Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Что лучше проводит тепло медь или алюминий

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы. Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных. Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности. Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда. Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это “+1” за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду. Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени. Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками. Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка. Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

Вот поэтому я и акцентировал на эти слова.

Вопрос, куда и как применять это понятие. Вот паяльник из алюминия делать нельзя, температуры для пайки не хватит, на одном конце 400гр, а на другом будет 60гр. А медь для этого самое то, её теплоемкость прекрасна, что бы один конец имел температуру 400гр, и на другом 300-350гр. Но вот многие этого не понимают и часто рекомендуют в качестве радиаторов для охлаждения транзисторов и прочее, применять именно медь.

Даже часто читал это в радио-журналах. Когда то это не понимали и промышленники, когда начинали делать мощные транзисторы, но потом разобрались и прекратили применять медные или латунные корпуса, а стали применять материал на основе алюминия или его заменители. Когда то с такой же трудностью сам встретился в начале 70х годов.

Был у меня усилитель на КТ805 (стерео) вот один транзистор сгорел и стаял там КТ805БМ, но у меня такого не было, поставил большой КТ805Б. Так он начал сильно греться, и стал с большим трудом держать мощность при радиаторе 10*10*6см. Занимал место пол усилителя, а на родном била алюминиевая полоска Г-образная 2*3см. Спросил своего друга из конструкторского бюро, почему так, внутри у обоих транзисторов один и тот же кристалл, а держат температуру по разному. На что он ответил, что сам корпус накапливает в себе температуру и не отдает её на радиатор, а в БМ нет этого корпуса и температура быстро рассеивается на алюминиевом радиаторе.

Потом стали делать корпуса, на первый взгляд такие же, как у КТ805Б, но состав на основе алюминия и они стали также меньше нагреваться.. Вот поэтому и нужно применять понятие теплоотдача или теплопроводность правильно.

Извини, что так много написал, но думаю это пригодится, если подобное встретится в жизни. И не только в радио, а просто в жизни. Если сделаешь нагреватель для отопления в доме, то будешь применять именно алюминий, а не медь и латунь. (что я сейчас у себя и применяю в отоплении)

Автор:Андрей Бедов [ Пт сен 05, 2014 18:09:28 ]
Заголовок сообщения:Re: Теплопроводность
Котбазилио, Вы написали абсолютную бредятину с точки зрения термодинамики.
Теплопроводность никак не связана с теплопередачей. Эффективность теплопередачи зависит от относительной разности температур двух взаимодействующих тел. В данном случае: “металл с наибольшей разумной теплопроводностью – воздух”.
Автор:Kavka [ Пт сен 05, 2014 20:20:42 ]
Заголовок сообщения:Re: Теплопроводность
Поддержу автора предыдущей реплики.

Теперь к тому, что написал Котбазилио про то что грелось и не грелось, или не так сильно грелось при медном и алюминиевом радиаторе/корпусе.

Во-первых.
Способность вещества проводить тепло характеризуется коэффициентом теплопроводности (удельной теплопроводностью). Численно эта характеристика равна количеству теплоты, проходящей через образец материала толщиной 1 м, площадью 1 м.кв., за единицу времени (секунду) при единичном температурном градиенте. Измеряется в Вт/(м*К). Т.е. Чем больше тепловой энергии способно пропустить вещество, тем больше коэффициент теплопроводности. Тут всё по определению и, надеюсь, никто возражать не будет.

Во-вторых, сами транзисторы могли иметь разные характеристики и банальное падение напряжения на них при замене могло быть разным со всеми вытекающими по закону Ома следствиями.
В третьих. Если взять два одинаковых по площади и форме радиатора из меди и алюминия, то при прочих равных условиях у них будет одинаковая теплоотдача. Потому что теплоотдача зависит от площади и разности температур. А более эффективным будет тот радиатор, материал которого сможет переносить больше тепла от охлаждаемой детали к рассеивающим поверхностям, чтобы разность температур была больше. Т.е. более эффективным будет радиатор из материала с больше теплопроводностью. Чем больше теплопроводность, тем меньше термическое сопротивление. Алюминиевый радиатор может быть холоднее медного, но сам транзистор (кристалл) на алюминиевом радиаторе может нагреться сильнее, чем на медном из-за меньшей интенсивности отвода тепла (большего термического сопротивления радиатора).

Как-то так. Вроде всё логично и нигде не напутал.

Автор:Котбазилио [ Пн сен 08, 2014 08:05:45 ]
Заголовок сообщения:Re: Теплопроводность

Теперь можем сравнить медь и алюминий по этим двум таблицам
Теплоемкость Теплопроводность
Медь 0,385 401

Алюминий 0,903 202—236

Что скажите о таких рассуждениях Теплопроводность

А скажу вот что, если Вы сделаете два паяльника из меди и алюминия, то после 30 минут нагрева их выключите, то медный ещё будет горячим, а алюминиевый уже остынет.

Поэтому и применяют алюминий в кухонной посуде, потому что алюминий быстрей передает тепло для варки продуктов. (хотя многие скажут, что это от экономии)

Проверьте на практике, возьмите транзисторную схему (хоть блок питание) и сначала поставьте алюминиевый радиатор и отрегулируйте мощность на нем, что бы транзистор имел 40гр температуру, потом ничего не меняя в параметрах поставьте медный радиатор и транзистар начнет перегреваться.

Такой пример тоже был в моей практике. В 80е годы стало популярно делать электронное зажигание для машины. Я первый собрал такую схему в своём коллективе и там радиатор применил алюминиевую пластину, мои коллеги стали повторять её но один поставил на медную пластину мощный транзистор, (кто то ему так посоветовал) он начал мне доказывать, что схема нерабочая, потому что постоянно сгорает транзистор, тогда я его спросил, а какой радиатор, конечно медный, сказал он. Вот когда я его убедил сменить на алюминиевый, он даже потом удивился и в нос мне тыкал данные из справочников, что медный радиатор лучше отдает тепло.

Вывод, некоторые понятия, нами понимаются неправильно.

Автор:Dick [ Пн сен 08, 2014 09:56:19 ]
Заголовок сообщения:Re: Теплопроводность

Теперь можем сравнить медь и алюминий по этим двум таблицам
Теплоемкость Теплопроводность
Медь 0,385 401

Алюминий 0,903 202—236

Что скажите о таких рассуждениях Теплопроводность

А скажу вот что, если Вы сделаете два паяльника из меди и алюминия, то после 30 минут нагрева их выключите, то медный ещё будет горячим, а алюминиевый уже остынет.

Для правильного “эксперимента” паяльники должны быть одного веса и иметь одинаковую площадь поверхности
И нагревать их нужно до одинаковой температуры, а не одинаковое время.

Для сравнения эффективности радиаторов площадь их поверхности тоже должна
быть одинаковой.

Автор:mrbot [ Вт сен 09, 2014 00:24:24 ]
Заголовок сообщения:Re: Теплопроводность
У нас назрел серьезный спор! ) Думаю без экспериментов не обойтись, что скажите? У кого какие предложения?
Автор:Rtmip [ Вт сен 09, 2014 02:09:09 ]
Заголовок сообщения:Re: Теплопроводность

Мне в связи с этим интересно понять, почему оверклокеры так любят медь и почему производители кулеров для компа делают свои более дорогие
и эффективные модели либо из меди, либо с медным пятаком? Может кто знает?

Автор:Андрей Бедов [ Вт сен 09, 2014 12:17:59 ]
Заголовок сообщения:Re: Теплопроводность

Ну Вы бы хоть постеснялись такое писать. Термодинамические расчёты при проектировании выполняют одними из первых. И не думайте, что в КБ и НИИ работают люди с четырьмя классами ЦПШ.

Автор:Котбазилио [ Ср сен 10, 2014 06:01:21 ]
Заголовок сообщения:Re: Теплопроводность
Да, но главное в алюминии, это то, что нам нужно в радио, это способность быстро отдавать тепло от деталей. У меня есть сковородка (наверное это от космической промышленности) у неё ручка такая же, как и сама сковородка, на первый взгляд просто алюминий, но вот при жарке на ней продуктов, не нужно брать через тряпочку у неё температура комнатная. Пробовал определить где начинается падение температуры и двигая рукой по этой ручке, тепло начинал чувствовать на расстоянии 2см от самой сковороды. Хотя специально нагревал на газе саму ручку, она так же нагревается в том месте, где её грею. То есть имеет свойства тоже нагреваться, но вот понять, то ли она так быстро отдает тепло, то ли не переносит это тепло, понять не возможно.

Но визуально очень похоже на алюминий.

Автор:Андрей Бедов [ Ср сен 10, 2014 14:33:15 ]
Заголовок сообщения:Re: Теплопроводность
Это говорит как раз о том, что у ручки ХРЕНОВАЯ теплопроводность. Как и должно быть в этом случае.
Если бы ручка была медная, Вы бы её голой рукой, без прихватки, не взяли.
С алюминиевым радиатором так же: теплопроводность его ХУЖЕ, чем у меди. Поэтому транзистор горячий, а рёбра радиатора – холодные. Алюминий не “быстрее отдаёт тепло” в окружающую среду, а тупо хреново пропускает его через себя. Неужели по логике непонятно? Тем более уже и цифры приводили в сравнении с медью. А известно, что чем выше температура рёбер – тем ниже температура транзистора, так-как тепло распределяется между транзистором и радиатором равномернее, и результирующая температура такой системы будет ниже. И с более горячих рёбер тепло уходит интенсивнее. Писал же я выше об этом. А Вы начали обвинять изготовителей медных радиаторов в некомпетентности!
Уже просто странный разговор какой-то получается. Если не сказать больше.
Если бы, допустим, серебро было относительно дёшево, то радиаторы делали бы из него, а не из меди. Потому-что его теплопроводность ещё больше, чем у меди.
Серебряная ложка, опущенная в стакан с киплячою водою, нагревается до пальцев за две секунды. Проверял сам, ложка есть такая у бабуськи, а ей досталась от прабабки, дореволюционная!

А может у медной ручки плохая теплоотдача, поэтому и писал я, что при транзисторе КТ805Б не мог остудить огромный радиатор, а как только я взял КТ805БМ, то маленькая полоска алюминия обеспечивала нормальную температуру у транзистора.

И мой пример с эл. зажиганием в машине Вам не помог, у моего приятеля при использовании медной пластины, транзисторы сгорали, а у меня с алюминием ни один транзистор не сгорел, он тоже потом заменил медь на алюминий и проблема исчезла. Видимо я зря привожу так много доказательств, их Вы не читаете. И зачем тогда изменили состав металла в корпусе транзисторов? Видимо наконец поняли, что на основе меди, корпусы плохо отдают тепло.

Но это понятно, там умные ребята сидят и через пару десятков лет до них тоже дошло, что нужно алюминиевую основу радиатора.

Автор:Котбазилио [ Чт сен 11, 2014 11:18:24 ]
Заголовок сообщения:Re: Теплопроводность
Автор:Котбазилио [ Вт сен 16, 2014 14:07:06 ]
Заголовок сообщения:Re: Теплопроводность
Вы написали своё сообщения, не читая моих. Прочтите снова и не будете такое писать – И что-то я сомневаюсь что КТ805 (808 и другие) делали из алюминия когда-то, по моему всегда основание у них было медным – Это Ваши слова.

Когда это я писал, что эти транзисторы делали из алюминия? Будьте внимательны, когда апеллируете.

Автор:Андрей Бедов [ Вт сен 16, 2014 15:54:37 ]
Заголовок сообщения:Re: Теплопроводность
Я написал свои сообщения, отталкиваясь от ВАШИХ, Котбазилио.
Ещё раз говорю, не “рвите жопу”, если нечем крыть!
Уже Вам приводили неоднократные примеры из теории и практики.
Вы же стараетесь это опровергнуть своим “жизненным опытом”.
Скажу “по-молодёжному” – забейтесь уже, в своих жалких потугах ” кому-то чего-то доказать”, что уже и так давно очевидно.
“шиза – наш друг”, несмотря и с уважением к Вашему возрасту.

Андрей, дорогой, я удивлен Вашему сообщению и скажу старую мудрость – С КЕМ ПОВЕДЕШЬСЯ ОТ ТОГО И НАБЕРЕШЬСЯ. (не учитесь у плохих дядей плохому)

Посмотрите на своё сообщение, в нём жаргон глупого человека, Вы же умный парень (так мне раньше казалось) Какие Вы приводили примеры из практики и теории. Это я Вам привел бесчисленное количество примеров, где доказывает мою правоту. Ещё раз пишу, почему перестали делать корпуса из меди, а стали применять металл на основе алюминия, который многократно дороже меди?

Я же и марки транзисторов привел. Вы меня разочаровали, если будете общаться в таком тоне, то Вы потеряете своё лицо и . а мне бы не хотелось видеть в Вас такие метаморфозы. Оставайтесь всегда приличным человеком.

Пока ещё с уважением, дядя Валера. (мои дети старше Вас)

Автор:Котбазилио [ Ср сен 17, 2014 05:23:27 ]
Заголовок сообщения:Re: Теплопроводность

У Валеры очередное обострение.
Осеннее.
На сегодняшний день стоимость 1 тонны меди на мировых рынках составляет примерно 7000$ http://fx-commodities.ru/copper/
На сегодняшний день стоимость 1 тонны алюминия на мировых рынках составляет примерно 2000$ http://fx-commodities.ru/aluminium/
Да и не нужно ходить на биржу, чтобы убедиться в разнице в 3,5 раза в пользу МЕДИ. Достаточно посмотреть на цены медных и алюминиевых проводов и цены на медный и алюминиевый (дюралюминиевый) профиль (типа волноводного).

Автор:КРАМ [ Ср сен 17, 2014 05:41:21 ]
Заголовок сообщения:Re: Теплопроводность
Автор:Котбазилио [ Ср сен 17, 2014 06:46:58 ]
Заголовок сообщения:Re: Теплопроводность
Почему то все мои оппоненты не умеют анализировать дискуссию и невнимательно читают сообщения.

Я же написал, что новые транзисторы делаются на основе алюминия, но имеют большую цену, потому что этот металл дороже и алюминия и меди, это особый сплав, который и позволяет им передавать большую теплопроводность. В чистом виде алюминий не прочный и механически легко подвержен деформации.

Поэтому и в автомобилестроении применяют не чистый алюминий, а силумин.

Силуми́н — сплав алюминия с кремнием. Химический состав — 4-22 % Si, основа — Al, незначительное количество примесей Fe, Cu, Mn, Ca, Ti, Zn, и некоторых других. Некоторые силумины модифицируются добавками натрия или лития. Добавка всего 0,05 % лития или 0,1 % натрия позволяет увеличить содержание кремния в эвтектическом сплаве до 14 %. Сплав Al-Si (силумины) обладают наилучшими литейными свойствами. В двойных сплавах Al-Si эвтектика состоит из твердого раствора и кристаллов практически чистого кремния. В легированных силуминах (АК9ч) помимо двойной эвтектики имеются тройные и более сложные эвтектики. В двойных силуминах с увеличением содержания кремния до эвтектического состава снижается пластичность и повышается прочность.

Применяются для литья деталей в авто-, мото- и авиастроении (напр. картеров, блоков цилиндров, поршней), и для производства бытовой техники (теплообменников, мясорубок).

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Войти

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

Шаг пятый. Медь vs алюминий

Шаг пятый.
Предыдущие шажки можно увидеть здесь.
Достался мне тут недавно бракованный кулер Titan D5TB/Cu35. Все было нормально, но основание не отшлифовано совсем, медный пятак имел частые борозды видимо от отрезного станка глубиной примерно 0,5 мм.
Решено было – отполировать и поставить.
Эффект превзошел все ожидания. Температура, под нагрузкой, упала до 47 градусов.
Как это возможно? Алюминий эффективней меди?

В теории:

Теплопроводность:
Алюминий 180-200 Вт/м*К
Медь обычная 300-320 Вт/м*К

Плотность:
Рал=2700 кг/м3
Рмед=8940 кг/м3, где Р-плотность

Удельная теплоёмкость:
Алюминий – 880 Дж / кг*К
Медь – 385 Дж / кг*К

видим, что:
· плотность меди выше, чем у алюминия примерно в 3,31 раза
· теплопроводность меди выше, чем у алюминия примерно в 1,66-1,75 раза
· теплоёмкость медного радиатора меньше, чем у алюминиевого примерно в 2,28 раза, при равной массе.

Таким образом, если радиаторы одинаковые по размерам и форме, то выполненный из меди будет в 3,31 раза тяжелее, его теплоемкость будет примерно в 1.44 раз больше чем у алюминиевого. Следовательно, при одинаковой нагрузке медный радиатор нагреется в 1.44 раза меньше. При большей разнице температур между процессорным ядром и радиатором теплообмен проходит эффективнее, следовательно, медный радиатор лучше.

Но на практике, я заменил медный радиатор на алюминиевый и выиграл. Почему?
В данном случае я заменил небольшой, но тяжелый радиатор от Thermaltake Volcano 10, с частыми тонкими ребрами, на вдвое больший радиатор от Titan D5TB/Cu35 с достаточно редкими и толстыми ребрами. Масса радиаторов примерно равна, поэтому теплоемкость алюминиевого радиатора будет больше. Следовательно, нагреваться он будет дольше. Кроме того, сопротивление воздушному потоку меньше из-за большей ширины каналов. Следовательно, через алюминиевый радиатор проходит большее количество воздуха, и он (воздух) забирает больше тепла. Тепловой баланс устанавливается на низшей отметке температуры, так как, во-первых, за единицу времени больше тепла отдается в атмосферу вследствие большего количества проходящего воздуха, а площадь теплообмена у обоих радиаторов примерно равна. А во-вторых, сам радиатор нагревается медленнее вследствие большей теплоемкости, поэтому для достижения равной с медным радиатором температуры алюминиевому требуется больше времени, что усугубляет первое положение. Кроме того, возможно в радиаторе от Thermaltake Volcano 10 образовывались не продуваемые зоны, в которых застаивался теплый воздух.
Основное преимущество меди, большая теплопроводность, в данном случае существенного влияния не оказывает, ввиду слабого воздушного потока вследствие чего и алюминиевый и медный радиаторы успевают равномерно распределить тепло по поверхности своих ребер и, следовательно, единица площади ребер обоих радиаторов отдает воздуху примерно равное количество тепла.
Все, что здесь написано, отражает мою личную точку зрения и не более. Я не старался придерживаться классической терминологии и возможно применил неверные определения, за что прошу строго меня не судить.

Конструктивная критика принимается здесь.

меди, латуни и алюминия, теплопередача

Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

  1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

Существует и другой способ перемещения тепла (теплопередачи). Он возможен не только в подвижной среде (жидкости и газе), но и в твердых телах. Тепло может перемещаться по телу и через него к другому предмету без перемещения частей этого тела относительно друг друга, т.е. без перемещения вещества. Такой способ носит название теплопроводности.

Различные вещества по-разному проводят тепло. Лучшие проводники тепла — металлы (особенно серебро, медь). Хуже всего проводят тепло теплоизоляторы — воздух, войлок, древесина. Плохая теплопроводность воздуха используется в наших домах — слой воздуха между двойными стеклами окон является прекрасным

теплоизолятором.

Таблица теплопроводности
(сравнение чисел характеризует относительную скорость передачи тепла каждым материалом)

Вещество Коэффициент
теплопроводности
Серебро 428
Медь
397
Золото 318
Алюминий 220
Латунь 125
Железо 74
Сталь 45
Свинец 35
Кирпич 0,77
Вода 0,6
Сосна 0,1
Войлок 0,057
Воздух 0,025

Лучший проводник – тепло – Большая Энциклопедия Нефти и Газа, статья, страница 1

Лучший проводник – тепло

Cтраница 1

Лучшие проводники тепла – металлы, у которых коэффициент К находится в пределах от 8 до 418 Вт / м – С. С повышением температуры теплопроводность металлов незначительно падает.  [1]

Сталь – лучший проводник тепла, чем железобетон. При местном нагреве сталь лучше отводит тепло в стороны; при этом нагрев захватывает большие участки, однако при сравнительно небольшой средней температуре. В железобетоне возникает, напротив, сильный местный нагрев на сравнительно коротком участке. Изменение длины в обоих случаях примерно одинаково. Преимуществом бетона является противодействие усадки тепловому расширению; недостаток состоит в том, что неравномерный нагрев вызывает значительные температурные напряжения.  [2]

Высококачественные алмазы являются лучшими проводниками тепла при температурах вблизи комнатной. Алмазы с природным изотопическим составом имеют значение теплопроводности 22 – 25 Вт / ( см К) при Г – 300 К. Из-за своей исключительно высокой теплопроводности алмазы могут быть очень полезными в микроэлектронных приложениях в качестве теплоотводящих элементов. В этой связи изучение теплопроводности алмазных покрытий представляет большой прикладной интерес.  [4]

При обычных температурах и давлениях лучшими проводниками тепла являются металлы и худшими – газы.  [6]

Чем больше коэффициент К, тем лучшим проводником тепла является вещество. Этот коэффициент зависит от природы вещества и от температуры, при которой происходит теплообмен.  [7]

Из сравнения этих данных видно, что лучшими проводниками тепла являются серебро, медь, алюминий и что медь проводит тепло примерно в 2 раза лучик чем алюминий, и в 6 раз лучше, чем железо.  [8]

Из сравнения этих данных видно, что лучшими проводниками тепла являются серебро, медь, алюминий и что медь проводит тепло примерно в 2 раза лучше, чем алюминий, и в 6 раз лучше, чем железо.  [9]

Из сравнения этих данных видно, что лучшими проводниками тепла являются серебро, медь, алюминий и что медь проводит тепло примерно в два раза лучше, чем алюминий, и в шесть раз лучше, чем железо.  [10]

Такое упрощение задачи тем более основательно, чем стержень тоньше, чем лучшим проводником тепла он является и чем меньшее значение имеет коэффициент а. Двумя поперечными сечениями стержня, отстоящими друг от друга на dx, выделим некоторый элемент и составим для него тепловой баланс.  [11]

Из втих данных можно сделать вывод, что пропитанная маслом бумага является значительно лучшим проводником тепла, что обусловлено не только более высокой теплопроводностью прослоек, но также и заполнением маслом пор в бумаге.  [12]

Влажность существенно влияет на величину коэффициента теплопроводности, так как при увлажнении материала происходит замещение воздуха, находящегося в его порах, водой, являющейся лучшим проводником тепла, чем воздух. Сырая стена имеет коэффициент теплопроводности, в 2 – 2 5 раза больший, чем сухая стена из того же материала. Этим отчасти и объясняется значительно больший расход топлива для отопления зданий в первый год их эксплуатации после постройки по сравнению с последующими годами, когда стены успевают достаточно просохнуть.  [13]

Таким образом, расчет температуры по обычному решению для короткого времени после начального возмущения приводит к неверному результату, поскольку понятие температуры при этом не имеет смысла; но это время очень мало и тем меньше, чем лучший проводник тепла мы рассматриваем. Поэтому приближение при помощи дискретной системы оправдывает результаты, полученные путем прямого рассмотрения непрерывного случая, и снимает логические возражения против этого метода.  [14]

Все тела проводят тепло, но не все одинаково. Лучшими проводниками тепла являются металлы. Вода и другие жидкости, а также газы проводят тепло значительно хуже, чем металлы. Еще менее теплопроводны дерево, грунт, кирпич. Хуже всего проводят тепло тепловые изоляторы: асбест, войлок, шлак, специальные полимерные материалы.  [15]

Страницы:      1    2    3

Теплопроводность – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

  • Участник: Шароглазова Ксения Сергеевна
  • Руководитель: Печерская Светлана Юрьевна
Цель данной работы: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.

Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Задачи:

  • изучить теоретический материал по данному вопросу;
  • исследовать теплопроводность твердых тел;
  • исследовать теплопроводность жидкостей;
  • исследовать теплопроводность газов;
  • сделать выводы о полученных результатах.

Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.

Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.

Элементы УМК к учебнику А.В.Перышкина: учебник «Физика. 8 класс» А.В.Перышкина

Содержание работы

Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Видео: https://cloud.mail.ru/public/JCFY/CFTcCeqhE

Опыт 1

Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня

Внесем в огонь конец деревянной палки. Он воспламенится.

Вывод: дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.

Вывод: стекло имеет плохую теплопроводность.

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь. 

Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.


Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.

Опыт 2. Исследование теплопроводности жидкостей на примере воды

Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.

Вывод: теплопроводность жидкостей меньше теплопроводности металлов.


Опыт 3. Исследование теплопроводности газов

Исследуем теплопроводность газов. 

Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.

Вывод: теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.


Выводы и их обсуждение

Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.

Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:

ТЕПЛОПРОВОДНОСТЬ

ХОРОШАЯ

ПЛОХАЯ

металлы (серебро, медь, железо)

жидкости (вода)

 

газы (воздух)

 

вакуум

 

пористые тела, пробка, бумага, стекло, кирпич, пластмассы

 

волосы, перья птиц, шерсть

 

вата, войлок

Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.

Применение теплопроводности

Теплопроводность на кухне

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.

Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.

Отопительная система

Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.

Теплопроводность для тепла

Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.

Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.

Теплолечение

Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.

Теплопроводность в бане

Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.

Интересные факты о теплопроводности

Тепло ли колючим зверям в иголках?

Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?

Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин — главная составляющая иголок — проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.

Полипропилен

Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.

Какой материал имеет самую высокую теплопроводность?

Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.

Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.

«Огнеупорный шарик»

Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.


Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.

Автор: Серков Павел


  • 1.  Проводники: Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.

  • 2.  Проводники: Углерод, нихромы, термостабильные сплавы, припои, прозрачные проводники.

  • 3.  Неорганические диэлектрики: Фарфор, стекло, слюда, керамики, асбест, элегаз и вода

  • 4.  Органические полусинтетические диэлектрики.

  • 5.  Синтетические диэлектрики на базе фенолформальдегидных смол.

  • 6.  Пластики. История использования пластиков.

  • 7.  Изоляционные ленты и трубки



Проводники

Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т.д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется “металловедение”.

Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли.

Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных чистых металлов:


МеталлУдельное сопротивление Ом*мм2
Серебро0,0159
Медь0,0157
Золото0,023
Алюминий0,0244
Иридий0,0474
Вольфрам0,053
Молибден0,054
Цинк0,059
Никель0,087
Железо0,098
Платина0,107
Олово0,12
Свинец0,192
Титан0,417
Висмут1,2

Видим лидеров нашего списка: Ag, Cu, Au, Al.


Серебро

Ag — Серебро. Драгоценный металл. {Понятие «драгоценный металл» означает в том числе особые условия по работе с металлом, устанавливаемые законодательством.}Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы массово делать из него провода. На 5% лучшая электропроводность по сравнению смедью, при разнице в цене почти в 100 раз.


Примеры применения

В виде покрытий проводников в СВЧ технике. Ток высокой частоты, из-за скин-эффекта в большей части течет по поверхности проводника, а не в его толще, поэтому тонкое покрытие высокочастотного волновода серебром дает бОльший прирост проводимости, чем покрытие серебром проводника для постоянного тока.


Волновод для СВЧ излучения, покрытый изнутри слоем серебра.

В сплавах контактных групп. Контакты силовых, сигнальных реле, рубильников, выключателей чаще всего изготовлены из сплава с содержанием серебра. Переходное сопротивление такого контакта получается ниже медного, он меньше подвержен окислению. Так как контакт обычно миниатюрен, вклад этой малой добавки серебра в стоимость всего изделия незначителен. Хотя при утилизации большого количества реле, стоимость серебра делает целесообразным работу по отделению контактов в кучку для последующего аффинажа.

 


Согласно документации производителя контакты содержат серебро и кадмий.


Различные реле. Верхнее реле имеет даже посеребренный корпус с характерной патиной. Содержание драгметаллов в изделиях, выпущенных в СССР было указано в паспортах на изделия.

В качестве присадки в припоях. Качественные припои (как твёрдые так и мягкие) часто содержат серебро.

Проводящие покрытия на диэлектриках. Например, для получения контактной площадки на керамике, на неё наносится суспензия из серебряных частиц с последующим запеканием в печи (метод “вжигания”).

Компонент электропроводящих клеев и красок. Электропроводящие чернила часто содержат суспензию серебряных частиц. По мере высыхания таких чернил, растворитель испаряется, частицы в растворе оказываются всё ближе, слипаясь и создавая проводящие мостики, по которым может протекать ток. Хорошее видео с рецептом по созданию таких чернил.


Недостатки

Несмотря на то, что серебро благородный металл, оно окисляется в среде с содержанием серы:

4Ag,+,2H2S,+,O2,->,2Ag2S,+,2H2O

Образуется темный налет — “патина”. Также источником серы может служить резина, поэтому провод в резиновой изоляции и посеребренные контакты — плохое сочетание.

Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.


Медь

Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь. Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.


Примеры применения

Провода. Основное применение меди в чистом виде. Любые добавки снижают электропроводность, поэтому сердцевина проводов обычно чистейшая медь.


Гибкие многожильные провода различного сечения.

Гибкие тоководы. Если проводники для стационарных устройств можно в принципе изготовить из любого металла, то гибкие проводники делают почти всегда только из меди, алюминий для этих целей слишком ломкий. Содержат множество тоненьких медных жилок.

Теплоотводы. Медь не только на 56\% лучше алюминия проводит ток, но ещё имеет почти вдвое лучшую теплопроводность. Из меди изготавливают тепловые трубки, радиаторы, теплораспределяющие пластины. Так как медь дороже алюминия, часто радиаторы делают составными, сердцевина из меди, а остальная часть из более дешевого алюминия.


Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди,он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор сразвитым оребрением уже охлаждает сам стержень.

При изготовлении фольгированных печатных плат. Печатные платы, в любом электронном устройстве изготовлены из пластины диэлектрика, на который наклеена медная фольга. Все соединения между элементами печатной платы выполнены дорожками из медной фольги.

Техника сверхвысокого вакуума. Из металлов и сплавов только нержавеющая сталь и медь пригодны для камер сверхвысокого вакуума в таких приборах, как ускорители элементарных частиц или рентгеновские спектрометры. Все остальные металлы в вакууме слегка испаряются и портят вакуум.

Аноды рентгеновских трубок. В рентгеноструктурном анализе требуется монохроматическое рентгеновское излучение. Его источником зачастую является облучаемая электронами медь (спектральная линия Cu Kα), которая к тому же прекрасно отводит тепло. Если же требуется другое излучение (Co или Fe), его получают от маленького кусочка соответствующего металла на массивном медном теплоотводе. Такие аноды всегда охлаждаются проточной водой.


Интересные факты о меди



Алюминий

Al — Алюминий. “Крылатый металл” четвертый по проводимости после серебра, золота и меди. Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь как проводник везде, если бы не пара его противных свойств, но об этом в недостатках.

Чистый алюминий, как и чистое железо, в технике практически не применяется. Любой “алюминиевый” предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия: (Даны марки сплавов согласно номенклатуре Американской Алюминиевой Ассоциации (АА), Первая цифра – серия марок сплава, в зависимости от того, какой легирующей добавки больше, остальные цифры обычно не соотносятся с концентрацией и необходимо обращение к справочнику.)



  • 1199. Чистый 99,99% алюминий. Бывает почти исключительно в виде фольги.

  • 1050 и 1060. Чистый алюминий 99,5% и 99,6% соответственно. Из-за высокой теплопроводности иногда используется как материал для радиаторов. Мягок, легко гнется. Провода, пищевая фольга, посуда.

  • 6061 и 6082. Сплавы: 6061: Si 0,6%, Mg 1,0%, Cu 0,28%, 6082: Si, Mg, Mn. Первый более распространен в США, второй — в Европе. Легко точить, фрезеровать. Наилучший материал для самоделок. Прочен. Легко поддается сварке, паяется твердыми припоями. Легко анодируется. Плохо гнется. Не годится для литья.

  • 6060. Состав: Mg, Si. Более мягок, чем 6061 и 6082, при обработке резанием слегка “пластилиновый”, за что его не любят токари. Распространен и дешев, других особых преимуществ не имеет. Дешевый алюминиевый профиль из непонятного сплава имеет хорошие шансы оказаться им.

  • 5083. Сплав с магнием (>4% Mg). Отличная коррозионная стойкость, устойчив в морской воде. Один из лучших вариантов для деталей, работающих под дождем. Тоже может встретиться в магазине стройматериалов, наряду с другими подобными марками.

  • 44400, он же “силумин”. Сплав с большим процентом кремния (Si >8%). Литейный. Низкая температура плавления, при пайке твердыми припоями риск расплавить саму деталь. Хрупок, при изгибе ломается. На изломе видны характерные кристаллы.

  • 7075. 2,1–2,9% Mg, 5,1–6,1% Zn, 1,2–1,6% Cu. Очень своеобразный сплав, отличается даже цветом (пленка окислов слегка золотистая). Неожиданно твердый для алюминия, по твердости сравним с мягкой сталью. Плохо анодируется. Не паяется вообще. Не предназначен для сварки. Не гнется и не куется вообще. Не годится для литья. Резанием обрабатывается отлично, прекрасно полируется. Хорош для ответственных деталей. Используется для винтов в велосипедах, в оружии (материал многих деталей винтовки M16).

Относительно невысокая температура плавления (660°С у чистого, меньше 600°С у литейных сплавов) алюминия делает возможным отливку деталей в песочные формы в условиях гаража/мастерской. Однако многие марки алюминия не годятся для литья.


Примеры применения

Провода. Алюминий дешев, поэтому толстые силовые кабели, СИП, ЛЭП выгодно делать из алюминия. В старых домах квартирная проводка сделана алюминиевым проводом (с 2001 года ПУЭ запрещает в квартирах использовать алюминиевый провод, только медный, см ниже. (Правила устройства электроустановок, 7-е издание, п. 7.1.34). Также алюминий не используется как проводник в ответственных применениях.


Слева старый алюминиевый провод. Справа алюминиевые кабели различного сечения, пригодные для укладки в грунт. В частности, кабелем справа был подключен к электроэнергии целый этаж здания. Кабель помимо наружной резиновой оболочки имеет бронирующую стальную ленту для защиты нижележащей изоляции от повреждений, к примеру, лопатой при раскопке.

Теплоотводы. Не только домашние батареи делают из алюминия, но и радиаторы у микросхем, процессоров.


Различные алюминиевые радиаторы.

 

Корпуса приборов. Корпус жёсткого диска в вашем компьютере отлит из алюминиевого сплава. Небольшая добавка кремния улучшает прочностные качества алюминия, сплав силумин: это корпуса жёстких дисков, бытовых приборов, редукторов и т. д. Анодированный алюминий (алюминий, у которого электрохимическим путем окисная

пленка на поверхности сделана потолще и прочнее) хорошо окрашивается и просто красив. Окисная пленка (Al2O3 — из того же вещества состоят драгоценные
камни рубины и сапфиры) достаточно твёрдая и износостойкая, но, к сожалению, алюминий под ней мягок, и при сильном воздействии ломается как лёд на воде.

Экраны. Электромагнитное экранирование часто делается из алюминиевой фольги или тонкой алюминиевой жести. Можете провести простой эксперимент, мобильный телефон завернутый в фольгу потеряет сеть — он будет заэкранирован.

Отражающее покрытие у зеркал. Тонкая пленка алюминия на стекле отражает 89% (значения примерные, точное значение зависит от длины волны и типа покрытия) падающего света (Серебро 98%, но на воздухе темнеет из-за сернистых соединений). Любой лазерный принтер содержит вращающееся зеркало, покрытое тонким слоем алюминия.


Зеркала от оптической системы планшетного сканера. Обратите внимание, оптические зеркала имеют металлизацию стекла снаружи, в отличии от привычных бытовых зеркал, где отражающее покрытие для защиты за стеклом. Бытовые зеркала дают двойное отражение — от поверхности стекла и от отражающего покрытия, что не так критично в быту, как защищенность отражающего покрытия.

Электроды обкладок конденсаторов. Алюминиевая фольга, разделенная слоем диэлектрика и туго свернутая в цилиндр — часть электрических конденсаторов (впрочем, для уменьшения габаритов конденсаторов фольгу заменяют алюминиевым напылением). Тот факт, что пленка оксида алюминия тонкая, прочная и не проводит ток, используется
в электролитических конденсаторах, обладающими огромными для своих габаритов электрическими емкостями.

Микропровод. Тончайшей проволокой из алюминия подключают кристаллы микросхемы к выводам корпуса. Также может использоваться медная и золотая проволока.


Недостатки

Алюминий — металл активный, но на воздухе покрывается оксидной пленкой, которая предохраняет металл от разрушения и скрывает его активную натуру. Если не дать алюминию формировать стабильную защитную пленку, например капелькой ртути, алюминий активно реагирует с водой. В щелочной среде алюминий растворяется, попробуйте залить алюминиевую фольгу средством для прочистки труб — реакция будет бурная, с выделением взрывоопасного водорода. Химическая активность алюминия, в паре с большой
разницей в электроотрицательности с медью делает невозможным прямое соединение проводов из этих двух металлов. В присутствии влаги (а она в воздухе есть почти всегда)
начинает протекать гальваническая коррозия с разрушением алюминия.


Два идентичных трансформатора от микроволновых печей. Левый вышел из строя по причине алюминиевых обмоток – отгорел провод от контакта – алюминий плохо паяется мягкими припоями, попытка обеспечить контакт также как и у медного провода привела к поломке.

Алюминий ползуч. Если алюминиевый провод очень сильно сжать, он деформируется и сохранит новую форму — это называется “пластическая деформация”. Если сжать его
не так сильно, чтобы он не деформировался, но оставить под нагрузкой надолго — алюминий начнет “ползти” меняя форму постепенно. Это пакостное свойство ведет к тому, что хорошо затянутая клемма с алюминиевым проводом спустя 5–10–20 лет постепенно ослабнет и будет болтаться, не обеспечивая былого электрического контакта. Это одна из причин, почему ПУЭ запрещает тонкий алюминиевый провод для разводки электроэнергии по конечным потребителям в зданиях. (См п. 7.1.34 ПУЭ 7 издания) В промышленности не сложно обеспечить регламент — так называемая “протяжка” щитка, когда электрик периодически (1–2 раза в год) проверяет затяжку всех клемм в щитке. В домашних же условиях, обычно пока розетка с дымом не сгорит — никто и не озаботится качеством контакта. А плохой контакт — причина пожаров.

Алюминий, по сравнению с медью, менее пластичный, риска от ножа на жиле, при сьёме изоляции с провода быстрее приведет к сломавшейся жиле, чем у меди, поэтому изоляцию с алюминиевых проводов надо счищать как с карандаша, под углом, а не в торец.


Интересные факты об алюминии


Еще раз важное замечание. Алюминиевые и медные проводники напрямую соединять нельзя!
Для соединения проводников из меди и алюминия используйте промежуточный металл,
например, стальную клемму.


Источники

В крупных строительных магазинах (OBI, Leroy Merlin, Castorama) обычно есть в наличии алюминиевый профиль разных размеров и форм. Неплохим источником может послужить штампованная алюминиевая посуда — она очень дешева и существует разных форм. Но обратите внимание на марки. Если нужен 6061 и тем более 7075, придется покупать его у фирмы, специализирующейся на продажах металлов.


Железо

Fe — железо. Основной конструкционный материал в промышленности используется также и в электротехнике. Плохая, по сравнению с медью, электропроводность компенсируется очень низкой ценой. И, что важнее в России, меньшей привлекательностью для охотников за металлом, заземление из толстой ржавой трубы простоит без охраны дольше красивой медной шины.

В технике железо применяется почти исключительно в виде сплавов с углеродом — чугуна и сталей. Свойства сталей разных марок весьма различны: от мягких до твердых инструментальных.


Примеры применения

Метизы. Винты, шайбы, гайки из стали изготавливаются огромными количествами на специально разработанном для этого оборудовании. Метизы из других металлов встречаются очень редко и значительно дороже. Поэтому, в большинстве случаев, медный наконечник медного провода будет притянут к медной же шине стальным болтом (или омеднённым). Также важным является высокая прочность стали, медный болт не затянуть с усилием стального. Обратите внимание на цифры на головке болта: они обозначают его прочность. Чем больше число, тем сильнее можно затягивать болт.

Клеммные колодки, соединители. Соединители типа “орех” содержат стальные пластинки с защитным покрытием от коррозии. Также, применение стали необходимо для предотвращения гальванической коррозии при соединении медных и алюминиевых проводов.


Соединитель «орех». Внутри пластиковой оболочки комплект стальных пластин с винтами, позволяет сделать ответвление от жилы кабеля не разрезая саму жилу. Также позволяет перейти от алюминиевой жилы на медную.

Контуры заземления. Требования электробезопасности обязывают предусматривать заземление. Часто, в промышленных условиях, заземляющую шину изготавливают из стального проката, закрепленного по периметру стены. Плохая электропроводность стали компенсируется большим сечением проводника. Во многих случаях правила безопасности и стандарты предписывают делать детали заземления именно из стали по соображениям механической прочности.


Стальная полоса, огибающая колонну — шина заземления.

Широко используются магнитные свойства стали — из стальных пластин собирают сердечники трансформаторов, дросселей.


Недостатки

Коррозия. Железо ржавеет, при этом плотность ржавчины ниже плотности исходного железа, из-за этого конструкция распухает. Поэтому железо покрывают защитными покрытиями — оцинковка, лужение, хромирование, окраска и т.д. Разные марки стали подвержены коррозии в разной степени, причем по закону подлости сильнее всего ржавеют именно те, которые легче всего обрабатываются на станках.


Золото

Au — Золото. Самый бестолковый драгоценный металл. Имеет меньше всего применений в технике из всех драгоценных металлов, но является символом богатства. На удивление дороже платины (2017 г.), что лишено здравого смысла и является лишь результатом спекуляций.


Примеры применения

Покрытия контактов. Благодаря тому, что золото на воздухе не окисляется, контакты покрывают очень тонким слоем золота. В силу мягкости золота покрытие не подходит для контактов много работающих на истирание, в таких случаях подбирают более твердые покрытия (например родиевые), или легируют золото.


Золотое покрытие на различных электронных компонентах: покрытие на контактах платы для установки в слот, покрытие на контактах мембранных кнопок мобильного телефона, покрытие на штырьках процессора.

Защита от коррозии. В некоторых ответственных применениях используется золотое покрытие для защиты проводников от коррозии (в основном — военка). Когда-то покрытие золотом являлось единственным способом защитить детали электроники от коррозии в условиях джунглей, поэтому у многих старых радиодеталей позолочены даже корпуса. А сейчас обычно просто заливают плату компаундом в “кирпич”.


Интересные факты о золоте

Золото — один из четырех металлов, имеющий оттенок в не окислившемся состоянии. Все остальные металлы белые (желтоватый цвет имеют золото и цезий,
медь – красноватая и в сплавах золотистая, осмий имеет голубой отлив).

Плотность золота отличается от плотности вольфрама незначительно (19,32 г/см3} у золота, 19,25 г/см3), этим пользуются для подделки золотых слитков, покрывая вольфрамовый слиток слоем золота. Некоторые теории заговора утверждают, что возможно это одна из причин, почему США никому не дают проверить подлинность их золотого
запаса. И, возможно, поэтому они отдали Германии их золото не сразу.

Можно извлечь золото химически из горы старой электроники, но это не всегда экономически целесообразно и преследуется по закону (ст. 191, 192 УК РФ).

Бестолковость золота требует пояснений. Представим добычу благородных металлов в 2016 году.
Из всей добытой платины 64% потребила промышленность. (Здесь и далее цифры примерные, усредненные по нескольким источникам).
Из всего добытого серебра 68% потребила промышленность.
Из всего добытого палладия 96% потребила промышленность.
Из всего добытого золота всего 10% потребила промышленность. Остальное ушло на украшения и на слитки в сейфах.


Никель

Ni — Никель. Замечательный металл, но в электронной технике основное применение в виде покрытий, как в чистом виде, так и в паре с хромом.


Примеры применения

Покрытие контактов. Наносится на медь, пластик для надежного контакта и для декоративных целей. Жадные китайцы иногда вообще делают контакты из пластмассы, покрывая сверху слоем никеля и хрома, внешне выглядит нормальным, даже как то работает, но ни о какой надежности речи не идет.


Различные разъемы, покрытые никелем для надежного контакта.


У разъема справа для экономии металла сердцевина штыря сделана полой с заливкой пластиком. Латунная никелированная трубочка, из которой сделан штырь, не самый худший вариант.

Тоководы у ламп. Сплав Платинит (46% Ni, 0,15% C, остальное — Fe) не содержит платины, но имеет очень близкое к платине значение линейного
температурного расширения (и близкое к стеклу), что позволяет делать из него надежные электроды, проходящие через стекло. Для аналогичных целей используют сплав Ковар (29% Ni, 17% Co, 54% Fe). Такие электроды при изменении температуры не вызывают растрескивания стекла и потерю герметичности. Место сплавления стекла с этими сплавами имеет красноватый оттенок что ошибочно воспринимается за медь.

Промежуточные защитные слои. Для защиты от коррозии, взаимной диффузии металлов при создании покрытий, могут формироваться промежуточные слои из никеля. Например при покрытии меди слоем золота, если не предусмотрен разделительный слой из никеля, золотое покрытие со временем из-за диффузии растворится в меди и потеряет целостность. Жала современных паяльников защищены слоем никеля, так как жало из голой меди медленно растворяется в олове, теряя форму.


Вольфрам

W — Вольфрам. Тугоплавкий металл, температура плавления 3422°С, что определяет основное его использование — нити накала и электроды.


Примеры применения

Нити накала. В лампах накаливания, в галогеновых лампах спираль изготовлена из вольфрама, нагревается электрическим током до белого каления, при этом сохраняя свою форму. Также катоды в радиолампах изготавливаются из вольфрама, но раскаливаются не до таких высоких температур, как осветительные лампы, специальное покрытие на катоде позволяет протекать термоэлектронной эмиссии при невысоких температурах.

Нить накаливания этой галогеновой лампы изготовлена из вольфрама. Галоген, обычно пары иода, химически связывает испаряющийся с нити вольфрам и возвращает его на нить, что позволяет повысить температуру накала спирали и уменьшить габарит лампы без страха, что вольфрам постепенно осядет на стенках колбы.


Мощная лампа накаливания от проектора. Даже тугоплавкий вольфрам со временем испаряется и оседает на стенках колбы в виде темного налета. Данного недостатка лишены галогеновые лампы.

Электроды дуговых ламп и сварочные электроды. В ксеноновых дуговых лампах, ртутных дуговых лампах, электроды должны выдерживать температуру электрической
дуги, при этом не расплавляясь и не изменяя своей формы, что под силу только вольфраму. Также электроды для сварки неплавящимся электродом изготовлены из вольфрама (TIG сварка).

Аноды рентгеновских трубок. Поток электронов от катода в рентгеновской трубке, разогнанный высоким напряжением тормозится бомбардируя анод, очень сильно нагревая его, поэтому такие аноды, особенно если они не имеют водяного охлаждения, зачастую изготавливаются из вольфрама. Однако в физических лабораториях часто применяют и аноды из меди или кобальта в связи с особенностями спектра рентгеновского излучения от таких анодов.


Источники

Вольфрам — не очень пластичный материал, поэтому спиральку из лампы накаливания
вряд ли удастся выпрямить и использовать по своему разумению. Если вдруг понадобится
вольфрамовый стержень — вам пригодится любой магазин по сварочному делу, электрод для
TIG-горелки без содержания лантана и других присадок. Проволоку для нитей накала самодельной
техники нетрудно купить на eBay.



  • Цветовая маркировка электродов:

  • Зеленый — чистый вольфрам.

  • Красный, оранжевый — вольфрам + торий. Радиоактивно! Не шлифовать, не резать – пыль опасна!

  • Голубой — вольфрам + сложная смесь.

  • Черный, желтый, синий — вольфрам + лантан.

  • Серый — вольфрам + церий.

  • Белый — вольфрам + цирконий.


Ртуть

Hg — Ртуть. При комнатной температуре — блестящий, собирающийся в шарики жидкий металл. По экологическим соображениям использование ртути сокращается, но она широко использовалась в старых приборах, поэтому заслуживает упоминания.

Как и большинство металлов, ртуть образует сплавы. Но ртуть, будучи жидкой при комнатной температуре, способна сплавляться с металлами без дополнительного нагревания, растворять их. Растворенный в ртути металл, сплав металла с ртутью называется “амальгама”.


Примеры применения

Жидкий контакт в датчиках положения, ртутных электроконтактных термометрах.


Различные ртутные приборы. Слева — мощный ртутный переключатель, замыкающий/размыкающий цепь при наклоне. Ниже на чёрных платках — аналогичные китайские ртутные переключатели — датчики положения из детского набора с Arduino. Сверху — колба ртутного электроконтактного термометра. В стекло вплавлены проволочки так, что при температуре 70°С столбик ртути в капилляре замыкает цепь (температура указана на корпусе).

В термометрах. Низкая температура замерзания, высокая температура кипения и большой коэффициент теплового расширения делают ртуть одним из самых удобных веществ для лабораторных и медицинских термометров. В бытовых термометрах ртуть уже очень давно не используется.

В манометрах и барометрах. Ртуть тяжелая, поэтому для уравновешивания атмосферного давления достаточно 70–80 см высоты столбика ртути. Хотя ртутные барометры в основном вышли из употребления, единицы измерения давления “миллиметр ртутного столба”, а в вакуумной технике — “микрон ртутного столба” и “торр” (округленный вариант мм. рт. ст.) используются и по сей день. Нормальным атмосферным давлением считается 760 мм. рт. ст.

В нормальных элементах. Батарейка (Попытка запитать от такой батарейки самоделку обернется провалом – батарейка имеет большое внутреннее сопротивление (порядка единиц кОм) и не предназначена отдавать токи больше сотых долей микроампера, да и то с перерывами.) с электродами из жидкой ртути, в которой растворены сульфаты ртути и кадмия, имеет ЭДС, известную и стабильную до единиц микровольт (теоретически 1,018636 В при 20°С). Такие элементы до сих пор используются в метрологии в качестве опорных источников напряжения, хотя и вытесняются полупроводниковыми схемами. Сосуд с ртутью в нормальном элементе запаян, однако он стеклянный, и ртути в нем много. Поэтому будьте осторожны, если найдете где-нибудь круглую железную банку с бакелитовой крышкой, клеммами и надписью “нормальный элемент” на бакелите. Внутри у нее — стеклянная колба с весьма опасными веществами.


Элемент нормальный насыщенный, НЭ-65, класс точности 0,005. Внешний вид корпуса нормальных элементов может различаться. Справа – содержимое корпуса, видна ртуть в нижней части колб. Такие элементы должны утилизироваться специализированной организацией.


Фото внутренностей Нормального Элемента

В диффузионных вакуумных насосах. Струя ртутного пара, выходящая из сопла с большой скоростью, захватывает молекулы воздуха и вытягивает их из откачиваемого объема. Затем ртутный пар конденсируется за счет охлаждения жидким азотом и используется снова. Насосы такого типа когда-то использовались для откачки радиоламп. Сейчас вместо ртути используются нетоксичные и не требующие жидкого азота силиконовые масла, но в некоторых лабораториях до сих пор можно найти старые ртутные системы.

Пары ртути — рабочий газ люминесцентных ламп. Несмотря на то, что люминесцентная лампа должна содержать небольшое количество ртути, в некоторых лампах ртути добавлено от души, и видно, как в колбе перекатывается шарик ртути. Пары ртути при возбуждении их электрическим током излучают яркий свет, преимущественно в синей и ультрафиолетовой области. Помимо них в спектре ртути есть яркие желтый и зеленый дублеты, по наличию которых ртутную лампу легко отличить от любой другой, посмотрев на нее через призму или отражение в компакт-диске. Специальная ртутная лампа в лабораториях используется как источник зеленого света с известной длиной волны.

В мощных тиратронах и ртутных выпрямителях. Используется так же, как и в ртутных лампах. Мощные ртутные вентили широко использовались для питания локомотивов на железных дорогах и в других подобных задачах до появления полупроводниковых приборов.

Как растворитель для металлов при выделении золота и платины из сырья амальгамацией и в производстве зеркал. Ртуть выпаривается, металл остается. Иногда этот процесс неправильно называют “аффинаж”, путая его с совершенно другим способом очистки драгметаллов.

В ртутных счетчиках времени наработки. В старой технике ртутный капиллярный кулономер использовался как счетчик часов, которые проработал прибор. Гениальная по простоте и надёжности конструкция.


Ртутный счетчик времени наработки от осцилографа. В углу показан крупным планом разрыв столбика ртути в капилляре каплей электролита. Ртуть под действием тока растворяется на одном конце капли и восстанавливается на другом, в результате этот разрыв движется по капилляру на расстояние, пропорциональное пропущенному через капилляр количеству электричества. Благодарю Александра @Talion_amur за предоставленный образец.

В амальгамных зубных пломбах. Встречаются и по сей день, особенно в США.


Токсичность

Все изделия, содержащие ртуть, должны утилизироваться специализированной службой. Недопустимо выбрасывать их с бытовым мусором во избежание скопления ртути на свалке.

Все разливы ртути должны быть собраны, а поверхности демеркуризованы. Ртуть хорошо испаряется при комнатной температуре, поэтому закатившийся в щель шарик ртути долгое время будет отравлять воздух.


Демеркуризация:

Если у вас разбилось изделие с ртутью, то предпринимайте следующие действия:

1. Откройте форточки и обеспечьте проветривание.

2. Вызовите специализированную службу демеркуризации в вашем городе. Профессионалы не только грамотно уберут ртуть, но также и произведут замеры концентрации паров ртути в помещении.

Если вдруг в вашем городе не оказалось службы демеркуризации, вы находитесь вдали от цивилизации то процесс демеркуризации придется продолжить самостоятельно.

3. Соберите видимые шарики ртути в герметичную тару. Их удобно собирать вместе при помощи двух хорошо обрезанных листов бумаги, сливая шарики в подготовленную тару. Мельчайшие шарики ртути из щелей можно вытянуть при помощи спиринцовки, или щетки из металла, которые смачивает ртуть (например медь). Разумеется после использования такой “инструмент” окажется загрязнен ртутью и подлежит утилизации.

Затем при помощи химических средств оставшаяся, не видимая глазу ртуть переводится в нелетучие, но по прежнему ядовитые соли, которые спокойно можно удалить с поверхности моющими средствами. Для этого используются 0,2% водный раствор перманганата натрия (“марганцовка”) подкисленный добавлением 0,5% соляной кислоты или 20% раствор хлорного железа (того, которым платы травят). Вопреки указаниям в старых книгах, засыпание места разлива порошком серы не эффективно.

4. Тщательно промыть обработанные площади водой с моющим средством.

5. Всю собранную ртуть и загрязненные предметы герметично упаковать и сдать в специализированную организацию.

Что однозначно не стоит делать при разливе ртути:

1. Паниковать и спешить. Иногда, при небольших авариях больше вреда наносит паника и спешка, чем сама авария. Вспоминается байка, записанная Ю.А.Золотовым:


Однажды, когда профессор МГУ Алексей Николаевич Кост вел практикум по органической
химии, у одного из студентов разбилась колба с эфиром и его пары вспыхнули.
Началась паника, кто-то прибежал с углекислотным огнетушителем и с трудом погасил
пожар. Все это время Кост совершенно невозмутимо сидел за своим столом и с
кем-то разговаривал. Потом, когда все успокоились, подошел к месту происшествия и приказал:

— Спички!

Ему дали коробок, он чиркнул спичкой и бросил ее в еще не просохшую эфирную
лужу. Огонь вспыхнул вновь, все оторопели. А Кост, не суетясь, взял противопожарное
одеяло, ловко накрыл им пламя и изрек:

— Гореть надо умеючи!

2. Пытаться собрать ртуть пылесосом, пылесос только в турборежиме раздробит и испарит шарики ртути, в итоге все помещение и сам пылесос окажутся загрязнены ртутью. Аналогично не стоит использовать для сбора ртути веники, щетки — они только раскидывают и дробят шарики ртути.

3. Сливать ртуть в раковину или унитаз. Ртуть значительно тяжелее воды, поэтому навсегда осядет в первом попавшемся изгибе трубы — в гидрозатворе или колене.


Пара слов о токсикологии ртути.

Некоторые в детстве играли шариками ртути, и “с ними ничего не было”. Действительно, вопреки распространенному мнению металлическая ртуть при кратковременном контакте малоопасна. Причина малой токсичности металлической ртути — в ее плохой биодоступности. Нерастворимая в воде и химически инертная, почти как благородные металлы, она не может быстро попасть в организм.

Опасно вдыхание паров ртути, и это практически единственный путь поступления ее в организм. Касание ртути пальцами никакой дополнительной опасности не добавляет. Более того, дажепроглатывание ртути обычно проходит без последствий для здоровья. Ртуть химически достаточно инертна и выходит из организма естественным путем. Поэтому она является причиной не острых отравлений, а вялотекущих хронических, проявляющихся в медленном постепенном ухудшении здоровья и не всегда вовремя диагностируемых врачами. Именно этим ртуть и коварна: маленький шарик, закатившийся под плинтус, будет годами испаряться и отравлять воздух в квартире, а жильцы не будут понимать, чем и почему они болеют. Порча здоровья от контакта со ртутью в течение нескольких дней может быть необратима.

Растворимые соединения ртути намного опаснее, и именно они образуются, когда ртуть так или иначе попадает в организм человека, животных или в растений. Рекорд по токсичности принадлежит диметилртути — это ужасно токсичное из известных человечеству веществ, настолько токсичное, что при первой возможности ищут менее опасную альтернативу если предстоит работа с ней. Капля диметилртути способна убить человека сквозь резиновые перчатки, причем первые симптомы отравления могут появиться только на следующий день.

Если вы выкинув ртуть подальше от дома думаете, что проблема устранена — то вы серьезно ошибаетесь. Ртуть — яд кумулятивный, способный к накоплению в живых организмах
и передаче дальше по пищевой цепочке. Примером отравления человека ртутью является болезнь Минамата. Ртуть из выброшенной люминесцентной лампы отравит если не вас, то ваших потомков.


Дополнительные сведения

Если вы нашли где-нибудь ртуть, не пытайтесь ее продать. Ртуть и ее соли считаются сильнодействующими ядовитыми веществами (ст. 234 УК РФ). На содержащие ртуть приборы заводского производства, соответствующие официальным стандартам, запрет не распространяется. Найденную ртуть и неисправные ртутьсодержащие приборы, следует сдавать на переработку в специализированные службы в вашем городе. Единственный широко доступный источник ртути (если вдруг понадобится в научной работе) — медицинские термометры.

Какие металлы лучше всего проводят тепло? | Маркхэм Металс

Большинство современных приборов, которые мы используем сегодня, такие как водонагреватели и кухонная утварь, требуют хорошей теплопроводности для работы. Из-за этого большинство из них построено из различных типов металла. Однако некоторые металлы, например сплавы, проводят тепло лучше, чем другие, что может помочь этим приборам работать в соответствии с вашими потребностями.

Что такое легированный металл?

Металлический сплав – это смесь одного или двух металлов с неметаллическими элементами.Благодаря такой комбинации они не только лучше проводят тепло, но и более долговечны и устойчивы к ржавчине.

Почему важно смотреть на металлы, которые проводят тепло

Все металлы обладают своими уникальными свойствами, поэтому важно рассматривать каждый отдельно. Например, если вы ищете лучший металл для кухонной посуды, вам потребуется другой тип теплопроводности по сравнению с металлом бытовой техники.

Металлы, которые лучше всего проводят тепло

Серебро

Серебро – один из лучших металлов для отвода тепла, поскольку он работает как мощный отражатель.Из-за этого серебро содержится во многих предметах, таких как печатные платы и батареи.

Медь

Медь – еще один хороший проводник тепла, потому что она быстро поглощает тепло и удерживает его в течение длительного периода времени. Кроме того, медь также устойчива к коррозии. Из-за своей универсальности медь часто встречается в кухонной посуде, компьютерах и системах отопления.

Алюминий

Хотя алюминий не такой прочный, как медь, он все же очень хорошо проводит тепло.В отличие от меди, она дешевле, поэтому ее часто используют для изготовления посуды. В дополнение к этому, алюминий используется в светодиодных лампах в качестве теплоотвода, поскольку он помогает лампам работать более эффективно без перегрева.

Латунь

Латунь – очень прочный металл, и его можно нагревать до температуры 1720 градусов по Фаренгейту. Этот металлический сплав представляет собой смесь меди и цинка, которая помогает ему хорошо проводить тепло. Из-за сильного поглощения тепла латунь также способна мгновенно уничтожать микробы, что делает ее популярным металлом для дверных ручек и подобных предметов, к которым часто прикасаются.

Свяжитесь с нами сегодня для быстрого и удобного расчета стоимости

Все еще не знаете, какой металл лучше всего подойдет для вашей следующей работы? Мы предлагаем большой и разнообразный ассортимент стали и алюминия в сочетании с обширным набором собственного металлообрабатывающего оборудования, что позволяет нам обслуживать клиентов на беспрецедентном уровне. По вопросам или информации о наших продуктах и ​​услугах звоните нам сегодня по телефону 978-658-1121 или свяжитесь с нами прямо на нашем сайте.

лучших металлов для отвода тепла

Теплопроводность – это термин, который описывает, насколько быстро материал поглощает тепло из областей с высокой температурой и перемещает его в области с более низкой температурой.Лучшие теплопроводные металлы обладают высокой теплопроводностью и могут использоваться во многих областях, таких как посуда, теплообменники и радиаторы. С другой стороны, металлы с более низкой скоростью теплопередачи также полезны, когда они могут действовать как тепловой экран в приложениях, которые выделяют большое количество тепла, таких как двигатели самолетов.

Ознакомьтесь с нашим ассортиментом металлических изделий на IMS!

Вот рейтинг теплопроводных металлов и металлических сплавов от самого низкого до самого высокого среднего значения теплопроводности в ваттах на метр-К при комнатной температуре:

  1. Нержавеющая сталь (16)
  2. Свинец (35)
  3. Углеродистая сталь (51)
  4. Кованое железо (59)
  5. Утюг (73)
  6. Алюминиевая бронза (76)
  7. Медная латунь (111)
  8. Алюминий (237)
  9. Медь (401)
  10. Серебро (429)

Нержавеющая сталь

Обладая одной из самых низких коэффициентов теплопроводности для металлического сплава, нержавеющей стали требуется гораздо больше времени для отвода тепла от источника, чем, скажем, меди.Это означает, что кастрюля из нержавеющей стали нагревает пищу гораздо дольше, чем кастрюля с медным дном (хотя у нержавеющей стали есть и другие преимущества). В паровых и газовых турбинах на электростанциях используется нержавеющая сталь, помимо других свойств, благодаря ее термостойкости. В архитектуре облицовка из нержавеющей стали может дольше выдерживать высокие температуры, сохраняя здания прохладнее на солнце.

Алюминий

Хотя алюминий имеет немного более низкую теплопроводность, чем медь, он легче по весу, дешевле и с ним проще работать, что делает его лучшим выбором для многих приложений.Например, в микроэлектронике, такой как светодиоды и лазерные диоды, используются крошечные радиаторы с алюминиевыми ребрами, которые выступают в воздух. Тепло, генерируемое электроникой, передается от чипа к алюминию, а затем к воздуху либо пассивно, либо с помощью принудительной конвекции воздушного потока или термоэлектрического охладителя.

Просмотреть доступные металлы

Медь

Медь имеет очень высокую теплопроводность и намного дешевле и доступнее серебра, которое является лучшим металлом для отвода тепла.Медь устойчива к коррозии и биообрастанию, что делает ее хорошим материалом для солнечных водонагревателей, газовых водонагревателей и промышленных теплообменников, холодильников, кондиционеров и тепловых насосов.

Другие факторы, влияющие на теплопроводность

При выборе металлов, наиболее подходящих для теплопроводности, вы должны также принимать во внимание другие факторы, помимо теплопроводности, которые влияют на скорость теплового потока. Например, начальная температура металла может иметь огромное значение для скорости теплопередачи.При комнатной температуре железо имеет теплопроводность 73, но при 1832 ° F его проводимость падает до 35. Другие факторы влияния включают разницу температур в металле, толщину металла и площадь поверхности металла.

Ваш местный поставщик металла, обслуживающий Южную Калифорнию, Аризону и Северную Мексику

Industrial Metal Supply – крупнейший на Юго-Западе поставщик всех видов металлообрабатывающего оборудования и принадлежностей для металлообработки. Запросите предложение или свяжитесь с IMS сегодня.

Данные взяты из Engineering Toolbox.

Какие металлы лучше всего рассеивают тепло

Некоторые металлы рассеиваются нагреваются более эффективно, чем другие, и эта теплопроводность важна в ряде приложений. Теплопроводность – это мера металла способность проводить тепло. Это означает, что металл охлаждает температуры, в результате процесса рассеивания.

Металлы с самая высокая теплопроводность у меди и алюминия.Самые низкие из стали и бронза.

Металлы, проводящие тепло эффективно используются в приложениях, где важна передача тепла, либо как часть процесса охлаждения или нагрева. С другой стороны, металлы любят сталь, которая плохо проводит тепло, подходит для высоких температур среды, в которых термостойкость имеет решающее значение.

Например, как эффективный теплопровод, медь используется в нагревательных стержнях и проводах, горячей воде резервуары и теплообменники. Точно так же алюминиевые сплавы являются наиболее распространенными. материал в радиаторах.

Где термостойкость важная функция, то металлы с низкой теплопроводностью наиболее уместны, например, авиационные двигатели из стали.

В теплопроводности применения, эти металлы должны быть сначала изготовлены, чтобы сделать их пригодными для их конечная цель. Вот почему высокая температура изоляция и Системы безопасности печи имеют решающее значение для литейного производства и сталелитейной промышленности .

Теплообменники

Теплообменники устройства, передающие тепло от одной формы к другой.Этот обмен материей может быть жидкостью, такой как масло или вода, или движущимся воздухом. Главный металл в жаре теплообменники медные, но алюминий может обеспечить экономичную альтернативу некоторые приложения. Оба используются, потому что они хорошо проводят тепло.

Распространенный вид тепла обменник радиатора автомобиля. Охлаждающая жидкость двигателя сделана из слоев металла. листы, сложенные вместе, с алюминиевым сердечником.

Охлаждает двигатель за счет циркуляция жидкой охлаждающей жидкости на водной или масляной основе.Эта жидкость нагревается через блок двигателя, затем теряет тепло через радиатор перед тем, как быть вернулся к двигателю.

– Теплообменники также используются в авиационных двигателях для отвода избыточного тепла, а также в военной технике, лазерах, рентгеновских лучах и источниках питания.

-Промышленные объекты, на которых используются теплообменники, включают атомные электростанции и химические заводы. Обычно это трубы из медно-никелевого сплава с хорошей устойчивостью к коррозии.

-Газоводяные теплообменники передают тепло, вырабатываемое газовым топливом, воде в бытовых и коммерческих котлах.

– Испарительные агрегаты приводят в действие теплообменник воздух-воздух в воздушных тепловых насосах, используемых в бытовых и коммерческих системах отопления.

Радиаторы

Это особая форма теплообменника зависит от теплопроводности для передачи тепла, выделяемого электронные или механические устройства в движущуюся охлаждающую жидкость, которая затем отводит тепло в охлаждение.

Опять же, здесь используются металлы. с высокой теплопроводностью.

Радиаторы обычно изготовлен из алюминиевого сплава, обладающего одной из самых высоких теплопроводности ценности.Они используются в полупроводниках для различных потребителей и промышленная электроника.

В компьютерах используются радиаторы для охлаждения центральных процессоров и графических процессоров, но вы также найти их в силовых транзисторах и светодиодах.

Возможно, проще узнаваемое применение теплопроводности с учетом рассеивания тепла качества, есть посуда. У высококачественных сковородок медное дно, потому что это будет быстро проведите тепло, равномерно распределяя его по поверхности.

Процессы выплавки алюминия и меди

Как теплопроводящий металлы, медь и алюминий имеют огромное практическое значение. Однако плавка Сам процесс извлечения этих металлов из руд требует квалифицированных термических управление.

Индукционные печи обычно обрабатывают медь и алюминий, которые имеют высокую температуру плавления 1083 ° С. Этот индукционный нагрев чище и энергоэффективнее, чем традиционными методами, но требует точного контроля температуры и термического управление.

Индукционные печи не обладают способностью к рафинированию, поэтому обрабатываемые ими материалы сначала должны быть очищены от любые продукты окисления. Эти печи могут быть как без сердечника, так и с расплавленным металлом. металлическая петля, намотанная через железный сердечник.

Изоляция и безопасность печи

Так же, как медь и алюминий используются в теплопередаче, поэтому этот процесс помогает фактическому производству этих металлы в первую очередь. Микропористая высокотемпературная изоляция помогает предотвращают передачу тепла в печах, плавящих эти металлы.

микропористый Элмелин материал называется Elmtherm и бывает нескольких сортов. В алюминии системы отмывки оптимизируют движение и сводят к минимуму потери тепла; и в таянии печи это помогает поддерживать равномерное распределение тепла и качество готовый продукт.

Другой аспект меди а выплавка алюминия обеспечивает безопасность печи. Vapourshield особенно эффективен для контроля выбросов при плавлении медных сплавов, разные химические компоненты.

Поддерживающая теплопроводность

Elmelin поддерживает широкий ряд отраслей промышленности, которые полагаются на процессы теплопередачи с использованием термического проводящие металлы, рассеивающие тепло. Мы также обеспечиваем существенно высокий температурная изоляция для литейных производств, которые обрабатывают эти металлы. Для большего информации, пожалуйста, позвоните нам по телефону +44 20 8520 2248, по электронной почте [email protected] или заполните нашу онлайн-форму запроса . Мы будем свяжемся с вами как можно скорее.

Лучшие 10 теплопроводящих материалов

Теплопроводность – это мера способности материала пропускать через него тепло.Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды. Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с рекомендациями S.I (Международная система).

10 лучших измеренных теплопроводных материалов и их значения приведены ниже. Эти значения проводимости являются средними из-за разницы в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.

Материалы теплопроводящие

  1. Diamond – 2000 – 2200 Вт / м • K

    Алмаз является ведущим теплопроводным материалом, и его значения проводимости, измеренные в 5 раз, выше, чем у меди, наиболее производимого металла в Соединенных Штатах. Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной передачи тепла. Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.

    Diamond – важный компонент многих современных портативных электронных устройств. Их роль в электронике – способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях. Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.

  2. Серебро – 429 Вт / м • K

    Серебро – относительно недорогой и распространенный теплопроводник.Серебро входит в состав многих бытовых приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для производства электрических инструментов и электроники (US Geological Survey Mineral Community 2013). Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлементов, которые являются основным компонентом солнечных батарей.

  3. Медь – 398 Вт / м • K

    Медь – наиболее часто используемый металл для производства токопроводящих приборов в США.Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла. Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы – все это приборы, в которых используются проводящие свойства меди.

  4. Золото – 315 Вт / м • K

    Золото – редкий и дорогой металл, который используется для специальных проводящих применений. В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.

  5. Карбид кремния – 270 Вт / м • K

    Карбид кремния – это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода. При изготовлении и сплавлении кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.

  6. Оксид бериллия– 255 Вт / м • K

    Оксид бериллия используется во многих высокопроизводительных деталях для таких приложений, как электроника, поскольку он обладает высокой теплопроводностью и является хорошим электрическим изолятором.

  7. Алюминий – 247 Вт / м • K

    Алюминий обычно используется в качестве экономичной замены меди. Хотя алюминий не такой проводящий, как медь, его много, и с ним легко работать из-за его низкой температуры плавления. Алюминий является важным компонентом светильников L.E.D (светоизлучающих диодов). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.

  8. Вольфрам – 173 Вт / м • K

    Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, которые подвергаются воздействию высоких уровней электричества.Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов. Он также часто используется в лампах и как компонент электронно-лучевых трубок.

  9. Графит 168 Вт / м • K

    Графит – это распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к смесям полимеров для улучшения их теплопроводных свойств. Батареи – знакомый пример устройства, использующего высокую теплопроводность графита.

  10. Цинк 116 Вт / м • K

    Цинк – один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов). 20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование – это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.

Список литературы

Мохена, Т.К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. DOI: 10.5772 / intechopen.75676

Оксид бериллия Получено с https://thermtest.com/materials-database#Beryllium-Oxide

База данных материалов Thermtest. https://thermtest.com/materials-database

Автор: Каллиста Уилсон, младший технический писатель на Thermtest

Медный или алюминиевый радиатор? – Обмен электротехнического стека

Это сложный вопрос со множеством факторов.3} \ $)

  • медь: 8.96
  • алюминий: 2,7
  • анодный индекс (\ $ \ mathrm V \ $)
    • медь: -0,35
    • алюминий: -0,95
  • Что означают эти свойства? Для всех последующих сравнений рассмотрим два материала одинаковой геометрии.

    Более высокая теплопроводность меди означает, что температура на радиаторе будет более равномерной. Это может быть выгодно, поскольку края радиатора будут более теплыми (и, следовательно, более эффективно излучающими), а горячее пятно, связанное с тепловой нагрузкой, будет холоднее.

    Более высокая объемная теплоемкость меди означает, что для повышения температуры радиатора потребуется большее количество энергии. Это означает, что медь может более эффективно «сглаживать» тепловую нагрузку. Это может означать, что короткие периоды тепловой нагрузки приводят к более низкой пиковой температуре.

    Очевидно, что более высокая плотность меди делает ее тяжелее.

    Различный анодный индекс материалов может сделать один материал более предпочтительным, если гальваническая коррозия вызывает беспокойство.Что более благоприятно, будет зависеть от того, какие другие металлы контактируют с радиатором.

    Судя по этим физическим свойствам, медь в любом случае обладает превосходными тепловыми характеристиками. Но как это соотносится с реальной производительностью? Мы должны учитывать не только материал радиатора, но и то, как этот материал взаимодействует с окружающей средой. Граница раздела между радиатором и окружающей средой (обычно воздухом) очень важна. Кроме того, важна и особая геометрия радиатора.Мы должны все это учитывать.

    В исследовании Майкла Хаскелла «Сравнение влияния различных материалов радиаторов на характеристики охлаждения» были проведены некоторые эмпирические и вычислительные испытания радиаторов из алюминия, меди и пенографита с идентичной геометрией. Я могу сильно упростить выводы: (и я проигнорирую радиатор из пенографита)

    Для конкретной протестированной геометрии алюминий и медь имели очень схожие характеристики, а медь лишь немного лучше.Чтобы дать вам представление, при воздушном потоке 1,5 м / с тепловое сопротивление меди от нагревателя к воздуху составляло 1,637 К / Вт, а у алюминия – 1,677. Эти цифры настолько близки, что будет трудно оправдать дополнительную стоимость и вес меди.

    По мере того, как радиатор становится больше по сравнению с охлаждаемым предметом, медь приобретает преимущество перед алюминием из-за своей более высокой теплопроводности. Это связано с тем, что медь способна поддерживать более равномерное распределение тепла, более эффективно отводя тепло к конечностям и более эффективно используя всю излучающую область.В том же исследовании было проведено вычислительное исследование для большого кулера ЦП и рассчитано тепловое сопротивление 0,57 К / Вт для меди и 0,69 К / Вт для алюминия.

    Добро пожаловать в магазин BellaCopper

    Добро пожаловать в магазин BellaCopper

    Оригинальные высокопроизводительные твердотельные медные теплоотражатели / пластины размораживания – для хорошо оборудованных кухонь и квалифицированных поваров.

    Щелкните заголовки слева для заказа и получения дополнительной информации.

    Покупатели мобильных устройств, пожалуйста, прокрутите вниз для заказа и получения дополнительной информации.

    Оригинальный твердотельный медный диффузор и пластина дефростера , изобретенные основателями BellaCopper в 2001 году! – Замены не принимаю! Толщина 1/8 дюйма! 100% сделано в США.

    Все наши твердотельные медные диффузоры имеют толщину 1/8 дюйма и чистоту 99,9% (0,999). Наши 10-дюймовые весят 4 фунта!

    Наши действительно отлично работают !! Почему? Потому что медь лучше проводит тепло! Немного лучше, но намного лучше!

    Примечание: Щелкните заголовки слева, чтобы узнать цены, оформить заказ и многое другое.И не верьте нам! – нажмите на заголовки слева, чтобы увидеть новые отзывы! Покупатели мобильных устройств, пожалуйста, прокрутите вниз, чтобы сделать заказ и получить дополнительную информацию.

    Сентябрь Акция! К каждому заказу любых двух из 8, 9 или 10-дюймовых медных теплоотражателей / пластин дефростера мы будем включать бесплатный 6-дюймовый медный теплоотражатель (стоимость 35 долларов). Просто закажите любые две больших пластин – в любую комбинацию – и мы автоматически добавим 6-дюймовую пластину при отгрузке.Не волнуйтесь, если в подтверждении заказа не указано, что в комплект входит 6-дюймовый, мы недостаточно умны, чтобы сделать это программным обеспечением, – но мы автоматически включим его, когда упакуем и отправим ваш заказ. Зачем нам делать такие хорошие вещи? Потому что мы хорошие парни? Ну да, но мы не умеем инвентаризовать, поэтому и сделали слишком много.

    Есть вопросы? Напишите нам по адресу [email protected] или позвоните нам по телефону 805 218 3241

    . Отличный рассеиватель тепла, пластина кипячения, уравнитель тепла, множитель для плиты, пластина для духовки и действительно прекрасная пластина для дефростера – все в одном.Незаменимый кухонный инструмент.

    Плита-рассеиватель тепла необходим на каждую хорошо оборудованную кухню. Блюда готовятся более равномерно, с меньшими ожогами и ожогами благодаря рассеивателю тепла. С диффузором BellaCopper Heat Diffuser медленное приготовление и кипячение на медленном огне становится проще простого – без горячих точек на сковороде.

    Для безупречного приготовления густых супов, рагу, риса, бобов, изысканных соусов, приготовления с молоком, сыром или сливками, шоколадом, помадой, конфетами, тушением на плите и ризотто – список можно продолжать и продолжать.Конечно, вы все еще можете сжигать вещи, но вам просто нужно постараться.

    Идеально готовьте рис каждый раз.

    Используйте его для здорового приготовления при низкой температуре. Помогает предотвратить образование опасных канцерогенов, устраняя ожоги и ожоги.

    Плюс он великолепно работает как плита дефростера, намного лучше, чем алюминиевые, и намного лучше, чем деревянные или пластиковые разделочные доски. Просто поместите замороженные продукты на пластину дефростера BellaCopper комнатной температуры, и они разморозятся как по волшебству! Две замороженные куриные грудки будут готовы к приготовлению через 30-40 минут.

    Отлично в духовке! Используйте их в духовке, чтобы поддерживать более постоянную температуру! – Они могут помочь как в больших, так и в маленьких духовках – Крошечные духовые шкафы RV и большие коммерческие духовые шкафы. Один из наших партнеров BellaCopper всегда держит в своей духовке две десятидюймовые и клянется ими. Просто поставьте медь на решетку духовки, разогрейте духовку, поставьте противень на медь, и все готово! Один из наших клиентов использует их для пиццы и говорит, что они намного лучше, чем камень для пиццы. А на пирожки! – Пироги? Да! Другой покупатель говорит, что она заядлый производитель пирогов – и наконец! – и верхняя, и нижняя корочка сделаны одинаково – все благодаря пластинам BellaCopper. Она говорит, что это лучшее применение пластин BellaCopper! -См. Раздел «Использование духовки» в заголовках слева!

    Это все из-за свойств меди теплопроводности. Медь лучше! Наука говорит нам, что медь на 70% (1,7 раза) лучше по теплопередаче, чем чистый алюминий, в 5 раз лучше, чем железо, и в 23 раза лучше, чем нержавеющая сталь!

    Наши медные пластины теплоотражателя / дефростера изготовлены из меди с высокой проводимостью C110, 99.Чистота 9%. Все они имеют толщину 1/8 дюйма.

    Лучшее приготовление пищи благодаря современному материаловедению!

    Рассеиватель тепла BellaCopper может придать всей вашей посуде с плоским дном из стали, чугуна и алюминия виртуальную производительность медной посуды за небольшую часть стоимости медной посуды. От него ваши хорошие сковороды готовятся еще лучше!

    Они бывают размером 6, 8, 9 и 10 дюймов (все толщиной 1/8 дюйма – (3,17 мм)) – для всех ваших кулинарных нужд.

    Особенности специального теплоотражателя BellaCopper – Все теплоотражатели и пластины дефростера BellaCopper имеют квадратную форму с закругленными краями и углами (без острых краев).Все теплоотражатели и пластины дефростера BellaCopper также поставляются в термоусадочной упаковке, чтобы сохранить яркую и блестящую поверхность вплоть до вашего первого использования, когда они сразу же меняют цвет.

    Наша уникальная квадратная форма позволяет использовать несколько диффузоров тепла BellaCopper бок о бок на соседних горелках или в духовке для увеличения площади готовки. Сделайте часть своей плиты французской квартирой!

    Отлично подходит как для больших, так и для маленьких кастрюль.

    Идеально подходят для керамической и керамической посуды, такой как казуэлы и тажины.

    Отлично подходит для всех газовых и электрических плит, а также керамических и стеклянных плит. (Для печей со стеклянным верхом см. Советы и предостережения в столбце слева)

    Для низких и средних уровней нагрева – варите на медленном огне.

    Отлично подходит для жилых автофургонов, яхт и кемпинга. Он распределяет тепло от одной маленькой горелки по всей вашей сковороде. А возможность использовать несколько кастрюль и сковородок на одной конфорке действительно расширяет возможности приготовления (это умножает плиту!). Работает также для контроля горячих точек в жилых домах!

    Они изменят цвет при первом использовании.Очистите их с помощью Barkeepers Friend или лимона и каменной соли, если хотите – или нет, мы редко чистим наши. Если пища плохо запекается и не остается накипи, воспользуйтесь чем-то вроде очищающего средства Comet – оно всегда работает – оно немного потрет поверхность до матового цвета, но с него откроется чешуйка. Примечание: не мойте в холодной воде, когда медь горячая – это может привести к короблению – сначала дайте меди остыть на плите.

    100% Все американское производство: от добычи, плавки и переработки медной руды в Юте, Аризоне и Монтане до производства в Вентуре, Калифорния.

    «Это не гаджет, это повседневный кухонный инструмент. Вы будете использовать его каждый день – Да »- Пит, BellaCopper

    Напишите нам по адресу [email protected] или по телефону – 805-218-3241

    Медные теплораспределители и пластины для дефростера с тонким покрытием с 2002 года – С самого начала мы отгрузили более 20 000 штук!

    Оригинальный медный рассеиватель тепла – изобретен основателями BellaCopper в 2002 году! – Никаких заменителей.

    Служит на всю жизнь! Такие же теплообменники у нас уже более восемнадцати лет!

    Нажмите на заголовки слева столбец для заказа и для получения дополнительной информации.

    Последнее обновление сайта 15 сентября 2021 г.

    Авторские права BellaCopper 2002-2021

    Какой металл является лучшим проводником тепла? – Научные проекты

    Дизайн эксперимента:

    Спланируйте эксперимент для проверки каждой гипотезы. Составьте пошаговый список того, что вы будете делать, чтобы ответить на каждый вопрос. Этот список называется экспериментальной процедурой. Чтобы эксперимент дал ответы, которым можно доверять, он должен иметь «контроль». Контроль – это дополнительная экспериментальная проба или прогон.Это отдельный эксперимент, проведенный точно так же, как и другие. Единственное отличие состоит в том, что экспериментальные переменные не меняются. Элемент управления – это нейтральная «контрольная точка» для сравнения, которая позволяет вам увидеть, что происходит при изменении переменной, сравнивая ее с отсутствием изменений. Надежные средства управления иногда очень сложно разработать. Они могут быть самой сложной частью проекта. Без контроля вы не можете быть уверены, что изменение переменной приведет к вашим наблюдениям. Серия экспериментов, включающая контроль, называется «контролируемым экспериментом».”

    Эксперимент 1:

    В этом эксперименте вы сравните теплопроводность трех разных металлов. Вы можете сделать это, используя образцы различных металлических стержней или кондуктометра, как показано на рисунке.

    Процедура :

    Пойдите в строительный магазин и купите 3 отрезка неизолированного провода из меди, нержавеющей стали и алюминия. Все провода должны быть одинакового диаметра (3 мм или 4 мм) и одинаковой длины (от 6 до 8 дюймов).Приобретите пачку простых белых свечей, несколько спичек и часы с секундной стрелкой. Осторожно растопите немного воска из свечи, скатывая теплый воск в шарики одинакового размера – около четверти дюйма в диаметре. Возможно, вам придется увеличить диаметр восковых шариков, в зависимости от толщины самой толстой проволоки, которую вы смогли найти, потому что в следующей части эксперимента вы собираетесь проткнуть восковые шарики на концах проволоки. Если у вас длинные провода, тщательно отмерьте разные провода на отрезки одинакового размера – подойдет длина 6 дюймов – и попросите взрослого, помогающего вам, отрезать их за вас.

    Затем зажгите свечу и, удерживая проволоку с восковым шариком на конце с помощью щипцов, вставьте конец проволоки, противоположный восковому шарику, в пламя свечи, удерживайте его там, пока восковой шарик не расплавится с проволоки, и время идет. часы, сколько времени нужно, чтобы восковой шарик растаял. Внимательно отметьте в листе сбора данных для каждого куска проволоки: из меди, алюминия или нержавеющей стали, какой толщины, какой длины был кусок и сколько времени потребовалось, чтобы воск расплавился.

    Если вы используете кондуктометр, держите центр кондуктометра над пламенем.

    Обобщите свои результаты и сравните их с вашей гипотезой – действительно ли восковой шарик упал с медной проволоки быстрее всего?

    Расширенная дополнительная процедура:

    Если вы можете получить провода разной толщины из одного и того же металла, вы также можете использовать ту же процедуру для проверки влияния толщины на теплопередачу или проводимость. Попытайтесь выяснить, как повлияла разная толщина проволоки на время плавления? Запишите свои результаты и сравнение результатов с гипотезой в заключение, подтверждающее или опровергающее вашу гипотезу.


    Эксперимент 2:

    В этом эксперименте мы проверим теплопроводность 3 разных ложек. Вы можете выбрать ложки из нержавеющей стали, алюминия и меди. Вы также можете использовать этот метод для сравнения теплопроводности металлических полос, стержней или труб.

    Процедура :

    1. Вдавите небольшой кусочек теплого воска для свечей из Части I в ручку каждой из трех ложек (см. Схему). Вдавите четвертинки в воск так, чтобы они прикрепились к ложкам.
    2. Наполните химический стакан 300 мл воды и поставьте стакан на нагревательную плиту.
    3. Поместите три ложки в воду так, чтобы четвертинки выходили из верхней части стакана.
    4. Включите конфорку и дайте воде нагреться. Обратите внимание на четвертинки и обратите внимание на порядок, в котором они падают с ложек.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *