MOSFET транзисторы. Устройство, принцип работы и разновидности.
Полевой транзистор с изолированным затвором
На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n – переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).
Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел – полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).
Еще одно, довольно распространенное название – МДП (металл – диэлектрик – полупроводник).
Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.
Что же это такое MOSFET ?
MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем).
Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.
Внешний вид одного из широко распространённых мосфетов – IRFZ44N.
Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.
Принцип работы полевого транзистора.
Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.
Упрощённая модель полевого транзистора с изолированным затвором.
Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см.
рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.
Упрощённая модель полевого транзистора с изолированным затвором
Основу МДП-транзистора составляет:
Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.
Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому “+”), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.
Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.
Теперь в двух словах опишем, как это всё работает.
Если между затвором и истоком приложить напряжение плюсом (+) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.
В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.
Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.
Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.
Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.
О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.
Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO 2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.
Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.
Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.
Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому – напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.
Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы.
Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Полевой транзистор МОП (MOSFET) | Принцип работы и параметры
Что такое полевой транзистор MOS, MOSFET, МОП транзистор?
Как часто вы слышали название полевой транзистор МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Это все слова синонимы и относятся к одному и тому же радиоэлементу: полевому МОП-транзистору.
Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor
Откуда пошло название “МОП”
Если “разрезать” МОП-транзистор, то можно увидеть вот такую картину.
С точки зрения еды на вашем столе, МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа – толстый кусок хлеба, диэлектрик – тонкий слой колбасы, слой металла – тонкая пластинку сыра. В результате у нас получается вот такой бутерброд.
А как будет строение транзистора сверху-вниз? Сыр – металлическая пластинка, колбаса – диэлектрик, хлеб – полупроводник. Следовательно, получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП – Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором. А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать почти стекло, то и вместо названия “диэлектрик” взяли название “оксид, окисел”, и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места).
Далее по тексту МОП-транзистор
Строение полевого транзистора
Давайте еще раз рассмотрим структуру полевого транзистора.
Имеем “кирпич” полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому, их концентрация намного больше, чем электронов. Но электроны также есть и в P-полупроводнике. Как вы помните, электроны в P-полупроводнике – это неосновные носители и их концентрация очень мала, по сравнению с дырками. “Кирпич” P-полупроводника носит название Подложки. От подложки выходит вывод с таким же названием: подложка.
[quads id=1]
Другие слои – это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.
Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод. Называется этот вывод Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.
Мы видим, что полевой транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор и Подложка), а реальный транзистор имеет только 3 вывода.
В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:
Поэтому, следует соблюдать цоколевку при подключении МОП-транзистора в схему.
Виды полевых транзисторов
В семействе МОП полевых транзисторов в основном выделяют 4 вида:
1) N-канальный с индуцированным каналом
2) P-канальный с индуцированным каналом
3) N-канальный со встроенным каналом
4) P-канальный со встроенным каналом
Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом – сплошной.
В современном мире полевой транзистор со встроенным каналом используется все реже и реже, поэтому, в наших статьям мы их не будем рассматривать. Будем изучать только N и P – канальные полевые транзисторы с индуцированным каналом.
Принцип работы полевого транзистора
Принцип работы почти такой же, как и в полевом транзисторе с управляющим PN-переходом (JFET-транзисторе). Исток – это вывод, откуда начинают свой путь основные носители заряда, Сток – это вывод, куда они притекают, а Затвор – это вывод, с помощью которого мы контролируем поток основных носителей.
Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движение электронов через Исток-Сток, нам потребуется источник питания Bat:
Если рассмотреть наш транзистор с точки зрения PN-переходов и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:
где
И-Исток
П-Подложка
С-Сток
Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.
Значит, в этой схеме
никакого движения электрического тока пока что не намечается.
Индуцирование канала в МОП-транзисторе
Если подать некоторое напряжение на Затвор, то в Подложке начнутся волшебные превращения. В ней будет индуцироваться канал. Индукция, индуцирование – это буквально означает “наведение”, “влияние”. Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через магнитное или электрическое поле). Последнее выражение для нас имеет более глубокий смысл: “через электрическое поле”.
Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные – притягиваются:
На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить, и создали гениальный радиоэлемент. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле.
Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов, так как в данный момент подложка P-типа. А раз и на Затворе положительный потенциал, а дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные – притягиваются.
Картина будет выглядеть следующим образом.
Дырки обращаются в бегство подальше от Затвора, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому, электронам ничего другого не остается, как просто создать “вавилонское столпотворение” около слоя диэлектрика, что мы и видим на рисунке ниже.
Но смотрите, что произошло !? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.
Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А такой транзистор уже будет называться N-канальным МОП-транзистором. Вы наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно, этот канал стал проводником для электрического тока. Проще говоря, между Истоком и Стоком образовался “проводок”, по которому может бежать электрический ток.
Значит, если сейчас подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину.
Как вы видите, цепь стает замкнутой, и в цепи может спокойно течь электрический ток.
Но это еще не все! Чем сильнее электрическое поле, тем больше концентрация электронов, тем толще получается канал, следовательно, тем меньше сопротивление канала! А как сделать поле сильнее? Достаточно подать побольше напряжения на Затвор! Подавая бОльшее напряжение на Затвор с помощью источника питания Bat2, мы увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, “играя” напряжением на затворе. Ну гениальнее некуда!
Работа P-канального полевого транзистора
Выше мы разобрали N-канальный транзистор с индуцированным каналом. Также есть еще и P-канальный транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора. Честно говоря, P-канальные полевые транзисторы используются реже, чем N-канальные.
Принцип работы показан на рисунке ниже.
Режимы работы полевого транзистора
Работа полевого транзистора в режиме отсечки
Давайте познакомимся с нашим героем. У нас в гостях N-канальный полевой транзистор с индуцированным каналом. Судя по гравировке, звать его IRFZ44N. Выводы слева-направо: Затвор, Сток и Исток.
Как мы уже с вами разобрали, Затвор служит для управлением ширины канала между Стоком и Истоком. Для того, чтобы показать принцип работы, мы с вами соберем простейшую схему, которая будет управлять интенсивностью свечения лампы накаливания. Так как в данный момент нет никакого напряжения на Затворе полевого транзистора, следовательно, он будет находится в закрытом состоянии. То есть электрический ток через лампу накаливания течь не будет.
По идее, для того, чтобы управлять свечением лампы, нам достаточно менять напряжение на Затворе относительно Истока. Так как наш полевой транзистор является N-канальным, следовательно, на Затвор мы будем подавать положительное напряжение. Окончательная схема примет вот такой вид.
Вопрос в другом. Какое напряжение надо подать на Затвор, чтобы в цепи Сток-Исток побежал минимальный электрический ток?
Мой блок питания Bat2 выглядит следующим образом.
С помощью этого блока питания мы будем регулировать напряжение. Так как он стрелочный, более правильным будет измерение напряжения с помощью мультиметра.
Собираем все как по схеме и подаем на Затвор напряжение номиналом в 1 Вольт.
Лампочка не горит. На другом блоке питания (Bat1) есть встроенный амперметр, который показывает, что в цепи лампы накаливания электрический ток не течет, следовательно, транзистор не открылся. Ну ладно, будем добавлять напряжение.
И только уже при 3,5 Вольт амперметр на Bat1 показал, что в цепи лампы накаливания появился ток, хотя сама лампа при этом не горела.
Такого слабого тока ей просто недостаточно, чтобы накалить вольфрамовую нить. Режим, при котором в цепи Сток-Исток не протекает электрический ток, называется режимом отсечки.
Активный режим работы полевого транзистора
В нашем случае при напряжении около 3,5 Вольт наш транзистор начинает немного приоткрываться. Это значение у различных видов полевых транзисторов разное и колеблется в диапазоне от 0,5 и до 5 Вольт. В даташите этот параметр называется как Gate threshold voltage, в переводе с англ. яз. – пороговое напряжение Затвора. Указывается как VGS(th), а в некоторых даташитах как VGS(to) .
Как вы видите в таблице, на мой транзистор это напряжение варьируется от 2 и до 4 Вольт при каких-то условиях (conditions). В условиях прописано, что открытие транзистора считается при токе в 250 мкА и при условии, что напряжение на Стоке-Истоке будет такое же как и напряжение на Затворе-Стоке.
С этого момента мы можем плавно регулировать ширину канала нашего полевого транзистора, увеличивая напряжение на Затворе. Если чуть-чуть добавить напряжение, то мы можем увидеть, что нить лампы накаливания начинает накаляться. Меняя напряжение туда-сюда, мы можем добиваться нужного нам свечения лампочки накаливания. Такой режим работы полевого транзистора называется активным режимом.
В этом режиме полевой транзистор может менять сопротивление индуцируемого канала в зависимости от напряжения на Затворе. Для того, чтобы понять, как усиливает полевой транзистор, вам надо прочитать статью про принцип работы биполярного транзистора, где все это описано, иначе ничего не поймете. Читать по этой ссылке.
Активный режим работы транзистора чреват тем, что в этом режиме транзистор может очень сильно греться. Поэтому, всегда следует позаботиться об охлаждающем радиаторе, который бы рассеивал тепло от транзистора в окружающее пространство. Почему же греется транзистор? В чем дело? Да все оказывается до боли просто. Сопротивление Сток-Исток зависит от того, какое напряжение будет на Затворе. То есть схематически это можно показать вот так.
Если напряжения на Затворе нет или оно меньше, чем напряжение открытия транзистора, то сопротивление в этом случае будет бесконечно большое. Лампочка – это нагрузка, которая обладает каким-либо сопротивлением. Не спорю, что сопротивление нити горящей лампочки будет совсем другое, чем холодной, но пока пусть будет так, что лампочка – это какое-то постоянное сопротивление. Перерисуем нашу схему вот так.
Получился типичный делитель напряжения. Как я уже говорил, если нет напряжения на Затворе, то сопротивление Сток-Истока будет бесконечно большим. Значит, мощность, рассеиваемая на транзисторе, будет равняться падению напряжения на Сток-Истоке помноженной на силу тока через Сток-Истока: P=Ic Uси . Если выразить эту формулу через сопротивление, то получаем
P= I2C R
где R – это сопротивление канала Сток-Исток, Ом
IC – сила тока, проходящая через канал (ток Стока) , А
А что такое мощность, рассеиваемая на каком-либо радиоэлементе? Это и есть тепло.
Теперь представьте, что мы приоткрыли транзистор наполовину. Пусть в нашей цепи ток через лампу будет 1 Ампер, а сопротивление перехода Сток-Исток будет равно 10 Ом. Согласно формуле P= I2C R получим, что рассеиваемая мощность на транзисторе в этот момент будет 10 Ватт! Да это маленький, черт его возьми, нагреватель!
Режим насыщения полевого транзистора
Для того, чтобы полностью открыть полевой транзистор, нам достаточно подавать напряжение до тех пор, пока лампа не будет гореть во весь накал. В моем случае это напряжение более чем 4,2 Вольта.
В режиме насыщение сопротивление канала Сток-Исток минимально и почти не оказывает сопротивление электрическому току. Лампа ест свои честные 20,4 Ватта (12х1,7=20,4).
На самой лампе мы видим ее мощность 21 Ватт. Спишем небольшую погрешность на наши приборы.
Самое интересное то, что транзистор в этом случае остается холодным и ни капли не греется, хотя через него проходит 1,7 Ампер! Для того, чтобы понять этот феномен, нам опять надо рассмотреть формулу P= I2C R . Если сопротивление Стока-Истока составляет какие-то сотые доли Ома в режиме насыщения, то с чего будет греться транзистор?
Поэтому, самые щадящие режимы для полевого МОП-транзистора – это когда канал полностью открыт или когда канал полностью закрыт. При закрытом транзисторе сопротивление канала будет бесконечно большое, а ток через это сопротивление будет бесконечно мал, так как в этой цепи будет работать закон Ома. Подставляя эти значение в формулу P= I2C R, мы увидим, что мощность рассеивания на таком транзисторе будет равна практически нулю. В режиме насыщения у нас сопротивление будет достигать сотые доли Ома, а сила тока будет зависеть от нагрузку в цепи. Следовательно, в этом режиме транзистор также будет рассеивать какие-то сотые доли Ватта.
Ключевой режим работы полевого транзистора
В этом режиме полевой транзистор работает только в режиме отсечки и насыщения.
Давайте немного изменим схему и уберем из нее Bat2. Вместо него поставим переключатель, а напряжение на Затвор будем брать от Bat1.
Для наглядности вместо переключателя я использовал проводок от макетной платы. В данном случае лампочка не горит. А с чего ей гореть-то? На Затворе то у нас полный ноль, поэтому, канал закрыт.
Но стоит только перекинуть выключатель в другое положение, как у нас лампочка сразу же загорается на всю мощь.
Даже не надо ни о чем заморачиваться! Просто подаем на Затвор напряжение питания и все! Разумеется, если оно не превышает максимальное напряжение на Затворе, прописанное в даташите. Для нашего транзистора это +-20 Вольт. Не повредит ли напряжение питания Затвору? Так как Затвор у нас имеет очень большое входное сопротивление (он ведь отделен слоем диэлектрика от всех выводов), то и сила тока в цепи Затвора будет ну очень маленькая (микроамперы).
Как вы видите, лампочка горит на всю мощь. В этом случае можно сказать, что потенциал на Стоке стал такой же, как и на Истоке, то есть ноль, поэтому весь ток побежал от плюса питания к Стоку, “захватив” по пути лампочку накаливания, которая не прочь была покушать электрический ток, излучая кучу фотонов в пространство и на мой рабочий стол.
Но наблюдается также и интересный феномен, в отличие от ключа на биполярном транзисторе. Даже если откинуть проводок от Затвора, все равно лампочка продолжает гореть как ни в чем не бывало!
Почему так происходит? Здесь надо вспомнить внутреннее строение самого полевого транзистора. Вот эта часть вам ничего не напоминает?
