЧНИКА ПИТАНИЯ С БОЛЬШОЙ ВЫХОДНОЙ МОЩНОСТЬЮ 16.4. ПОЛУЧЕНИЕ ОПОРНОГО НАПРЯЖЕНИЯ 16.4.2. ПОЛУЧЕНИЕ МАЛЫХ ОПОРНЫХ НАПРЯЖЕНИЙ 16.5. ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ 16.5.2. ПЕРВИЧНЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ 17. Аналоговые коммутаторы и компараторы 17.2.2. ДИОДНЫЙ КОММУТАТОР 17.2.3. КОММУТАТОР НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ 17. 3. АНАЛОГОВЫЕ КОММУТАТОРЫ НА БАЗЕ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 17.3.2. КОММУТАТОР НА ПОЛЕВОМ ТРАНЗИСТОРЕ С ПЕРЕМЕНОЙ ЗНАКА ВЫХОДНОГО НАПРЯЖЕНИЯ 17.3.3. КОММУТАТОР НА БАЗЕ ДИФФЕРЕНЦИАЛЬНОГО УСИЛИТЕЛЯ 17.4. АНАЛОГОВЫЕ КОММУТАТОРЫ С ПАМЯТЬЮ 17.5. КОМПАРАТОРЫ 17.5.2. КОМПАРАТОР С ПРЕЦИЗИОННЫМ ВЫХОДНЫМ НАПРЯЖЕНИЕМ 17.5.3. ДВУХПОРОГОВЫЙ КОМПАРАТОР 17.6. ТРИГГЕР ШМИТТА 17.6.1. ИНВЕРТИРУЮЩИЙ ТРИГГЕР ШМИТТА 17.6.2. НЕИНВЕРТИРУЮЩИЙ ТРИГГЕР ШМИТТА 17.6.3. ПРЕЦИЗИОННЫЙ ТРИГГЕР ШМИТТА 18. Генераторы сигналов 18.1. LC-ГЕНЕРАТОРЫ 18.1.2. ГЕНЕРАТОР С ТРАНСФОРМАТОРНОЙ СВЯЗЬЮ (СХЕМА МАЙССНЕРА) 18.1.3. ТРЕХТОЧЕЧНАЯ СХЕМА С ИНДУKТИВНОЙ ОБРАТНОЙ СВЯЗЬЮ (СХЕМА ХАРТЛИ) 18.1.4. ТРЕХТОЧЕЧНАЯ СХЕМА С ЕМКОСТНОЙ ОБРАТНОЙ СВЯЗЬЮ (СХЕМА КОЛПИТЦА) 18.1.5. LC-ГЕНЕРАТОР С ЭМИТТЕРНОЙ СВЯЗЬЮ 18.1.6. ДВУХТАКТНЫЕ ГЕНЕРАТОРЫ 18.2. КВАРЦЕВЫЕ ГЕНЕРАТОРЫ 18.2.1. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КВАРЦЕВОГО РЕЗОНАТОРА 18.2.2. КВАРЦЕВЫЕ ГЕНЕРАТОРЫ С LC-КОЛЕБАТЕЛЬНЫМ КОНТУРОМ 18. 2.3. КВАРЦЕВЫЕ ГЕНЕРАТОРЫ БЕЗ LC-КОНТУРА 18.3. СИНУСОИДАЛЬНЫЕ RC-ГЕНЕРАТОРЫ 18.3.2. МОДЕЛИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ СИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ 18.4. ГЕНЕРАТОРЫ СИГНАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ (ФУНКЦИОНАЛЬНЫЕ ГЕНЕРАТОРЫ) 18.4.2. ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР С УПРАВЛЯЕМОЙ ЧАСТОТОЙ ВЫХОДНОГО СИГНАЛА 18.4.3. ВЫСОКОЧАСТОТНЫЙ ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР 18.5. МУЛЬТИВИБРАТОРЫ 18.5.1. НИЗКОЧАСТОТНЫЕ МУЛЬТИВИБРАТОРЫ 18.5.2. ВЫСОКОЧАСТОТНЫЕ МУЛЬТИВИБРАТОРЫ 19. Комбинационные логические схемы 19.1. ПРЕОБРАЗОВАТЕЛИ КОДОВ 19.1.2. ДВОИЧНО-ДЕСЯТИЧНЫЕ КОДЫ 19.1.3. КОД ГРЕЯ 19.2. МУЛЬТИПЛЕКСОР И ДЕМУЛЬТИПЛЕКСОР 19.3. КОМБИНАЦИОННОЕ УСТРОЙСТВО СДВИГА 19.4. КОМПАРАТОРЫ 19.5. СУММАТОРЫ 19.5.1. ПОЛУСУММАТОР 19.5.2. ПОЛНЫЙ СУММАТОР 19.5.3. СУММАТОРЫ С ПАРАЛЛЕЛЬНЫМ ПЕРЕНОСОМ 19.5.4. СЛОЖЕНИЕ ДВОИЧНО-ДЕСЯТИЧНЫХ ЧИСЕЛ 19.5.5. ВЫЧИТАНИЕ 19.5.6. СЛОЖЕНИЕ ЧИСЕЛ С ЛЮБЫМИ ЗНАКАМИ 19.6. УМНОЖИТЕЛИ 19.7. ЦИФРОВЫЕ ФУНКЦИОНАЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ 20. Интегральные схемы со структурами последовательностного типа 20.1. ДВОИЧНЫЕ СЧЕТЧИКИ 20.1.1. АСИНХРОННЫЙ (ПОСЛЕДОВАТЕЛЬНЫЙ) СЧЕТЧИК 20.1.2. СИНХРОННЫЙ (ПАРАЛЛЕЛЬНЫЙ) СЧЕТЧИК 20.2. ДВОИЧНО-ДЕСЯТИЧНЫЙ СЧЕТЧИК В КОДЕ 8421 20.2.1. АСИНХРОННЫЙ ДВОИЧНО-ДЕСЯТИЧНЫЙ СЧЕТЧИК 20.2.2. СИНХРОННЫЙ ДВОИЧНО-ДЕСЯТИЧНЫЙ СЧЕТЧИК 20.3. СЧЕТЧИК С ПРЕДВАРИТЕЛЬНОЙ УСТАНОВКОЙ 20.4. РЕГИСТРЫ СДВИГА 20.4.2. КОЛЬЦЕВОЙ РЕГИСТР 20.4.3. РЕГИСТР СДВИГА С ПАРАЛЛЕЛЬНЫМ ВВОДОМ 20.4.4. РЕГИСТР СДВИГА С ПЕРЕКЛЮЧАЕМЫМ НАПРАВЛЕНИЕМ СДВИГА 20.5. ПОЛУЧЕНИЕ ПСЕВДОСЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ 20.6. ПЕРВОНАЧАЛЬНАЯ ОБРАБОТКА АСИНХРОННОГО СИГНАЛА 20.6.2. СИНХРОНИЗАЦИЯ ИМПУЛЬСОВ 20.6.3. СИНХРОННЫЙ ОДНОВИБРАТОР 20.6.4. СИНХРОННЫЙ ДЕТЕКТОР ИЗМЕНЕНИЙ 20.6.5. СИНХРОННЫЙ ТАКТОВЫЙ ПЕРЕКЛЮЧАТЕЛЬ 20.7. СИСТЕМАТИЧЕСКИЙ СИНТЕЗ ПОСЛЕДОВАТЕЛЬНОСТНЫХ СХЕМ 20.7.2. ПРИМЕР СИНТЕЗА ПЕРЕКЛЮЧАЕМОГО СЧЕТЧИКА 20.7.3. СОКРАЩЕНИЕ ЕМКОСТИ ПАМЯТИ 21. Микро-ЭВМ 21.1. ОСНОВНАЯ СТРУКТУРА МИКРО-ЭВМ 21. 2. ПРИНЦИП ДЕЙСТВИЯ МИКРОПРОЦЕССОРА 21.3. НАБОР КОМАНД 21.4. ОТЛАДОЧНЫЕ СРЕДСТВА 21.5. ОБЗОР МИКРОПРОЦЕССОРОВ РАЗЛИЧНОГО ТИПА 21.6. МОДУЛЬНОЕ ПОСТРОЕНИЕ МИКРО-ЭВМ 21.7. ПЕРИФЕРИЙНЫЕ УСТРОЙСТВА 21.7.1. ПАРАЛЛЕЛЬНЫЙ ИНТЕРФЕЙС 21.7.2. ПОСЛЕДОВАТЕЛЬНЫЙ ИНТЕРФЕЙС 21.7.3. ИНТЕРФЕЙС МАГИСТРАЛИ «ОБЩАЯ ШИНА» 21.7.4. ПРОГРАММИРУЕМЫЙ СЧЕТЧИК 21.7.5. ПОДКЛЮЧЕНИЕ ПЕРИФЕРИЙНЫХ МОДУЛЕЙ СЕМЕЙСТВА 8080 К МАГИСТРАЛЯМ СЕМЕЙСТВА 6800 21.7.6. ОБЗОР ПЕРИФЕРИЙНЫХ УСТРОЙСТВ 21.8. МИНИМАЛЬНЫЕ СИСТЕМЫ 21.8.2. ОДНОКРИСТАЛЬНАЯ МИКРО-ЭВМ 22. Цифровые фильтры 22.1. ТЕОРЕМА О ДИСКРЕТИЗАЦИИ (ТЕОРЕМА О ВЫБОРКАХ) 22.1.2. ПРАКТИЧЕСКИЕ СООБРАЖЕНИЯ 22.2. ЦИФРОВАЯ ФУНКЦИЯ ПЕРЕДАЧИ ФИЛЬТРА 22.3. БИЛИНЕЙНОЕ ПРЕОБРАЗОВАНИЕ 22.4. РЕАЛИЗАЦИЯ ЦИФРОВЫХ ФИЛЬТРОВ 22.4.2. СТРУКТУРА ЦИФРОВЫХ ФИЛЬТРОВ ВТОРОГО ПОРЯДКА 22.4.3. ПРАКТИЧЕСКИЕ СООБРАЖЕНИЯ 23. Передача данных и индикация 23.1. СОЕДИНИТЕЛЬНЫЕ ЛИНИИ 23.2. ЗАЩИТА ДАННЫХ 23.2.2. КОД ХЕММИНГА 23. 