Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

1.2. Прямое и обратное включение p-n-перехода

При использовании p-n-перехода в реальных полупроводниковых приборах к нему может быть приложено внешнее напряжение. Величина и полярность этого напряжения определяют поведение перехода и проходящий через него электрический ток. Если положительный полюс источника питания подключается к p-области, а отрицательный – к n-области, то включение p-n-перехода называют прямым. При изменении указанной полярности включение p-n-перехода называют обратным.

При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю, рисунок 2. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.

е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Рисунок 2 – Прямое включение p-n-перехода

Повышенная диффузия носителей зарядов через переход приводит к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя, рисунок 3. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителей поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Рисунок 3 – Обратное включение p-n-перехода

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремится к предельному значению

IS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

Зависимость тока через p-n-переход от приложенного к нему напряженияI = f(U)называют вольтамперной характеристикойp-n-перехода, рисунок 4.

Рисунок 4 – Теоретическая и реальная ВАХ р-n-перехода

Вольтамперная характеристика электронно-дырочного перехода описывается уравнением Эберса-Молла:

, (1)

где I– ток через переход при напряженииU;

IS– ток насыщения, создаваемый неосновными носителями заряда.IS называется также тепловым током, так как концентрация неосновных носителей зависит от температуры;

qe – заряд электрона;

k– постоянная Больцмана;

Т– абсолютная температура;

– температурный потенциал перехода, примерно равный при комнатной температуре 0,025 В = 25 мВ.

Если р-n-переход включен в прямом направлении, напряжение

U берут со знаком плюс, если в обратном – со знаком минус.

При прямом приложенном напряжении можно пренебречь единицей по сравнению со слагаемым, и ВАХ будет иметь чисто экспоненциальный характер.

При обратном (отрицательном) напряжении слагаемымможно пренебречь по сравнению с единицей, и ток оказывается равным.

Однако уравнение Эберса-Моллавесьма приблизительно совпадает с реальными вольтамперными характеристиками, так как не учитывает целого ряда физических процессов, происходящих в полупроводниках. К таким процессам относятся: генерация и рекомбинация носителей в запирающем слое, поверхностные токи утечки, падение напряжения на сопротивлении нейтральных областей, явления теплового, лавинного и туннельного пробоев.

Если ток, протекающий через переход, незначителен, то падением напряжения на сопротивлении нейтральных областей можно пренебречь.

Однако при увеличении тока этот процесс оказывает все большее влияние на ВАХ прибора, т.е. его реальная характеристика идет под меньшим углом и вырождается в прямую линию, когда напряжение на запирающем слое становится равным контактной разности потенциалов.

При некотором обратном напряжении наблюдается резкое возрастание обратного тока. Это явление называют пробоем перехода. Существует три вида пробоев: туннельный, лавинный и тепловой. Туннельный и лавинный пробои представляют собой разновидности электрического пробоя и связаны с увеличением напряженности электрического поля в переходе. Тепловой пробой определяется перегревом перехода.

Туннельный эффект (эффект Зенера) заключается в прямом переходе валентных электронов из одного полупроводника в другой (где они уже будут являться свободными носителями заряда), что становится возможным при высокой напряженности электрического поля на переходе. Такая большая напряженность электрического поля на переходе может быть достигнута при высокой концентрации примесей в

p– иn-областях, когда толщина перехода становится очень маленькой.

В широких p-n-переходах, образованных полупроводниками со средней либо малой концентрациями примесей, вероятность туннельного просачивания электронов уменьшается и более вероятным становится лавинный пробой.

Лавинный пробой возникает, когда длина свободного пробега электрона в полупроводнике значительно меньше толщины перехода. Если за время свободного пробега электроны накапливают кинетическую энергию, достаточную для ионизации атомов в переходе, то наступает ударная ионизация, сопровождающаяся лавинным размножением носителей зарядов. Образовавшиеся в результате ударной ионизации свободные носители зарядов увеличивают обратный ток перехода.