Так это же конденсатор! А раз мы его зарядили, то с чего он будет разряжаться? Разрядиться-то ему некуда, поэтому он и держит заряд электронов в канале, пока мы не разрядим вывод Затвора. Для того, чтобы убрать потенциал с Затвора и “заткнуть” канал, нам опять же надо уравнять его с нулем. Сделать это достаточно просто, замкнув Затвор на Исток. Лампочка сразу же потухнет.
Как вы видели в опыте выше, если мы отключаем напряжение на Затворе, то обязательно должны притянуть Затвор к минусу, иначе канал так и останется открытым. Поэтому обязательное условие в схемах – Затвор должен всегда чем-то управляться и с чем-то соединяться. Ему нельзя висеть в воздухе.
А почему бы Затвор автоматически не притягивать к нулю при отключении подачи напряжения на Затвор? Поэтому, эту схему можно доработать и сделать самый простейший ключ на МОП-транзисторе:
При включении выключателя S цепь стает замкнутой и лампочка загорается
Как только я убираю красный проводок от Затвора (разомкну выключатель), лампочка сразу тухнет:
Красота! То есть как только я убрал напряжение от Затвора, Затвор притянуло к минусу через резистор и на нем стал нулевой потенциал. А раз на Затворе ноль, то и канал Сток-Исток закрыт. Если я снова подам напряжение на Затвор, то у нас на мегаомном резисторе упадет напряжение питания, которое будет все оседать на Затворе и транзистор снова откроется. На бОльшем сопротивлении падает бОльшее напряжение ;-). Не забываем золотое правило делителя напряжения. Резистор в основном берут от 100 КилоОм и до 1 МегаОма (можно и больше). Так как МОП-транзисторы с индуцированным каналом в основном используются в цифровой и импульсной технике, из них получаются отличные транзисторные ключи, в отличие от ключа на биполярном транзисторе.
Характеристики полевого МОП транзистора
Для того, чтобы узнать характеристики транзистора, нам надо открыть на него даташит и рассмотреть небольшую табличку на первой странице даташита. Будем рассматривать транзистор, который мы использовали в своих опытах: IRFZ44N.
Напряжение VGS – это напряжение между Затвором и Истоком. Смотрим на даташит и видим, что максимальное напряжение, которое можно подать на Затвор это +-20 Вольт. Более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, и транзистор придет в негодное состояние.
Максимальная сила тока ID , которая может течь через канал Сток-Исток.
Как мы видим, транзистор в легкую может протащить через себя 49 Ампер!!!
Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуре кристалла 100 градусов, что чаще всего и происходит на практике.
RDS(on) – сопротивление полностью открытого канала Стока-Истока. В режиме насыщения, сопротивление канала транзистора достигает ну очень малого значения. Как вы видите, у нашего подопечного сопротивление канала достигает 17,5 мОм (при условии, что напряжение на Затворе = 10 Вольт, а ток Стока = 25 Ампер).
Максимальная рассеиваемая мощность PD – это мощность, которую транзистор может рассеять на себе, превращая эту мощность в тепло. В нашем случае это 94 Ватта. Но здесь также должны быть соблюдены различные условия – это температура окружающей среды, а также есть ли у транзистора радиатор.
Также различные зависимости одних параметров от других можно увидеть в даташите на последних страницах.
Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:
Также есть интересная зависимость сопротивления канала полностью открытого транзистора от температуры кристалла:
Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.
Как проверить полевой транзистор
Для того, чтобы проверить полевой транзистор, мы должны определить, где какие у него выводы. У нас подопытным кроликом будет тот же самый транзистор: IRFZ44N.
Для этого вбиваем в любой поисковик название нашего транзистора и рядом прописываем слово “даташит”. Чаще всего на первой странице даташита мы можем увидеть цоколевку транзистора.
Хотя, интернет переполнен уже готовыми распиновками и иногда все-таки бывает проще набрать”распиновка (цоколевка) *название транзистора* “. Итак, я вбил ” IRFZ44N цоколевка” в Яндекс и нажал на вкладку “картинки”. Яндекс мне выдал уйму картинок с распиновкой этого транзистора:
Ну а дальше дело за малым.
Устройство и принцип работы в видео:
Проверка полевого транзистора с помощью мультиметра
Теперь, зная цоколевку и принцип работы транзистора, мы можем проверить его на работоспособность. Первым делом мы без проблем можем проверить эквивалентный диод VD2 между Стоком и Истоком. В схемотехническом обозначении его тоже часто указывают.
Как проверить диод мультиметром, я писал еще в этой статье.
Но не спешите брать мультиметр в руки и прозванивать диод! Ведь первым делом надо снять с себя статическое напряжение. Это можно сделать, если задеть метализированный слой водонагревательных труб, либо коснуться заземляющего провода. При работе с радиоэлементами, чувствительными к статическому напряжению, желательно использовать антистатический браслет, один конец которого закрепляется к заземляющему проводнику, например, к батарее отопления, а другой конец в виде ремешка надевается на запястье.
Далее замыкаем все выводы транзистора каким-нибудь металлическим предметом. В моем случае это металлический пинцет. Для чего мы это делаем? А вдруг кто-то зарядил Затвор до нас или он уже где-то успел “хапнуть” потенциал на Затворе? Поэтому, чтобы все было честно, мы уравняем потенциал на Затворе до нуля с помощью этой нехитрой манипуляции.
Ну а теперь со спокойной совестью можно проверить диод, который образуется в полевом транзисторе между Стоком и Истоком. Так как у нас транзистор N-канальный, следовательно, его схемотехническое обозначение будет выглядеть вот так:
Беремся положительным (красным) щупом мультиметра за Исток, так-как там находится анод диода, а отрицательным (черным) – за Сток
(там у нас катод диода). На мультиметре должно высветиться падение напряжения на диоде 0,5-0,7 Вольт. В моем случае, как видите, 0,56 Вольт.
Далее меняем щупы местами. Мультиметр покажет единичку, что нам говорит о том, что диод в полевом транзисторе жив и здоров.
Проверяем сопротивление канала. Мы с вами уже знаем, что в N-канальном транзисторе ток у нас будет бежать от Стока к Истоку, следовательно, встаем красным положительным щупом на Сток, а отрицательным – на Исток, и меряем сопротивление. Оно должно быть ну о-о-о-очень большое. В моем случае даже на Мегаомах показывает единичку, что говорит о том, что сопротивление даже больше, чем 200 Мегаом. Это очень хорошо.
Так как у нас транзистор N-канальный, следовательно, чтобы его приоткрыть, нам достаточно будет подать напряжение на Затвор, относительно Истока. Чаще всего в режиме прозвонки диодов на щупах мультиметра бывает напряжение в 3-4 Вольта. Все зависит от марки мультиметра. Этого напряжения будет вполне достаточно, чтобы подать его на Затвор и приоткрыть транзистор.
Так и сделаем. Ставим черный щуп на Исток, а красный на Затвор на доли секунды. На показания мультиметра не обращаем внимания, так как мы сейчас используем его в качестве источника питания, чтобы подать потенциал на Затвор. Этим простым действием мы приоткрыли наш транзистор.
Раз мы приоткрыли транзистор, значит, сопротивление Сток-Исток должно уменьшится. Проверяем, так ли это? Ставим мультиметр в режим измерения сопротивления и смотрим, уменьшилось ли сопротивление между Стоком-Истоком? Как видите, мультиметр показал значение в 2,45 КОм.
Это говорит о том, что наш полевой транзистор полностью работоспособен.
Конечно, бывает и такое, что малого напряжения на мультиметре не хватает, чтобы приоткрыть транзистор. Здесь можно прибегнуть к источникам питания, которые выдают более-менее нормальное напряжение, например, блок питания или батарейка Крона в 9 Вольт. Так как рядом не оказалось Кроны, то мы просто выставим напряжение в 10 Вольт. Напряжение на Затвор именно этого транзистора не должно превышать 20 Вольт, иначе произойдет пробой диэлектрика, и транзистор выйдет из строя.
Итак, выставляем 10 Вольт.
Подаем это напряжение на Затвор транзистора на доли секунды.
Теперь по идее сопротивление между Стоком и Истоком должно равняться нулю. Для чистоты эксперимента замеряем сопротивление щупов самого мультиметра. Эх, дешевые китайские щупы. 2,1 Ом).
А теперь и замеряем сопротивление самого перехода. Практически 0 Ом!
Хотя, если верить даташиту, должно быть 17,5 миллиОм. Теперь можно утверждать со 146% вероятностью, что наш транзистор полностью жив и здоров.
Как проверить полевой транзистор с помощью транзисторметра
На рабочем столе каждого электронщика должен быть этот замечательный китайский прибор, благо он стоит недорого. Про него я писал обзор здесь.
Здесь все просто, как дважды два. Вставляем транзистор в кроватку и нажимаем большую зеленую кнопку. В результате прибор сразу же определил, что это полевой МОП транзистор с каналом N-типа, определил расположение выводов транзистора, а также емкость затвора и пороговое напряжение открытия, о котором мы говорили выше в статье. Ну не прибор, а чудо!
Меры безопасности при работе с полевыми транзисторами
Все полевые транзисторы, будь это полевой транзистор с управляющим PN-переходом, либо МОП-транзистор, очень чувствительны к электрическим перегрузкам на Затворе. Особенно это касается электростатического заряда, который накапливается на теле человека и на измерительных приборах. Опасные значения электростатического заряда для МОП-транзисторов составляют 50-100 Вольт, а для транзисторов с управляющим PN переходом – 250 Вольт. Поэтому, самое важное правило при работе с такими транзисторами – это заземлить себя через антистатический браслет, или взяться за голую батарею ДО касания полевых транзисторов.
Также в некоторых экземплярах полевых транзисторов встраивают защитные стабилитроны между Истоком и Затвором, которые вроде бы спасают от электростатики, но лучше все-таки перестраховаться лишний раз и не испытывать судьбу транзистор на прочность. Также не помешало бы заземлить всю паяльную и измерительную аппаратуру. В настоящее время это все делается уже автоматически через евро розетки, у которых имеются в наличии заземляющий проводник.
Похожие статьи по теме “полевой транзистор”
Транзистор биполярный
Полевой транзистор с управляющим PN-переходом (JFET-транзистор)
Транзисторметр Mega328
Читаем электрические схемы с транзистором
Мультивибратор на транзисторах
Сторожевое устройство на одном транзисторе
Мосфет транзистор что это
Автор На чтение 15 мин. Опубликовано
Мосфеты — разновидность полевых транзисторов, очень полезная штука, если правильно его подобрать, подключить и использовать. Я их люблю применять в поделках. Маломощные в основном для экономичности потребления тока, мощные для коммутации амперных нагрузок и для силовых ключей в ШИМ- схемах и генераторах.
В отличие от простых биполярных транзисторов управляются они не током а напряжением. Управляющий электрод — затвор по сути является одним контактом простого неполярного конденсатора малой емкости.
В логических пятивольтовых схемах очень хорошо применять “логические” мосфеты — транзисторы, которые управляются напрямик с ножек микроконтроллера.
При подборе и выборе мощного мосфета нужно учитывать его основные параметры, это максимальное напряжение на его ножках, сопротивление между входом и выходом в открытом состоянии и напряжение на затворе, достаточное полностью открыть мосфет. Для логических мосфетов это напряжение в основном чуть ниже пяти вольт.
При подключении мощных нагрузок на первый план выступает проходное сопротивление сток — исток в открытом состоянии. Чем больше коммутируемый ток — тем важнее этот праметр. В даташитах этот параметр всегда на первой странице отдельной строкой.
Чем меньше этот параметр, тем меньше тепла будет выделяться мосфетом при работе. Даже небольшое изменение этого параметра приводит к большим разностям в выделении тепла.
Для примера я собрал тестовую схему:
Для замеров я использовал два мультиметра. Напряжение на затвор от нуля до максимума я подавал через проволочный многооборотный резистор СП5-3. Подопытным транзистором был 2SK3918.
Вот таблица замеров:
Данные конечно получились не совсем точные, но для общего сведения пойдет.
Пояснения:
GS — напряжение между затвором и минусом схемы, которое поступает с подстроечного резистора
DS — напряжение падения на транзисторе.
I — ток нагрузки — лампочки.
Далее применив Закон Ома вычислилась мощность W и сопротивление R. Вот это сопротивление и указывается в даташитах. Красным отмечена слишком большая мощность нагрева транзистора — мосфет полностью не открыт.
При использовании в качестве мощных ШИМ-ключей для регулировки яркости светодиодов и ламп нельзя задирать частоту импульсов высоко. Достаточно держать её чуть выше 50 Герц. Например така частота у штатных панелей приборов оптитрон и у штатных ДХО из ламп дальнего света ” в пол накала” в тойотах. Если использовать более высокие частоты (килогерцы и выше) затвор мосфета начинает хорошо проводить ток и для раскачки его необходимо усложнять схему или использовать специальные драйверы.
Как показала практика мосфет 2SK3918 спокойно без радиатора в воздухе выдерживает 60-ти ватовую лампочку, оставаясь слегка теплым при напряжении на затворе в пять вольт. При подключении ШИМ генератора со скважностью 30-50% вообще холодный.
Полевой транзистор с изолированным затвором
На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n – переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).
Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел – полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).
Еще одно, довольно распространенное название – МДП (металл – диэлектрик – полупроводник).
Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.
Что же это такое MOSFET ?
MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.
Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.
Внешний вид одного из широко распространённых мосфетов – IRFZ44N.
Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.
Принцип работы полевого транзистора.
Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.
Упрощённая модель полевого транзистора с изолированным затвором.
Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.
Упрощённая модель полевого транзистора с изолированным затвором
Основу МДП-транзистора составляет:
Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.
Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому “+”), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.
Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.
Теперь в двух словах опишем, как это всё работает.
Если между затвором и истоком приложить напряжение плюсом ( +) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.
В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.
Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.
Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.
Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.
О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.
Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.
Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.
Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.
Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому – напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.
Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.
В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.
Что такое MOS, MOSFET, МОП транзистор?
Как часто вы слышали название МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Да-да… это все слова синонимы и относятся они к одному и тому же радиоэлементу.
Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе звучит как Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор ;-). Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором? С чем это связано? Об этих и других вещах вы узнаете в нашей статье. Не переключайтесь на другую вкладку! 😉
Виды МОП-транзисторов
В семействе МОП-транзисторов в основном выделяют 4 вида:
1) N-канальный с индуцированным каналом
2) P-канальный с индуцированным каналом
3) N-канальный со встроенным каналом
4) P-канальный со встроенным каналом
Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом – сплошной.
В современном мире МОП-транзисторы со встроенным каналом используются все реже и реже, поэтому в наших статьям мы их затрагивать не будем, а будем рассматривать только N и P – канальные транзисторы с индуцированным каналом.
Откуда пошло название “МОП”
Начнем наш цикл статей про МОП-транзисторы именно с самого распространенного N-канального МОП-транзистора с индуцированным каналом. Go!
Если взять тонкий-тонкий нож и разрезать МОП-транзистор вдоль, то можно увидеть вот такую картину:
Если рассмотреть с точки зрения еды на вашем столе, то МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа – толстый кусок хлеба, диэлектрик – тонкий кусок колбасы, а сверху кладем еще слой металла – тонкую пластинку сыра. И у нас получается вот такой бутерброд:
А как будет строение транзистора сверху-вниз? Сыр – металл, колбаса – диэлектрик, хлеб – полупроводник. Следовательно получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП – Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором ;-). А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать что почти стекло, то и вместо названия “диэлектрик” взяли название “оксид, окисел”, и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места 😉
Строение МОП-транзистора
Давайте еще раз рассмотрим структуру нашего МОП-транзистора:
Имеем “кирпич” полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому их концентрация в данном материале намного больше, чем электронов. Но электроны тоже есть в P-полупроводнике. Как вы помните, электроны в P-полупроводнике – это неосновные носители и их концентрация очень мала, по сравнению с дырками. “Кирпич” P-полупроводника носит название Подложки. Она является основой МОП-транзистора, так как на ней создаются другие слои. От подложки выходит вывод с таким же названием.
Другие слои – это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.
Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод и называется Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.
Подложка МОП-транзистора
Итак, смотря на рисунок выше, мы видим, что МОП-транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор, Подложка), а в реальности только 3. В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:
Поэтому, требуется соблюдать цоколевку при подключении МОП-транзистора в схему.
Принцип работы МОП-транзистора
Тут все то же самое как и в полевом транзисторе с управляющим PN-переходом. Исток – это вывод, откуда начинают свой путь основные носители заряда, Сток – это вывод, куда они притекают, а Затвор – это вывод, с помощью которого мы контролируем поток основных носителей.
Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движуху электронов через Исток-Сток, нам потребуется источник питания Bat:
Если рассмотреть наш транзистор с точки зрения P-N переходов и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:
И-исток, П-Подложка, С-Сток.
Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.
Значит, в этой схеме
никакой движухи электрического тока не намечается.
Индуцирование канала в МОП-транзисторе
Если подать определенное напряжение на Затвор, в подложке начинаются волшебные превращения. В ней начинает индуцироваться канал.
Индукция, индуцирование – это буквально означает “наведение”, “влияние”. Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через электрическое поле). Последнее выражение для нас имеет более глубокий смысл: “через электрическое поле”.
Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные – притягиваются:
На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить и создали гениальный радиоэлемент. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле. А раз подаем на Затвор положительное напряжение, значит он будет заряжаться положительно не так ли?
Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов. А раз и на Затворе положительный потенциал и дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные – притягиваются. Картина будет выглядеть следующим образом пока что без источника питания между Истоком и Стоком:
Дырки обращаются в бегство подальше от Затвора и поближе к выводу Подложки, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому электронам ничего другого не остается, как просто создать вавилонское столпотворение около слоя диэлектрика.
В результате, картина будет выглядеть следующим образом:
Видели да? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.
Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А такой транзистор уже будет называться N-канальным МОП-транзистором. Если вы читали статью проводники и диэлектрики, то наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно этот канал стал проводником для электрического тока. Проще говоря, между Истоком и Стоком образовался “проводок”, по которому может бежать электрический ток.
Получается, если подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину:
Как вы видите, цепь стает замкнутой и в цепи начинает спокойно протекать электрический ток.
Но это еще не все! Чем сильнее электрическое поле, тем больше концентрация электронов, тем толще получается канал. А как сделать поле сильнее? Достаточно подать побольше напряжения на Затвор 😉 Подавая бОльшее напряжение на Затвор с помощью Bat2, мы увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, “играя” напряжением на затворе 😉 Ну гениальнее некуда!
Работа P-канального МОП-транзистора
В нашей статье мы разобрали N-канальный МОП транзистор с индуцированным каналом. Также есть еще и P-канальный МОП-транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться уже дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора:
На ютубе нашел очень неплохое видео, поясняющее работу полевого МОП-транзистора. Рекомендую к просмотру (не реклама):
Mosfet транзисторы принцип работы – Electrik-Ufa.ru
MOSFET транзисторы
Полевой транзистор с изолированным затвором
На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n – переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).
Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел – полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).
Еще одно, довольно распространенное название – МДП (металл – диэлектрик – полупроводник).
Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.
Что же это такое MOSFET ?
MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.
Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.
Внешний вид одного из широко распространённых мосфетов – IRFZ44N.
Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.
Принцип работы полевого транзистора.
Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.
Упрощённая модель полевого транзистора с изолированным затвором.
Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.
Упрощённая модель полевого транзистора с изолированным затвором
Основу МДП-транзистора составляет:
Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.
Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому “+”), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.
Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.
Теперь в двух словах опишем, как это всё работает.
Если между затвором и истоком приложить напряжение плюсом ( +) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.
В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.
Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.
Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.
Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.
О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.
Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.
Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.
Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука
.Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому – напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.
Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.
В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.
MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT
Когда дело доходит до импульсных преобразователей, оба типа транзисторов имеют свои преимущества и недостатки. Но какой из них лучше для данного устройства? В этой статье сравним MOSFET с модулями IGBT чтобы понять, что и где лучше ставить.
Предполагается что в схемах с низким напряжением, низким током, но высокой частотой переключения, предпочтительно использовать полевые транзисторы (MOSFET), а в схемах с высоким напряжением, высоким током, но с низкой частотой – лучше IGBT. Но достаточно ли такой общей классификации? У каждого есть свои дополнительные предпочтения в этом отношении и правда в том, что не существует общего, жесткого стандарта, который позволял бы оценивать параметры данного элемента с точки зрения его использования в импульсных преобразователях. Все зависит от конкретного применения и широкого спектра факторов, таких как частота переключения, размер, стоимость и т. д. Поэтому, вместо того чтобы пытаться решить какой элемент лучше, нужно внимательно изучить различия между этими деталями.
Кратко о MOSFET
MOSFET – это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком.
Для правильной работы МОП-транзисторы должны поддерживать положительный температурный коэффициент. Потери во включенном состоянии малы и теоретически сопротивление транзистора в этом состоянии не ограничено – может быть близко к нулю. Кроме того, поскольку МОП-транзисторы могут работать на высоких частотах, они могут работать в устройствах с быстрым переключением и с низкими потерями на переключение.
Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества – более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).
Кратко о IGBT
Модуль IGBT также является полностью управляемым коммутатором с тремя контактами (затвор, коллектор и эмиттер). Его управляющий сигнал подается между затвором и эмиттером и нагрузкой между коллектором и эмиттером.
IGBT сочетает в себе простые характеристики управления затвором, как в транзисторе MOSFET, с сильноточным характером биполярного транзистора с низким напряжением насыщения. Это достигается с помощью изолированного полевого транзистора для управляющего входа и биполярного силового транзистора в качестве сильноточного ключа.
Модуль IGBT специально разработан для быстрого включения и выключения. Фактически частота повторения импульсов достигает УЗ диапазона. Эта уникальная способность делает IGBT часто используемыми в усилителях класса D для синтеза сложных сигналов с широтно-импульсной модуляцией и фильтрами нижних частот. Они также используются для генерации импульсов большой мощности в таких областях, как физика элементарных частиц и плазма, а также играют важную роль в современных устройствах – электромобили, электровелосипеды, поезда, холодильники с регулируемой скоростью вращения компрессора, кондиционеры и многое другое.
Сравнение IGBT с MOSFET
Структуры обоих транзисторов очень похожи друг на друга. Что касается протекания тока, важным отличием является добавление слоя подложки P-типа под слой подложки N-типа в структуре модуля IGBT. В этом дополнительном слое дырки вводятся в слой с высоким сопротивлением N-типа, создавая избыток носителей. Это увеличение проводимости в N-слое помогает уменьшить общее напряжение во включенном состоянии в IGBT-модуле. К сожалению, это также блокирует поток электроэнергии в обратном направлении. Поэтому в схему добавлен специальный диод, который расположен параллельно с IGBT чтобы проводить ток в противоположном направлении.
MOSFET может переключаться на более высоких частотах, однако есть два ограничения: время переноса электронов в области дрейфа и время, необходимое для зарядки / разрядки входного затвора и его емкости. Тем не менее эти транзисторы, как правило, достигают более высокой частоты переключения, чем модули IGBT.
Подведем итог
Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы.
МОП-транзистор:
- Высокая частота переключения.
- Лучшие динамические параметры и более низкое энергопотребление драйвера.
- Более низкая емкость затвора.
- Более низкое термосопротивление, которое приводит к лучшему рассеиванию мощности.
- Более короткое время нарастания и спада, что означает способность работать на более высоких частотах.
IGBT модуль:
- Улучшенная технология производства, которая приводит к снижению затрат.
- Лучшая устойчивость к перегрузкам.
- Улучшенная способность распараллеливания схемы.
- Более быстрое и плавное включение и выключение.
- Снижение потерь при включении и при переключении.
- Снижение входной мощности.
В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.
Обсудить статью MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT
Что такое МОП-транзистор, принцип работы, типы, на схеме, преимущества недостатки
В статье расскажем что такое МОП-транзистор (MOSFET),
его принцип работы, типы, символ на схеме, различные применения, преимущества и недостатки.
МОП-транзистор (полевой транзистор на основе оксидов металлов и полупроводников) является наиболее широко используемым типом полевых транзисторов с изолированным затвором. Они используются в различных приложениях благодаря простым рабочим явлениям и преимуществам по сравнению с другими полевыми транзисторами.
Что такое МОП-транзистор
Metal Oxide Silicon Field Effect Transistor (Металлооксидные полевые транзисторы) сокращается как МОП-транзистор. Это просто униполярный транзистор, используемый в качестве электронного переключателя и для усиления электронных сигналов. Устройство имеет три терминала, состоящих из истока, затвора и стока. Помимо этих клемм имеется подложка, обычно называемая корпусом, которая всегда подключается к клемме источника для практических применений.
В последние годы его открытие привело к доминирующему использованию этих устройств в цифровых интегральных схемах из-за его структуры. Слой диоксида кремния (SiO2) действует как изолятор и обеспечивает электрическую изоляцию между затвором и активным каналом между истоком и стоком, что обеспечивает высокий входной импеданс, который почти бесконечен, таким образом захватывая весь входной сигнал.
Принцип работы МОП-транзистора (MOSFET)
Он изготовлен путем окисления кремниевых подложек. Он работает путем изменения ширины канала, через который происходит движение носителей заряда (электронов для N-канала и дырок для P-канала) от источника к стоку. Терминал затвора изолирован, напряжение которого регулирует проводимость устройства.
Типы МОП-транзистора (MOSFET)
На основе режима эксплуатации МОП-транзисторы можно разделить на два типа.
- Режим насыщения
- Режим истощения
Режим насыщения
В этом режиме отсутствует проводимость при нулевом напряжении, что означает, что оно по умолчанию закрыто или «ВЫКЛ», так как канал отсутствует. Когда напряжение затвора увеличивается больше, чем напряжение источника, носители заряда (дырки) смещаются, оставляя позади электроны, и, таким образом, устанавливается более широкий канал.
Напряжение на затворе прямо пропорционально току, то есть с увеличением напряжения на затворе ток увеличивается и наоборот.
Классификация режима насыщения МОП- транзисторов
Усовершенствованные МОП-транзисторы можно классифицировать на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).
- N-канальный тип насыщения MOSFET
- P-канальный тип насыщения MOSFET
N-канальный тип насыщения MOSFET
- Слегка легированная субстрат P-типа образует корпус устройства, а исток и сток сильно легированы примесями N-типа.
- N-канал имеет электроны в качестве основных носителей.
- Подаваемое напряжение затвора положительно для включения устройства.
- Он имеет более низкую собственную емкость и меньшую площадь соединения из-за высокой подвижности электронов, что позволяет ему работать на высоких скоростях переключения.
- Он содержит положительно заряженные примеси, что делает преждевременным включение полевых МОП-транзисторов с N-каналом.
- Сопротивление дренажу низкое по сравнению с P-типом.
P-канальный тип насыщения MOSFET
- Слегка легированная подложка N-типа образует корпус устройства, а исток и сток сильно легированы примесями P-типа.
- P-канал имеет отверстия в качестве основных носителей.
- Он имеет более высокую внутреннюю емкость и малую подвижность отверстий, что делает его работающим при низкой скорости переключения по сравнению с N-типом.
- Подаваемое напряжение затвора является отрицательным для включения устройства.
- Водостойкость выше по сравнению с N-типом.
Режим истощения
В этом типе канал уже установлен, и очевидно, что проводимость происходит даже при нулевом напряжении, и он открыт или включен по умолчанию. В отличие от типа насыщения, здесь канал лишен носителей заряда, чтобы уменьшить ширину канала.
Напряжение на затворе обратно пропорционально току, т. Е. С увеличением напряжения на затворе ток уменьшается.
Классификация режима истощения МОП-транзисторов
Истощающие МОП-транзисторы могут быть классифицированы на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).
- Тип истощения канала N МОП-транзистор
- Тип истощения канала P МОП-транзистор
Тип истощения канала N МОП-транзистор
- Полупроводник P-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Применяемое напряжение на затворе отрицательное.
- Канал обеднен свободными электронами.
Тип канала истощения канала MOSFET
- Полупроводник N-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Поданное напряжение затвора положительное.
- Канал обеднен свободными отверстиями.
Символ на схеме разных типов
МОП-транзистора (MOSFET)
Символы различных типов МОП-транзисторов изображены ниже.
Применение МОП-транзистора
- Усилители MOSFET широко используются в радиочастотных приложениях.
- Он действует как пассивный элемент, такой как резистор, конденсатор и индуктор.
- Двигатели постоянного тока могут регулироваться силовыми полевыми МОП-транзисторами.
- Высокая скорость переключения MOSFET делает его идеальным выбором при проектировании цепей прерывателей.
Преимущества МОП-транзистора
- МОП-транзисторы обеспечивают большую эффективность при работе при более низких напряжениях.
- Отсутствие тока затвора приводит к высокому входному импедансу и высокой скорости переключения.
- Они работают при меньшей мощности и не потребляют ток.
- Тонкий оксидный слой делает МОП-транзисторы уязвимыми для постоянного повреждения, вызванного электростатическими зарядами.
- Напряжение перегрузки делает его нестабильным.
Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ
Транзисторы: схема, принцип работы, чем отличаются биполярные и полевые
Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.
В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.
Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:
Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.
Биполярные транзисторы
Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:
Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.
Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.
Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.
NPN и PNP
Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).
NPN более эффективны и распространены в промышленности.
PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.
Полевые транзисторы
Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.
Полевые транзисторы обладают тремя контактами:
N-Channel и P-Channel
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Подключение транзисторов для управления мощными компонентами
Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.
Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:
Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.
Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.
Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА
Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.
Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:
это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.
Полевой транзистор
Часть 2. Полевой транзистор с изолированным затвором MOSFET
Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 10 17 Ом).
Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.
В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом.
Устройство МДП-транзистора (MOSFET) с индуцированным каналом.
На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N + -типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N + -типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком
Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.
Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N + находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.
Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.
Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.
Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.
ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.
Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.
Устройство МДП-транзистора (MOSFET) со встроенным каналом.
Физическое устройство МДП-транзистора со встроенным каналом отличается от типа с индуцированным каналом наличием между стоком и истоком проводящего канала.
Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.
Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи = 0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.
Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.
Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.
Как мы видим, МДП-транзистор со встроенным каналом способен работать в двух режимах — в режиме обеднения и в режиме обогащения.
Вольт-амперные характеристики (ВАХ) МДП-транзистора со встроенным каналом.
Преимущества и недостатки полевых транзисторов перед биполярными.
Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)
Главные преимущества полевых транзисторов
- Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
- Усиление по току у полевых транзисторов намного выше, чем у биполярных.
- Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
- У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.
Главные недостатки полевых транзисторов
- У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
- Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
- Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».
При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).
Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.
Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.
Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки
Мосфет для мехмода: зачем нужен транзистор
Содержание статьи
К чему мосфеты для мехмода? В сети можно найти жуткие истории о том, как без этого приспособления устройство… взрывается, безвозвратно ломаясь и калеча своего владельца. Так ли это и с какой целью на самом деле нужен мосфет – попробуем разобраться в этой статье.
Немного о мехмодах
Мехмод – это, грубо говоря, разновидность боксмода. Для тех, кто не знает, что такое боксмод – это дополнение к электронной сигарете, в котором содержатся одна или несколько аккумуляторных батарей. Он нужен для интенсивного длительного парения без подзарядки.
Мехмод — наиболее простая форма боксмода. Чаще он изготавливается в виде трубки на одну батарейку с кнопкой для подачи напряжения на атомайзер. Никакой сложной электроники там нет.
В этом и заключается главный плюс мехмода: благодаря примитивности устройства его очень сложно сломать.
Кроме того, устройство не боится воды.
Благодаря мехмоду можно получить максимум мощности из аккумулятора. В то же время он не защищен от перегрузки, перегрева или короткого замыкания, поэтому нужно соблюдать осторожность. Собственно говоря, именно отсюда растут ноги у легенд про взрывы. С натяжкой, конечно, неприятные последствия можно назвать взрывом. На самом деле, при неправильном использовании может произойти короткое замыкание и перегореть атомайзер – что тоже, в общем-то, малоприятно. Поэтому мехмод в первую очередь рекомендуется использовать с дрипкой из-за, опять же, простоты ее конструкции.
Немного о мосфетах
Мосфет, а точнее – MOSFET, расшифровывается как Metal-Oxide-Semiconductor Field-Effect Transistor. Еще его называют моп-транзистор или полевой транзистор.
Состоит мосфет из диэлектрика, полупроводника и металла. У него четыре электрода: исток, сток, подложка и затвор.
Его отличительная особенность в том, что затвор изолирован от канала слоем диэлектрика. Чаще используется двуокись кремния.
Состоит из трех слоев:
- Пластина, вырезанная из однородного кристалла кремния или из кремния с примесью германия.
- Напыление очень тонкой прослойки диэлектрика (изолятора) из диоксида кремния или оксида металла (оксиды алюминия или циркония) толщиною от 1,2 нм до 10 нм.
- Хорошо проводящий металл. Чаще всего для этой цели используют золото.
Для чего он используется? Обычно мосфет применяют:
- в качестве усилителя сигнала;
- в качестве выпрямителя;
- для понижения напряжения.
По сути, мосфет позволяет управлять протекающим через него электрическим током, и это качество делает возможным (и нужным) его применение в мехмодах. Также его сфера применения распространяется на компьютерную технику, некоторые бытовые приборы и даже рабочие электроинструменты.
Назначение мосфета в мехмоде
А теперь о том, зачем эту штуку устанавливают в мехмоды. В первую очередь, для безопасности. Если случится перегрузка или короткое замыкание, он прервет подачу напряжения, тем самым предотвратив беду – возгорание или тот самый пресловутый взрыв. Иногда в мехмодах с аналогичными целями устанавливаются защитные фьюзы.
Кроме того, он обеспечивает уменьшение потерь напряжения, то есть, фактически, увеличивает его и регулирует. Если без мосфета можно пользоваться намоткой спирали атомайзера с сопротивлением не более 2 Ом, то с ним можно без опаски применять и больше. Это позволяет получить много качественного, густого, насыщенного пара. Это еще одна важная причина, по которой многие вейперы предпочитают использовать моды с мосфетом. Поступление напряжения на атомайзер, а значит, и парообразование, происходит сразу же после замыкания цепи, без задержек.
Еще одна полезная функция, которую в состоянии обеспечить моп-транзистор при использовании в механическом моде, это продление срока жизни кнопок и контактов. Без него они рано или поздно выгорают, кнопка также сильно нагревается, что делает использование устройства некомфортным. Мосфет не дает им перегреваться и выгорать, а значит – продлевает срок бесперебойной работы всего мода.
Своими руками
Мехмод на мосфете можно и купить, конечно. Но поклонники вейпинга, всерьез увлекающиеся этим делом, разбирающиеся в устройстве приборов для курения и с руками из нужного места, предпочитают делать моды самостоятельно.
Итак, чтобы собрать механический мод с мосфетом, понадобятся:
- коннектор 510;
- кнопка;
- рамка для аккумуляторов;
- корпус;
- соединительные провода;
- мосфет;
- фольгированный текстолит;
- термоклей;
- аккумуляторы 18650;
- паяльник.
Корпус изделия может быть каким угодно, из любого материала – дерева, пластика, металла. Бюджетный, но в то же время недолговечный, да и не очень красивый вариант можно сделать из картона. Главное, чтобы подходил по размеру и был удобен в использовании, а как он будет выглядеть – дело вкуса и финансовых возможностей.
Какую выбрать кнопку, тоже зависит от личных предпочтений. Они бывают пластиковые, металлические, различного цвета, размера и формы. Главное – выбирать надежный вариант, который в состоянии выдержать условия эксплуатации.
Мосфет можно приобрести в любом магазине радиодеталей либо снять с ненужной материнской платы от компьютера.
Главное, заниматься сборкой этого (да и любого другого) устройства стоит, только если есть опыт и понимание электроники. В противном случае либо ничего не получится, либо, неправильно собранный прибор в процессе использования расплавится, загорится и может нанести тем самым вред владельцу и его имуществу.
Вконтакте
Одноклассники
Google+
Mosfet – что это? Проверка транзисторов
В статье вы узнаете про транзисторы MOSFET, что это, какие схемы включения бывают. Есть тип полевого транзистора, у которого вход электрически изолирован от основного тока несущего канала. И поэтому называется он полевой транзистор с изолированным затвором. Наиболее распространенным типом такого полевого транзистора, который используется во многих типах электронных схем, называется полевой транзистор металл-оксид-полупроводник на основе перехода или же МОП-транзистор (сокращенная аббревиатура этого элемента).
МОП-транзистор представляет собой управляемый напряжением полевой транзистор, который отличается от полевого тем, что он имеет “металл-оксид” электрод затвора, который электрически изолирован от основного полупроводника п-каналом или каналом р-типа с очень тонким слоем изолирующего материала. Как правило, это диоксид кремния (а если проще, то стекло).
полевые, МОП-транзисторы имеют очень высокое входное сопротивление. Может легко накапливать большое количество статического заряда, который приводит к повреждению, если тщательно не защищены цепи.
Отличия МОСФЕТ от полевых транзисторов
Основное отличие от полевых в том, что МОП-транзисторы выпускаются в двух основных формах:
- Истощение – транзистор требует напряжения затвор-исток для переключения устройства в положение “Откл”. Режим истощения МОП-транзистора эквивалентно “нормально закрытому” переключателю.
- Насыщение – транзистор требует напряжения затвор-исток, чтобы включить устройство. Режим усиления МОП-транзистора эквивалентно коммутатору с “нормально замкнутыми” контактами.
Графические обозначения транзисторов на схемах
Линия между соединениями стока и истока представляет собой полупроводниковый канал. Если на схеме, на которой изображены MOSFET транзисторы, она представлена жирной сплошной линией, то элемент работает в режиме истощения. Так как ток из стока может протекать с нулевым потенциалом затвора. Если линия канала показана пунктиром или ломанной, то транзистор работает в режиме насыщения, так как течет ток с нулевым потенциалом затвора. Направление стрелки указывает на проводящий канал, р-типа или полупроводниковый прибор п-типа. Причем отечественные транзисторы обозначаются точно так же, как и зарубежные аналоги.
Базовая структура MOSFET транзистора
Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.
При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.
Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.
Режим истощения МОП-транзистора
Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор “нормально закрыт”. На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.
Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.
Другими словами, для режима истощения п-канального МОП-транзистора:
- Положительное напряжение на стоке означает большее количество электронов и тока.
- Отрицательное напряжение означает меньше электронов и ток.
Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно “нормально разомкнутому” переключателю.
N-канальный МОП-транзистор в режиме истощения
Режим истощения МОП-транзистора построен таким же образом, как и у полевых транзисторов. Причем канал сток-исток – это проводящий слой с электронами и дырками, который присутствует в п-типа или р-типа каналах. Такое легирование канала создает проводящий путь низкого сопротивления между стоком и источника с нулевым напряжением. Используя тестер транзисторов, можно провести замеры токов и напряжений на его выходе и входе.
Режим усиления МОП-транзистора
Более распространенным у транзисторов MOSFET является режим усиления, он обратный для режима истощения. Здесь проводящий канал слаболегированный или даже нелегированный, что делает его непроводящим. Это приводит к тому, что устройство в режиме покоя не проводит ток (когда напряжение смещения затвора равно нулю). На схемах для обозначения МОП-транзисторов такого типа используют ломаную линию, чтобы обозначить нормально открытый токоизолирующий канал.
Для повышения N-канального МОП-транзистора ток стока будет течь только тогда, когда напряжение на затворе прикладывается к затвору больше, чем пороговое напряжение. При подаче положительного напряжения на затвор к п-типа MOSFET (что это, режимы работы, схемы включения, описаны в статье) привлекает большее количество электронов в направлении оксидного слоя вокруг затвора, тем самым увеличивая усиление (отсюда название) толщины канала, позволяя свободнее протекать току.
Особенности режима усиления
Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:
- Положительный сигнал транзистор переводит в проводящий режим.
- Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен “нормально разомкнутому” переключателю.
Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:
- Положительный сигнал переводит транзистор «Выкл».
- Отрицательный включает транзистор в режим «Вкл».
Режим усиления N-канального МОП-транзистора
В режиме усиления МОП-транзисторы имеют низкое входное сопротивление в проводящем режиме и чрезвычайно высокое в непроводящем. Также их бесконечно высокое входное сопротивление из-за их изолированного затвора. Режима усиления транзисторов используется в интегральных схемах для получения типа КМОП логических вентилей и коммутации силовых цепей в форме, как PMOS (P-канал) и NMOS (N-канал) входов. CMOS – это комплементарный МОП в том смысле, что это логическое устройство имеет как PMOS, так и NMOS в своей конструкции.
Усилитель на MOSFET
Так же, как и полевые, транзисторы MOSFET могут быть использованы для изготовления усилителей класса «А». Схемы усилителей с N-канальным МОП-транзистором общего исходного режима усиления, является наиболее популярной. На МОП-транзисторах усилители в режиме обеднения очень похожи на схемы с использованием полевых приборов, за исключением того, что MOSFET (что это, и какие типы бывают, рассмотрено выше) имеет более высокий входной импеданс.
Этот импеданс управляется по входу смещающей резистивной цепью, образованной резисторами R1 и R2. Кроме того, выходной сигнал для общего источника усилителя на транзисторах MOSFET в режиме усиления инвертируется, потому что, когда входное напряжение низкое, то переход транзистора разомкнут. Это можно проверить, имея в арсенале только лишь тестер (цифровой или даже стрелочный). При высоком входном напряжении транзистор во включенном режиме, на выходе напряжение крайне низкое.
Что такое MOSFET с P-каналом?
MOSFET с P-каналом обозначает класс транзистора, электронного устройства, которое функционирует в качестве ключа (переключателя) или усилителя электрического тока (сигнала). Само название MOSFET определяет, какая технология и какие материалы используются при производстве транзистора, а также принцип его действия. Этот класс транзисторов обладает высокой чувствительностью к уровню напряжения электрического сигнала и является более энергоэффективным, чем его «сородичи» – биполярные транзисторы. Из транзисторов класса MOSFET получаются отличные электрические ключи, что открыло им дорогу в цифровые технологии, включая компьютеры, мобильные устройства и прочие электронные товары массового потребления.
Описание
MOSFET является радиокомпонентом, который состоит из трех элементов – затвор, сток и исток. Физически полевые транзисторы выглядят также, как и другие классы транзисторов, имея стандартный корпус типа TO-3 или TO-92. Размер их бывает разный, но в основном колеблется в диапазоне от 3 до 12 мм. Сам корпус транзистора несет функцию защиты от грязи, влаги и механических повреждений полупроводниковых контактов, а также служит для отвода тепла от кристалла кремния. В состав компьютерных микросхем интегрированы миллионы микроскопических транзисторов MOSFET, которые объединены на одной кремниевой подложке.
Технология MOSFET
Название MOSFET является сокращением от словосочетания «metal oxide semiconductor field-effect transistor» или по-русски «металл-оксид полупроводниковый полевой транзистор» (МОПТ). Но в большинстве современных транзисторов класса MOSFET используется кремний, тогда как ранние примеры содержали металл-оксидные компоненты. В полевых транзисторах рабочий ток между стоком и истоком создается за счет перемещения носителей заряда одного знака (электронов или дыр), что предопределяет второе название полевых транзисторов – униполярный. Это их сильно отличает от биполярных транзисторов, в которых ток протекает через сэндвич из трех слоев кремния с двумя полупроводниковыми переходами. Несмотря на то, что оба типа транзисторов (биполярный и униполярный) могут работать как электронный ключ, полевой эффект (создаваемый носителями одного заряда) в униполярных MOSFET-транзисторах позволяет оперировать слабыми токами намного быстрее.
Отличия P-канал от N-канала
Транзисторы MOSFET делятся на два основных типа: с P-каналом и N-каналом. Они различаются полярностью подводимого к их контактам напряжения, также как различаются биполярные транзисторы с PNP и NPN полупроводниковыми переходами. В устройстве с N-каналом за распространение тока отвечают электроны, которые перемещаются от истока в сторону стока, в то время как в устройствах с P-каналом от истока к стоку перемещаются положительно заряженные частицы или так называемые дыры.
Область применения
Высокая скорость переключения и низкое энергопотребление делает MOSFET идеальным компонентом для создания логических цепей, элементов памяти и других элементов компьютера. Большие успехи высокотехнологичных устройств, начиная с 70-х годов прошлого века, связаны именно с миниатюризацией транзисторов MOSFET, что позволило создавать более сложные и производительные компьютеры.
ПохожееЧто такое полевой МОП-транзистор? | Основы, принцип работы и применение
Полевой транзистор металл-оксид-полупроводник (MOSFET, MOS-FET или MOS FET) – это полевой транзистор (полевой транзистор с изолированным затвором), напряжение которого определяет проводимость устройства. Он используется для переключения или усиления сигналов. Способность изменять проводимость в зависимости от приложенного напряжения может использоваться для усиления или переключения электронных сигналов. MOSFET сейчас даже более распространены, чем BJT (биполярные переходные транзисторы) в цифровых и аналоговых схемах.
Структура полевого МОП-транзистораМОП-транзистор является наиболее распространенным транзистором в цифровых схемах, поскольку сотни тысяч или миллионы из них могут быть включены в микросхему памяти или микропроцессор. Поскольку они могут быть изготовлены из полупроводников p-типа или n-типа, дополнительные пары МОП-транзисторов могут использоваться для создания схем переключения с очень низким энергопотреблением в форме логики КМОП.
Почему MOSFET?
Полевые МОП-транзисторыособенно полезны в усилителях из-за того, что их входной импеданс почти бесконечен, что позволяет усилителю улавливать почти весь входящий сигнал.Основное преимущество заключается в том, что он почти не требует входного тока для управления током нагрузки по сравнению с биполярными транзисторами. МОП-транзисторы доступны в двух основных формах:
- Depletion Тип: Транзистору требуется напряжение затвор-исток (V GS ), чтобы выключить устройство. MOSFET в режиме истощения эквивалентен «нормально замкнутому» переключателю.
- Тип расширения: Транзистору требуется напряжение затвор-исток (В GS ) для включения устройства.MOSFET режима улучшения эквивалентен «нормально разомкнутому» переключателю.
Структура полевого МОП-транзистора
Это четырехконтактное устройство с выводами истока (S), затвора (G), стока (D) и корпуса (B). Корпус часто подключается к клемме источника, что сокращает количество клемм до трех. Он работает, изменяя ширину канала, по которому текут носители заряда (электроны или дырки).
Носители заряда входят в канал у истока и выходят через сток. Ширина канала регулируется напряжением на электроде, называемом затвором, который расположен между истоком и стоком.Он изолирован от канала очень тонким слоем оксида металла. Полевой транзистор металл-изолятор-полупроводник или MISFET – это термин, почти синонимичный MOSFET. Другой синоним – IGFET для полевого транзистора с изолированным затвором.
Работа полевого МОП-транзистора
Работа полевого МОП-транзистора зависит от МОП-конденсатора. Конденсатор MOS является основной частью MOSFET. Поверхность полупроводника в нижнем оксидном слое, который расположен между выводами истока и стока.Его можно инвертировать из p-типа в n-тип, подав положительное или отрицательное напряжение затвора.
Когда мы прикладываем положительное напряжение затвора, дырки под оксидным слоем создают силу отталкивания, а дырки толкаются вниз вместе с подложкой. Область обеднения заселена связанными отрицательными зарядами, которые связаны с атомами акцептора. Электроны достигают сформированного канала. Положительное напряжение также притягивает электроны из n + областей истока и стока в канал.Теперь, если между стоком и истоком приложено напряжение, ток свободно течет между истоком и стоком, а напряжение затвора управляет электронами в канале. Если приложить отрицательное напряжение, под слоем оксида образуется дырочный канал.
МОП-транзистор с P-каналом
Сток и исток представляют собой сильно легированную p + -область, а подложка – n-типа. Ток течет из-за потока положительно заряженных дырок, также известных как MOSFET с p-каналом. Когда мы прикладываем отрицательное напряжение затвора, электроны, находящиеся под оксидным слоем, испытывают силу отталкивания, и они толкаются вниз к подложке, область обеднения заполняется связанными положительными зарядами, которые связаны с донорными атомами.Отрицательное напряжение затвора также притягивает дырки из области p + истока и стока в область канала.
N-канальный полевой МОП-транзистор
N-канальный полевой МОП-транзисторСток и исток имеют сильно легированную область n +, а подложка – p-типа. Ток протекает из-за потока отрицательно заряженных электронов, также известного как n-канальный MOSFET. Когда мы прикладываем положительное напряжение затвора, дырки, находящиеся под оксидным слоем, испытывают силу отталкивания, и дырки толкаются вниз к связанным отрицательным зарядам, которые связаны с атомами акцептора.Положительное напряжение затвора также притягивает электроны из n + области истока и стока в канал, таким образом, образуется канал доступа электронов.
Дополнительные основные статьи доступны в учебном уголке.
Статья была впервые опубликована 19 июля 2017 г. и обновлена 4 апреля 2019 г.
Основы, принцип работы и применение
MOSFET (Металлооксидный полупроводниковый полевой транзистор) представляет собой полупроводниковое устройство, которое широко используется для коммутации и усиления электронных сигналов в электронных устройствах.МОП-транзистор – это либо сердечник, либо интегральная схема, где он спроектирован и изготовлен в виде единого кристалла, поскольку устройство доступно в очень малых размерах. Введение устройства MOSFET внесло изменения в область коммутации в электронике . Давайте подробно объясним эту концепцию.
Что такое полевой МОП-транзистор?
МОП-транзистор – это четырехконтактное устройство, имеющее выводы истока (S), затвора (G), стока (D) и корпуса (B). Как правило, корпус полевого МОП-транзистора соединен с выводом истока, образуя трехконтактное устройство, такое как полевой транзистор.MOSFET обычно рассматривается как транзистор и используется как в аналоговых, так и в цифровых схемах. Это основное введение в MOSFET . И общая структура этого устройства следующая:
MOSFET
Из вышеупомянутой структуры MOSFET , функциональность MOSFET зависит от электрических изменений, происходящих в ширине канала вместе с потоком носителей (дырок или электронов). Носители заряда входят в канал через вывод истока и выходят через сток.
Ширина канала контролируется напряжением на электроде, который называется затвором и расположен между истоком и стоком. Он изолирован от канала очень тонким слоем оксида металла. Емкость MOS, которая существует в устройстве, является важной частью, в которой вся операция выполняется. МОП-транзистор
с клеммамиМОП-транзистор может работать двумя способами.
- Режим истощения
- Режим улучшения
Режим истощения
Когда на клемме затвора нет напряжения, канал показывает максимальную проводимость.В то время как, когда напряжение на выводе затвора либо положительное, либо отрицательное, проводимость канала уменьшается.
Например,
Режим расширения
Когда нет напряжения на выводе затвора, устройство не проводит ток. Когда на выводе затвора имеется максимальное напряжение, устройство показывает повышенную проводимость.
Режим расширенияПринцип работы полевого МОП-транзистора
Основным принципом устройства полевого МОП-транзистора является возможность управления потоком напряжения и тока между выводами истока и стока.Он работает почти как переключатель, а функциональность устройства основана на МОП-конденсаторе. Конденсатор MOS является основной частью MOSFET.
Поверхность полупроводника в нижнем оксидном слое, который расположен между выводами истока и стока, может быть инвертирован с p-типа на n-тип путем приложения положительного или отрицательного напряжения затвора соответственно. Когда мы прикладываем силу отталкивания к положительному напряжению затвора, то дырки, находящиеся под оксидным слоем, толкаются вниз вместе с подложкой.
Область обеднения, заполненная связанными отрицательными зарядами, которые связаны с атомами акцептора. Когда достигаются электроны, развивается канал. Положительное напряжение также притягивает электроны из n + областей истока и стока в канал. Теперь, если между стоком и истоком приложено напряжение, ток свободно течет между истоком и стоком, а напряжение затвора управляет электронами в канале. Если вместо положительного напряжения приложить отрицательное напряжение, под слоем оксида образуется дырочный канал.Блок-схема полевого МОП-транзистора
МОП-транзистор с Р-каналом
МОП-транзистор с Р-каналом имеет область Р-канала, расположенную между выводами истока и стока. Это четырехконтактное устройство, имеющее выводы в качестве затвора, стока, истока и корпуса. Сток и исток представляют собой сильно легированную p + область, а тело или подложка – n-типа. Ток идет в направлении положительно заряженных дырок.
Когда мы прикладываем отрицательное напряжение с силой отталкивания к выводу затвора, электроны, находящиеся под оксидным слоем, проталкиваются вниз в подложку.Область обеднения заселена связанными положительными зарядами, которые связаны с донорными атомами. Отрицательное напряжение затвора также притягивает дырки из области p + истока и стока в область канала.
Режим истощения P Channel Расширенный режим P-каналаN-канальный MOSFET
N-канальный MOSFET имеет N-канальную область, расположенную между выводами истока и стока. Это четырехконтактное устройство, имеющее выводы как затвор, сток, исток и корпус. В этом типе полевого транзистора сток и исток представляют собой сильно легированную область n +, а подложка или тело относятся к P-типу.
Протекание тока в этом типе полевого МОП-транзистора происходит из-за отрицательно заряженных электронов. Когда мы прикладываем положительное напряжение с силой отталкивания к выводу затвора, отверстия, имеющиеся под оксидным слоем, проталкиваются вниз в подложку. Область обеднения заполнена связанными отрицательными зарядами, которые связаны с атомами акцептора.
При достижении электронами формируется канал. Положительное напряжение также притягивает электроны из n + областей истока и стока в канал.Теперь, если между стоком и истоком приложено напряжение, ток свободно течет между истоком и стоком, а напряжение затвора управляет электронами в канале. Вместо положительного напряжения, если мы подадим отрицательное напряжение, под оксидным слоем образуется дырочный канал.
Режим расширения N каналMOSFET Области работы
В наиболее общем сценарии работа этого устройства происходит в основном в трех регионах, а именно:
- Cut-off Region – Это регион, где устройство будет в состоянии ВЫКЛЮЧЕНО, и через него будет протекать нулевой ток.Здесь устройство функционирует как базовый переключатель и используется в тех случаях, когда они необходимы для работы в качестве электрических переключателей.
- Область насыщения – В этой области устройства будут иметь постоянное значение тока от стока к истоку без учета увеличения напряжения между стоком и истоком. Это происходит только один раз, когда напряжение между стоком и истоком увеличивается больше, чем значение напряжения отсечки. В этом сценарии устройство функционирует как замкнутый переключатель, в котором протекает ток насыщения через сток к клеммам истока.Благодаря этому выбирается область насыщения, когда предполагается, что устройства должны выполнять переключение.
- Линейная / омическая область – Это область, в которой ток через сток к выводу истока увеличивается с увеличением напряжения на пути от стока к истоку. Когда полевые МОП-транзисторы работают в этой линейной области, они выполняют функции усилителя.
Давайте теперь рассмотрим характеристики переключения MOSFET
Полупроводник, такой как MOSFET или Bipolar Junction Transistor, в основном функционирует как переключатели в двух сценариях: один находится в состоянии ВКЛ, а другой – в состоянии ВЫКЛ.Чтобы рассмотреть эту функциональность, давайте взглянем на идеальные и практические характеристики устройства MOSFET.
Характеристики идеального переключателя
Когда MOSFET должен функционировать как идеальный переключатель, он должен поддерживать следующие свойства, а именно:
- В состоянии ВКЛ должно быть ограничение тока, которое он несет. Состояние ВЫКЛ, уровни напряжения блокировки не должны иметь каких-либо ограничений
- Когда устройство работает в состоянии ВКЛ, значение падения напряжения должно быть нулевым
- Сопротивление в состоянии ВЫКЛ должно быть бесконечным
- Не должно быть ограничений по скорости работы
Практические характеристики переключателя
Поскольку мир не ограничивается только идеальными приложениями, функционирование полевого МОП-транзистора применимо даже для практических целей.В практическом сценарии устройство должно обладать следующими свойствами.
- В состоянии ВКЛ возможности управления мощностью должны быть ограничены, что означает, что необходимо ограничить протекание тока проводимости.
- В выключенном состоянии уровни напряжения блокировки не должны ограничиваться
- Включение и выключение на конечное время ограничивает ограничивающую скорость устройства и даже ограничивает функциональную частоту
- В состоянии ВКЛ устройства MOSFET будет минимальные значения сопротивления, при которых это приводит к падению напряжения при прямом смещении.Кроме того, существует конечное сопротивление в выключенном состоянии, которое обеспечивает обратный ток утечки.
- Когда устройство работает с практическими характеристиками, оно теряет питание при включении и выключении. Это происходит даже в переходных состояниях.
Пример полевого МОП-транзистора в качестве переключателя
В приведенной ниже схеме схемы расширенный режим и N-канальный полевой МОП-транзистор используются для переключения пробной лампы в условиях ВКЛ и ВЫКЛ. Положительное напряжение на выводе затвора подается на базу транзистора, и лампа переходит в состояние ВКЛ, и здесь V GS = + v или при нулевом уровне напряжения устройство переключается в состояние ВЫКЛ, где V GS = 0 .
МОП-транзистор в качестве переключателяЕсли резистивная нагрузка лампы должна быть заменена индуктивной нагрузкой и подключена к реле или диоду, который защищен от нагрузки. В приведенной выше схеме это очень простая схема для переключения резистивной нагрузки, такой как лампа или светодиод. Но при использовании MOSFET в качестве переключателя с индуктивной или емкостной нагрузкой для устройства MOSFET требуется защита.
Если в случае, если MOSFET не защищен, это может привести к повреждению устройства.Чтобы полевой МОП-транзистор работал как аналоговое переключающее устройство, он должен переключаться между его областью отсечки, где V GS = 0, и областью насыщения, где V GS = + v.
Описание видео
МОП-транзистор может также работать как транзистор, и его сокращенно называют полевым транзистором на основе оксида кремния и металла. Здесь само название указывало на то, что устройство может работать как транзистор. Он будет иметь P-канал и N-канал. Устройство подключается таким образом с помощью четырех клемм истока, затвора и стока, резистивная нагрузка 24 Ом подключается последовательно с амперметром, а измеритель напряжения подключается к полевому МОП-транзистору.
В транзисторе ток в затворе протекает в положительном направлении, а вывод истока соединен с землей. В то время как в устройствах с биполярным соединением транзисторов ток протекает по пути от базы к эмиттеру. Но в этом устройстве нет тока, потому что в начале затвора есть конденсатор, ему просто требуется только напряжение.
Это может быть достигнуто путем продолжения процесса моделирования и включения / выключения. Когда переключатель находится в положении ON, ток через цепь не протекает, когда сопротивление 24 Ом и 0.29 амперметра, то мы находим пренебрежимо малое падение напряжения на источнике, потому что на этом устройстве есть + 0,21 В.
Сопротивление между стоком и истоком обозначается как RDS. Из-за этого RDS при протекании тока в цепи появляется падение напряжения. RDS различается в зависимости от типа устройства (он может варьироваться в пределах от 0,001, 0,005 до 0,05 в зависимости от типа напряжения.
Несколько понятий для изучения:
1). Как выбрать полевой МОП-транзистор в качестве коммутатора ?
При выборе полевого МОП-транзистора в качестве переключателя необходимо соблюдать несколько условий, а именно:
- Использование полярности канала P или N
- Максимальные номинальные значения рабочего напряжения и тока
- Повышенное значение Rds ON, которое означает, что сопротивление на выводе от стока к источнику при полностью открытом канале
- Повышенная рабочая частота
- Тип упаковки – To-220, DPAck и многие другие.
2). Что такое эффективность переключателя MOSFET?
Основным ограничением при использовании MOSFET в качестве переключающего устройства является повышенное значение тока стока, на которое может быть способно это устройство. Это означает, что RDS в состоянии ON является решающим параметром, определяющим коммутационную способность полевого МОП-транзистора. Он представлен как отношение напряжения сток-исток к току стока. Его следует рассчитывать только в состоянии ВКЛ транзистора.
3).Почему переключатель MOSFET используется в повышающем преобразователе?
Как правило, повышающему преобразователю необходим переключающий транзистор для работы устройства. Итак, в качестве переключающих транзисторов используются полевые МОП-транзисторы. Эти устройства используются для определения текущего значения и значений напряжения. Кроме того, учитывая скорость переключения и стоимость, они широко используются.
Таким же образом MOSFET можно использовать по-разному. и это
- MOSFET в качестве переключателя для светодиода
- remove_circle_outline
- MOSFET в качестве переключателя для Arduino
- MOSFET переключатель для нагрузки переменного тока
- MOSFET переключатель для двигателя постоянного тока
- MOSFET переключатель для отрицательного напряжения
- MOSFET в качестве переключателя с Arduino MOSFET
- в качестве переключателя с микроконтроллером
- MOSFET переключатель с гистерезисом
- MOSFET в качестве переключающего диода и активного резистора
- MOSFET в качестве уравнения переключения
- MOSFET переключатель для страйкбола
- MOSFET как резистор переключающего затвора переключающий соленоид
- Переключатель MOSFET с использованием оптрона
- Переключатель MOSFET с гистерезисом
Применение MOSFET в качестве переключателя
Одним из наиболее ярких примеров этого устройства является его использование в качестве переключателя для автоматической регулировки яркости уличного освещения.В наши дни многие огни, которые мы наблюдаем на автомагистралях, состоят из газоразрядных ламп высокой интенсивности. Но использование HID-ламп потребляет повышенный уровень энергии.
Яркость не может быть ограничена в зависимости от требований, поэтому должен быть переключатель для альтернативного метода освещения, и это светодиод. Использование светодиодной системы позволит преодолеть недостатки высокоинтенсивных ламп. Основная идея, лежащая в основе конструкции, заключалась в том, чтобы управлять освещением непосредственно на шоссе с помощью микропроцессора.Применение полевого МОП-транзистора
в качестве коммутатораЭтого можно добиться, просто изменив тактовые импульсы. По необходимости это устройство используется для включения ламп. Он состоит из платы raspberry pi, в которую включен процессор для управления. Здесь светодиоды могут быть заменены на HID, и они связаны с процессором через MOSFET. Микроконтроллер выполняет соответствующие рабочие циклы, а затем переключается на MOSFET, чтобы обеспечить высокий уровень интенсивности.
Преимущества
Некоторые из преимуществ:
- Он обеспечивает повышенную эффективность даже при работе при минимальных уровнях напряжения
- Отсутствует ток затвора, что создает больший входной импеданс, который дополнительно обеспечивает повышенную скорость переключения для устройства
- Эти устройства могут работать на минимальных уровнях мощности и потребляют минимальный ток
Недостатки
К недостаткам относятся следующие:
- Когда эти устройства работают при уровнях напряжения перегрузки, это создает нестабильность устройства. тонкий оксидный слой, это может привести к повреждению устройства при воздействии электростатических зарядов.
Приложения
Области применения MOSFET:
- Усилители, изготовленные из MOSFET, широко используются в широком диапазоне частот
- Регулировка для двигателей постоянного тока обеспечивают эти устройства 900 16
- Поскольку они имеют повышенную скорость переключения, они идеально подходят для создания усилителей с прерывателями.
- Функционирует как пассивный компонент для различных электронных элементов.
В конце концов, можно сделать вывод, что транзистору требуется ток, тогда как MOSFET требует напряжения. Требования к управлению MOSFET намного лучше, намного проще по сравнению с BJT. А также знаю Как подключить Mosfet к переключателю?
Авторы фотографий
Что такое MOSFET – работа, типы, применение, преимущества и недостатки
MOSFET (Полевой транзистор с металлическим оксидом и полупроводником) является наиболее широко используемым типом полевых транзисторов с изолированным затвором.Они используются в различных приложениях из-за простоты работы и преимуществ перед другими полевыми транзисторами. В этом посте подробно рассказывается, что такое MOSFET, принцип его работы, типы MOSFET, символы, различные приложения, преимущества и недостатки.
Что такое MOSFET
M etal O xide S ilicon F ield E ffect T Rnsistor сокращенно обозначается как MOSFET. Это просто униполярный транзистор, который используется в качестве электронного переключателя и для усиления электронных сигналов.Устройство имеет три вывода, состоящие из истока, затвора и стока. Помимо этих клемм есть подложка, обычно называемая корпусом, которая всегда подключается к клемме источника для практических применений.
В последние годы его открытие привело к преобладанию использования этих устройств в цифровых интегральных схемах из-за его структуры. Слой диоксида кремния (SiO2) действует как изолятор и обеспечивает электрическую изоляцию между затвором и активным каналом между истоком и стоком, что обеспечивает высокий входной импеданс, который почти бесконечен, таким образом улавливая весь входной сигнал.
Принцип работы полевого МОП-транзистора
Рис.1 – Структурный и физический вид полевого МОП-транзистора
Изготовлен путем окисления кремниевых подложек. Он работает, изменяя ширину канала, по которому происходит движение носителей заряда (электроны для N-канала и дырки для P-канала) от истока к стоку. Изолирован вывод затвора, напряжение которого регулирует проводимость устройства.
Типы полевых МОП-транзисторов
По рабочему режиму полевые МОП-транзисторы можно разделить на два типа.
- МОП-транзисторы расширенного типа
- МОП-транзисторы истощенного типа
Рис.2 – Типы полевых МОП-транзисторов
Тип расширения MOSFET
В этом режиме нет проводимости при нулевом напряжении, что означает, что он закрыт или «ВЫКЛ» по умолчанию, поскольку нет существующего канала. Когда напряжение затвора увеличивается больше, чем напряжение источника, носители заряда (дырки) смещаются, оставляя электроны позади, и, таким образом, устанавливается более широкий канал.
Напряжение затвора прямо пропорционально току, т. Е. По мере увеличения напряжения затвора ток увеличивается, и наоборот.
Типы полевых МОП-транзисторов расширения
Расширяющие полевые МОП-транзисторы можно разделить на два типа в зависимости от типа используемой легированной подложки (n-типа или p-типа).
- МОП-транзисторы N типа расширения канала
- МОП-транзисторы типа расширения P-канала
МОП-транзисторы типа расширения N
Фиг.3-канальный MOSFET типа расширения N
- Слегка легированная подложка P-типа образует корпус устройства, а исток и сток сильно легированы примесями N-типа.
- N-канал имеет электроны в качестве основных носителей.
- Приложенное напряжение затвора положительное для включения устройства.
- Он имеет более низкую внутреннюю емкость и меньшие площади перехода из-за высокой подвижности электронов, что позволяет ему работать с высокими скоростями переключения.
- Он содержит положительно заряженные загрязнения, из-за которых N-канальные МОП-транзисторы включаются преждевременно.
- Устойчивость к сливу ниже, чем у P-типа.
МОП-транзисторы типа расширения P
Рис.4 – МОП-транзистор типа расширения P-канала
- Слегка легированная подложка N-типа образует корпус устройства, а исток и сток сильно легированы примесями P-типа.
- P-канал имеет отверстия в качестве основных носителей.
- Он имеет более высокую внутреннюю емкость и низкую подвижность отверстий, что позволяет ему работать с низкой скоростью переключения по сравнению с N-типом.
- Приложенное напряжение затвора отрицательное, чтобы включить устройство.
- Сопротивление сливу выше, чем у N-типа.
MOSFET истощенного типа
В этом типе канал уже установлен, и очевидно, что проводимость происходит даже при нулевом напряжении, и он открыт или включен по умолчанию. В отличие от типа Enhancement, здесь канал обеднен носителями заряда, чтобы уменьшить ширину канала.
Рис.5 – Напряжение затвора в зависимости от характеристик стока полевого МОП-транзистора
Напряжение затвора обратно пропорционально току i.е. по мере увеличения напряжения затвора ток уменьшается.
Типы истощаемых полевых МОП-транзисторов
Истощающие МОП-транзисторы можно разделить на два типа в зависимости от типа используемой легированной подложки (n-типа или p-типа).
- МОП-транзистор типа N с истощением канала
- МОП-транзистор типа P с истощением канала
МОП-транзисторы с истощением канала N
Рис.6 – МОП-транзисторы с обедненным каналом N
- Полупроводник P-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Приложенное напряжение затвора отрицательное.
- Канал лишен свободных электронов.
МОП-транзисторы типа P с истощением канала
Рис.7 – МОП-транзисторы с истощенным каналом P
- Полупроводник N-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Приложенное напряжение затвора положительное.
- В канале отсутствуют свободные отверстия.
Символы различных типов полевого МОП-транзистора
Символы различных типов полевых МОП-транзисторов показаны ниже.
Рис.8 – Символы полевого МОП-транзистора с усилением и истощением (P, N)
Применение полевого МОП-транзистора
- Усилители MOSFET широко используются в радиочастотных приложениях.
- Он действует как пассивный элемент, такой как резистор, конденсатор и катушка индуктивности. Двигатели постоянного тока
- могут регулироваться силовыми полевыми МОП-транзисторами.
- Высокая скорость переключения полевых МОП-транзисторов делает его идеальным выбором при разработке схем прерывателя.
Преимущества MOSFET
МОП-транзисторы- обеспечивают большую эффективность при работе при более низких напряжениях.
- Отсутствие тока затвора приводит к высокому входному сопротивлению, обеспечивающему высокую скорость переключения.
- Они работают с меньшей мощностью и не потребляют ток.
- Тонкий оксидный слой делает полевые МОП-транзисторы уязвимыми для необратимых повреждений, вызванных электростатическими зарядами.
- Напряжение перегрузки делает его нестабильным.
Также читают: Усилитель класса C - принцип работы, применение, преимущества и недостатки Большие данные - категории, атрибуты, приложения и Hadoop
Лакшми имеет степень бакалавра в области электроники и связи и имеет опыт работы в RelQ Software в качестве инженера-испытателя и HP в качестве руководителя службы технической поддержки. Она является автором, редактором и партнером Electricalfundablog.
В чем разница между MOSFET и BJT?
ОСНОВНЫЕ ЗНАНИЯ – MOSFET VS.BJT В чем разница между MOSFET и BJT?
Автор / Редактор: Люк Джеймс / Erika Granath
Полевой транзистор металл-оксид-полупроводник (MOSFET) и биполярный переходный транзистор (BJT) – это два типа транзисторов, которые поставляются в различных корпусах, и тем, кто не знаком с электроникой, часто сложно решить, какой из них следует использовать. в своих проектах.
Связанные компании
Хотя и MOSFET, и BJT являются транзисторами, они работают по-разному и ведут себя по-разному.(Источник: Юрий Захачевский)
Хотя и MOSFET, и BJT являются транзисторами, они работают по-разному и ведут себя по-разному, поэтому используются по-разному.
Что такое полевой МОП-транзистор?
Рисунок 1: Структура полевого МОП-транзистора.
(Источник: Electronic Tutorials)
Полевой транзистор металл-оксид-полупроводник (MOSFET) представляет собой разновидность полевого транзистора (FET) , который состоит из трех выводов – затвора, истока и стока.В полевом МОП-транзисторе сток управляется напряжением на выводе затвора, поэтому полевой МОП-транзистор является устройством, управляемым напряжением. Напряжение, приложенное к затвору, определяет, сколько тока течет в сток. MOSFET доступны двух типов: « p-channel » и « n-channel ». Оба эти типа могут быть либо в режиме увеличения, либо в режиме истощения (см. Рисунок 1). Это означает, что всего существует четыре различных типа полевых МОП-транзисторов.
В полевых МОП-транзисторах с каналом p-типа выводы истока и стока выполнены из полупроводника p-типа.Точно так же в n-канальных полевых МОП-транзисторах выводы истока и стока сделаны из полупроводника n-типа. Сам вывод затвора сделан из металла и отделяется от выводов истока и стока с помощью оксида металла. Такой уровень изоляции обеспечивает низкое энергопотребление и является основным преимуществом транзисторов этого типа. Часто полевые МОП-транзисторы используются в маломощных устройствах или в качестве строительных блоков для снижения энергопотребления.
Режим истощения: Когда напряжение на клемме затвора низкое, канал демонстрирует максимальную проводимость.Поскольку напряжение на зажимах затвора является положительным или отрицательным, проводимость канала снижается.
Режим улучшения: , когда напряжение на клемме затвора низкое, устройство не проводит ток, если на клемму затвора не подается большее напряжение.
Что такое BJT?
Биполярный переходной транзистор (BJT) – это устройство, управляемое током (в отличие от MOSFET, управляемое напряжением), которое, среди прочего, широко используется в качестве усилителя, генератора или переключателя. Биполярный транзистор имеет три контакта – базу, коллектор и эмиттер – и два перехода: p-переход и n-переход.
Существует два типа BJT – PNP и NPN . Каждый тип имеет большой коллекторный элемент и большой эмиттерный элемент, которые легированы одинаковым образом. Между этими структурами находится небольшой слой другого легирующего агента, называемого «основой». Ток течет в коллекторе PNP и выходит из эмиттера. В NPN полярность противоположная, и ток течет в эмиттере и выходит из коллектора. В любом случае направление тока в базе такое же, как и на коллекторе.
Рисунок 2: Принцип работы BJT.
(Источник: Electronic Tutorials)
По сути, работа BJT-транзистора определяется током на его базовом выводе. Например, небольшой базовый ток равен небольшому току коллектора. Выходной ток BJT всегда равен входному току, умноженному на коэффициент, известный как «усиление», обычно в 10-20 раз превышающий базовый ток.
MOSFET vs BJT: в чем разница?
Рисунок 3: Разница между BJT и MOSFET.
(Источник: Electronic Tutorials)
Между MOSFET и BJT есть много различий.
- MOSFET (управляемый напряжением) представляет собой металлооксидный полупроводник, тогда как BJT (управляемый током) представляет собой транзистор с биполярным переходом.
- Хотя у обоих по три клеммы, они отличаются. MOSFET имеет исток, сток и затвор, тогда как BJT имеет базу, эмиттер и коллектор.
- MOSFET идеально подходят для приложений большой мощности, тогда как BJT чаще используются в приложениях с низким током.
- BJT зависит от тока на его базовом выводе, тогда как MOSFET зависит от напряжения на электроде затвора с оксидной изоляцией.
- Структура MOSFET по своей природе более сложна, чем структура BJT.
Что лучше?
И MOSFET, и BJT имеют уникальные характеристики, а также свои плюсы и минусы. К сожалению, мы не можем сказать, что «лучше», потому что вопрос очень субъективен. На этот вопрос нет однозначного и однозначного ответа.
При выборе того, что использовать в проекте, необходимо учитывать множество различных факторов, чтобы прийти к решению. Сюда входят уровень мощности , напряжение привода, эффективность, стоимость и скорость переключения, среди прочего – вот где действительно полезно знать ваш проект!
Как правило, полевые МОП-транзисторы более эффективны в источниках питания. В устройстве с батарейным питанием, где нагрузка переменная, а источник питания ограничен, например, использование BJT было бы плохой идеей. Однако, если BJT используется для питания чего-то с предсказуемым потреблением тока (например, светодиодов), тогда это будет хорошо, потому что ток база-эмиттер может быть установлен на долю тока светодиода для повышения эффективности.
(ID: 46385462)
Как использовать MOSFET – Учебное пособие для начинающих
Давайте поговорим об основах MOSFET и о том, как их использовать. Это руководство написано в первую очередь для неакадемических любителей, поэтому я постараюсь упростить концепцию и сосредоточиться больше на практической стороне вещей.
Однако, если вы разбираетесь в том, как работает MOSFET, я поделюсь некоторыми полезными академическими статьями и ресурсами в конце этого поста. MOSFET имеет некоторые преимущества и недостатки по сравнению с BJT, поэтому тщательно выбирайте основание для вашего приложения.
Вы можете купить MOSFET для проектов Arduino на Amazon: http://amzn.to/2Gk6ruW
MOSFET – это металлооксидный полупроводниковый полевой транзистор . Это особый тип полевого транзистора (FET).
В отличие от BJT, который «управляется током», MOSFET – это устройство, управляемое напряжением. MOSFET имеет клеммы « gate », « Drain » и « Source » вместо клемм «база», «коллектор» и «эмиттер» в биполярном транзисторе.Подавая напряжение на затвор, он генерирует электрическое поле для управления током, протекающим через канал между стоком и истоком, при этом ток от затвора к полевому МОП-транзистору не течет.
МОП-транзистор можно рассматривать как переменный резистор, где разность напряжений затвор-исток может управлять сопротивлением сток-исток. Когда нет приложения напряжения между затвором-источником, сопротивление сток-исток очень велико, что почти похоже на разомкнутую цепь, поэтому ток не может течь через сток-источник.Когда применяется разность потенциалов затвор-исток, сопротивление сток-исток уменьшается, и ток будет течь через сток-источник, который теперь представляет собой замкнутую цепь.
В двух словах, полевой транзистор управляется приложенным напряжением затвор-исток (которое регулирует электрическое поле в канале), например, при защемлении или открытии соломинки и остановке или разрешении протекания тока. Благодаря этому свойству полевые транзисторы отлично подходят для протекания большого тока, а полевые МОП-транзисторы обычно используются в качестве переключателя.
Хорошо, позвольте мне резюмировать различия между BJT и MOSFET .
- В отличие от биполярных транзисторов, MOSFET управляется напряжением. В то время как BJT управляется током, необходимо тщательно рассчитать базовый резистор в соответствии с величиной переключаемого тока. Не так с полевым МОП-транзистором. Просто подайте достаточное напряжение на ворота, и переключатель сработает.
- Поскольку они управляются напряжением, полевые МОП-транзисторы имеют очень высокий входной импеданс, поэтому ими может управлять что угодно. MOSFET
- имеет высокое входное сопротивление.
Чтобы использовать полевой МОП-транзистор в качестве переключателя, напряжение на затворе (Vgs) должно быть выше, чем у источника. Если подключить гейт к источнику (Vgs = 0), он выключится.
Например, у нас есть IRFZ44N, который является «стандартным» полевым МОП-транзистором и включается только при Vgs = 10–20 В. Но обычно мы стараемся не давить на него слишком сильно, поэтому напряжение 10–15 В является обычным для Vgs для этого типа полевого МОП-транзистора.
Однако, если вы хотите управлять им от Arduino, который работает при 5 В, вам понадобится МОП-транзистор «логического уровня», который можно включить при 5 В (Vgs = 5 В).Например, STP55NF06L. У вас также должен быть резистор, подключенный последовательно к выходу Arduino, чтобы ограничить ток, поскольку затвор очень емкостный и может потреблять большой мгновенный ток, когда вы пытаетесь его включить. Около 220 Ом – хорошее значение.
На этой странице показаны некоторые подробные объяснения того, как MOSFET работает как переключатель. На этой странице показано расширенное использование MOSFET.
Полевые МОП-транзисторыбывают четырех различных типов. Нам нужно знать три основные категории.
- N-канал (NMOS) или P-канал (PMOS)
- Расширение или Истощение Режим
- Логический уровень или Нормальный MOSFET
N-канал – Для N-канального MOSFET источник заземлен.Чтобы включить полевой МОП-транзистор, нам нужно поднять напряжение на затворе. Чтобы выключить его, нам нужно подключить ворота к земле.
P-Channel – Источник подключен к шине питания (Vcc). Чтобы позволить току течь, ворота должны быть заземлены. Чтобы выключить его, необходимо подтянуть гейт к Vcc.
Depletion Mode – Требуется приложенное напряжение затвор-исток (Vgs) для выключения устройства.
Режим улучшения – Транзистору требуется приложенное напряжение затвор-исток (Vgs) для включения устройства.
Несмотря на разнообразие, наиболее часто используемым типом является N-канальный режим расширения .
Существуют также полевые МОП-транзисторы с логическим уровнем и нормальные полевые МОП-транзисторы , но единственное различие – это уровень потенциала затвор-исток, необходимый для управления полевым МОП-транзистором.
Я постараюсь объяснить это как можно проще, чтобы получить более подробную информацию или, если вы сомневаетесь, просмотрите ссылки и ссылки, которые я даю в конце сообщения.
MOSFET – это полевой транзистор, управляемый напряжением, который отличается от JFET.Электрод затвора электрически изолирован от основного полупроводника тонким слоем изоляционного материала (серьезно!). Этот изолированный металлический затвор похож на пластину конденсатора с чрезвычайно высоким входным сопротивлением (почти бесконечным!). Из-за изоляции затвора нет тока в МОП-транзистор от затвора.
Когда на затвор подается напряжение, оно изменяет ширину канала сток-исток, по которому текут носители заряда (электроны или дырки).Чем шире канал, тем лучше проводит прибор.
MOSFET используется иначе, чем обычный полевой транзистор с переходом.
- Бесконечный высокий входной импеданс делает полевые МОП-транзисторы полезными для усилителей мощности. Эти устройства также хорошо подходят для приложений с высокоскоростной коммутацией. Некоторые интегральные схемы содержат крошечные полевые МОП-транзисторы и используются в компьютерах.
- Поскольку оксидный слой очень тонкий, МОП-транзистор может быть поврежден накоплением электростатических зарядов. При работе со слабым сигналом на радиочастоте устройства MOSFET обычно не работают так же хорошо, как другие типы полевых транзисторов.
Где поставить нагрузку на полевой МОП-транзистор? Источник или слив?
Потому что нагрузка имеет сопротивление, которое, по сути, является резистором. Для N-канального MOSFET причина, по которой мы обычно помещаем нагрузку на сторону стока, заключается в том, что источник обычно подключен к GND.
Если нагрузка подключена со стороны истока, Vgs должен быть выше для переключения MOSFET, иначе ток между истоком и стоком будет недостаточным, чем ожидалось.
Радиатор подключен к канализации?
Обычно радиатор на задней панели полевого МОП-транзистора подключается к стоку! Если вы устанавливаете несколько полевых МОП-транзисторов на радиатор, они должны быть электрически изолированы от радиатора! Если радиатор прикреплен болтами к заземляющей раме, рекомендуется изолировать его.
Для чего нужен корпусный диод?
Полевые МОП-транзисторытакже имеют внутренний диод, который может пропускать ток непреднамеренно. Внутренний диод также ограничивает скорость переключения. Вам не нужно беспокоиться об этом, если вы работаете на частоте ниже 1 МГц.
7.1 MOSFET – Введение
7.1 MOSFET – ВведениеСодержание – Глоссарий – Учебные пособия –
В этой секции:
- Базовая конструкция и принцип работы
- Краткая история
- Как полевой МОП-транзистор усиливает электрические сигналы?
Далее 7.2 модели MOSFET
Полевой транзистор металл-оксид-полупроводник n-типа (MOSFET) состоит из источника и сток , две высокопроводящие полупроводниковые области n-типа, которые изолированы от Подложка p-типа на p-n диодах с обратным смещением. Металлический (или поликристаллический) затвор покрывает область между истоком и стоком, но отделен от полупроводника оксид затвора .Базовая структура полевого МОП-транзистора n-типа и соответствующий символ схемы показаны на рисунке 7.1.1.
mosfet2.gif
- Рис.7.1.1 Сечение и обозначение цепи n-типа
Металл-оксид-полупроводник-полевой транзистор (MOSFET)
Как видно на рисунке, области истока и стока идентичны. 1 . это приложенные напряжения, которые определяют, какая область n-типа обеспечивает электроны и становится источником, в то время как другая область n-типа собирает электроны и становится стоком.Напряжения, приложенные к электроду стока и затвора, а также к подложке с помощью заднего контакта относятся к потенциалу источника, как также указано на рисунке.
Вид сверху того же полевого МОП-транзистора показан на рис. 7.1.2, где длина затвора Идентифицируются L и ширина ворот W . Обратите внимание, что длина ворот не равна физическим размерам ворот, а скорее расстояние между областями истока и стока под затвором.Перекрытие между затвором и областью истока и стока требуется для обеспечения того, чтобы инверсионный слой образовывал непрерывный проводящий путь между истоком и стоком. Обычно это перекрытие делается как минимум насколько это возможно, чтобы минимизировать его паразитную емкость.
mosfet1.gif
- Рис.7.1.2 Вид сверху на металл-оксид-полупроводник n-типа.
Полевой транзистор (MOSFET)
Поток электронов от истока к стоку контролируется напряжением применяется к воротам.Положительное напряжение, приложенное к затвору, притягивает электронов к границе между диэлектриком затвора и полупроводник. Эти электроны образуют проводящий канал между источником и сток, называемый инверсионным слоем . Нет ток затвора необходим для поддержания инверсионного слоя на интерфейс, поскольку оксид затвора блокирует любой несущий поток. Чистый результат что ток между стоком и истоком контролируется напряжением, приложенным к затвору.
Типичные характеристики тока в зависимости от напряжения (I-V) полевого МОП-транзистора показаны на рисунке ниже. Реализована квадратичная модель для полевого МОП-транзистора.
mosfetiv.xls – mosfetiv.gif
- Рис.7.1.3 ВАХ полевого МОП-транзистора n-типа с VG =
5 В (верхняя кривая), 4 В, 3 В и 2 В (нижняя кривая)
ПРИМЕЧАНИЕ : в первую очередь мы обсудим n-тип или n-канал МОП-транзистор. Этот тип MOSFET изготовлен на полупроводнике p-типа. субстрат.Дополнительным полевым МОП-транзистором является полевой МОП-транзистор p-типа или p-канальный полевой МОП-транзистор. Он содержит области истока и стока p-типа в подложке n-типа. Инверсионный слой образуется, когда дырки притягиваются к интерфейс отрицательным напряжением затвора. Пока дыры все еще текут от истока к стоку они приводят к отрицательному току стока. CMOS схемы требуют устройств как n-типа, так и p-типа.
Концептуально подобная конструкция была впервые предложена и запатентована. Лилиенфельд и Хайль 2 в 1930 году, но не был успешно продемонстрирован до 1960 года.Основной технологической проблемой был контроль и уменьшение поверхностных состояний на границе раздела между оксидом и полупроводником.
Изначально это было возможно только истощить существующий канал n-типа, применив отрицательное напряжение на затворе. Такие устройства имеют токопроводящий канал между истоком и стоком даже когда нет напряжения затвора применяются и называются устройствами «режима истощения».
Уменьшение поверхностных состояний позволило изготавливать устройства. которые не имеют проводящий канал, если не приложено положительное напряжение.Такие устройства упоминаются как «режим улучшения» устройства. Электроны в оксид-полупроводник интерфейсы сосредоточены в тонкий (толщиной ~ 10 нм) «инверсионный» слой. К настоящему времени большинство полевых МОП-транзисторов являются устройствами «улучшенного режима».
В то время как минимальное требование для усиления электрических сигналов составляет коэффициент усиления по мощности , можно сделать вывод, что Устройство с усилением как по напряжению, так и по току – очень желательная схема элемент.MOSFET обеспечивает коэффициент усиления по току и напряжению, обеспечивающий выходной ток внешней нагрузки, превышающий входной ток и выходное напряжение на этой внешней нагрузке, превышающее входное напряжение.
Коэффициент усиления по току возможность полевого транзистора (FET) легко объясняется тем, что ток затвора не требуется для поддерживать инверсионный слой и результирующий ток между стоком и источник. Таким образом, устройство имеет бесконечный коэффициент усиления по постоянному току.Текущий прирост обратно пропорциональна частота сигнала, достигающая единичного коэффициента усиления по току на транзитной частоте.
Коэффициент усиления напряжения полевого МОП-транзистора вызван тем, что ток насыщается при более высоком уровне сток-исток напряжения, так что небольшое изменение тока стока может вызвать большой изменение напряжения стока.
7. 7.2
1 Индивидуальные полевые МОП-транзисторы, которые имеются в продаже часто выпускается в металлической банке или литой пластиковой упаковке содержат связь между источником и обратным контактом так что контакты истока и стока нельзя легко поменять местами.
2 J.E. Lilienfeld, Патент США 1,745,175 (1930) и O. Heil, патент Великобритании 439 457 (1935)
Барт Дж. Ван Зегбрук, 1996, 1997
Основы, типы, работа и применение Схема
MOSFET – это в основном транзистор, использующий эффект поля. MOSFET – это металлооксидный полевой транзистор , который имеет затвор. Напряжение затвора определяет проводимость устройства. В зависимости от этого напряжения затвора мы можем изменять проводимость и, таким образом, использовать его как переключатель или как усилитель, как мы используем транзистор как переключатель или как усилитель.
Биполярный транзисторили BJT имеет базу, эмиттер и коллектор, тогда как MOSFET имеет затвор, сток и исток. Помимо конфигурации контактов, BJT нуждается в токе для работы, а MOSFET – в напряжении.
MOSFETобеспечивает очень высокое входное сопротивление и его очень легко смещать. Итак, для небольшого линейного усилителя MOSFET – отличный выбор. Линейное усиление происходит, когда мы смещаем полевой МОП-транзистор в области насыщения, которая является центрально фиксированной точкой Q.
На изображении ниже показана внутренняя конструкция базового N-канального полевого МОП-транзистора .МОП-транзистор имеет три подключения: сток, затвор и источник. Между воротами и каналом нет прямой связи. Электрод затвора электрически изолирован, и по этой причине его иногда называют IGFET или полевым транзистором с изолированным затвором.
Вот изображение широко популярного полевого МОП-транзистора IRF530N .
Типы полевых МОП-транзисторовВ зависимости от режимов работы доступны два различных типа полевых МОП-транзисторов .Эти два типа также имеют два подтипа
- MOSFET или MOSFET типа истощения с режимом истощения
- N-канальный MOSFET или NMOS
- P-канальный MOSFET или PMOS
- MOSFET типа расширения или MOSFET с режимом расширения
- N-канальный MOSFET или NMOS
- P-канальный MOSFET или PMOS
Тип истощения MOSFET
MOSFET с истощением обычно включается при нулевом напряжении между затвором и источником.Если MOSFET представляет собой MOSFET с N-канальным истощением, тогда будет некоторое пороговое напряжение, необходимое для выключения устройства. Например, N-канальный MOSFET с истощением с пороговым напряжением -3 В или -5 В, затвор полевого МОП-транзистора необходимо подтянуть к отрицательному значению -3 В или -5 В, чтобы выключить устройство. Это пороговое напряжение будет отрицательным для канала N и положительным для канала P. Этот тип MOSFET обычно используется в логических схемах.
Тип расширения MOSFET
В расширенном типе полевых МОП-транзисторов устройство остается выключенным при нулевом напряжении затвора.Чтобы включить полевой МОП-транзистор, мы должны обеспечить минимальное напряжение затвор-источник (пороговое напряжение Vgs). Но ток стока сильно зависит от этого напряжения затвор-исток, если Vgs увеличивается, ток стока также увеличивается таким же образом. Полевые МОП-транзисторы улучшенного типа идеально подходят для построения схемы усилителя. Также, как и истощающий MOSFET, он также имеет подтипы NMOS и PMOS.
Характеристики и кривые полевого МОП-транзистораОбеспечивая стабильное напряжение между стоком и истоком, мы можем понять ВАХ полевого МОП-транзистора.Как указано выше, ток стока сильно зависит от напряжения затвор-исток Vgs. Если мы изменим Vgs, ток стока также изменится.
Давайте посмотрим на ВАХ полевого МОП-транзистора.
На изображении выше мы можем видеть наклон I-V N-канального MOSFET , ток стока равен 0, когда напряжение Vgs ниже порогового напряжения, в это время MOSFET находится в режиме отсечки. После этого, когда напряжение затвор-исток начинает увеличиваться, ток стока также увеличивается.
Давайте посмотрим на практический пример I-V кривой МОП-транзистора IRF530 ,
.Кривая, показывающая, что когда Vgs составляет 4,5 В, максимальный ток стока IRF530 составляет 1 А при 25 градусах С. Но когда мы увеличиваем Vgs до 5 В, ток стока составляет почти 2 А, и, наконец, при напряжении питания 6 В он может обеспечить 10А тока утечки.
Смещение постоянного тока полевого МОП-транзистора и усиление с общим истокомЧто ж, теперь пришло время использовать полевой МОП-транзистор в качестве линейного усилителя .Это не сложная работа, если мы определим, как смещать полевой МОП-транзистор и использовать его в идеальной рабочей области.
MOSFETработает в трех режимах работы : омический, насыщение и точка отсечки. Область насыщения также называется линейной областью. Здесь мы используем полевой МОП-транзистор в области насыщения, он обеспечивает идеальную точку Q.
Если мы подаем слабый сигнал (изменяющийся во времени) и применяем смещение постоянного тока на затворе или входе, то в правильной ситуации MOSFET обеспечивает линейное усиление.
На изображении выше небольшой синусоидальный сигнал (V gs ) подается на затвор полевого МОП-транзистора, что приводит к флуктуации тока стока, синхронной с приложенным синусоидальным входом. Для слабого сигнала V gs , мы можем провести прямую линию от точки Q, которая имеет наклон g m = dI d / dVgs.
Наклон можно увидеть на изображении выше. Это крутизна крутизны .Это важный параметр для коэффициента усиления. В этот момент амплитуда тока стока составляет
ߡ Id = gm x ߡ Vgs
Теперь, если мы посмотрим на схему, приведенную выше, резистор стока R d может управлять током стока, а также напряжением стока, используя уравнение
Vds = Vdd - I d x Rd (как V = I x R)
Выходной сигнал переменного тока будет ߡ Vds = -ߡ Id x Rd = -g m x ߡ Vgs x Rd
Теперь по уравнениям усиление будет
.усиленное усиление напряжения = -g м x Rd
Таким образом, общее усиление усилителя MOSFET сильно зависит от крутизны и резистора стока.
Базовая конструкция усилителя с общим источником и одним полевым МОП-транзистором Отдо сделать простой усилитель с общим источником, используя одиночный МОП-транзистор с N-каналом , важно обеспечить условие смещения постоянного тока. Для этой цели общий делитель напряжения построен с использованием двух простых резисторов: R1 и R2. Также требуются еще два резистора в качестве резистора стока и резистора истока.
Для определения стоимости нам потребуется пошаговый расчет.
МОП-транзистор имеет высокое входное сопротивление, поэтому в рабочем состоянии ток на выводе затвора отсутствует.
Теперь, если мы посмотрим на устройство, мы обнаружим, что есть три резистора, связанных с VDD (без резисторов смещения). Три резистора – это Rd, внутреннее сопротивление MOSFET и Rs. Итак, если мы применим закон Кирхгофа о напряжении, то напряжения на этих трех резисторах будут равны VDD.
Теперь, согласно закону Ома, если мы умножим ток на резистор, мы получим напряжение как V = I x R.Итак, здесь ток – Drain current или I D . Таким образом, напряжение на Rd равно V = I D x Rd, то же самое относится к Rs, поскольку ток такой же I D , поэтому напряжение на Rs равно Vs = I D x Rs. Для полевого МОП-транзистора напряжение составляет В DS или напряжение сток-исток.
Теперь по КВЛ,
VDD = I D x Rd + V DS + I D x Rs VDD = I D (Rd + Rs) + V DS (Rd + Rs) = V DD - V DS / I D
В дальнейшем мы можем оценить его как
Rd = (V DD - V DS / I D ) - R S Rs может вычислено как Rs = V S / I D
Значения двух других резисторов могут быть определены по формуле V G = V DD (R2 / R1 + R2)
Если у вас нет значения, вы можете получить его по формуле V G = V GS + V S
К счастью, максимальные значения можно найти в таблице данных MOSFET.Исходя из спецификации, мы можем построить схему.
Два разделительных конденсатора используются для компенсации частот среза и блокировки постоянного тока, поступающего со входа или поступающего на конечный выход. Мы можем просто получить значения, определив эквивалентное сопротивление делителя смещения постоянного тока, а затем выбрав желаемую частоту среза. Формула будет
C = 1 / 2πf Требование
Для конструкции усилителя высокой мощности мы ранее создали усилитель мощности на 50 Вт с использованием двух полевых МОП-транзисторов в двухтактной конфигурации, перейдите по ссылке для практического применения.
.