3. СТАТИЧЕСКИЕ ЦИФРОВЫЕ ИНДИКАТОРЫ 23.3.1. ДВОИЧНЫЕ ИНДИКАТОРЫ НА СВЕТОДИОДАХ 23.3.2. ДЕКАДНЫЕ ИНДИКАТОРЫ 23.3.3. ИНДИКАЦИЯ В ШЕСТНАДЦАТЕРИЧНОМ КОДЕ 23.4. МУЛЬТИПЛЕКСНЫЕ ИНДИКАТОРЫ 23.4.1. МНОГОРАЗРЯДНЫЕ 7-СЕГМЕНТНЫЕ ИНДИКАТОРЫ 23.4.2. МАТРИЦА ТОЧЕК 24. Цифро-аналоговые и аналого-цифровые преобразователи 24.1. СХЕМОТЕХНИЧЕСКИЕ ПРИНЦИПЫ ЦА-ПРЕОБРАЗОВАТЕЛЕЙ 24.1.2. ЦА-ПРЕОБРАЗОВАТЕЛЬ С ПЕРЕКИДНЫМИ КЛЮЧАМИ 24.1.3. РЕЗИСТИВНАЯ МАТРИЦА ПОСТОЯННОГО ИМПЕДАНСА (МАТРИЦА ТИПА R-2R) 24.1.4. РЕЗИСТИВНАЯ МАТРИЦА ДЛЯ ДЕКАДНЫХ ПРЕОБРАЗОВАТЕЛЕЙ 24.2. ПОСТРОЕНИЕ ЦА-ПРЕОБРАЗОВАТЕЛЕЙ С ЭЛЕКТРОННЫМИ КЛЮЧАМИ 24.2.2. ЦА-ПРЕОБРАЗОВАТЕЛЬ С ТОКОВЫМИ КЛЮЧАМИ 24.3. ЦА-ПРЕОБРАЮВАТЕЛИ ДЛЯ СПЕЦИАЛЬНЫХ ПРИМЕНЕНИЙ 24.3.2. ЦА-ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ДЕЛЕНИЯ 24.3.3. ЦА-ПРЕОБРАЗОВАТЕЛЬ КАК ГЕНЕРАТОР ФУНКЦИЙ 24.4. ОСНОВНЫЕ ПРИНЦИПЫ АЦ-ПРЕОБРАЗОВАНИЯ 24.5. ТОЧНОСТЬ АЦ-ПРЕОБРАЗОВАТЕЛЕЙ 24.6. ПОСТРОЕНИЕ АЦ-ПРЕОБРАЗОВАТЕЛЕЙ 25. Измерительные схемы 25. 1. ИЗМЕРЕНИЕ НАПРЯЖЕНИЙ 25.1.2. ИЗМЕРЕНИЕ РАЗНОСТИ ПОТЕНЦИАЛОВ 25.1.3. ИЗОЛИРОВАННЫЙ УСИЛИТЕЛЬ 25.2. ИЗМЕРЕНИЕ ТОКА 25.2.1. ИЗОЛИРОВАННЫЕ ОТ ЗЕМЛИ АМПЕРМЕТРЫ С МАЛЫМ ПАДЕНИЕМ НАПРЯЖЕНИЯ 25.2.2. ИЗМЕРЕНИЕ ТОКА ПРИ ВЫСОКОМ ПОТЕНЦИАЛЕ 25.3. ИЗМЕРИТЕЛЬНЫЙ ВЫПРЯМИТЕЛЬ 25.3.2. ИЗМЕРЕНИЕ ЭФФЕКТИВНОГО ЗНАЧЕНИЯ 25.3.3. ИЗМЕРЕНИЕ АМПЛИТУДНЫХ ЗНАЧЕНИЙ 25.3.4. СИНХРОННЫЙ ДЕТЕКТОР 26. Электронные регуляторы 26.2. ТИПЫ РЕГУЛЯТОРОВ 26.2.1. П-РЕГУЛЯТОР 26.2.2. ПИ-РЕГУЛЯТОР 26.2.3. ПРОПОРЦИОНАЛЬНО-ИНТЕГРАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫЙ РЕГУЛЯТОР 26.2.4. НАСТРАИВАЕМЫЕ ПИД-РЕГУЛЯТОРЫ 26.3. УПРАВЛЕНИЕ НЕЛИНЕЙНЫМИ ОБЪЕКТАМИ 26.4. ОТСЛЕЖИВАЮЩАЯ СИНХРОНИЗАЦИЯ (АВТОПОДСТРОЙКА) 26.4.1. ЭЛЕМЕНТЫ ВЫБОРКИ-ХРАНЕНИЯ В КАЧЕСТВЕ ФАЗОВОГО ДЕТЕКТОРА 26.4.2. СИНХРОННЫЙ ВЫПРЯМИТЕЛЬ В КАЧЕСТВЕ ФАЗОВОГО ДЕТЕКТОРА 26.4.3. ЧАСТОТНО-ЧУВСТВИТЕЛЬНЫЙ ФАЗОВЫЙ ДЕТЕКТОР 26.4.4. ФАЗОВЫЙ ДЕТЕКТОР С ПРОИЗВОЛЬНО УВЕЛИЧИВАЕМЫМ ДИАПАЗОНОМ ИЗМЕРЕНИЙ 26.4.5. ФАЗОРЕГУЛЯТОР В КАЧЕСТВЕ ПЕРЕМНОЖИТЕЛЯ ЧАСТОТ |
ОглавлениеПРЕДИСЛОВИЕВВЕДЕНИЕ ГЛАВА 1. ПАССИВНЫЕ КОМПОНЕНТЫ ЭЛЕКТРОННЫХ УСТРОЙСТВ § 1.1. РЕЗИСТОРЫ Основные параметры резисторов § 1.2. КОНДЕНСАТОРЫ Основные параметры постоянных конденсаторов 1.3. КАТУШКИ ИНДУКТИВНОСТИ Основные параметры катушки индуктивности (ГОСТ 20718—75) § 1.4. ТРАНСФОРМАТОРЫ ЭЛЕКТРОННОЙ АППАРАТУРЫ Основные параметры трансформаторов питания ГЛАВА 2. ПОЛУПРОВОДНИКОВЫЕ КОМПОНЕНТЫ ЭЛЕКТРОННЫХ ЦЕПЕЙ § 2.1. ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКОВ Основные положения теории электропроводности. Примесная электропроводность. § 2.2. ОСНОВНЫЕ СВОЙСТВА И ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВ Концентрация носителей зарядов. Уравнения непрерывности. § 2.3. ЭЛЕКТРИЧЕСКИЕ ПЕРЕХОДЫ Контакт металл — полупроводник. Контакт двух полупроводников p- и n-типов. Свойства несимметричного p-n-перехода. p-n-переход смещен в прямом направлении Переход, смещенный в обратном направлении. Переходы p-i, n-i-, p+-p-, n+-n-типов. 2.4. ОСОБЕННОСТИ РЕАЛЬНЫХ p-n-ПЕРЕХОДОВ Пробой p-n-перехода. § 2.5. ОСНОВНЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ, ИСПОЛЬЗУЕМЫЕ ПРИ ИЗГОТОВЛЕНИИ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ И ИНТЕГРАЛЬНЫХ МИКРОСХЕМ § 2.6. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ Выпрямительные диоды. Основные параметры выпрямительных диодов и их значения у маломощных диодов Импульсные диоды. Полупроводниковые стабилитроны. Варикапы. Диоды других типов. § 2.7. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ Математическая модель транзистора. Три схемы включения транзистора. Инерционные свойства транзистора. Шумы транзистора. Н-параметры транзисторов. § 2.8. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ С ИНЖЕКЦИОННЫМ ПИТАНИЕМ § 2.9. ТИРИСТОРЫ Симметричные тиристоры. Основные параметры тиристоров и их ориентировочные значения § 2.10. ПОЛЕВЫЕ ТРАНЗИСТОРЫ Основные параметры полевых транзисторов и их ориентировочные значения § 2.11. ОСОБЕННОСТИ КОМПОНЕНТОВ ЭЛЕКТРОННЫХ ЦЕПЕЙ В МИКРОМИНИАТЮРНОМ ИСПОЛНЕНИИ Пассивные компоненты ИС. Конденсаторы. Индуктивности. Транзисторы ИС. Изоляция компонентов в монолитных интегральных узлах. ГЛАВА 3. КОМПОНЕНТЫ ОПТОЭЛЕКТРОНИКИ И ТЕХНИЧЕСКИЕ СРЕДСТВА ОТОБРАЖЕНИЯ ИНФОРМАЦИИ § 3.1. ОБЩИЕ СВЕДЕНИЯ О КОМПОНЕНТАХ ОПТОЭЛЕКТРОНИКИ § 3.2. УПРАВЛЯЕМЫЕ ИСТОЧНИКИ СВЕТА Основные параметры и характеристики светодиодов § 3.3. ФОТОПРИЕМНИКИ Основные характеристики и параметры фоторезистора Фотодиоды. Основные характеристики и параметры фотодиода Фототранзисторы. Основные характеристики и параметры фототранзистора Фототиристоры. Многоэлементные фотоприемники. Фотоприемники с внешним фотоэффектом. § 3.4. СВЕТОВОДЫ И ПРОСТЕЙШИЕ ОПТРОНЫ § 3 5. ОБЩИЕ СВЕДЕНИЯ О КОМПОНЕНТАХ УСТРОЙСТВ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ § 3.6. ЖИДКОКРИСТАЛЛИЧЕСКИЕ ПРИБОРЫ ДЛЯ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ § 3.7. ГАЗОНАПОЛНЕННЫЕ ПРИБОРЫ ДЛЯ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ Основные параметры газонаполненных матричных панелей неременного тока § 3.8. ВАКУУМНЫЕ ПРИБОРЫ ДЛЯ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ § 3. 9. ПОЛУПРОВОДНИКОВЫЕ И ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЕ ПРИБОРЫ ДЛЯ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ ГЛАВА 4. УСИЛИТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ § 4.1. ОБЩИЕ СВЕДЕНИЯ ОБ УСИЛИТЕЛЯХ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ, ИХ ОСНОВНЫХ ПАРАМЕТРАХ И ХАРАКТЕРИСТИКАХ § 4.2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ОБРАТНОЙ СВЯЗИ ПРИМЕНИТЕЛЬНО К УСИЛИТЕЛЯМ § 4.3. СТАТИЧЕСКИЙ РЕЖИМ РАБОТЫ УСИЛИТЕЛЬНЫХ КАСКАДОВ § 4.4. УСИЛИТЕЛЬНЫЕ КАСКАДЫ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ Каскад с общим стоком. § 4.5. УСИЛИТЕЛЬНЫЙ КАСКАД НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ С ОБЩИМ ЭМИТТЕРОМ Входное сопротивление. § 4.6. УСИЛИТЕЛЬНЫЙ КАСКАД НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ С ОБЩЕЙ БАЗОЙ § 4.7. УСИЛИТЕЛЬНЫЙ КАСКАД НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ С ОБЩИМ КОЛЛЕКТОРОМ Сложные эмиттерные повторители. § 4.8. ДИФФЕРЕНЦИАЛЬНЫЕ УСИЛИТЕЛЬНЫЕ КАСКАДЫ § 4.9. УСИЛИТЕЛЬНЫЕ КАСКАДЫ С ДИНАМИЧЕСКОЙ НАГРУЗКОЙ И С КАСКОДНЫМ ВКЛЮЧЕНИЕМ ТРАНЗИСТОРОВ § 4.10. УПРАВЛЯЕМЫЕ ИСТОЧНИКИ ТОКА И УСИЛИТЕЛЬНЫЕ КАСКАДЫ НА ИХ ОСНОВЕ 4.11. УСИЛИТЕЛЬНЫЕ КАСКАДЫ С ТРАНСФОРМАТОРНОЙ СВЯЗЬЮ 4. 12. МОЩНЫЕ УСИЛИТЕЛЬНЫЕ КАСКАДЫ Каскад с ОБ трансформаторным входом и трансформаторным выходом. Двухтактные выходные каскады. § 4.13. БЕСТРАНСФОРМАТОРНЫЕ МОЩНЫЕ ВЫХОДНЫЕ КАСКАДЫ ГЛАВА 5. МНОГОКАСКАДНЫЕ УСИЛИТЕЛИ § 5.1. МНОГОКАСКАДНЫЕ УСИЛИТЕЛИ Параметры RC-цепи связи. § 5.2. УСИЛИТЕЛИ В ИНТЕГРАЛЬНОМ ИСПОЛНЕНИИ 5.3. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ § 5.4. ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ § 5.5. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ С УЛУЧШЕННЫМИ ХАРАКТЕРИСТИКАМИ § 5.6. ОСОБЕННОСТИ ВКЛЮЧЕНИЯ И СВОЙСТВА ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ, ОХВАЧЕННЫХ ОБРАТНОЙ СВЯЗЬЮ § 5.7. УСТОЙЧИВОСТЬ УСИЛИТЕЛЕЙ И КОРРЕКЦИЯ ИХ ХАРАКТЕРИСТИК ГЛАВА 6. АНАЛОГОВЫЕ ПРЕОБРАЗОВАТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ § 6.1. МАСШТАБНЫЕ УСИЛИТЕЛИ 6.2. ЛИНЕЙНЫЕ ПРЕОБРАЗОВАТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ 6.3. ИНТЕГРИРУЮЩИЕ УСТРОЙСТВА Интеграторы на основе операционных усилителей. § 6.4. ДИФФЕРЕНЦИРУЮЩИЕ УСТРОЙСТВА Активные дифференцирующие устройства. § 6.5. АКТИВНЫЕ ФИЛЬТРЫ § 6. 6. МАГНИТОЭЛЕКТРОННЫЕ ПРЕОБРАЗОВАТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ § 6.7. НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ § 6.8. ПЕРЕМНОЖИТЕЛИ СИГНАЛОВ И УСТРОЙСТВА, ВЫПОЛНЯЮЩИЕ МАТЕМАТИЧЕСКИЕ ОПЕРАЦИИ § 6.9. ДЕТЕКТОРЫ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ ГЛАВА 7. ЭЛЕКТРОННЫЕ КЛЮЧИ § 7.1. ОБЩИЕ СВЕДЕНИЯ ОБ ИМПУЛЬСНЫХ ПРОЦЕССАХ И УСТРОЙСТВАХ § 7.2. ДИОДНЫЕ КЛЮЧИ § 7.3. КЛЮЧИ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ § 7.4. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В КЛЮЧЕВЫХ ЦЕПЯХ С БИПОЛЯРНЫМИ ТРАНЗИСТОРАМИ 7.5. КЛЮЧИ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ § 7.6. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В КЛЮЧАХ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ ГЛАВА 8. ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ, ТРИГГЕРЫ, АВТОГЕНЕРАТОРЫ § 8.1. ОБЩИЕ СВЕДЕНИЯ О ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ § 8.2. ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ 8.3. ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ НА МОП-ТРАНЗИСТОРАХ § 8.4. ТРИГГЕРЫ § 8.5. НЕСИММЕТРИЧНЫЕ ТРИГГЕРЫ § 8.6. ГЕНЕРАТОРЫ КОЛЕБАНИЙ Генераторы напряжения прямоугольной формы. Генераторы линейно изменяющегося напряжения (ГЛИН). Генераторы напряжения треугольной формы. Генераторы синусоидальных колебаний. Генераторы LC-типа. Генераторы с кварцевыми резонаторами и электромеханическими резонансными системами. ЗАКЛЮЧЕНИЕ Приложение Схемы включения операционных усилителей ЛИТЕРАТУРА |
Биполярный транзистор – Citizendium
| Основной артикул | Обсуждение | Статьи по теме [?] | Библиография [?] | Внешние ссылки [?] | Версия для цитирования [?] |
| ||||||||||||
Эта редактируемая основная статья в разработке и подлежит отказу от ответственности . [изменить введение] |
Содержание
- 1 История
- 2 Операция
- 2.1 Коэффициент усиления по току β
- 2.2 Выходное сопротивление r O
- 2.3 Зависимость от частоты
- 3 Каталожные номера
(PD) Изображение: John R. Brews
Планар npn биполярный переходной транзистор, который может быть встроен в интегральную схему.
В электронике биполярный транзистор , более полно биполярный переходной транзистор , представляет собой полупроводниковое устройство с тремя выводами, используемое для коммутации и усиления. По идее, он состоит из двух pn диодов, расположенных «спина к спине», образующих сэндвич pnp или npn , где p относится к полупроводнику, легированному для создания положительно заряженных носителей (дырок) и npn . 0045 n относится к полупроводнику, легированному для получения отрицательно заряженных носителей (электронов). Более того, центральная область достаточно тонкая, чтобы позволить носителям, инжектированным из одного из крайних слоев ( эмиттер E ), фактически диффундировать через центральную область ( база B ) и собираться другим концом. регион (коллектор C ).
Очень небольшие изменения напряжения перехода эмиттер-база имеют экспоненциальное влияние на количество носителей, инжектируемых из эмиттера, поэтому база имеет огромный контроль над током, протекающим через базу к коллектору. Кроме того, ток, потребляемый базой при нормальной работе, очень мал, поэтому устройство хорошо служит для усиления либо сигнала тока, либо сигнала напряжения, подаваемого на базу.
История
Биполярный транзистор был исторически первым изобретенным транзистором. До изобретения полупроводниковых устройств в 1947 году Бардином, Браттейном и Шокли из Bell Laboratories полупроводниковые устройства представляли собой только двухконтактные устройства, такие как диоды и выпрямители. Дополнительную информацию об истории и развитии этого устройства можно найти в исторической статье Shockley [1] и в более поздней истории. [2]
Эксплуатация
(PD) Изображение: John R. Brews
Ленточная диаграмма биполярного транзистора npn со смещением в активном режиме.
Биполярный транзистор может работать в нескольких режимах, отличающихся тем, какие переходы инжектирующие (прямое смещение эмиттер-база или коллектор-база или оба) и собирающие (обратное смещение эмиттер-база или коллектор-база, или оба ). Здесь основное внимание уделяется активной моде , в которой переход эмиттер-база инжектирует, а переход коллектор-база собирает. Этот режим обычно используется в аналоговых схемах.
Используя полосную диаграмму, показанную справа, можно понять операцию. На схеме показан npn-транзистор со смещением в активном режиме. Это одномерное сечение по вертикали через центр излучателя. 9Зона проводимости 0045 , обозначенная CB , показывает наименьшую энергию электрона (в электрон-вольтах или энергии, деленной на заряд электрона) в зоне проводимости полупроводника в зависимости от положения в npn-транзисторе. Валентная зона , обозначенная как VB , показывает самую высокую энергию электронов в валентной зоне полупроводника. Эти два энергетических уровня разделены энергетической щелью полупроводника , областью запрещенной энергии для электрона. CB и VB различаются по положению внутри транзистора по двум причинам: различия в уровнях легирования от n- до p- и n- слоев типа, а также изменения электрического потенциала в структуре.
Если смещение не применяется, края полос изменяются, поскольку атомы примеси определяют количество носителей, и полосы должны корректировать положение, чтобы обеспечить правильную плотность носителей. Уровни Ферми основных носителей в различных областях показаны как определяемые уровнями легирующей примеси: E Fn для электронов в свободном от поля объеме эмиттера, E Fp для дырок в свободной от поля части базы и E Fn для электронов в поле -свободный объем коллектора. Если смещения сведены к нулю, все эти уровни Ферми совпадают. Подробнее см. в статьях о полупроводниках и полупроводниковых диодах.
Когда применяется смещение, относительные энергии различных областей изменяются, нарушая равновесие и вызывая корректировку краев полосы в ответ. Уровни Ферми разделяются приложением напряжения смещения к переходам. Прямое смещение V BE разделяет дырочный уровень Ферми в базе и электронный уровень Ферми в эмиттере. Аналогично, обратное смещение V CB разделяет электронный уровень Ферми в объемном коллекторе от дырочного уровня Ферми в бесполевой области базы.
Переход база-эмиттер смещен в прямом направлении, то есть база сделана положительной по отношению к эмиттеру, притягивая электроны. Это прямое смещение V BE уменьшает барьер φ n препятствующий проникновению электронов в базу. Поскольку барьер меньше, электроны входят в базу, повышая концентрацию электронов в базе выше нормального равновесного уровня и создавая градиент концентрации электронной плотности поперек базы. Этот градиент управляет диффузионным потоком электронов через базу (транспорт в соответствии с законом диффузии Фика) к коллектору. При этом коллектор смещен в обратном направлении напряжением V CB по отношению к базе, т. е. сделан положительным по отношению к базе, поэтому притягивает электроны. Это притяжение уменьшает плотность электронов на стороне коллектора базы, увеличивая градиент электронной плотности в свободной от поля части базы. Электроны, диффундирующие через базу, в конце концов достигают конца области без поля и попадают в ускоряющее электрическое поле, создаваемое обратным смещением на коллекторе. Затем транспорт электронов переключается с диффузии за счет градиента носителей на дрейф под действием электрического поля.
Сильное влияние смещения база-эмиттер на ток коллектора можно понять с точки зрения его большого влияния на плотность электронов на границе раздела база-эмиттер. Число электронов на вершине барьера в exp(− φ n / V th ) меньше, чем плотность в самом эмиттере. Здесь В th — это так называемое тепловое напряжение , определяемое по формуле:
- Vth = kBTq , {\ displaystyle V_ {th} = {\ frac {k_ {B} T} {q}} \,}
, где k B — постоянная Больцмана, а T — температура в кельвинах. При 290 К В й ≈ 25 мВ. Таким образом, изменение высоты этого барьера за счет приложенного смещения на В BE означает, что плотность электронов на вершине барьера становится больше в exp( В BE / В th ), большой экспоненциальный рост.
Используя тот же аргумент, обратная инжекция дырок из базы в эмиттер также увеличивается с тем же экспоненциальным коэффициентом. Эти дырки рекомбинируют с электронами в эмиттере и образуют паразитное потребление тока, которое должно обеспечиваться базовым током.
Биполярный транзистор с гетеропереходом пытается уменьшить обратную инжекцию дырок в эмиттер за счет включения эмиттера с широкой запрещенной зоной, который увеличивает барьер φ p без увеличения φ n путем изменения выравнивания валентности зоны эмиттера и базы без существенного изменения выравнивания зоны проводимости. Точно так же базовые материалы с узкой запрещенной зоной могут уменьшить электронный барьер без снижения дырочного барьера за счет перестройки зон проводимости эмиттера и базы без существенного изменения выравнивания валентной зоны. [3]
Коэффициент усиления по току β
(PD) Изображение: John R. Brews
График Гуммеля и коэффициент усиления по току для биполярного транзистора с гетероструктурой GaAs/AlGaAs. [4]
В приложениях ключевым параметром является усиление биполярного тока, отношение постоянного тока коллектора к постоянному току эмиттера, обычно называемое усилением тока с общим эмиттером и обозначаемое β . Ввиду сходства между прямой инжекцией электронов из эмиттера в базу и обратной инжекцией дырок в эмиттер можно было бы простительно ожидать небольшой разницы. Тем не менее, структура может быть спроектирована таким образом, чтобы значительно способствовать инжекции прямого тока по сравнению с инжекцией дырок обратно. На сравнение влияют несколько факторов. Во-первых, сильное легирование эмиттера и слабое легирование базы увеличит плотность электронов на барьере φ n по сравнению с плотностью отверстий при φ p . Кроме того, увеличение градиента плотности носителей в базе увеличит ток диффузии электронов, что позволяет предположить, что узкая база способствует прямой инжекции. (Узкое основание увеличивает градиент, приближая высокую плотность электронов вблизи эмиттера к низкой плотности рядом с коллектором.) Точно так же более низкий градиент плотности дырок в эмиттере будет подавлять обратную инжекцию. В отличие от базы, где коллектор с обратным смещением обеспечивает низкую плотность носителей на дальней стороне базы, в эмиттере эту функцию выполняет рекомбинация дырок на границе металлического или поликремниевого контакта с эмиттером. Выяснилось, что контакт из поликремния выгоден тем, что ток дырок в поликремнии уменьшен по сравнению с кремнием не из-за влияния на градиент концентрации дырок, а из-за того, что в поликремнии протекает гораздо меньший ток, чем в кристаллическом кремнии при том же градиенте.
На рисунке показана диаграмма Гуммеля для одного биполярного транзистора. [5] Это логарифмический график токов коллектора и базы в зависимости от напряжения база-эмиттер , в идеале две прямые линии, разделенные коэффициентом усиления по току β . Этот график полезен для демонстрации диапазона смещения, в котором токи следуют этой экспоненциальной зависимости от напряжения база-эмиттер, центра этого графика и начала неидеального поведения при высоких и низких уровнях тока. Это также позволяет оценить зависимость текущего уровня усиления от текущего уровня.
Выходное сопротивление
r O(PD) Изображение: John R. Brews для различных вариантов тока базы I B , показывающая экстраполяцию асимптот к раннему напряжению.
В аналоговых устройствах, таких как токовые зеркала или активные нагрузки, важно, чтобы транзистор имел большое выходное сопротивление. Такие схемы имитируют источник тока или сток тока, и сопротивление Нортона такой схемы должно быть большим для идеального поведения.
Выходное сопротивление, обычно обозначаемое как r O , является мерой того, какое изменение напряжения коллектор-база необходимо, чтобы вызвать заданное изменение выходного тока транзистора, когда транзистор находится в активном режиме. Причина, по которой изменение V CB изменяет ток, заключается в том, что ширина области нейтральной базы, где ток определяется градиентом плотности носителей, сужается, когда переход CB становится более смещенным в обратном направлении. Поэтому градиент плотности носителей , представляющий собой разницу между высокой плотностью вблизи эмиттера и низкой плотностью вблизи коллектора, деленную на ширину нейтральной базы, увеличивается с увеличением обратного смещения CB-перехода. Это явление называется либо модуляция ширины базы или Ранний эффект . [6] Согласно простой эмпирической модели (см. рисунок) выходное сопротивление определяется выражением:
- rO=∂VCE∂IC|IB=константа=VA+VCEIC(IB, VCE) , {\displaystyle r_{O}=\left.{\frac {\partial V_{CE}}{\partial I_{ C}}} \ right | _ {I_ {B} = {\ text {константа}}} = {\ frac {V_ {A} + V_ {CE}} {I_ {C} (I_ {B}, \ V_ {CE})}}\ ,}
, где В A называется Раннее напряжение и является параметром, входящим в большинство моделей транзисторов. текущий I C (I B , V CE ) — ток коллектора, оцененный при выбранном базовом токе и выбранном напряжении. V CE . Напряжение В CE используется вместо В CB , потому что выходное сопротивление подключено между коллектором и эмиттером в модели гибридного пи (обсуждается в разделе о частотной зависимости ниже), что удобно но физически немотивирован. Поскольку В BE относительно невелико и не сильно меняется, разница между напряжением CB и напряжением CE в этом определении является второстепенной.
На рисунке показан наклон выходного тока как 1/ r O и показано, как он увеличивается (как r O уменьшается, как следует из формулы) по мере увеличения тока коллектора.
Упрощенная модель соотношения ток-напряжение постоянного тока для биполярного устройства в активном режиме, включая эффект Раннего, выглядит следующим образом: 9{\ left (v_ {BE} / V_ {th} \ right)} -1 \ right) \ left (1 + {\ frac {v_ {CE}} {V_ {A}}} \ right) \,}
где β 0 — значение β , экстраполированное на В CE =0, В th — уже упомянутое тепловое напряжение 0076 является параметром который варьируется от устройства к устройству, называемому током насыщения . Выражение базового тока представляет собой простой диодный закон для EB-перехода.
Частотная зависимость
(PD) Изображение: Джон Р. Брюз
Биполярная гибридная пи-модель с паразитными емкостями для моделирования частотной зависимости.
(PD) Изображение: John R. Brews
Зависимость частоты перехода от уровня тока коллектора в Si-Ge HBT. [8]
Другим важным качеством устройства является его скорость отклика на переходные сигналы. Биполярный транзистор является очень нелинейным устройством, поэтому его переходная характеристика для больших сигналов требует численного расчета. Тем не менее, некоторое представление можно получить, используя модель слабого сигнала и рассматривая устройство для небольших вариаций состояния покоя (его Q-точка ). Такая схема показана на рисунке для устройства, смещенного в активном режиме, модели hybrid-pi . Эта схема уменьшает проблему частотной характеристики до постоянных времени RC , связанных с зарядом и разрядом различных емкостей через соответствующие им резисторы.
Чтобы свести частотную характеристику к одному числу (по общему признанию, ограниченная сводка достоинств) так называемая частота перехода , обозначенная f T или f t . Эта частота определяется путем изучения коэффициента усиления тока короткого замыкания транзистора, который можно оценить с помощью гибридной пи-модели в конфигурации с общим эмиттером. При подаче на базу тока слабого сигнала и замыкании коллектора на эмиттер, который заземлен, ток, втекающий в транзистор через коллектор, равен:
- ic = (gm-jωCμ) vπ , {\ displaystyle i_ {c} = \ left (g_ {m} -j \ omega C _ {\ mu} \ right) v _ {\ pi} \,}
, а ток сигнала связан с входным напряжением v π соотношением:
- = (jω (Cπ + Cμ) + 1 / rπ) vπ . {\ displaystyle i_ {s} = \ left (j \ omega (C _ {\ pi} + C _ {\ mu}) + 1 / r_ {\pi }\right)v_{\pi }\ .}
Коэффициент усиления по току соответственно:
- icis=gm−jωCμjω(Cπ+Cμ)+1/rπ=gmrπ−jωCμrπ1+jω(Cπ+Cμ)rπ .{\displaystyle {\frac {i_{c}}{i_{s}}}= {\ frac {g_ {m} -j \ omega C _ {\ mu}} {j \ omega (C _ {\ pi} + C _ {\ mu}) + 1 / r _ {\ pi}}} = {\ frac { g_{m}r_{\pi}-j\omega C_{\mu}r_{\pi}}{1+j\omega (C_{\pi}+C_{\mu})r_{\pi}}} \ . }
Если мы вызовем отношение:
- gmrπ = ICVth VthIB = ICIB = β , {\ displaystyle g_ {m} r _ {\ pi} = {\ frac {I_ {C}} {V_ {th}}} \ {\ frac {V_ {th} }{I_{B}}}={\frac {I_{C}}{I_{B}}}=\beta \ ,}
с V th тепловое напряжение и I C , I B токи постоянного тока коллектора и базы, тогда:
- icis = β−jωCμrπ1 + jω(Cπ + Cμ) rπ , {\ displaystyle {\ frac {i_ {c}} {i_ {s}}} = {\ frac {\ beta -j \ omega C_ {\mu}r_{\pi}}{1+j\omega (C_{\pi}+C_{\mu})r_{\pi}}}\,}
что, естественно, обеспечивает коэффициент усиления транзистора по току нулевой частоты как β . Однако по мере увеличения частоты коэффициент усиления по току падает после прохождения угловой частоты , f > f C :
- fC = 12π (Cπ + Cμ) rπ . {\ displaystyle f_ {C} = {\ frac {1} {2 \ pi (C _ {\ pi} + C _ {\ mu}) r _ {\ pi}} }\ .}
Частота перехода , обозначенная как f T , определяется как частота, на которой усиление тока спадает до значения, равного единице:
- |icis|=1=|β1+jfT/fC| , {\ displaystyle \ left | {\ frac {i_ {c}} {i_ {s}}} \ right | = 1 = \ left | {\ frac {\ beta} {1 + jf_ {T}/f_ {C }}}\право|\ ,}
или
- fT ≈ βfC = gm2π (Cπ + Cμ) . {\ displaystyle f_ {T} \ приблизительно \ beta f_ {C} = {\ frac {g_ {m}} {2 \ pi (C _ {\ pi} + C_{\mu })}}\ .}
В активном режиме емкость C мк представляет собой емкость обеднения CB-перехода, который представляет собой слаболегированный переход с большой шириной обедненного слоя. Таким образом, эта емкость мала, скажем, 2 пФ. С другой стороны, C π включает сильнолегированную емкость EB-перехода и очень большую диффузионную емкость из-за инжектированных электронов и обычно составляет несколько сотен пФ. Это является оправданием довольно бесцеремонного игнорирования частотной зависимости в числителе jωC μ r π . Зависимость от частоты в знаменателе, зависящая от C π r π , будет доминировать над любым влиянием числителя, введенного C μ r π .
Как крутизна g m , так и диффузионная емкость в C π зависят от плотности тока коллектора, поэтому ожидается, что частота перехода будет меняться в зависимости от тока, и наблюдается зависимость тока, как показано на рисунке. Первоначально f T увеличивается из-за преобладания g m , но в конечном итоге ожидается насыщение, поскольку знаменатель и числитель становятся пропорциональными плотности тока. Однако на самом деле при высокой плотности тока частота перехода начинает уменьшаться, что является одним из многих неидеальных высокие эффекты впрыска .
Ссылки
- ↑ В. С. Шокли (1976). «Путь к концепции переходного транзистора». IEEE Trans Electron Dev. ED-23 : стр. 597 и далее .
- ↑ М. Риордан и Л. Ходдесон (1997). Хрустальный огонь: рождение века информации . WW Norton & Company. ISBN 0393041247.
- ↑ CK Maiti, GA Armstrong (2001). «Принцип SiGe HBT», Применение кремниево-германиевых гетероструктур . CRC Press, стр. 77 и далее . ISBN 0750307234.
- ↑ AG Baca и др., (2000). «Постоянный ток и микроволновые характеристики 100-вольтовых GaAs/AlGaAs HBT», Составные полупроводниковые силовые транзисторы II: материалы тридцать второго международного симпозиума . электрохимическое общество; Отдел электроники, с. 131. ISBN 1566772664.
- ↑ Назван в честь Германа К. Гаммеля из Bell Laboratories, пионера численного моделирования биполярного транзистора и автора модели Гуммеля-Пуна, широко используемой для биполярного транзистора.
- ↑ Ранний эффект назван в честь Джеймса М. Эрли, одного из ученых Bell Laboratories, участвовавших в разработке биполярного транзистора.
- ↑ Ричард С. Джагер (1997). «§5.12: Ранний эффект и раннее напряжение», Проектирование микроэлектронной схемы . McGraw-Hill, 196 ff . ISBN 0-07-114386-6. Эти уравнения не включают такие вещи, как текущая зависимость β , и предназначены только для качественного анализа.
- ↑ На основе рисунка 5.5 в Джон Д. Кресслер, Гофу Ню (2003). Кремний-германиевые биполярные транзисторы с гетеропереходом . Артех Хаус, с. 148. ISBN 1580533612.
Общие сведения о биполярных транзисторах с гетеропереходом (HBT)
Радха Сетти, технический консультант, Mini-Circuits
Введение
До изобретения транзистора телефонные станции строились с использованием громоздких электронных ламп и механических реле. Перед инженерами Bell Labs была поставлена задача разработать транзистор (сочетание «передаточный резистор») как меньшую и менее громоздкую альтернативу существующей технологии. Изобретение в 1947 ознаменовал начало полупроводниковой промышленности, навсегда изменившей мир. Джон Бардин, Уолтер Браттейн и Уильям Шокли будут удостоены Нобелевской премии по физике в 1957 году за исследования полупроводников и открытие транзисторного эффекта. Транзисторы окажут глубокое влияние на быстрое развитие технологий от беспроводной связи к вычислениям и, в конечном счете, сформируют ландшафт информационного века. [1,2]
Самая ранняя версия устройства, которая должна была быть разработана и произведена, представляла собой однопереходный транзистор с использованием германия. Вскоре его заменил кремний, так как германий перестает работать при температуре выше 75°C [2], что делает его непрактичным для большинства применений. Постепенное улучшение характеристик, особенно рабочей частоты, побудило американского физика немецкого происхождения Герберта Кремера разработать теорию биполярного транзистора с гетеропереходом (HBT), в котором используются два или более различных полупроводниковых материала с разной шириной запрещенной зоны [3] для обеспечения работы на высоких частотах. Его работа принесла ему Нобелевскую премию в 2000 году [4]. Хотя теория была предложена еще в 1957 [4], производство HBT пришлось ждать до 1977 г., когда появилось оборудование, способное его производить; сначала с помощью MBE (молекулярно-лучевая эпитаксия), а затем с MOCVD (металлоорганическое химическое осаждение из паровой фазы) [5].
Следуя отраслевой тенденции к более широкому внедрению полупроводниковых технологий, Mini-Circuits представила широкополосные усилители MMIC серий MAR и MAV, в которых используется технология кремниевых гомопереходов, работающих на частоте до 2 ГГц. Удобство использования, выдающаяся производительность и низкая стоимость сделали эти устройства любимцами схемотехников. Но по мере того, как технология HBT стала доступной, были разработаны усилители серии ERA, использующие технологию HBT, сначала доведя рабочую частоту до 8 ГГц, а затем до 20 ГГц. Эти усилители не только увеличили рабочую частоту и обеспечили превосходный OIP3 (точка пересечения выходного сигнала третьего порядка), но и позволили еще больше упростить использование. Большинство усилителей HBT имеют широкополосное согласование на кристалле и поэтому требуют минимального количества внешних компонентов. Кроме того, HBT обеспечивают превосходный шум 1/f по сравнению с устройствами pHEMT, и по этой причине они предпочтительнее в некоторых приложениях, таких как усилители и генераторы.
В этой статье объясняется физика транзисторов с гомо- и гетеропереходом и обсуждаются преимущества конструкций усилителей HBT. Представлены результаты исследований надежности усилителей Mini-Circuits HBT, а также дана ссылка на полный портфель MMIC Mini-Circuits, разработанных с использованием технологии HBT. Настоятельно рекомендуется, чтобы читатели ознакомились с двумя предыдущими статьями этой серии по основам радиочастотных полупроводников [6] и технологии pHEMT [7], опубликованными в блоге Mini Circuits, чтобы получить наиболее полное представление об этой статье.
Конфигурации транзисторов
Прежде чем мы перейдем к преимуществам HBT по сравнению с транзисторами с гомопереходом, полезно рассмотреть основы транзисторов, символы и режимы работы.
Рис. 1. Транзисторы NPN и PNP.
Транзистор имеет три зоны; эмиттер, база и коллектор, и могут быть построены двумя разными способами, как NPN или PNP. NPN-транзистор имеет эмиттер, легированный N, базу, легированную P, за которой следует коллектор, легированный N, как показано на рисунке 1a) и представлено схематично на рисунке 1b). Неудивительно, что PNP-транзистор имеет эмиттер, легированный P, и базу, легированную N, за которой следует коллектор, легированный P, как показано на рисунке 1c) и схематично представлено на рисунке 1d). Направление стрелки на схемах 1b) и 1d) указывает на протекание тока, когда переход эмиттер-база смещен в прямом направлении.
Переходы эмиттер-база и база-коллектор могут быть смещены в прямом или обратном направлении, что приводит к четырем возможным комбинациям и вариантам использования [8], как показано в таблице 1. В транзисторе NPN поток тока управляется электронами, имеющими большую подвижность, чем дырки, что приводит к более высокой рабочей частоте.
База-излучатель | База-коллектор | Режим |
Прямое смещение | Обратное смещение | Прямое-активное |
Обратное смещение788 007 Отсечка | | |
Прямое смещение | Прямое смещение | Насыщенность |
Обратное смещение | Прямое смещение | Обратно-активное |
На рис. 2 показаны три возможные конфигурации NPN-транзистора: с общим эмиттером, общей базой и общим коллектором. Транзистор PNP также имеет аналогичную конфигурацию.
Рис. 2. Конфигурации смещения для NPN-транзистора.
В транзисторе эмиттер «испускает» электроны или дырки, которые «собираются» коллектором. Так что же такое база? Этим вопросом задаются многие начинающие и опытные инженеры. Уильям Шокли, один из изобретателей транзистора [9].] и лауреат Нобелевской премии описывает базу как «оригинальную структуру транзистора с точечным контактом, состоящую из пластины из германия n-типа и двух линейных контактов из золота, поддерживаемых пластиковым клином». Он продолжает: «Название «база», которое произошло от этой структуры, не имеет функционального значения, как «эмиттер» и «коллектор». См. Рисунок 3а для изображения исходного точечного транзистора и 3b) для его схематического изображения [9, 10].
Рис. 3. Оригинальный точечный транзистор.
В транзисторе, работающем в прямом направлении, небольшой ток базы управляет большим током коллектора, что приводит к усилению. Итак, у нас есть усилитель. В транзисторе NPN электроны из эмиттера попадают в базу путем диффузии, и их импульс переносит их к коллектору, где они собираются. Поскольку база относительно тонкая, в базе теряется очень мало электронов.
Обзор: Compound Semiconductors
По причинам, которые мы вскоре объясним, в HBT используются составные полупроводники. Давайте рассмотрим основы составных полупроводников.
В таблице 2 показан неполный список используемых элементов в центральной части периодической таблицы.
III | IV | В |
Ga | Ge | As |
In | Sb |
Таблица 2: Центральная часть периодической таблицы [4].
Два или более дискретных элемента в таблице 2 могут быть использованы для формирования составных полупроводников. В центре таблицы кремний (Si) и германий (Ge). Сплав Si и Ge, SiGe (пр. «SIGH-gee») используется в качестве одного из материалов в кремниевых ГБТ.
Согласно Крамеру [4], каждый элемент в столбце III может быть объединен с каждым элементом в столбце V с образованием так называемого соединения III-V. GaAs является одним из таких примеров. В HBT типичным примером является арсенид алюминия-галлия, AI x Ga 9.0075 1-x As где x — доля позиций столбца III в кристалле, занятых атомами Al, а 1-x — атомами Ga. Следовательно, у нас есть не просто 12 отдельных соединений, а непрерывный ряд материалов в зависимости от концентрации каждого из них в кристаллической структуре. В результате становится возможным создавать гетероструктуры с плавным изменением состава, в которых состав изменяется непрерывно, а не скачкообразно по всей структуре устройства. Это было в центре внимания Нобелевской лекции Кремера об открытии HBT. См. Рисунок 4 для графического изображения некоторых соединений [7].
Рис. 4. Зависимость постоянной решетки от ширины запрещенной зоны различных полупроводниковых материалов.
Физика работы биполярного транзистора с гомо- и гетеропереходом (HBT)
Главный вопрос: что такое HBT и как структуры с гетеропереходом улучшают работу транзистора? Диаграмма энергетических диапазонов может помочь ответить на этот вопрос. Учебное пособие по диаграммам энергетических диапазонов см. в предыдущей статье [6] в блоге Mini Circuits. На рисунке 5 показана диаграмма энергетических зон для HBT и NPN-транзисторов с гомопереходом в прямом активном режиме. Уровень вакуума не показан для простоты.
Электроны, инжектированные из эмиттера, преодолевают энергетический барьер qV n путем диффузии и попадают в базу. В общем, ширина базы невелика, и поэтому большая часть электронов проходит через базу из-за своего импульса и собирается коллектором. Однако небольшое количество электронов теряется из-за рекомбинации в области обеднения эмиттер-база и в области базы.
Теперь рассмотрим отверстия в основании, которые составляют большинство. Они попадают в излучатель, преодолевая энергетический барьер qV ph и qV p в транзисторе с гомопереходом и гетеропереходом соответственно. Обратите внимание, что qV p больше, чем qV ph на ΔE g , что является ключом к улучшению работы HBT, как мы увидим позже.
Рис. 5: Диаграмма энергетического диапазона, токи; биполярный транзистор с гомопереходом и гетеропереходом.Различные токи в транзисторе, показанном на рисунке 5b), следующие:
I n : ток электронов от эмиттера к базе
I p : дырочный ток от базы к эмиттеру
I s : ток, обусловленный рекомбинацией электронов/дырок в смещенном вперед слое объемного заряда эмиттер-база
I r : ток, обусловленный объемной рекомбинацией в базе
I e : ток эмиттера = I n + I p + I s
I c : ток коллектора = I 6 n – Ir 36 I б : базовый ток = I p + I r + I s Пренебрегая I CO , обратный ток коллектор-база, коэффициент усиления по току с общим эмиттером определяется: Пренебрегая I r и , максимально достижимое значение β равно [11]: Где: N e и P b уровни легирования эмиттера и базы соответственно. v nb и v pe — средние скорости электронов от эмиттера к базе и дырок от базы к эмиттеру соответственно, обычно 5 < / < 50. k b — постоянная Больцмана. ΔE g — разница в запрещенной зоне между эмиттерным и основным материалами. T – температура в K. В транзисторе с гомопереходом ΔE g =0 и, следовательно, уравнение (2) упрощается до: Следовательно, для получения высокого β max (>100), эмиттер должен быть сильно легирован по сравнению с базой (N e > P b) . Сильное легирование эмиттера расширяет более слабо легированную область истощения базы, что приводит к изменению ширины базы по сравнению с изменением напряжения база-эмиттер, что, в свою очередь, вызывает модуляцию ширины базы, снижение линейности и, в худшем случае, сквозное прохождение. В хорошем HBT, например, с использованием AlGaAs в качестве эмиттера и GaAs в качестве базы, ΔE г ≈ 0,2 эВ При комнатной температуре k b T= 0,025 эВ и ΔE g / k b T = 8, Следовательно, ΔE g 3 ≈ T / k 000. В типичный HBT, N e / P b ≈ 1/10. То есть база сильно легирована по сравнению с эмиттером, что сводит к минимуму модуляцию ширины базы. Следовательно, β max = 5 х 0,1 х 3000 ≈ 1500, что является огромным числом. Следовательно, I p = I n / β max = I n /(1500), что пренебрежимо мало по сравнению с I n и им можно пренебречь. Это большое преимущество в HBT, так как он максимизирует усиление по току. Возвращаясь к уравнению (1), пренебрегая I p , Хорошо спроектированный HBT имеет β около 100. Рисунок 6: Типичное поперечное сечение HBT, толщина слоя и легирование [12]. Теперь рассмотрим практическую реализацию HBT на примере [12]. На рисунке 6 (а) показано типичное поперечное сечение HBT в его плоской реализации, а на рисунке 6 (b) — функция слоя, материал, толщина и легирование. В состав входят: Эта структура имеет максимальную частоту колебаний (f max ) 200 ГГц [13]. Сравните это с усовершенствованными гомопереходными транзисторами с f max 20 ГГц [5], улучшением в 10 раз. частота среза и максимальная частота колебаний f max используются в качестве показателей качества для HBT. Коэффициент усиления по току с общим эмиттером/частота среза определяется как: Где: t ee = время зарядки эмиттер-база, пропорциональное емкости эмиттер-база. В HBT это, как правило, низкое значение. t b = базовое время прохождения, также низкое в HBT из-за тонкого базового слоя. t c = время прохождения коллектора через обедненный слой, пропорциональное емкости коллектор-база. Это поддерживается на низком уровне благодаря низкому легированию коллектора. t куб.см = время прохождения коллектора. Максимальная частота колебаний определяется как: В котором указано, что более низкое сопротивление базы R B и более низкая емкость коллектора по отношению к базе C BC увеличивает максимальную частоту колебаний. Разработчики Epi оптимизируют все эти параметры для достижения желаемой производительности. Вкратце: Технология HBT дополняет pHEMT для более высокой частоты операций, но имеет несколько явных преимуществ, как показано ниже: Шум – это нежелательные флуктуации тока, проходящего через полупроводниковые материалы или устройства [13]. Поскольку нежелательный шум накладывается на полезный сигнал, это ухудшает отношение сигнал/шум. Мерцающий шум обратно пропорционален частоте и обычно называется 1/f-шумом, который увеличивается с уменьшением частоты. Поэтому очень важно при малых частотах смещения от несущей частоты. Фликер-шум является функцией поверхностных дефектов. В HBT ток течет перпендикулярно поверхности (см. рис. 7a), поэтому вклад шума 1/f минимален. Сравните это с pHEMT, где ток течет по поверхности (см. рис. 7b), поэтому шум 1/f обычно выше в pHEMT, чем в HBT. Рисунок 7: Направление тока в HBT и pHEMT. Измеренные аддитивные фазовый и амплитудный шумы усилителей HBT (GALI-39+, ERA-39+) и усилителя pHEMT (PSA-545+) показаны на рис. 8. Рис. 8: Аддитивные фазовый и амплитудный шумы усилителей HBT и pHEMT. На рис. 8 четко показаны превосходные характеристики усилителей HBT, выбранных для требовательных приложений усилителей и генераторов. Mini-Circuits проводит HTOL (испытания на срок службы при высоких температурах) своих моделей усилителей на основе HBT, чтобы продемонстрировать надежность и рассчитать среднее время наработки на отказ (MTTF). Далее следует пример. Модель GVA-81+ подвергается HTOL в течение 5000 часов при температуре перехода 148℃ на 80 образцах. Расчетное значение MTTF, основанное на этих тестах, показано на рис. 9. Рис. 9: MTTF в зависимости от температуры перехода для усилителя MMIC на основе GVA-81+ HBT. Обратите внимание, что при максимальной рабочей температуре и номинальном токе Tj составляет 121℃. Из рисунка 7 при 121℃ среднее время безотказной работы составляет 3,6 x 10 9 .0015 6 часов (или 415 лет) при достоверности 90%. Это чрезвычайно надежно. Детали Mini-Circuits спроектированы с учетом высокой надежности в соответствии с конструктивными требованиями. Конструкторы принимают во внимание тепловые аспекты и ориентируются на Tj ниже 130 ℃ при самой высокой температуре окружающей среды. Это подтверждается с помощью тепловидения, а надежность подтверждается с помощью HTOL (примечание 1). Если эти условия не выполняются, продукт перерабатывается. Технология HBT совершенствовалась на протяжении многих лет, что привело к созданию высоконадежных усилителей СВЧ и миллиметрового диапазона с превосходными характеристиками в широкополосном диапазоне до 20 ГГц. Шумовые характеристики 1/f HBT сравнимы с характеристиками кремниевых транзисторов, поэтому они предпочтительнее в критических усилителях. Mini-Circuits предлагает широкий ассортимент усилителей HBT, доступных в различных пластиковых и керамических корпусах. Преимущества HBT по сравнению с pHEMT [5].
HBT pHEMT Скорость электронов определяется тонкими вертикальными слоями, реализуемыми путем эпитаксиального роста, что приводит к работе в диапазоне миллиметровых волн. Достаточно литографии размером 1-3 мкм. Требуется литография от 0,2 до 0,5 мкм для аналогичной рабочей частоты, что делает ее более дорогой. Уменьшенный эффект захвата и меньший шум 1/f являются результатом потока носителей в основном через активные переходы, изолированные от поверхностей и подложки, и сравнимы с кремниевыми транзисторами с гомопереходом. В полевых транзисторах носители перемещаются между поверхностями и границами раздела активный канал-подложка, испытывая больший эффект захвата. Шум
Надежность
Выводы
Ссылки