Тепловой пробой обусловлен значительным ростом количества носителей зарядов в p-n-переходе за счет нарушения теплового режима. Подводимая к переходу мощностьPобр=IобрUобррасходуется на его нагрев. Выделяющаяся в запирающем слое теплота отводится преимущественно за счет теплопроводности кристаллической решетки. При плохих условиях отвода теплоты от перехода, а также при повышении обратного напряжения на переходе выше критического значения, возможен его разогрев до температуры, при которой происходит тепловая ионизация атомов. Образующиеся при этом носители зарядов увеличивают обратный ток через переход, что приводит к его дальнейшему разогреву. В результате такого нарастающего процесса переход недопустимо разогревается и возникает тепловой пробой, характеризующийся разрушением кристалла.

Увеличение числа носителей зарядов при нагреве перехода приводит к уменьшению его сопротивления и выделяемого на нем напряжения. Вследствие этого на обратной ветви ВАХ при тепловом пробое появляется участок с отрицательным дифференциальным сопротивлением.

ПРИНЦИП РАБОТЫ ДИОДА

Все мы прекрасно знаем что такое полупроводниковый диод, но мало кто из нас знает о принципе работы диода, сегодня специально для новичков я поясню принцип его работы. Диод как известно одной стороной хорошо пропускает ток, а в обратном направлении – очень плохо. У диода есть два вывода – анод и катод. Ни один электронный прибор не обходится без применения диодов. Диод используют для выпрямлении переменного тока, при помощи диодного моста который состоит из четырех диодов, можно превратить переменной ток в постоянный, или с использованием шести диодов превратить трехфазовое напряжение в однофазовое, диоды применяются в разнообразных блоках питания, в аудио – видео устройствах, практически повсюду. Тут можно посмотреть фотографии некоторых видов диодов. 

   На выходе диода можно заметить спад начального уровня напряжения на 0,5-0,7 вольт. Для более низковольтных устройств по питанию используют диод шоттки, на таком диоде наблюдается наименьший спад напряжения – около 0,1В. В основном диоды шоттки используют в радио передающих и приемных устройствах и в других устройствах работающих в основном на высокой частоте. Принцип работы диода с первого взгляда достаточно простой: диод – полупроводниковый прибор с односторонней проводимостью электрического тока.  

   Вывод диода подключенный к положительному полюсу источника питания называют анодом, к отрицательному – катодом. Кристалл диода в основном делают из германия или кремния одна область которого обладает электропроводимостью п – типа, то есть дырочная, которая содержит искуственно созданный недостаток электронов, друггая – проводимости н – типа, то есть содержит избыток электронов, границу между ними называют п – н переходом, п – в латыни первая буква слова позитив, н – первая буква в слове негатив. Если к аноду диода подать положительное напряжение, а к катоду отрицательное – то диод будет пропускать ток, это называют прямым включением, в таком положении диод открыт, если подать обратное – диод ток пропускать не будет, в таком положении диод закрыт, это называют обратным подключением. 

   Обратное сопротивление диода очень большое и в схемах его принимают ка диэлектрик (изолятор). Продемонстрировать работу полупроводникового диода можно собрать простую схему которая состоит из источника питания, нагрузки (например лампа накаливания или маломощный электрический двигатель) и самого полупроводного диода. Последовательно подключаем все компоненты схемы, на анод диода подаем плюс от источника питания, последовательно диоду, то есть к катоду диода подключаем один конец лампочки, другой конец той же лампы подключаем к минусу источника питания. Мы наблюдаем за свечением лампы, теперь перевернем диод, лампа уже не будет светится поскольку диод подключен обратно, переход закрыт. Надеюсь каким то образом это вам поможет в дальнейшем, новички – А. Касьян (АКА).

   Форум для начинающих

Диодный ток: функциональность и характеристики

Ключевые выводы

● Узнайте о функциях диодов.

● Получите более полное представление о характеристиках протекания тока через диоды.

● Узнайте, как изменения смещения диодов определяют, работают ли они как изоляторы или проводники.

 

Смещение диода влияет на протекание тока.

По сравнению с множеством электронных компонентов, с которыми мы сталкиваемся в области электроники, диод является относительно простым компонентом. По сути, диод — это компонент, который позволяет току течь в одном направлении и блокирует его в другом направлении. Диоды позволяют току течь в одном направлении без влияния какого-либо импеданса, полностью блокируя весь поток тока в другом. Кроме того, существует четкое обозначение между этими двумя состояниями работы.

Диод

Как уже говорилось, ток, протекающий через диод, может течь только в одном направлении, и мы называем это состояние прямым смещением. Поскольку ток может течь только в одном направлении (прямое смещение), мы неофициально считаем диоды односторонними электронными вентилями. Если напряжение на диоде отрицательное, ток не течет; таким образом, идеальный диод выглядит как разомкнутая цепь.

Условия или состояния, в которых может находиться типичный диод, — прямое или обратное смещение. В электронике мы определяем смещение или смещение как метод установления набора токов или напряжений в различных точках электронной схемы, чтобы установить надлежащие условия работы в электронных компонентах. Хотя это упрощенная версия ответа, в целом она все же верна.

Диод представляет собой электронный компонент, состоящий из полупроводникового материала P-типа и N-типа; мы называем p-n переход. Он также имеет выводы, подключенные к этим двум концам, что упрощает внедрение практически в любую электронную схему.

Функциональность диода

Мы называем вывод, прикрепленный к полупроводнику N-типа, катодом. Таким образом, катод является отрицательной стороной диода. Напротив, мы называем вывод, подключенный к полупроводнику P-типа, анодом, что делает его положительной стороной диода.

Когда мы подключаем источник напряжения к диоду так, что положительная сторона источника напряжения соединяется с анодом, а отрицательная сторона соединяется с катодом, диод действует как проводник, позволяя течь току. Когда мы подключаем напряжение к диоду в этом направлении, мы называем это прямым смещением.

Однако, если мы изменим это направление напряжения, то есть подключим отрицательную (-) сторону к аноду, а положительную (+) сторону к катоду, ток не будет течь. В это время диод действует как изолятор. Когда мы подключаем напряжение к диоду в этом направлении, мы называем это обратным смещением.

Примечание. Хотя при прямом смещении ток течет, а при обратном — нет, существует максимальный предел уровня тока, который диод может эффективно блокировать.

Две области диода

Мы кратко обсудили две полупроводниковые области в диоде (P и N). Однако также важно различать стороны или полупроводниковые области.

Во-первых, о символе, который схематически изображает диод, катод находится справа, а анод – слева. Анодную сторону условного обозначения, как правило, рассматривают как стрелку, изображающую стандартное направление протекания тока, т. е. от положительного (+) к отрицательному (-). Следовательно, диод допускает протекание тока в направлении стрелки. А затем рассмотрите вертикальную линию на стороне катода как огромный знак минус (-), показывающий, какая сторона диода является отрицательной для прямого смещения.

Функциональность протекания тока через диод

Стандартному диоду требуется определенное прямое напряжение, прежде чем он позволит протекать току. Как правило, указанное количество напряжения, которое требуется диоду, прежде чем позволить протекать току, составляет минуту. Обычно это 0,5 вольта. Пока он не достигнет этой величины напряжения, ток не будет течь. Однако при достижении прямого напряжения ток легко протекает через диод.

Мы называем этот минимальный порог напряжения в прямом направлении прямым падением напряжения на диоде. Причина этого в том, что цепь теряет или падает это напряжение на диоде. Мы можем проверить это, используя мультиметр и измерив выводы диода, когда он находится в прямом смещении. Полученное показание будет прямым падением напряжения на диоде.

Для дополнительной иллюстрации мы можем использовать приведенную выше принципиальную схему. Когда мы используем мультиметр для измерения на клеммах лампы, напряжение будет представлять собой разницу между напряжением батареи (12 вольт) и прямым падением напряжения на диоде в цепи. Например, если прямое падение напряжения на нашем диоде составляет 0,8 вольта, а напряжение батареи точно равно 12 вольтам, то напряжение на лампе будет 11,2 вольта.

Характеристики диода

Диод имеет максимальное обратное напряжение, которое он может выдержать до того, как выйдет из строя, что позволяет протекать обратному току через диод. Мы называем это обратное напряжение пиковым обратным напряжением (PIV) или пиковым обратным напряжением. Кроме того, это важная характеристика диода с точки зрения функциональности схемы. Крайне важно, чтобы ни один диод в вашей схеме не подвергался напряжению, превышающему этот предел.

Наряду с номинальным значением PIV и прямого падения напряжения диод также получает максимальный номинальный ток. Как следует из этого рейтинга, это пиковый рабочий ток диода, и его превышение приведет к непоправимому повреждению диода и, возможно, всей схемы.

Диод как компонент является относительно простым, но он обеспечивает функциональность двух различных компонентов в одном. Широкий спектр приложений для диода включает практически бесконечный список приложений для электрических устройств. Таким образом, диод является действительно адаптивным компонентом, который дает разработчикам оптимальный контроль над тем, какую функцию диод будет играть в их схемотехнике.

Набор диодов различных форм и размеров, но все они имеют одинаковые характеристики протекания тока.

Для успешного внедрения диода в вашу конструкцию с соответствующими характеристиками протекания тока через диод необходимо использовать высококачественное программное обеспечение для проектирования и анализа печатных плат. Allegro от Cadence — одно из таких программ с множеством надежных функций для компоновки, а также тестирования и моделирования.

Если вы хотите узнать больше о том, какое решение может предложить Cadence, обратитесь к нам и нашей команде экспертов. Чтобы посмотреть видео по связанным темам или узнать, что нового в нашем наборе инструментов для проектирования и анализа, подпишитесь на наш канал YouTube.

 

Решения Cadence PCB — это комплексный инструмент для проектирования от начала до конца, позволяющий быстро и эффективно создавать продукты. Cadence позволяет пользователям точно сократить циклы проектирования и передать их в производство с помощью современного отраслевого стандарта IPC-2581.

Подпишитесь на Linkedin Посетите вебсайт Больше контента от Cadence PCB Solutions

УЗНАТЬ БОЛЬШЕ

Диод | Определение, символ, типы и использование

характеристики p-n перехода

Посмотреть все СМИ

Ключевые люди:
Ник Холоньяк-младший
Похожие темы:
электронная лампа выпрямитель катод анод фотокатод

Просмотреть весь связанный контент →

диод , электрический компонент, пропускающий ток только в одном направлении. На принципиальных схемах диод изображается треугольником с линией, проходящей через одну вершину.

Наиболее распространенный тип диода использует соединение p n . В этом типе диода один материал ( n ), в котором электроны являются носителями заряда, граничит со вторым материалом ( p ), в котором дырки (места, обедненные электронами, которые действуют как положительно заряженные частицы) действуют как носители заряда. На их границе образуется обедненная область, через которую диффундируют электроны, заполняя дырки в р -бок. Это останавливает дальнейший поток электронов. Когда этот переход смещен в прямом направлении (т. е. к стороне p приложено положительное напряжение), электроны могут легко перемещаться по переходу, заполняя дырки, и через диод протекает ток. Когда переход смещен в обратном направлении (т. е. к стороне p приложено отрицательное напряжение), обедненная область расширяется, и электроны не могут свободно проходить через нее. Ток остается очень малым до тех пор, пока не будет достигнуто определенное напряжение (напряжение пробоя), после чего ток резко возрастет.

Светоизлучающие диоды (СИД) представляют собой p n переходы, излучающие свет при протекании через них тока. Несколько диодов p n можно соединить последовательно, чтобы получился выпрямитель (электрический компонент, преобразующий переменный ток в постоянный). Стабилитроны имеют четко определенное напряжение пробоя, так что при этом напряжении ток течет в обратном направлении, и постоянное напряжение может поддерживаться, несмотря на колебания напряжения или тока. В варакторных (или варикапных) диодах изменение напряжения смещения вызывает изменение емкости диода; эти диоды имеют множество применений для передачи сигналов и используются в радио- и телеиндустрии. (Подробнее об этих и других типах диодов см. см. полупроводниковое устройство.)

Ранние диоды представляли собой вакуумные трубки, вакуумированные стеклянные или металлические электронные трубки, содержащие два электрода — отрицательно заряженный катод и положительно заряженный анод.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *