Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

реальность и фантазии. Альтернативные источники энергии

Ни для кого не секрет, что используемые сегодня человечеством ресурсы конечны, более того, их дальнейшая добыча и использование может привести не только к энергетической, но и к экологической катастрофе. Традиционно используемые человечеством ресурсы — уголь, газ и нефть — закончатся уже спустя несколько десятилетий, и меры нужно принимать уже сейчас, в наше время. Конечно, можно надеяться, что мы вновь найдем какое-либо богатое месторождение, так же как было в первой половине прошлого века, однако ученые уверены, что таких крупных залежей уже нет. Но в любом случае даже открытие новых месторождений только отсрочит неизбежное, необходимо найти способы производства альтернативной энергии, и переходить на возобновляемые ресурсы, такие как ветер, солнце, геотермальная энергия, энергия водных потоков и другие, а наряду с этим нужно продолжать разработки энергосберегающих технологий.

В этой статье мы рассмотрим несколько самых перспективных, на взгляд современных ученых, идей, на которых будет строиться энергетика будущего.

Солнечные станции

Люди издавна задумывались над тем, возможно ли использование энергии солнца на земле. Под солнечными лучами нагревали воду, сушили одежду и глиняную посуду перед ее отправкой в печь, однако эти способы нельзя назвать эффективными. Первые технические средства, преобразующие солнечную энергию, появились еще в 18 веке. Французский ученый Ж. Бюффон показал опыт, в котором ему удалось с помощью большого вогнутого зеркала в ясную погоду воспламенить сухое дерево с расстояния около 70 метров. Его соотечественник, известный ученый А. Лавуазье, применял линзы, чтобы концентрировать энергию солнца, а в Англии создали двояковыпуклое стекло, которое, фокусируя солнечные лучи, расплавляло чугун всего за несколько минут.

Естествоиспытатели проводили множество опытов, которые доказывали, что использование энергии солнца на земле возможно. Однако солнечная батарея, которая превращала бы солнечную энергию в механическую, появилась сравнительно недавно, в 1953 году. Ее создали ученые из Национального аэрокосмического агентства США. Уже в 1959 году солнечную батарею впервые применили для оснащения космического спутника.

Возможно уже тогда, осознав, что в космосе такие батареи гораздо эффективнее, ученым пришла идея о создании космических солнечных станций, ведь за час солнце вырабатывать столько энергии, сколько все человечество не потребляет и за год, так почему же не использовать это? Какой будет солнечная энергетика будущего?

С одной стороны кажется, что использование солнечной энергии идеальный вариант. Однако себестоимость огромной космической солнечной станции очень высока, да и к тому же она будет дорога в эксплуатации. Со временем, когда будут введены новые технологии по доставке грузов в космос, а также новые материалы, реализация подобного проекта станет возможной, но пока мы можем пользоваться только относительно небольшими батареями на поверхности планеты. Многие скажут, что это тоже неплохо. Да, возможно в условиях частного дома, но для энергообеспечения больших городов, соответственно, необходимо либо множество солнечных батарей, либо технология, которая сделает их эффективнее.

Экономическая сторона вопроса здесь тоже присутствует: любой бюджет сильно пострадает, если на него будет возложена задача перевести целый город (или всю страну) на солнечные батареи. Казалось бы, можно обязать жителей городов выплачивать некоторые суммы на переоснащение, но в таком случае недовольны будут они, ведь если бы люди готовы были бы пойти на такие траты, они уже давно сделали бы это сами: возможность купить солнечную батарею есть у каждого.

Касательно солнечной энергии есть и еще один парадокс: затраты на производство. Перевод энергии солнца в электричество напрямую — не самая эффективная вещь. До сих пор еще не найдено способа лучше, чем использовать солнечные лучи для нагревания воды, которая, превращаясь в пар, в свою очередь вращает динамо-машину. В таком случае энергопотеря минимальна. Человечество хочет использовать “экологичные” солнечные панели и солнечные станции, чтобы сохранить ресурсы на земле, однако для подобного проекта потребуется огромное количество тех же ресурсов, и “неэкологичной” энергии. Например, во Франции недавно была построена солнечная электростанция, площадью около двух квадратных километров. Стоимость постройки составила около 110 миллионов евро, не считая затрат на эксплуатацию. При всем этом следует учитывать, что срок службы подобных механизмов составляет около 25 лет.

Ветер

Энергия ветра — также использовалась людьми еще с древности, самым простым примером можно назвать хождение под парусом и ветряные мельницы. Ветряки используются и сейчас, особенно они эффективны в областях с постоянными ветрами, например на побережье. Ученые постоянно выдвигают идеи, как модернизировать уже имеющиеся приспособления для преобразования ветряной энергии, одна из них – ветряки в виде парящих турбин. За счет постоянного вращения они могли бы “висеть” в воздухе на расстоянии нескольких сотен метров от земли, где ветер сильный и постоянный. Это помогло бы в электрификации сельской местности, где невозможно использование стандартных ветряков. К тому же такие парящие турбины могли бы быть оснащены интернет-модулями, с помощью которых осуществлялось бы обеспечение людей доступом в мировую паутину.

Приливы и волны

Бум на солнечную и ветряную энергетику постепенно проходит, и интерес исследователей привлекла другая природная энергия. Более перспективной считается использование приливов и отливов. Уже сейчас этим вопросом занимается около ста компаний по всему миру, существует и несколько проектов, доказавших эффективность данного способа добычи электричества. Преимущество перед солнечной энергетикой в том, что потери при переводе одной энергии в другую минимальны: приливная волна вращает огромную турбину, которая и вырабатывает электричество.

Проект “Устрица” — это идея установить на дне океана шарнирный клапан, который будет подавать воду на берег, тем самым вращая простую гидроэлектрическую турбину. Всего одна такая установка могла бы обеспечить электричеством небольшой микрорайон.

Уже сейчас в Австралии успешно применяют приливные волны: в городе Перте установлены опреснители, работающие на этом типе энергии. Их работа позволяет обеспечить пресной водой около полумиллиона человек. Природная энергетика и промышленность также могут сочетаться в этой отрасли производства энергии.

Использование энергии приливов и отливов несколько отличается от технологий, которые мы привыкли видеть в речных гидроэлектростанциях. Часто ГЭС наносят вред окружающей среде: затопляются прилегающие территории, разрушается экосистема, а вот станции, работающие на приливных волнах, в этом плане гораздо безопаснее.

Энергия человека

Одним из самых фантастических проектов в нашем списке можно назвать использование энергии живых людей. Звучит ошеломляюще и даже несколько ужасающе, но не все так страшно. Ученые лелеют мысль о том, как использовать механическую энергию движения. Речь в этих проектах идет о микроэлектронике и нанотехнологиях с низким энергопотреблением. Пока звучит как утопия, реальных разработок нет, но идея весьма интересная и не покидает умы ученых. Согласитесь, весьма удобны будут устройства, которые подобно часам с автоматической подзаводкой, будут заряжаться от того, что по сенсору проводят пальцем, или от того, что планшет или телефон просто болтается в сумке при ходьбе. Не говоря уж об одежде, которая, наполненная разными микроустройствами, могла бы преобразовывать в электричество энергию движения человека.

В Беркли, в лаборатории Лоуренса, например, ученые попытались воплотить в жизнь идею о том, чтобы использовать вирусы для преобразования энергии давления в электричество. Небольшие механизмы, работающие от движения, так же имеются, однако пока что на поток подобная технология не поставлена. Да, с глобальным энергетическим кризисом подобным образом не справиться: скольким же людям придется “крутить педали”, чтобы заставить работать целый завод? Но как одна из мер, применяемых в комплексе, теория вполне жизнеспособна.

Особенно подобные технологии будут эффективны в труднодоступных местах, на полярных станциях, в горах и тайге, среди путешественников и туристов, у которых не всегда есть возможность зарядить свой гаджет, а вот оставаться на связи важно, особенно если группа попала в критическую ситуацию. Как много всего можно было бы предотвратить, если бы у людей всегда было надежное устройство связи, не зависящее “от розетки”.

Топливные ячейки водорода

Пожалуй, у каждого владельца авто, глядящего на индикатор количества бензина, приближающийся к нулю, возникала мысль о том, как отлично было бы, если бы машина работала на воде. Но сейчас ее атомы попали в поле зрения ученых как настоящие объекты энергетики. Дело в том, что в частицах водорода — самого распространенного газа во вселенной — содержится громадное количество энергии. Более того, двигатель сжигает этот газ практически без побочных продуктов, то есть, мы получаем очень экологичное топливо.

Водородом заправляют некоторые модули МКС и шатлы, но на Земле он существует в основном в виде соединений, таких как вода. В восьмидесятых годах в России были разработки самолетов, использующих в качестве топлива водород, эти технологии даже применяли на практике, и экспериментальные модели доказали свою эффективность. Когда водород отделяется, он перемещается в специальную топливную ячейку, после чего возможна генерация электричества напрямую. Это не энергетика будущего, это уже реальность. Подобные автомобили уже производятся и довольно большими партиями. Компания Honda, дабы подчеркнуть универсальность источника энергии и авто в целом, провела эксперимент в результате которого машина была подключена к электрической домашней сети, однако не для того, чтобы получить подзарядку. Автомобиль может обеспечивать энергией частный дом в течение нескольких дней, или проехать без дозаправки почти пятьсот километров.

Единственный недостаток подобного источника энергии на данный момент — это относительно высокая стоимость таких экологичных машин, и, конечно, достаточно небольшое количество водородных заправок, однако во многих странах уже планируется их постройка. Например, в Германии уже стоит план об установке ста заправочных станций к 2017 году.

Тепло земли

Превращение тепловой энергии в электричество — это и есть сущность геотермальной энергетики. В некоторых странах, где затруднено использование других отраслей, она используется довольно широко. Например, на Филлипинах 27 % всего электричества приходится именно на геотермальные станции, а в Исландии этот показатель составляет около 30 %. Сущность этого способа добычи энергии довольно проста, механизм схож с простой паровой машиной. До предполагаемого “озера” магмы необходимо пробурить скважину, через которую подается вода. При контакте с раскаленной магмой вода мгновенно превращается в пар. Он поднимается, где крутит механическую турбину, тем самым вырабатывая электричество.

Будущее геотермальной энергетики состоит в том, чтобы найти большие “хранилища” магмы. Например, в вышеупомянутой Исландии это удалось: раскаленная магма за долю секунды превратила всю закачанную воду в пар температурой около 450 градусов по Цельсию, что является абсолютным рекордом. Подобный пар высокого давления способен повысить эффективность геотермальной станции в несколько раз, это может стать толчком к развитию геотермальной энергетики во всем мире, особенно в областях, насыщенных вулканами и термальными источниками.

Использование ядерных отходов

Атомная энергетика, в свое время, произвела настоящий фурор. Так было до тех пор, пока люди не осознали всю опасность этой отрасли энергетики. Аварии возможны, от подобных случаев никто не застрахован, но они весьма редки, а вот радиоактивные отходы появляются стабильно и до недавнего времени ученые не могли решить эту проблему. Дело в том, что стержни урана — традиционное “топливо” АЭС, может быть использовано только на 5 %. После выработки этой небольшой части, весь стержень отправляется на “свалку”.

Ранее применялась технология, при которой стержни погружались в воду, которая замедляет нейтроны, поддерживая устойчивую реакцию. Сейчас вместо воды стали использовать жидкий натрий. Эта замена позволяет не только использовать весь объем урана, но и переработать десятки тысяч тонн радиоактивных отходов.

Избавить планету от отходов атомной энергетики важно, но в самой технологии есть одно “но”. Уран относится к ресурсам, и его запасы на Земле конечны. В случае если всю планету перевести исключительно на энергию, получаемую от АЭС (к примеру, в США АЭС производят лишь 20% всего потребляемого электричества), запасы урана будут истощены довольно быстро, и это снова приведет человечество на порог энергетического кризиса, так что атомная энергетика, пусть и модернизированная, только временная мера.

Растительное топливо

Еще Генри Форд, создав свою “Модель Т”, рассчитывал, что она уже будет работать на биотопливе. Однако в то время были открыты новые нефтяные месторождения, и нужда в альтернативных источниках энергии отпала еще на несколько десятков лет, но теперь снова возвращается.

За последние пятнадцать лет использование растительных видов топлива, таких как этанол и биодизель, возросло в несколько раз. Их используют как самостоятельные источники энергии, так и в качестве добавок к бензину. Некоторое время назад надежды возлагались на особую просяную культуру, получившую название “канола”. Она совершенно непригодна в пищу ни для людей, ни для скота, однако обладает высокими показателями масличности. Из этого масла и стали производить “биодизель”. Но эта культура займет слишком много места, если попытаться вырастить ее столько, чтобы обеспечить топливом хотя бы часть планеты.

Теперь ученые заговорили об использовании водорослей. Их масличность около 50 %, что позволит так же легко извлекать масло, а отходы можно превращать в удобрения, на основе которых будут выращиваться новые водоросли. Идея считается интересной, но свою жизнеспособность пока что не доказала: публикация об успешных экспериментах в этой области пока не опубликовано.

Термоядерный синтез

Будущая энергетика мира, по мнению современных ученых, невозможна без технологий термоядерного синтеза. Это, на данный момент, самая перспективная разработка, в которую уже вкладывают миллиарды долларов.

В атомных электростанциях используется энергия деления. Она опасна тем, что есть угроза возникновения неуправляемой реакции, которая уничтожит реактор, и приведет к выбросу огромного количества радиоактивных веществ: пожалуй, все помнят аварию на Чернобыльской АЭС.

В реакциях термоядерного синтеза, что следует из названия, используется энергия, выделяемая при слиянии атомов. В результате, в отличие от атомного деления, не образуется никаких радиоактивных отходов.

Главной проблемой является то, что в результате термоядерного синтеза образуется вещество, имеющее настолько высокую температуру, что может уничтожить весь реактор.

Эта энергетика будущего — реальность. И фантазии здесь неуместны, на данный момент на территории Франции уже началась постройка реактора. Несколько миллиардов долларов вложено в экспериментальный проект, который профинансирован многими странами, в число которых, помимо ЕС, входят Китай и Япония, США, Россия и другие. Изначально первые эксперименты планировалось запустить уже в 2016 году, однако расчеты показали, что бюджет слишком мал (вместо 5 миллиардов потребовалось 19), и запуск перенесли еще на 9 лет. Возможно, через несколько лет мы увидим, на что способна термоядерная энергетика.

Проблемы настоящего и возможности будущего

Не только ученые, но и писатели-фантасты, дают множество идей для воплощения технологии будущего в энергетике, однако все сходятся на том, что пока что ни один из предложенных вариантов не может произвести полное обеспечение всех потребностей нашей цивилизации. К примеру, если все автомобили в США будут ездить на биотопливе, полями канолы придется засадить территорию, равную половине всей страны, без учета того, что земель, пригодных для земледелия в Штатах не так уж много. Более того, пока что все способы производства альтернативной энергии – дороги. Пожалуй, каждый из простых городских жителей, согласен, что важно использовать экологически чистые, возобновляемые ресурсы, однако не в случае, когда им озвучивают стоимость такого перехода на данный момент. Ученым предстоит еще много работать в этой сфере. Новые открытия, новые материалы, новые идеи – все это поможет человечеству успешно справиться с назревающим ресурсным кризисом. Решить энергетическую проблему планеты можно только комплексными мерами. В некоторых областях удобнее применять добычу энергии с помощью ветра, где-то – солнечные батареи, и так далее. Но, возможно, главным фактором станет снижение энергопотребления в целом и создание энергосберегающих технологий. Каждый человек должен понимать, что несет ответственность за планету, и каждый должен задать себе вопрос: “Какую энергетику я выбираю для будущего?” Прежде чем перейти на другие ресурсы, каждый должен осознать, что это действительно необходимо. Только при комплексном подходе удастся решить проблему энергопотребления.

fb.ru

10 источников энергии будущего / Альтернативная энергетика

Представляем вам список из десяти самых многообещающих источников энергии будущего.

10. Космические солнечные станции


Каждый час земля получает столько солнечной энергии, больше, чем земляне ее используют за целый год. Один из способов использование этой энергии, создание гигантских солнечных ферм, которые будут собирать часть высокоинтенсивного и бесперебойного солнечного излучения.

Огромные зеркала будут отражать солнечные лучи на коллектора меньшего размера. Затем эта энергия будет передаваться на землю с помощью микроволновых или лазерных пучков.

Одна из причин, почему этот проект находится на стадии идеи – это его огромная стоимость. Тем не менее, он может стать реальностью не в столь отдаленное время из-за развития гелеотехнологий и уменьшения стоимости вывоза грузов в космос.

9. Энергия человека

У нас уже есть устройство заряжаемое человеком, но ученые работают над тем, как получить энергию от обычного движения. Речь идет о микроэлектронике, но потенциал велик, при целевой аудитории в миллиард людей. Сегодня разрабатывается электроника, потребляющая все меньше энергии и однажды возможно, ваш телефон будет заряжаться, болтаясь в сумке, в кармане или в ваших руках и при вождением пальцем по экрану.

В национальной лаборатории Лоуренса в Беркли ученые представили устройство, использующие вирусы для трансформации давления в электричество. Это звучит потрясающе, но пока объяснить, как это работает невозможно. Так же есть небольшие переносные системы пассивно производящие энергию во время вашего движения. Энергия человека не спасет от глобального потепления, но может спасти любая мелочь.

8. Энергия волн и приливов

Обуздание всей энергии движения океана могло зарядить весь мир несколько раз, поэтому более 100 компаний работают над этим. Из-за упора на энергию солнца и ветра, приливную энергетику вытеснили из первых рядов, но она становится более эффективной.

Например, проект «Устрица» — это шарнирный клапан на дне океана, мощностью 2,4 МВт, которые открывая и закрывая, качают воду на берег, где она приводит в движение стандартную гидроэлектрическую турбину. Одна такая установка могла бы обеспечить энергией целый микрорайон или пару больших многоэтажек, то есть, около 2500 семей.

Еще один пример, крыловидная турбина «Терминатор», которую создал инженер из военно-воздушной академии США. Она использует принцип подъемной силы, а не винтовое вращение, что теоретически позволяет ей собирать 99% энергии волн, в отличии от 50%-й эффективности нынешних приливных станций.

В городе Перт в Австралии, впервые установили опреснительные установки, которые работают от энергии волн. Они обеспечивают пресной водой 500 тыс. жителей.

7. Водород (топливные ячейки)

rodovid.me

Энергетика будущего или какие бывают источники энергии

Идея использования альтернативных источников энергии прошла немалый путь развития, но серьезно о них, как о замене традиционным электростанциям, заговорили относительно недавно. Энергетика будущего – неоднозначное понятие. Эта область активно развивается в разных направлениях. Некоторые из них находятся на стадии лабораторных испытаний, некоторые уже применяются на практике.

Солнечная энергия

Среди всех альтернативных источников энергии на гелиоэнергетику возлагаются немалые надежды. Первые работающие технологии появились в 70-х  годах прошлого столетия. Сегодня солнечные электростанции уже используются на практике, хотя доля вырабатываемой ими энергии не велика.  Основные преимущества гелиоэнергетики – использование возобновляемых ресурсов и простотой принцип работы. Недостаток – немалая стоимость оборудования и зависимость от климатических условий.

Хорошо подходит использование энергии солнца для энергообеспечения удаленных районов, где возникают затруднения с прокладкой кабелей, сельской местности. Небольшие солнечные батареи можно использовать даже в качестве автономной электростанции для конкретно взятого дома.

Ветровая энергетика

Еще одно направление, способное стать альтернативой традиционной
энергетике. Впервые интерес к этому источнику энергии возник в 70-е годы прошлого век, в связи с нефтяным кризисом. Прошло десятилетие, и в сельских районах Европы, Индии, Китая заработали ветровые электрогенераторы.

Выработка электричества в таких электростанциях осуществляется за счет вращения лопастей, подключенных к генератору. Большая электростанция, оснащенная мощными турбинами, способна обеспечить основные нужды в энергоснабжении. Небольшие турбины и ветряки могут применяться в качестве автономных электрогенераторов. Недостатки ветровой энергетики те же, что и у солнечной – зависимость от климатических условий, высокая стоимость оборудования.

Справедливости ради стоит отметить, что над преодолением климатической зависимости альтернативных электростанций ведется весьма успешная работа. Уже разработаны электростанции, способные аккумулировать энергию даже в условиях плохой освещенности.

Геотермальная энергетика

В основе геотермальной энергетики лежит использование горячих источников. Пар источника направляется на турбину, которая своим движением приводит в силу электрогенераторы. Подобные станции уже работают в 24 странах мира. Первая из них была открыта в далеком 1904 году в городе Лардерелло в Италии. Так как источником энергии в таких станциях являются   геотермальные источники, их можно использовать только в местах нахождения последних, что является немалым ограничением для того, чтобы рассматривать этот метод в качестве энергетики будущего.

Энергия океанов

Океанами покрыта значительная часть поверхности земного шара, и возможность использования этого огромного неисчерпаемого ресурса могла бы стать отличной альтернативой традиционной углеводородной энергетике. Принцип действия приливных электростанций заключается в следующем. Область прилива делится плотиной на две зоны. Во время прилива и отлива вода перемещается по этим зонам, вращая турбины.

При всех своих преимуществах приливная энергетика имеет ограничения на свое использование. Строительство электростанции в зоне прилива потребует значительных капиталовложений. Для того, чтобы немалые инвестиции смогли окупиться, станция должна вырабатывать большое количество энергии, а значит, расстояние между двумя бассейнами должно быть не менее пяти метров. Это ограничение сразу делает повсеместное строительство электростанций на побережье морей и океанов невозможным, так как по критерию экономической целесообразности строительства на земле насчитается всего лишь порядка 40 мест, где электростанция действительно будет эффективной.

Водородная энергетика

Когда-то возможность использования водорода в качестве источника энергии считалась едва ли не панацеей для развития отрасли. Такое отношение определили преимущества водородной  энергетики. Основой получения энергии являются реакции водорода, во время которых выделяется тепло и вода, образуется электричество. Метод экологически чистый. Источник энергии – доступен и неисчерпаем. Водородная энергетика отличается высоким КПД.

Проблема, как всегда, в огромных инвестициях, необходимых для реализации подобных проектов. Еще одной немаловажной проблемой является отсутствие технологий, позволяющих контролировать температуру, образующуюся в ходе водородных реакций. Пока подобные технологии не будут разработаны, о повсеместном применении водорода в качестве источника энергии говорить не приходится.

Что в перспективе

Вышеперечисленные отрасли – далеко не единственные направления, в которых ведутся активные разработки. На сегодняшний день они являются наиболее изученными и внедренными в эксплуатацию на практике, в  отличие от, например, сложных технологий термоядерного синтеза, холодного ядерного синтеза и т. д.  Некоторые направления, напротив, давно и успешно применяются в качестве автономных источников, но  разработок, позволяющих им стать альтернативой традиционной энергетике пока нет. Примером таких направлений могут служить вихревые генераторы, которые с завидной регулярностью объявляются лженаукой, несмотря на немалый опыт практического использования.

В любом случае, говорить о том, что сейчас существуют технологии, способные полностью  вытеснить углеводороды, как основной источник энергии, не приходится. В США, странах Европы существует продолжительная (более 20 лет) практика внедрения энерготехнологий на основе возобновляемых источников энергии, но и там говорить о полной замене традиционных технологий «зелеными» не приходится. На настоящий момент альтернативные отрасли энергетики – идеальное решение для энегообеспечения удаленных и труднодоступных районов, сельской местности.

Самой большой проблемой внедрения альтернативных методов являются огромные капиталовложения в строительство станций, необходимость использования технологичного, дорогостоящего оборудования для захвата потока энергии и ее преобразования и аккумулирования.

В существующую силовую сеть альтернативные электростанции сейчас интегрировать невозможно. Не разработаны сейчас и методы, позволяющие скоординировать производство и потребление энергии. Солнечные, ветровые, приливные и другие подобные электростанции являются нерегулируемыми, поэтому на их долю должно приходиться не более 15% общей мощности силовой сети. В общей доле мирового энергобаланса на нетрадиционные источники  энергии приходится около 3%. Эти цифры выглядят весьма скромно, но именно с такими электростанциями все чаще связывают будущее энергетики.

В том случае, если произойдет переход от базовой к распределенной нагрузке электричества, альтернативная энергетика займет достойное место. Децентрализация энергопроизводства и энергообеспечения не просто повысит конкурентоспособность альтернативных источников, а позволит им занять основное место в системе.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru

Новости: Энергетика будущего: на сто лет вперед – Эксперт

Согласно их исследованию, уже к середине века уголь и нефть начнут терять свое значение в качестве источников энергии, ископаемое топливо заменится энергией солнца. Но для этого придется менять всю парадигму отношений внутри отрасли — и технологии, и психологию игроков.

Большая энерготройка

По мнению экспертов «Глобальной энергии» (в их число входят 20 ученых из различных стран мира, в том числе, например, и лауреат Нобелевской премии мира Родни Аллам), к 2100 году доля нефти и угля в мировом топливно-энергетическом балансе составит 2,1% и 0,9% соответственно, термоядерная энергетика займет десятую часть рынка, а более четверти всей мировой электроэнергии будет производиться благодаря солнцу. Причина таких изменений — постепенное снижение добычи углеводородов и переориентирование на строительство более чистых энергомощностей.

Изменится и влияние разных государств на рынке энергетики: так, к 2035 году крупнейшим производителем топливно-энергетических ресурсов будет США (24%), второе место займет Россия (21%) и Китай (16%). Однако через 50 лет, по оценкам экспертов, на первое место выйдет Россия (19%), Китай станет вторым (18%), а США «опустится» до третьего места (17%). К 2100 году, однако, диспозиция изменится вновь: на первое место вырвется уже Китай (20%), а Россия и США будут занимать вторую и третью строчки рейтинга (16% и 14% соответственно).

Эксперты назвали и факторы, которые, по их мнению, мешают топливно-энергетическому комплексу развиваться в «зеленом» направлении: более трети ученых, участвовавших в исследовании, отметили, что пока альтернативные источники энергии слишком дороги, а конкуренция со стороны углеводородной и ядерной энергетики высока. В то же время активно формируется образ «традиционной» энергетики как нежелательной и неэкологичной, кроме того, современная экономика требует более эффективного использования имеющихся ресурсов, развития переработки отходов и смежных технологий. В такой ситуации, по мнению экспертов, дополнительные стимулы к развитию получат такие направления, как биоэнергетика и разработка биотоплива, а также термоядерных реакторов.

Результаты исследования, представленные «Глобальной энергией» на Петербургском международном экономическом форуме, вызвали оживленную дискуссию о будущем энергетики в целом и энергетики России в частности. Тренды трендами, но стартовые позиции и структура экономики у разных стран (и разных регионов одной страны) все же отличаются, а значит, путь к тройке энергетических лидеров мира Россия, Китай и США будут проходить по-разному.

Угля станет меньше, но больше

Большинство экспертов считает, что одна из предпосылок к снижению доли углеводородов в мировом балансе, — это Парижские климатические соглашения, одной из главных тем которых было замораживание угольных проектов. Многие банки и финансовые институты заявили об отказе от инвестиций в угледобывающую сферу и энергетику. Планы масштабного строительства угольных электростанций остались только у четырех стран — Вьетнама, Индии, Индонезии и Китая, хотя есть и более мелкие игроки, не желающие отказываться от развития этого сектора экономики, в частности, Пакистан и Турция. Вместе с тем есть идеи и проекты по возрождению угольной составляющей с учетом новых, более щадящих технологий, а также идеи восстановления и развития добычи твердого топлива в арктических территориях.

Один из таких проектов, например, реализуется в арктической зоне Красноярского края: на полуострове Таймыр находится одно из самых больших в мире месторождений антрацитов, в 2015 году началась его разработка. Только на одном участке «Река Малая Лемберова» запасы высококачественного антрацита составляют порядка 600 миллионов тонн. К 2020 году УК «Восток-Уголь» планирует добывать здесь до 30 миллионов тонн в год и отправлять антрацит в страны Европы по Севморпути.

А вот на нефтяной сектор напрямую Парижские соглашения влияния, скорее всего, не окажут, считает президент Ассоциации по развитию международных исследований и проектов в области энергетики «Глобальная энергия» Игорь Лобовский.

— Существенные изменения последуют с наступлением эры повсеместного развития автотранспорта на электро­энергии и иных источниках энергии, не имеющих отношение к углеводородам, эксперты прогнозируют такого рода процессы не ранее 2030 года, поэтому максимальное снижение доли углеводородов прогнозируется только к 2070 году, — рассуждает он. — Подобный сценарий экономически обоснован в случае снижения стоимости производства электро­энергии от возобновляемых источников — и это действительно должно происходить в ближайшие десятилетия. Например, лауреат премии «Глобальная энергия» 2017 года Михаэль Гретцель является изобретателем так называемых «ячеек Гретцеля» — солнечных батарей нового поколения, производство которых обходится дешевле в несколько раз по сравнению с производством кремниевых батарей. Подобные изобретения позволят возобновляемой энергетике развиваться повсеместно и, как следствие, значительно снизить ее стоимость.

Так что уточненный сценарий развития углеводородных отраслей следует читать так: доля углеводородов в энергетике будет снижаться, но потребление расти.

— Мы забываем, что нефть на нынешний день все больше используется в нефтехимии, в производстве товаров народного потребления, — говорит министр энергетики России Александр Новак, — У нас 9 из 10 товаров на нынешний день содержат продукты нефтепереработки. И если сегодня 11 миллионов баррелей всего идет на нефтехимию, то по самым скромным прогнозам через лет пятнадцать на нефтехимию будет уже 17 миллионов баррелей идти, а может быть дальше еще больше, в более ускоренном режиме.

— Подумайте об авиации, о морских перевозках, о нефтехимии, — вторит главный исполнительный директор Royal Dutch Shell Plc Бен ван Берден (Ben van Beurden). — Масса процессов требует высокой температуры и крайне высокой температуры для нагрева. И, конечно же, углеводороды займут свое место.

Когда подует ветер?

Потребителю нужна дешевая энергия — вот основной фактор, сдерживающий развитие альтернативной энергетики. Чтобы сделать возобновляемые источники энергии (ВИЭ) привлекательными, нужна либо высокая цена на нефть, либо финансовая поддержка государства или институтов развития.

— Когда цена на нефть достигает 100 долларов за баррель, это создает почву для развития новых технологий, включая ВИЭ, — говорит президент компании Total Патрик Пуянне.

Пока стоимость строительства ВИЭ в России достаточно высока, а коэффициент использования установленной мощности не так велик, как хотелось бы (и не только в России: по данным энергетического агентства США, средний КИУМ солнечных станций составляет порядка 26%). А значит, высока и стоимость киловатт-часа для потребителя. Опять же, строительство — это последний этап, необходимо развивать собственное производство солнечных панелей и других элементов. Но следует признать, что солнечная энергетика в России — это уже не стартап, а вполне сформировавшаяся отрасль. И ее развитие зависит от приоритетов государства.

— Есть явление, сетевой паритет — точка, когда себестоимость кВт/час электроэнергии, выработанной в альтернативной энергетике, оказывается равной себестоимости кВт/час электро­энергии, выработанной в традиционной энергетике. Спор идет — когда это случится? — рассуждает председатель правления ООО «УК «РОСНАНО» Анатолий Чубайс. — В ряде стран оно уже случилось, в России произойдет чуть позже, но оно неизбежно хотя бы потому, что потенциальный апгрейд ветра и солнца существенно больше, чем потенциальный апгрейд даже в парогазовых технологиях в тепловой генерации или гидрогенерации. Мы точно придем к моменту, когда альтернативная энергетика станет дешевле.

Эксперты прогнозируют, что это случится уже к 2050 году. По мнению Чубайса, сейчас в России создана абсолютно работоспособная система поддержки альтернативной энергетики, и препятствий для ее развития нет. Следующая задача, которую придется решить, — это найти способы промышленного хранения электроэнергии. И это задача не на отдаленную перспективу, а на ближайшие десять лет.

Однако не все эксперты разделяют оптимизм о перспективах ВИЭ — по крайней мере, они довольно сдержанно оценивают объем возобновляемых технологий, необходимых мировой энергетике.

— Я думаю, что человечество будет поощрять использование возобновляемых источников энергии в неких формах государственных субсидий. В последнее время данный сегмент продемонстрировал значительное снижение стоимости и возможность более быстрого внедрения, — считает председатель комитета по присуждению премии «Глобальная энергия», нобелевский лауреат Родни Аллам. — Возобновляемые источники энергии будут представлены системами с низкой интенсивностью, требующими огромных площадей; для них будут строиться «солнечные фермы» в пустынях и морские ветровые электростанции. Данный сегмент энергетики должен составлять определенный процент от общего объема рынка. Я считаю, что 20 процентов — это разумный предел.

Будущее — за атомной энергетикой

По мнению авторов доклада, снижение доли углеводородов — это единственный возможный сценарий для успешного развития цивилизации, вопрос только в том, когда наступит этот переломный момент. Эксперты «Глобальной энергии» считают, что это может произойти уже после 2050 года. Сейчас доля «зеленой» энергетики в мире составляет не более 30%. При этом к «зеленой» энергетике эксперты относят атомные электростанции, которые вырабатывают порядка 11% мировой электроэнергии. Ведь АЭС характеризуются низкими выбросами углерода в атмосферу.

— Мы на пороге четвертого промышленного уклада, на пороге очередной революции. Это время горизонтальных связей, цифровой информатики, искусственного интеллекта, время продажи и покупки жизненных циклов, а не конкретного объекта. Атомная энергетика как никто другой соответствует роли модератора этого процесса, — считает генеральный директор «Росатома» Алексей Лихачев.

Одна из основных проблем атомной энергетики — не технологическая, а психологическая: Чернобыль, Фукусима, испытания ядерного оружия — в общем, есть повод для беспокойства и недоверия.

— Важное условие для развития ядерной энергетики — это социальное принятие. Для того, чтобы ядерная энергетика возникла в какой-то стране, общество должно ее принимать, — говорит генеральный директор Международного агентства по атомной энергии (МАГАТЭ) Юкия Амано.

Какие бы сценарии развития энергетики ни строились, одно в них неизменно: потребление электроэнергии в мире будет расти. Население Земли увеличивается, запросы человечества растут: за последние сто лет мы потребили энергии больше, чем за всю предыдущую историю от сотворения мира. При этом более миллиарда человек на планете до сих пор не имеют доступа к электричеству!

По прогнозам ученых, к 2050 году на Земле будет жить еще на 2,5 миллиарда больше людей, децентрализация энергетики и строительство малых мощностей даст доступ к этому ресурсу значительно большему количеству человек и повысить их качество жизни. А значит, потребность в электроэнергии снова будет расти. И здесь на помощь приходит атомная энергетика: высокопроизводительная, с низким уровнем выброса загрязняющих атмосферу веществ и не­ограниченными запасами топлива. При этом речь идет не только об ископаемом уране, но и об отработавшем ядерном топливе, находящемся на хранении: топливные сборки выработали свой ресурс не более, чем на четыре процента, и это огромный ресурс для вторичного использования. Не говоря уже о том, что переработка топлива из ОЯТ позволяет решить задачу необратимой утилизации оружейного плутония и замкнуть производственны цикл, срабатывая весь ресурс ядерного топлива.

Особый путь Сибири

По соглашению между США и Россией каждая из стран должна утилизировать по 34 тонны оружейного плутония, и начало этой работы было назначено на 2018 год. Но пока технологией выработки так называемого МОКС-топлива обладает только Россия: первый в мире завод по его производству находится в Железногорске (бывший Красноярск-26), на мощностях Горно-химического комбината, входящего в структуру «Росатома».

— Важно стандартизировать требования к производственной безопасности в различных юрисдикциях и странах для создания безопасной атомной энергетики, — считает президент энергетической корпорации Fortum Corporation Пекка Лундмарк. — Я считаю, что атомная энергетика будет играть ключевую роль, но не как единственная технология, а в сочетании с солнечной энергетикой, гидроэнергетикой и экологичным биотоп­ливом. Однако для того, чтобы атомная энергетика оставалась конкурентоспособной и продолжала играть важную роль в будущем, ей тоже требуется модернизация.

При этом «законодателем мод» в атомной энергетике вполне может стать Сибирь. Эксперты склоняются к мысли, что именно эта отрасль энергетики будет в регионе ведущей.

— Сибирский регион обладает всеми возможностями для развития атомной энергетики, обеспечивающими полный ядерный цикл от добычи и переработки уранового сырья и изготовления топливных сборок до утилизации облученного ядерного топлива, что может обеспечить и оптимизировать функционирование современных АЭС, — говорит Игорь Лобовский. — На долгую перспективу решить энергетические проблемы Сибирского региона можно за счет атомных энергоисточников, в частности, за счет строительства современных АЭС с реакторами типа ВВЭР-1300. Да, в соответствии с соглашением между Россией и США о прекращении производства оружейного плутония все ядерные реакторы Сибирской АЭС были остановлены в 2008 году, но в Северске сохранилась развитая инфраструктура и кадровый потенциал, а это существенно ускорит и удешевит строительство новой АЭС, которое на данный момент отложено до 2020 года.

Впрочем, КПД, КИУМ, себестоимость, доступность, технологичность — далеко не все требования, которые предъявляются энергетике будущего. И это тоже — вызов.

— Хотелось бы, чтобы энергетика будущего была незаметной — в том смысле, что мы не должны видеть ее негативных последствий, она должна быть бе­зопасной, — считает президент РСПП, председатель Наблюдательного совета ассоциации «Глобальная энергия» Александр Шохин. — Экологическое негативное воздействие, в том числе в той же атомной и даже гидроэнергетике и тепловой энергетике должно быть минимальным, а безопасность — максимальной. Я считаю, что главный критерий — это не то, что, какая доля будет, например, у возобновляемых видов энергетики, а именно то, что все виды энергетики должны быть безопасными и эффективными.

Трудно поспорить.

expert.ru

Энергия будущего, традиционные и современные источники 21 века

Ученые спешат найти источники энергии будущего, чтобы улучшить окружающую среду и уменьшить зависимость от нефти и других видов ископаемого топлива.

Некоторые предсказывают что энергия будущего это водородные топливные элементы. Другие говорят, что солнце – это путь. Более дикие схемы включают в себя ветряные турбины высоко в воздухе или двигатель на антивеществе.

Рассмотрим, что будет представлять собой энергия будущего в 21 веке и позднее.

Энергия антивещества

Антивещество является аналогом материи, состоящей из античастиц, которая имеют ту же массу, что и обычная материя, но с противоположными атомными свойствами, известными как спин и заряд.

Когда противоположные частицы встречаются, они аннигилируют друг друга и высвобождают огромное количество энергии в соответствии с известным уравнением Эйнштейна Е=mc2.

Энергия будущего в виде прообраза антивещества уже используется в медицинской технике визуализации, известной как позитронно-эмиссионная томография (ПЭТ), но ее использование в качестве потенциального источника топлива остается в сфере научной фантастики.

Проблема антивещества в том, что во Вселенной его очень мало. Антивещество можно произвести в лабораториях, но в настоящее время только в очень малом количестве и при непомерно высоких ценах. И даже если проблема производства может быть решена, все равно остается главный вопрос в том, как хранить то, что имеет тенденцию уничтожать себя при контакте с обычной материей, а также как использовать эту энергию антивещества, когда-то созданную.

Ученые проводят исследования по созданию антивещества, которое могло бы однажды переправить человечество к звездам, но мечты о звездолетах, работающих на энергии антивещества все еще далеки, согласны все эксперты.

Водородные топливные элементы

На первый взгляд водородные топливные элементы могут показаться идеальной альтернативой ископаемым видам топлива. Они могут произвести электричество используя только водород и кислород без особого загрязнения.

Автомобиль, работающий на водородных топливных элементах, будет не только более эффективным, чем автомобиль, работающий на двигателе внутреннего сгорания, но и имеющий единственный выброс это воду.

К сожалению, в то время как водород является самым распространенным элементом во Вселенной, большая его часть связана с молекулами, такими как вода. Это означает, что чистый несвязанный водород должен производиться с помощью других ресурсов, которые во многих случаях связаны с ископаемым топливом. Если это так, то многие экологические преимущества водорода как топлива ничтожны. Другая проблема с водородом что его нельзя сжать легко или безопасно и требуются особые баки для хранения. Кроме того, по причинам, которые не до конца понятны, маленькие атомы водорода имеют тенденцию к проникновению через материалы баков.

Ядерная

Альберт Эйнштейн сказал нам, что грань между материей и энергией нечеткая. Энергия будущего может быть произведена путем разделения или слияния ядер – процессы известные как ядерные реакции деления и образования более тяжелых ядер где выделяется термоядерная энергия.

Ядерное атомное деление высвобождает вредную радиацию и производит большое количество радиоактивных материалов, которые могут оставаться активными в течение тысяч лет и могут разрушать целые экосистемы в случае утечки. Существует также озабоченность по поводу того, что ядерный материал может быть использован в оружии.

В настоящее время большинство атомных электростанций используют деление, и для производства требуется поддержание необходимых температур.

Также известно природное явление, как сонолюминесценция.

Сонолюминесценция может однажды стать средством обладающим гигантскими ядерными и термоядерными реакторами в стакане жидкости.

Сонолюминесценция относится к вспышке света, когда специальные жидкости создают высокоэнергетические звуковые волны. Звуковые волны разрывают жидкость и производят крошечные пузырьки, которые быстро расширяются, а затем сильно разрушаются. Свет производится в процессе, но что более важно, внутренности взрывающихся пузырьков достигают чрезвычайно высоких температур и давлений. Ученые предполагают что этого может быть достаточно для ядерного синтеза.

Ученые также экспериментируют с методами создания управляемого ядерного синтеза, ускоряя “тяжелые” ионы водорода в мощном электрическом поле.

Преобразование тепловой энергии океана

Океаны покрывают 70 процентов Земли, а вода является природным солнечным коллектором энергии будущего. Преобразование тепла океана происходит путем использования температурных различий между поверхностными водами нагреваемыми солнцем и водой в холодных глубинах океана для выработки электричества.

Преобразование тепловой энергии океана может работать по следующему принципу:

  • Замкнутый цикл: жидкость с низкой температурой кипения, например аммиак, кипит используя теплую морскую воду. Полученный пар используется для работы электрогенерирующей турбины, затем пар охлаждается холодной морской водой.
  • Открытый цикл: теплая морская вода преобразуется в пар низкого давления который используется для генерации электричества. Пар охлаждается и превращается в полезную пресную воду с холодной морской водой.
  • Гибридный цикл: используется замкнутый цикл для того, чтобы произвести электричество, которое применяется создавая окружающую среду низкого давления необходимого для открытого цикла.

Тепловую энергию океана используют и для добычи пресной воды и богатых питательными веществами морской воды извлекаемой из глубин океана для культивирования морских организмов и растений. Главный недостаток тепловой энергии океана, что необходимо работать на таких малых разницах температуры, вообще около 20 градусов по Цельсию где эффективность от 1 до 3 процента.

Гидроэлектроэнергия

Падающую, пропускающую или в противном случае двигающую воду с древних времен уже обуздали для производства электричества.

Гидроэнергетика обеспечивает около 20 процентов электроэнергии в мире.

До недавнего времени считалось, что водная энергия будущего является богатым природным ресурсом, не требующим дополнительного топлива и не вызывающего загрязнения.

Недавние исследования, однако, оспаривают некоторые из этих утверждений и предполагают, что гидроэлектрические плотины могут производить значительное количество углекислого газа и метана за счет распада погруженного в воду растительного материала. В некоторых случаях эти выбросы конкурируют с выбросами электростанций, работающих на ископаемом топливе. Еще одним недостатком плотин является то, что людей часто нужно переселять. В случае строительства плотин в трех ущельях в Китае, который стал самой большой плотиной в мире 1,9 миллиона человек были перемещены, а исторические места были затоплены и потеряны.

Биомасса

Источником энергии будущего является биомасса или биотопливо, которое включает в себя высвобождение химических ресурсов, хранящихся в органических веществах, таких как древесина, сельскохозяйственные культуры и животные отходы. Эти материалы сжигаются непосредственно для получения тепла или очищаются для создания алкогольного топлива, такого как этанол.

Но в отличие от некоторых других возобновляемых источников энергии, энергия биомассы не является чистой, так как при сжигании органического вещества производится большое количество углекислого газа. Однако можно компенсировать или устранить эту разницу, посадив быстрорастущие деревья и травы в качестве топлива. Ученые также экспериментируют с использованием бактерий для разрушения биомассы и получения водорода для использования в качестве топлива.

Одно интересное, но спорное альтернативное биотопливо включает в себя процесс, известный как тепловая конверсия.

В отличие от обычного биотоплива тепловая конверсия может преобразовать практически любой тип органического вещества в высококачественную нефть с водой в качестве единственного побочного продукта.

Однако еще предстоит выяснить, могут ли компании, запатентовавшие этот процесс, производить достаточно нефти для того, чтобы эта энергия будущего стала жизнеспособной альтернативой топливу.

Нефть

Некоторые называют это черным золотом. На этом основаны целые империи, из-за которых ведутся войны. Одна из причин, почему нефть или сырая нефть, так ценна, потому что она может быть преобразована в различные продукты, от керосина до пластика и асфальта. Является ли это источником энергии будущего горячо обсуждается.

Оценки того, сколько нефти осталось в земле, сильно различаются. Некоторые ученые прогнозируют, что запасы нефти достигнут пика, а затем быстро сократятся; другие считают, что будет открыто достаточно новых запасов для удовлетворения мировых энергетических потребностей в течение еще нескольких десятилетий.

Подобно углю и природному газу, нефть является относительно дешевой по сравнению с другим альтернативным топливом, но её использование связано с более высокими издержками экологического ущерба. Использование нефти производит большое количество углекислого газа, а разливы нефти могут повредить хрупкие экосистемы.

Ветер

Взяв концепцию ветряных мельниц на шаг дальше и выше, ученые хотят создавать электростанции в небе, плавающие в воздухе ветряные мельницы на высоте от 1000 метров. Устройство с винтами будет стабилизироваться на одном месте, а электричество будет подаваться на землю через кабель.

Энергия ветра в настоящее время составляет всего 0,1 процента от мирового спроса на электроэнергию. Это число, как ожидается, увеличится, поскольку ветер является одной из самых чистых форм энергии и может генерировать энергию до тех пор пока дует ветер.

Проблема, конечно, в том, что ветры не всегда дуют, и на ветроэнергетику нельзя полагаться, чтобы производить постоянное электричество. Существует также озабоченность по поводу того, что ветряные электростанции могут оказывать влияние на местную погоду таким образом, который еще предстоит полностью понять.

Ученые надеются, что поднятие ветряных мельниц в небо решит эти проблемы, так как ветры на высоте дуют гораздо сильнее и более постоянно на больших высотах.

Уголь

Уголь был топливом, которое привело в действие промышленную революцию, и с тех пор он играет все более важную роль в удовлетворении мировых энергетических потребностей.

Главное преимущество угля в том, что его много. Достаточно, чтобы продержаться еще 200-300 лет при нынешних темпах потребления.

Пока свое обилие делает его очень экономичным, однако при горении уголь выпускает примеси серы и азота в воздух, который может совместиться с водой в атмосфере для того чтобы сформировать кислотный дождь. Сжигание угля также производит большое количество углекислого газа, который по мнению большинства климатологов, способствует глобальному потеплению. Серьезные усилия прилагаются, чтобы найти новые способы уменьшить отходы и побочные продукты добычи угля.

Солнечная энергия

Солнечная энергия не требует никакого дополнительного топлива и загрязнения не происходит. Солнечный свет можно концентрировать в виде тепла или преобразовать в электричество используя фотоэлектрический или фотовольтаический эффект через синхронизированные зеркала которые отслеживают движение солнца через небо. Ученые также разработали методы использования солнечной энергии будущего для замены газового двигателя нагревом водородного газа в резервуаре, который расширяется и приводит в движение генератор.

К недостаткам солнечной энергии можно отнести высокие начальные затраты, а также потребность в больших пространствах. Также для большинства альтернатив выход солнечной энергии будущего подвержен капризам загрязнения воздуха и погоды, которые могут блокировать солнечный свет.

beelead.com

Энергетическое будущее: 5 неизбежных изменений, которые нас ожидают

Сегодня мы живем в эпоху стремительных технологических изменений, которые, по мнению экспертов, впервые в истории дадут нам шанс не только совершить еще один технологический скачок, но и уменьшить влияние от этих технологических изменений на окружающую среду. Вместе с компанией «Энел Россия» рассказываем о пяти неизбежных изменениях в разных, но тесно взаимосвязанных между собой сферах, которые произойдут с нашей планетой под воздействием развития энергетики в ближайшие десятилетия.

Электроэнергетика завтрашнего дня

В последние годы в области энергетики стали активно развиваться сразу несколько технологий, у которых есть серьезный потенциал поменять жизнь людей так же резко, как это произошло в свое время из-за развития нефтедобычи.  

Впервые за долгие годы мир заговорил о возобновляемых источниках энергии как о реальной альтернативе ископаемого топлива. О возобновляемых источниках энергии как отдельном секторе энергетики впервые зашла речь в 1980х годах, но тогда никто не воспринимал их всерьез, главным образом, из-за дороговизны получаемой энергии. 

Однако сегодня развитие технологий позволяет строить объекты ВИЭ гораздо дешевле, чем даже 5 лет назад. Кроме того, объекты традиционной энергетики изнашиваются: по данным Международного энергетического агентства (МЭА), к 2045 году у более чем трети генерирующих мощностей во всем мире закончится срок эксплуатации. Очевидно, что эти мощности необходимо будет компенсировать новыми объектами.

Больше, чем энергообъект: роль объектов новой генерации в создании устойчивой среды

Однако отличие электростанций нового типа состоит не только в способе производства электроэнергии, но и в подходе. Компании не просто возводят эффективный объект, а стремятся выстроить вокруг него особую устойчивую экосистему, вступая в диалог с местным сообществом. 

Так, в Чили компания Enel Green Power, которой принадлежит гидроэлектростанция Пилмакейн, в 2017 году предоставила местному индейскому населению права на управление окружающим электростанцию лесом, который официально стал заповедником площадью 6 гектаров. Такой шаг позволит не просто защитить окружающую среду, но и сохранить наследие коренных народов. 

Еще один существенный момент, который необходимо учитывать в новой устойчивой экономике – это минимизация экологического влияния от предприятий на всех уровнях, т. е. от момента, когда будет заложен первый камень, до запуска производства. 

Строительная отрасль является одной из наиболее агрессивных с точки зрения влияния на экологию. Поэтому к созданию объектов электроэнергетики, в том числе работающих на возобновляемых источниках, также необходимо подходить с точки зрения устойчивости. Важным элементом является создание так называемой «устойчивой цепочки поставок», в которой компания имеет четкое представление о том, как именно подрядчик создал тот или иной товар или услугу. 

Устойчивая цепь поставок оказывает влияние не только на экологию, но и на социальную сферу, повышая уровень жизни и условия труда людей, задействованных в производстве того или иного товара или услуги, и на административную сферу, способствуя борьбе с коррупцией.

Электростанция на заднем дворе: распространение микрогенерации

Одно из принципиально важных отличий современной экономики от экономики прошлого столетия – это ее интегративность. Поэтому сдвиги в области энергетики существенно повлияют на смежные сферы.

Распространение ВИЭ приведет к популяризации микрогенерации: жители сельских территорий начнут повсеместно устанавливать солнечные панели и ветрогенераторы. В Европе распространение получил термин «дом с нулевым потреблением энергии» – дом, который не использует ископаемое топливо и пользуется энергией, полученной благодаря возобновляемым источникам; это может быть традиционное здание с большим солнечным коллектором и солнечной батареей. 

Нулевое потребление энергии в данном случае означает, что дом подключен к общей энергетической сети и подаёт в сеть столько же энергии, сколько потребляет (или больше). 

Для урбанистов и архитекторов подобные технологии представляет собой серьезный вызов: солнечные панели необходимо будет гармонично вписать в существующую архитектуру деревень, а в будущем, возможно, и мегаполисов; системы накопления энергии на текущем этапе развития занимают довольно много места. 

Очевидно, что для решения этих вызовов архитекторам необходимо будет адаптировать внешний облик домов под новую реальность.

«Зеленый» автопром

Важные изменения, напрямую связанные с энергетическим сектором, происходят еще в одной сфере – в сфере автопрома. Сегодня почти каждый крупный автоконцерн работает над созданием своего электромобиля. 

Согласно Electric Vehicle Outlook агентства Блумберг, в 2018 году в мире было продано более двух миллионов электрических транспортных средств; аналитики агентства ожидают, что это число увеличится до 10 миллионов в 2025 году, 28 миллионов – в 2030 году и 56 миллионов – в 2040 году. 

При этом, по словам экспертов, сервисы shared mobility, от такси до каршеринга, перейдут на электромобили даже быстрее, чем частные автовладельцы, из-за экономической выгоды от использования такого транспортного средства. 

Переход на электромобили и гибридные виды транспорта также повлечет за собой серьезные изменения соответствующей инфраструктуры. 

К примеру, в Европе, помимо развивающейся сети зарядок, открыли первую в мире «электрическую» дорогу в Швеции – она заряжает аккумуляторы проезжающих по ней легковых и грузовых машин.

Будущее в быту

Все эти изменения так или иначе затронут нашу повседневную жизнь в ближайшее десятилетие, однако самый существенный прогресс мы увидим в области бытовых технологий – большинство проблем, с которыми мы сталкиваемся в повседневности, могут быть решены с помощью технологий «умного города». 

Такая система предполагает, что все городские службы будут объединены в единую систему, и власти города смогут централизованно ею управлять с помощью информационных технологий.  

Элементы «умного города» уже давно вошли в нашу жизнь – уже никто не удивляется роботу-пылесосу или возможности оплатить счет за электроэнергию онлайн. «Умный город» позволит свести воедино все эти сервисы. 

На бытовом уровне для обычного горожанина это будет означать, что все бытовые приборы будут объединены в единую сеть и смогут включаться по команде, отданной через смартфон, сигнализировать о неполадках системы, контролировать расход электроэнергии. 

Холодильник сам сообщит вам, когда закончится молоко, гаджеты проинформируют вас о состоянии вашего здоровья, датчики отправят информацию о том, сколько электроэнергии вы потребили за месяц, в диспетчерский центр. 

Разумное потребление электроэнергии в целом станет одним из главных принципов «умного города» – этому будет способствовать распространение технологии технологичных сетей. 

Термин «умная сеть» описывает электрическую сеть, в которую интегрирована цифровая система связи. Если обычные электрические сети посылают электроэнергию в одном направлении, от электростанции до пункта назначения, то «умная сеть», помимо обеспечения электричеством, предоставляет мгновенную обратную связь об операциях в масштабе всей системы, перебоях в подаче электроэнергии и использовании электроэнергии. 

Такая сеть может отслеживать нагрузку, обеспечивая равномерное распределение электроэнергии, даже в часы пикового использования электроэнергии, и предвидя проблемные области и нарушения обслуживания.

Эти технологии уже активно внедряются – правительство Сингапура запустило программу Smart Nation, в рамках которой в одном из кварталов установили сенсоры, которые должны отслеживать потребление воды и электроэнергии; также квартал оснастили вакуумной системой утилизации отходов и солнечными панелями.

Энергетический сектор трансформируется, провоцируя изменения в различных аспектах нашей жизни. Не все из них мы пока можем ощутить на себе; пройдет некоторое время, прежде чем мы увидим потоки электромобилей на улицах наших «умных городов». 

Но уже сегодня мы становимся свидетелями судьбоносного для планеты сдвига в сторону ВИЭ. Главную роль в нем, несомненно, играют энергетические компании, в том числе и российские. 

Так, например, «Энел Россия» реализует целых три проекта по строительству ветропарков общей мощностью 362 МВт. Уже очень скоро мы увидим, как на месте полей вырастут огромные ветрогенераторы. И это лишь начало вступления в новую эру технологий, способных защитить окружающую среду.

recyclemag.ru

Яркое будущее солнечной энергетики / Habr

Подробное и простое описание работы солнечных панелей и прогнозы на будущее



Как пьют чай в Тибете

Наш недавний обзор солнечных панелей мог оставить у вас впечатление, что сбор солнечной энергии – дело новое, однако люди эксплуатируют её уже тысячи лет. С её помощью они обогревают дома, готовят и греют воду. Некоторые из самых ранних документов, описывающих сбор солнечной энергии, восходят к древней Греции. Сам Сократ говорил, «в домах, смотрящих на юг, зимнее солнце проникает через галерею, а летом путь солнца проходит над нашей головою и прямо над крышей, из-за чего образуется тень». Он описывает то, как греческая архитектура использовала зависимость солнечных путей от времён года.

В V столетии до н.э. греки столкнулись с энергетическим кризисом. Преобладавшее топливо, древесный уголь, заканчивалось, поскольку они вырубили все леса для готовки и обогрева жилищ. Были введены квоты на лес и уголь, а оливковые рощи приходилось защищать от граждан. Греки подошли к проблеме кризиса, тщательно планируя городскую застройку, чтобы удостовериться в том, что каждый дом может воспользоваться преимуществами солнечного света, описанными Сократом. Комбинация технологий и просвещённых регуляторов сработала, и кризиса удалось избежать.

Со временем технологии сбора тепловой энергии солнца только росли. Колонисты Новой Англии позаимствовали технологии строительства домов у древних греков, чтобы согреваться в холодные зимы. Простые пассивные солнечные водонагреватели, не сложнее покрашенной в чёрный цвет бочки, продавались в США в конце XIX века. С тех пор были разработаны более сложные солнечные коллекторы, прокачивающие воду через поглощающие или фокусирующие свет панели. Горячая вода хранится в изолированном баке. В замерзающих климатах используется двухжидкостная система, в которой солнце греет смесь воды с антифризом, проходящую через спираль в баке для хранения воды, выполняющего ещё одну роль, роль теплообменника.


Солнечные коллекторы на крышах Кипра

Сегодня доступно множество сложных коммерческих систем для нагрева воды и воздуха в доме. Солнечные коллекторы устанавливаются по всему миру, и больше всего их в пересчёте на душу населения стоит в Австрии, на Кипре и в Израиле.


Солнечный коллектор на крыше в Вашингтоне D.C.

Современная история солнечных панелей начинается с 1954 года, с открытия практического способа добычи электричества из света: лаборатории Белла открыли, что из кремния можно делать фотовольтаический материал. Это открытие стало основой сегодняшних солнечных панелей (устройств, превращающих свет в электричество) и запустило новую эру солнечной энергии. С помощью интенсивных исследований сегодняшняя эра солнечной энергии продолжается, и солнце намеревается стать главным источником энергии в будущем.

Что такое солнечный элемент?


Самый распространённый тип солнечного элемента – полупроводниковое устройство из кремния – дальнего родственника твердотельного диода. Солнечные панели делаются из набора солнечных элементов, подключенных друг к другу и создающих на выходе ток с нужным напряжением и силой. Элементы окружаются защитным кожухом и накрываются оконным стеклом.

Солнечные элементы генерируют электричество благодаря фотовольтаическому эффекту, открытому совсем не в лабораториях Белла. Впервые его в 1839 году обнаружил французский физик Александр Эдмон Беккерель, сын физика Антуана Сезара Беккереля и отец физика Антуана Анри Беккереля, получившего нобелевскую премию и открывшего радиоактивность. Чуть больше чем через сто лет в лаборатории Белла был достигнут прорыв в изготовлении солнечных элементов, что и стало основой для создания самого распространённого типа солнечных батарей.

На языке физики твёрдого тела, солнечный элемент создаётся на базе p-n-перехода в кристалле кремния. Переход создаётся через добавление в разные области кристалла небольших количеств разных дефектов; интерфейс между этими областями и будет переходом. На стороне n ток переносят электроны, а на стороне p – дырками, где электроны отсутствуют. В регионах, примыкающих к интерфейсу, диффузия зарядов создаёт внутренний потенциал. Когда в кристалл попадает фотон, обладающий достаточной энергией, он может выбить электрон из атома, и создать новую пару электрон-дырка.

Только что освобождённый электрон притягивается к дыркам с другой стороны перехода, но из-за внутреннего потенциала он не может перейти его. Но если электронам предоставить путь через внешний контур, они пойдут по нему и осветят по пути наши дома. Дойдя до другой стороны, они рекомбинируются с дырками. Этот процесс продолжается, пока светит Солнце.

Требуемая для освобождения связанного электрона энергия называется шириной запрещённой зоны. Это ключ к пониманию того, почему у фотовольтаических элементов есть присущее им ограничение по эффективности. Ширина запрещённой зоны – постоянное свойство кристалла и его примесей. Примеси регулируются таким образом, что у солнечного элемента ширина запрещённой зоны оказывается близкой к энергии фотона из видимого диапазона спектра. Такой выбор диктуется практическими соображениями, поскольку видимый свет не поглощается атмосферой (иначе говоря, люди в результате эволюции приобрели способность видеть свет с самыми распространёнными длинами волн).

Энергия фотонов квантуется. Фотон с энергией меньшей, чем ширина запрещённой зоны (например, из инфракрасной части спектра), не сможет создать переносчик заряда. Он просто нагреет панель. Два инфракрасных фотона тоже не сработают, даже если их общей энергии будет достаточно. Фотон излишне большой энергии (допустим, из ультрафиолетового диапазона) выбьет электрон, но лишняя энергия будет потрачена зря.

Поскольку эффективность определяется как количество энергии света, падающего на панель, делённое на количество полученной электроэнергии – и поскольку значительная часть этой энергии будет потерянной – эффективность не может достичь 100%.

Ширина запрещённой зоны у кремниевого солнечного элемента равна 1,1 эВ. Как видно из диаграммы электромагнитного спектра, видимый спектр находится в области чуть повыше, поэтому любой видимый свет даст нам электроэнергию. Но также это значит, что часть энергии каждого поглощённого фотона теряется и превращается в тепло.

В результате получается, что даже у идеальной солнечной панели, произведённой в безупречных условиях, теоретический максимум эффективности составит порядка 33%. У коммерчески доступных панелей эффективность составляет обычно 20%.

Перовскиты


Большая часть коммерчески устанавливаемых солнечных панелей делается из описанных выше кремниевых ячеек. Но в лабораториях всего мира ведутся исследования других материалов и технологий.

Одна из самых многообещающих областей последнего времени – изучение материалов под названием перовскиты. Минерал перовскит, CaTiO3, был назван в 1839 году в честь русского государственного деятеля графа Л. А. Перовского (1792-1856), который был коллекционером минералов. Минерал можно найти на любом из континентов Земли и в облаках, по меньшей мере, одной экзопланеты. Перовскитами также называют синтетические материалы, имеющие ту же ромбическую структуру кристалла, что и естественный перовскит, и обладающие схожей по структуре химической формулой.

В зависимости от элементов, перовскиты демонстрируют различные полезные свойства, такие, как сверхпроводимость, гигантское магнетосопротивление, и фотовольтаические свойства. Их использование в солнечных ячейках вызвало много оптимизма, поскольку их эффективность в лабораторных исследованиях возросла за последние 7 лет с 3,8% до 20,1%. Быстрый прогресс вселяет веру в будущее, особенно в связи с тем, что ограничения эффективности становятся всё яснее.

В недавних экспериментах в Лос-Аламосе было показано, что солнечные элементы из определённых перовскитов приблизились по эффективности к кремнию, будучи при этом дешевле и проще в изготовлении. Секрет привлекательности перовскитов в возможности просто и быстро выращивать кристаллы миллиметровых размеров без дефектов на тонкой плёнке. Это очень большой размер для идеальной кристаллической решётки, которая, в свою очередь, позволяет электрону путешествовать по кристаллу без помех. Это качество частично компенсирует неидеальную ширину запрещённой зоны в 1,4 эВ, по сравнению с почти идеальным значением для кремния – 1,1 эВ.

Большая часть исследований, направленных на увеличение эффективности перовскитов, связана с поиском путей устранения дефектов в кристаллах. Конечная цель – изготовить целый слой для элемента из идеальной кристаллической решётки. Исследователи из MIT недавно добились большого прогресса в этом вопросе. Они обнаружили, как можно «заживлять» дефекты плёнки, сделанной из определённого перовскита, облучая её светом. Этот метод гораздо лучше предыдущих методов, включавших химические ванны или электрический ток, благодаря отсутствию контакта с плёнкой.

Приведут ли перовскиты к революции в стоимости или эффективности солнечных панелей, пока неясно. Изготавливать их легко, но пока что они слишком быстро распадаются.

Множество исследователей пытается решить проблему распада. Совместное исследование китайцев и швейцарцев привело к получению нового способа формирования ячейки из перовскита, избавленной от необходимости движения дырок. Поскольку деградирует именно слой с дырочной проводимостью, материал должен быть гораздо более стабильным.


Перовскитовые солнечные ячейки на оловянной основе

Недавнее сообщение из лаборатории Беркли описывает, как перовскиты однажды смогут достичь теоретического лимита эффективности в 31%, и всё равно остаться более дешёвыми в производстве, чем кремниевые. Исследователи измерили эффективность преобразования различных зернистых поверхностей при помощи атомной микроскопии, измеряющей фотопроводимость. Они обнаружили, что у разных граней сильно отличается эффективность. Теперь исследователи считают, что могут найти способ производить плёнку, на которой с электродами будут соединены только самые эффективные грани. Это может привести к достижению ячейкой эффективности в 31%. Если это сработает, то станет революционным прорывом в технологии.

Другие направления исследований


Возможно производство многослойных панелей, поскольку ширину запрещённой зоны можно настраивать, изменяя добавки. Каждый слой можно настроить на определённую длину волны. Такие ячейки теоретически могут достигать 40% эффективности, но пока остаются дорогими. В результате их проще найти на спутнике НАСА, чем на крыше дома.

В исследовании учёных из Оксфорда и Института кремниевой фотовольтаики в Берлине многослойность объединили с перовскитами. Работая над проблемой разлагаемости материала, команда открыла возможность создавать перовскит с настраиваемой шириной запрещённой зоны. Им удалось сделать версию ячейки с шириной зоны в 1,74 эВ, что практически идеально для изготовления в паре с кремниевым слоем. Это может привести к созданию недорогих ячеек с эффективностью в 30%.

Группа из Нотрдамского университета разработала фотовольтаическую краску из полупроводниковых наночастиц. Этот материал пока ещё не настолько эффективный, чтобы заменить солнечные панели, но производить его проще. Среди преимуществ – возможность нанесения на разные поверхности. В потенциале его будет проще применять, чем жёсткие панели, которые необходимо крепить на крышу.

Несколько лет назад команда из MIT достигла прогресса в создании солнечного теплового топлива. Такое вещество может хранить солнечную энергию внутри себя долгое время, а затем выдавать её по запросу при применении катализатора или нагревании. Топливо достигает это через нереактивное преобразование своих молекул. В ответ на солнечное излучение молекулы преобразуются в фотоизомеры: химическая формула та же, но форма меняется. Солнечная энергия сохраняется в виде добавочной энергии в межмолекулярных связях изомера, который можно представить, как более высокоэнергетическое состояние изначальной молекулы. После запуска реакции молекулы переходят в оригинальное состояние, преобразуя хранившуюся энергию в тепло. Тепло можно использовать напрямую или преобразовывать в электричество. Такая идея потенциально устраняет необходимость в использовании аккумуляторов. Топливо можно перевозить и использовать полученную энергию где-то ещё.

После публикации работы из MIT, в которой использовался фульвален дирутения, некоторые лаборатории пытаются решить проблемы с производством и стоимостью материалов, и разработать систему, в которой топливо будет достаточно стабильным в заряженном состоянии, и способным «перезаряжаться», чтобы его можно было использовать многократно. Всего два года назад те же учёные из MIT создали солнечное топливо, способное испытать не менее 2000 циклов зарядки/разрядки без видимого ухудшения производительности.

Инновация состояла в соединении топлива (это был азобензол) с углеродными нанотрубками. В результате его молекулы выстраивались определённым образом. Получившееся топливо обладало эффективностью в 14%, и плотностью энергии схожей со свинцово-кислотным аккумулятором.


Наночастицы сульфида меди-цинка-олова

В более новых работах солнечное топливо изготовили в виде прозрачных плёнок, которые можно наклевать на лобовое стекло автомобиля. Ночью плёнки растапливают лёд за счёт энергии, набранной в течение дня. Скорость прогресса в этой области не оставляет сомнений, что солнечное тепловое топливо вскоре перенесётся из лабораторий в область привычных технологий.

Ещё один способ создания топлива напрямую из солнечного света (искусственный фотосинтез) разрабатывается исследователями из Иллинойсского университета в Чикаго. Их «искусственные листья» используют солнечный свет для превращения атмосферного углекислого газа в «синтез-газ», в смесь водорода и монооксида углерода. Синтез-газ можно сжигать или преобразовывать в более привычные виды топлива. Процесс помогает удалять лишний CO2 из атмосферы.

Команда из Стэнфорда создала прототип солнечной ячейки с использованием углеродных нанотрубок и фуллеренов вместо кремния. Их эффективность гораздо ниже коммерческих панелей, зато для их создания используется только углерод. В прототипе нет никаких токсичных материалов. Это более экологичная альтернатива кремнию, но для достижения экономической выгоды ей нужно поработать над эффективностью.

Продолжаются исследования и других материалов и технологий производства. Одна из многообещающих областей исследований включает монослои, материалы со слоем толщиной в одну молекулу (типа графена). Хотя абсолютная фотовольтаическая эффективность таких материалов невелика, их эффективность на единицу массы превышает привычные кремниевые панели в тысячи раз.

Другие исследователи пытаются изготавливать солнечные элементы с промежуточным диапазоном. Идея в том, чтобы создать материал с наноструктурой или особый сплав, в котором смогут работать фотоны с энергией, недостаточной для преодоления обычной ширины запрещённой зоны. В таком материале пара низкоэнергетических фотонов сможет выбить электрон, чего нельзя добиться в обычных твердотельных устройствах. Потенциально такие устройства будут более эффективными, так как задействуют больший диапазон длин волн.

Разнообразие областей исследования фотовольтаических элементов и материалов, и быстрый уверенный прогресс с момента изобретения кремниевого элемента в 1954 году вселяет уверенность, что энтузиазм принятия солнечной энергии не только сохранится, но и будет возрастать.

И эти исследования происходят как раз вовремя. В недавнем мета-исследовании было показано, что солнечная энергия по соотношению полученной энергии к затраченной, или по энергетической рентабельности, обогнала нефть и газ. Это существенный поворотный момент.

Мало сомнений в том, что солнечная энергия в результате превратится в значительную, если не в доминирующую, форму энергии как в промышленности, так и в частном секторе. Остаётся надеяться, что уменьшение необходимости в сжигании ископаемого топлива случится до того, как произойдёт необратимое изменение глобального климата.

habr.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *