Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

IMAX B6: схема и печатная плата

Вот я и сделал схему и печатку зарядного устройства. В основном упирал на оформление схемы, печатка получилась так себе. Правда, качество разводки и в оригинале не блещет. Мне не очень интересная оригинальная разводка, ведь я рассматриваю переделку всей печатки.

Есть небольшие отличия от оригинала, потому что я поленился из рисовать. Я не стал рисовать USB-порт, и кварц. Долгое время уже сижу на PIC24, там кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ в оформлении схемы (pdf, p-cad2006).  Где есть косяки(кроме того, что нумерация компонентов не по порядку)? Уж сильно много времени убил на оформлении, буквально каждый компонент перерисовывал из своей библиотеки. Получилось красиво, но хочется ещё красивее. Для сравнения, чья-то схема IMAX B6. Нормоконтролировать картинки в посте не надо, на картинках может быть старая версия.

Вот ещё печатка (тоже P-CAD 2006)

Переченя элементов пока так же нет, почти все номиналы на схеме.

Библиотеками поделиться, к сожалению, не могу.

А теперь я расскажу как работает схема. Она весьма интересная.

1. Защита от переполюсовки по питанию

Защита сделана на N-канальном MOSFET транзисторе. Такое решение позволяет обеспечить почти нулевое падение напряжения, по сравнению с защитой на диоде. Например, при токе 3А 12В диод довольно сильно грелся бы, более Ватта.
У этой схемы есть небольшой недостаток: для повышенного напряжения, более 20В, резистор R6 надо заменить на 10-вольтовый стабилитрон.

2. DC-DC преобразователь
Для работы зарядного устройства необходимо наличие регулируемого источника питания. Источника, способного из 12 В сделать как 2В, так и 25В. Вот его схема:

Управляется преобразователь тремя линиями:
1) Линия DCDC/ON_OFF – это запрет работы преобразователя. Подавая на линию 5V, выключается как VT26 (ключ для STEP-UP режима), так и VT27 (ключ для STEP-DOWN режима).

2) Линия STEPDOWN_FREQ двойного назначения: в STEP-UP режиме на этой линии должно быть 5V, иначе питание на катушку L1 не поступит, в step-down на этой линии должна быть частота. Регулируя скважность меняем выходное напряжение.
3) Линия SETDISCURR_STEPUPFREQ. В повышающем режиме на этой линии ШИМ, в понижающем – 0V
Дополнительно реализована защита от КЗ по линии аккумулятора: при превышении зарядного тока сработает VT8, и питание с преобразователя будет снято, транзистор VT26 разомкнётся. Как точно это работает, я не разобрался, можете сами поизучать схему.

Вопрос залу: что делают R114+R115+C20?

Силовые MOSFET ключи VT26 и VT27 управляются двухтактный эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота работы преобразователя 31250кГц.

Данный преобразователь нельзя включать без минимальной нагрузки, в качестве которой выступает R128. Причём, в моей версии зарядки, он припаян напаян он поверх других элементов – ошибка разработчиков.

3. Включение аккумулятора

Ни один вывод аккумулятора не подключен на землю напрямую. Это касается как силовых цепей, так и балансировочного разъёма. Плюс аккумулятора подключен на DC-DC преобразователь, минус – к зарядному транзистору. Включив Charge transistor, а также регулируя напряжение на DC-DC, устаналивается необходимый зарядный ток.

4. Защита от дурака при переполюсовке аккумулятора

Включением заряда управляет DA4.2, и заряд идёт лишь при правильном подключении аккумулятора. Запретить же заряд может и контроллер, транзистором VT9.

5: Схема разряда

Схема разряда построена на транзисторе VT24 и двух операционниках. Для включения разряда надо открыть VT12. VT24 – разрядный транзистор. Именно он рассеивает тепло при разряде. Управляет им два операционных усилителя.

Посылая на вход двух RC-цепочек меандр,

контроллер формирует напряжение на In+ DA3.2:

DA3.2 – это схема интегратора(фильтр низких частот). Он будет увеличивать напряжение на выходе (и на затворе разрядного транзистора VT24), а значит и разрядный ток до тех пор, пока напряжение на выводах In+ и In-(красные цепи) не сравняются. На In+ подаётся опорный сигнал от контроллера, на In- сигнал со схемы обратной связи на DA3. 1. Результат – ток плавно нарастает до номинального
Коричневый провод – запрет разряда. Если на нём 5 Вольт – разряд запрещён.
По синей линии можно проконтролировать фактический разрядный ток.

6. Схема балансировки и измерения напряжения на ячейках

Как, например измерить напряжение шестой ячейки? Напряжение BAL6 и BAL5 с шестой ячейки подаётся на дифференциальный усилитель DA1.1, который из 25В на шестой ячейки вычитает 21В на пятой. На выходе – 4В.

Нижние ячейки измеряются без участия дифференциального усилителя, делителем. Особо отмечу, что измеряется даже “земля”(BAL0).
Выход коммутируется мультиплексором HEF4051BT на контроллер. Без мультиплексора – никак, ног не хватит.

Балансировочная схема сделана на двух транзисторах. Применительно к шестой ячейке это VT22 и VT23. VT22 – цифровой транзистор, в нём уже встроены резисторы, и он подключается напрямую к выводу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезарядилась, он остановит заряд, включит соответствующую перезаряженной ячейке схему, и через резисторы побежит ток около 200мА. Как только ячейка немного разрядилась, вновь включается заряд всей батареи аккумуляторов.

7. Цифровые цепи

Контроллер измеряет контроллером напряжения на плюсе и минусе аккумулятора. Если произойдёт переполюсовка – на экран будет выведено предупреждение.
Подсветка индикатора зачем-то запитана от транзистора, сам индикатор включен в 4-битном режиме.
Ещё из интересного – источник опорного напряжения TL431.

Ещё вопрос к залу про кварц: неужели для ATMEGA кварц обязателен?

Imax b6 ремонт схема принципиальная электрическая. Возможно, худшая подделка Imax B6. Зарядка с линейными триггерами

Сегодня в наших домах в изобилии различной портативной техники, работающей от элементов питания. В свою очередь элементы питания могут быть различной конфигурации и по размерам, и по напряжению, и по технологии, применяемой для долговременного сохранения запаса электроэнергии. Элементы питания могут быть как одноразовые (солевые батарейки, например), так и многоразово перезаряжаемые элементы питания – аккумуляторы.

Следом часто встает вопрос о том, что аккумуляторы для дальнейшего использования необходимо заряжать, хотя производители портативной электроники часто заботятся, о том, чтобы к таким устройствам в комплекте шли специальные зарядные устройства, но на практике не раз случается, что либо для таких аккумуляторов просто нет зарядного устройства (имеется ввиду в комплекте с каким-либо устройством), или покупая пальчиковые аккумуляторы, например, для фотоаппарата не всегда покупается сразу и зарядное устройство (которое как правило всегда приобретается отдельно в таких случаях), либо просто и банально стандартное зарядное устройство потерялось, ну или же наконец в радиолюбительской практике часто приходится заряжать какие-нибудь аккумуляторы, которым охота дать жизнь в каком-нибудь своем устройстве. Так вот, проблему перезарядки аккумуляторов можно решить приобретением специального зарядного устройства для них. Ну а рассмотрим мы сегодня не самое простое зарядное устройство, а всеядное IMAX B6, а точнее его 80 ваттную копию.

Приобрести его можно на торговых интернет площадках или AliExpress . Цена на копию начинается от 20 условных единиц, что до 1,5 – 2 раз дешевле оригинала и к тому же мощнее на 30 Вт. Но копия есть копия – нужно держать глаз пистолетом при покупке, ведь скопировать может и дядя Ляо в подвале. В моем случае продавец оказался и вправду порядочным (отзывы штука полезная) – получил зарядное устройство минимально отличающееся от оригинала – единственное просто сборка корпуса не очень порадовала, а печатная плата изготовлена на высоком качественном уровне.

Характеристики зарядного устройства:

  • Напряжение питания 11 – 18 вольт
  • Зарядный ток от 0,1 до 6 ампер
  • Максимальная мощность заряда 80 ватт
  • Разрядный ток до 2 ампер
  • Максимальная мощность разряда 10 ватт
  • Функции зарядного и разрядного устройства
  • Зарядка NiMH/NiCd аккумуляторов от 1 банки до 15 последовательно
  • Зарядка Li-ion/Polimer аккумуляторов от 1 до 6 банок последовательно
  • Масса зарядного устройства 227 г
  • Габаритные размеры 133х87х33 мм

Повертим пришедшую посылку в руках и рассмотрим с разных сторон.

Днище корпуса без голограммы, которая должна присутствовать именно в оригинальном устройстве, и такие сякие китайцы приклеили криво ножку, будут наказаны!

Корпус зарядного устройства сам по себе является радиатором. К слову корпус весь полностью изготовлен из алюминия.

Вот в такой разъем необходимо подключить внешний источник питания 11 -18 вольт. Вообще есть варианты копий со встроенным внутрь источником питания, но я не думаю, что это лучше, компактнее да, а вот греться может больше, что не есть хорошо. В отверстии с уголком, рядом с градусником на самом деле разъем – подключать можно или USB, или термометр (в инструкции не сказано, но вроде как это LM35) для контроля температуры заряжаемых аккумуляторов.

С другой стороны разъемы для балансного заряда Li батарей и основной выход плюс минус на все аккумуляторы.

Комплект поставки это инструкция и комплект проводов (блок питания в набор не входит и его нужно покупать отдельно):

При заказе попросил продавца укомплектовать проводами вот с такими разъемами, по умолчанию это будут T-коннекторы.

Вот такая инструкция идет в комплекте на английском и в глянце. Датирована инструкция 2008 годом.

Отдельно к зарядному устройству приобрел 120 Вт универсальный блок питания (правда предназначенный для ноутбуков). Хотя и тут китайцы схитрили и блок оказался на 96 Вт, а 120 всего лишь максимальная.

В комплекте к блоку идет набор разъемов для различных ноутбуков:

Для зарядного устройства идеально подходит штекер под номером три слева с белым колечком.

Напряжение блока питания можно регулировать от 12 вольт до 24 вольт.

Ну что же, внешне все оценили, приступим к разборке!

Откручиваем боковые крышки и достаем днище корпуса, к которому прикручена плата.

Как сразу можно заметить, плата изготовлена очень качественно, все элементы для поверхностного монтажа стоят ровно (электролитические конденсаторы не в счет), флюс отмыт, нигде нет никаких загрязнений, пайка блестит, все запаяно аккуратно. Даже глаза радуются! Преобразователь напряжения в устройстве используется импульсный – это только для заряда аккумуляторов, Стабилизатор для микроконтроллера устройства расположен на обратной стороне платы. Перенесем свой взор туда.

Как видно, все теплонагруженные элементы расположены на обратной стороне печатной платы и прижимаются к корпусу устройства, который, как вы помните, является как раз и радиатором по совместительству.

Прижимается все к корпусу через терморезинки.

Порадовала штамповка якобы для вентиляции, которая практически не имеет щелей для циркуляции воздуха.

Пожалуй один из самых интересных вопросов это на базе чего построено зарядное устройство. Но тут разочарование – мы этого не узнаем, так как надпись затерта на корпусе микросхемы микроконтроллера. Вообще на глаз очень похоже на микроконтроллер Atmega16.

Соберем все обратно и попробуем включить, надеюсь ничего не было сломано во время разборки..)

При включении питания появится в самом начале надпись с названием устройства. И далее можно приступать к работе с устройством, выбрать нужный режим, задать параметры тока зарядки и нажать старт, после проверки аккумулятора начнется процесс заряда аккумулятора по заданному алгоритму в зависимости от выбранного типа. В случае неправильного выбора, например поставить NiMH аккумулятор вместо Li-ion, устройство выдаст ошибку и заряд не начнется, аналогично в случае отсутствия аккумулятора вовсе или большего или меньшего количества аккумуляторов подключенных к зарядному устройству по сравнению с выбранными параметрами меню зарядки.

Подключаем провода к зарядному устройству и крокодилами подключаемся к аккумулятору. Стоит предусмотреть держатели для аккумуляторов, так как просто крокодилами не то что не удобно, а иногда невозможно соединиться.

Попробуем зарядить старый аккумулятор от мобильного телефона.

Задаем параметры.

Жмем старт и устройство проверяет аккумулятор.

Заряд пошел. В верхней строке указа тип и количество аккумуляторов, зарядный ток (аккумулятор 700 мАч, однако он убитый и его емкость несколько меньше, в процессе зарядки ток снизится до 300 мА и постепенно снизится до 0 в конце зарядного цикла) и напряжение на аккумуляторе. В нижней строке указывается запущенный процесс зарядки или разрядки, время которое протекает зарядка и емкость заряда вкачанная или выкачанная из аккумулятора.

В конце зарядки раздастся звуковой сигнал и зарядка прекратится. По итогам старенький аккумулятор зарядился за 1 час и его емкость составила почти 200 мАч. И все же значение емкости может быть слегка завышена, судя по всему этот расчет происходит по принципу текущего зарядного тока, перемноженного на время протекания этого тока.

Для различных типов аккумуляторов напряжение задается автоматически (номинальное напряжение плюс напряжение полностью заряженного аккумулятора, так для LiPo номинальное значение 3,7 В, а заряженный аккумулятор даст напряжение в 4,2 В). Номинальное напряжение для NiMH и NiCd 1,2 В, для Li-ion 3,6 В, для LiPo 3,7 В, для LiFe 3,3 В.

Зарядное устройство работает по 4 алгоритмам по умолчанию: Li аккумуляторы (обычная зарядка, балансная зарядка (используются разъемы справа от основного выхода зарядки с многочисленными штырьками), быстрая зарядка, хранение, разрядка), NiMH аккумуляторы (устанавливаем ток зарядки, ток разрядки, количество циклов зарядки-разрядки), NiCd аккумуляторы (устанавливаем ток зарядки, ток разрядки, количество циклов зарядки-разрядки ), свинцовые аккумуляторы (разрядка и зарядка). Также можно сохранить свои данные по некоторым своим комбинациям зарядки аккумуляторов, например 4 аккумулятора NiMH такой-то емкости заряжать таким-то током и по таким-то циклам, чтобы не настраивать каждый раз все это перед зарядкой.

Далее в зарядном устройстве есть меню настроек, где можно задать тип Li аккумулятора , время проверки аккумулятора, настройка D.Peak чувствительности, управление и настройка разъема для USB или термометра и прочее, схема меню на фото:

Для подключения к компьютеру по USB потребуется UART-USB переходник. Выгружаемая зарядным устройством информация содержит лог зарядки или разрядки. Для визуализации полученных данным можно использовать программу Log View от компании SCYRC, разработанную для оригинальных зарядных устройств.

Ну что же, зарядное устройство IMAX B6 вполне себе не плохой агрегат, грамотно заряжает практически все, что используется в портативной технике в качестве элементов питания. Причем заряжать можно все от пальчиковых аккумуляторов до небольших автомобильных аккумуляторов. Единственный недостаток, которой можно отметить, это то, что он заряжает по несколько аккумуляторов только в соединении последовательно. Если бы была реализована раздельная зарядка нескольких аккумуляторов (для Li аккумуляторов балансный режим не в счет), прибор бы был, наверное, лучшим выбором в данном ценовом диапазоне.

Вот я и сделал схему и печатку зарядного устройства. В основном упирал на оформление схемы, печатка получилась так себе. Правда, качество разводки и в оригинале не блещет. Мне не очень интересная оригинальная разводка, ведь я рассматриваю переделку всей печатки.

Есть небольшие отличия от оригинала, потому что я поленился из рисовать. Я не стал рисовать USB-порт, и кварц. Долгое время уже сижу на PIC24, там кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ в оформлении схемы (pdf , p-cad2006). Где есть косяки(кроме того, что нумерация компонентов не по порядку)? Уж сильно много времени убил на оформлении, буквально каждый компонент перерисовывал из своей библиотеки. Получилось красиво, но хочется ещё красивее. Для сравнения, чья-то схема IMAX B6 . Нормоконтролировать картинки в посте не надо, на картинках может быть старая версия.

Вот ещё печатка (тоже P-CAD 2006)

Переченя элементов пока так же нет, почти все номиналы на схеме.

А теперь я расскажу как работает схема. Она весьма интересная.

1. Защита от переполюсовки по питанию

Защита сделана на N-канальном MOSFET транзисторе. Такое решение позволяет обеспечить почти нулевое падение напряжения, по сравнению с защитой на диоде. Например, при токе 3А 12В диод довольно сильно грелся бы, более Ватта.
У этой схемы есть небольшой недостаток: для повышенного напряжения, более 20В, резистор R6 надо заменить на 10-вольтовый стабилитрон.

2. DC-DC преобразователь
Для работы зарядного устройства необходимо наличие регулируемого источника питания. Источника, способного из 12 В сделать как 2В, так и 25В. Вот его схема:


Управляется преобразователь тремя линиями:
1) Линия DCDC/ON_OFF – это запрет работы преобразователя. Подавая на линию 5V, выключается как VT26 (ключ для STEP-UP режима), так и VT27 (ключ для STEP-DOWN режима).
2) Линия STEPDOWN_FREQ двойного назначения: в STEP-UP режиме на этой линии должно быть 5V, иначе питание на катушку L1 не поступит, в step-down на этой линии должна быть частота. Регулируя скважность меняем выходное напряжение.
3) Линия SETDISCURR_STEPUPFREQ. В повышающем режиме на этой линии ШИМ, в понижающем – 0V
Дополнительно реализована защита от КЗ по линии аккумулятора: при превышении зарядного тока сработает VT8, и питание с преобразователя будет снято, транзистор VT26 разомкнётся. Как точно это работает, я не разобрался, можете сами поизучать схему.

Вопрос залу: что делают R114+R115+C20?

Силовые MOSFET ключи VT26 и VT27 управляются двухтактный эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота работы преобразователя 31250кГц.

Данный преобразователь нельзя включать без минимальной нагрузки, в качестве которой выступает R128. Причём, в моей версии зарядки, он припаян напаян он поверх других элементов – ошибка разработчиков.

3. Включение аккумулятора

Ни один вывод аккумулятора не подключен на землю напрямую. Это касается как силовых цепей, так и балансировочного разъёма. Плюс аккумулятора подключен на DC-DC преобразователь, минус – к зарядному транзистору. Включив Charge transistor, а также регулируя напряжение на DC-DC, устаналивается необходимый зарядный ток.

4. Защита от дурака при переполюсовке аккумулятора


Включением заряда управляет DA4.2, и заряд идёт лишь при правильном подключении аккумулятора. Запретить же заряд может и контроллер, транзистором VT9.

5: Схема разряда


Схема разряда построена на транзисторе VT24 и двух операционниках. Для включения разряда надо открыть VT12. VT24 – разрядный транзистор. Именно он рассеивает тепло при разряде. Управляет им два операционных усилителя.
Посылая на вход двух RC-цепочек меандр,


контроллер формирует напряжение на In+ DA3.2:

DA3.2 – это схема интегратора(фильтр низких частот). Он будет увеличивать напряжение на выходе (и на затворе разрядного транзистора VT24), а значит и разрядный ток до тех пор, пока напряжение на выводах In+ и In-(красные цепи) не сравняются. На In+ подаётся опорный сигнал от контроллера, на In- сигнал со схемы обратной связи на DA3.1. Результат – ток плавно нарастает до номинального
Коричневый провод – запрет разряда. Если на нём 5 Вольт – разряд запрещён.
По синей линии можно проконтролировать фактический разрядный ток.

6. Схема балансировки и измерения напряжения на ячейках


Как, например измерить напряжение шестой ячейки? Напряжение BAL6 и BAL5 с шестой ячейки подаётся на дифференциальный усилитель DA1.1, который из 25В на шестой ячейки вычитает 21В на пятой. На выходе – 4В.
Нижние ячейки измеряются без участия дифференциального усилителя, делителем. Особо отмечу, что измеряется даже “земля”(BAL0).
Выход коммутируется мультиплексором HEF4051BT на контроллер. Без мультиплексора – никак, ног не хватит.

Балансировочная схема сделана на двух транзисторах. Применительно к шестой ячейке это VT22 и VT23. VT22 – цифровой транзистор, в нём уже встроены резисторы, и он подключается напрямую к выводу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезарядилась, он остановит заряд, включит соответствующую перезаряженной ячейке схему, и через резисторы побежит ток около 200мА. Как только ячейка немного разрядилась, вновь включается заряд всей батареи аккумуляторов.

7. Цифровые цепи


Контроллер измеряет контроллером напряжения на плюсе и минусе аккумулятора. Если произойдёт переполюсовка – на экран будет выведено предупреждение.
Подсветка индикатора зачем-то запитана от транзистора, сам индикатор включен в 4-битном режиме.
Ещё из интересного – источник опорного напряжения TL431.

Ещё вопрос к залу про кварц: неужели для ATMEGA кварц обязателен?

Воистину говорят: лень – двигатель прогресса! Вот и мне, взбудоражила голову мысль, автоматизировать процесс измерения и тренировки кислотных аккумуляторных батарей. Ведь кто, в здравом уме, будет, в наш век умных микросхем, корпеть над аккумулятором с мультиметрами и секундомером? Наверняка, многие знают «народное» зарядное устройство Imax B6. На хабре есть про него (и даже не одна). Ниже я напишу, что я с ней сделал и зачем.

Точность

В начале, моей целью было увеличение разрядной мощности, чтобы измерить свои батареи для бесперебойника и, в перспективе, тренировать их, не подвергаясь риску преждевременной старости (меня, а, не аккумуляторов). Погонял устройство в разобранном виде.

Внутри оно щедро нашпиговано множеством дифференциальных усилителей, мультиплексором, buck-boost регулятором с высоким КПД, имеет хороший корпус, а в сети можно найти открытый исходный код очень неплохой прошивки. При токе зарядки до 5 ампер, им можно заряжать даже автомобильные аккумуляторы на 50А/ч (ток 0.1C). При всем, при этом этом, богатстве, в качестве датчиков тока, здесь используются обычные 1 Вт резисторы, которые, ко всему прочему, работают на пределе своей мощности, а значит, их сопротивление значительно уплывает под нагрузкой. Можно ли доверять такому измерительному прибору? Подув и потрогав руками эти «датчики» сомнения ушли – хочу переделать на шунты из манганина!

Манганин (есть еще константан) – специальный сплав для шунтов, который практически не изменяют своего сопротивления от нагрева. Но его сопротивление на порядок меньше заменяемых резисторов. Так же, в схеме прибора используются операционные усилители для усиления напряжения с датчика до читабельных микроконтроллером значений (я полагаю, верхняя граница оцифровки – опорное напряжение с TL431, около 2,495 вольт).

Моя доработка заключается в том, чтобы впаять шунты вместо резисторов, а разницу в уровнях компенсировать, изменив коэффициент усиления операционных усилителей на LM2904: DA2:1 и DA1:1 (см. схему).

Схема



Для переделки нам понадобятся: само устройство оригинал (я описываю переделку оригинала), манганиновые шунты (я взял от китайских мультиметров), ISP программатор, прошивка cheali-charger (для возможности калибровки), Atmel Studio для ее сборки (не обязательно), eXtreme Burner AVR для ее прошивки и опыт по созданию кирпичей успешной прошивке атмеги (Все ссылки есть в конце статьи).
А так же: умение паять SMD и непреодолимое желание восстановить справедливость.

Я нигде не учился разработке схем и вообще радиолюбительству, поэтому вносить такие изменения в работающее устройство вот так с ходу, было лениво боязно. И тут на помощь пришел мультисим! В нем возможно, не прикасаясь к паяльнику: реализовать задумку, отладить ее, исправить ошибки и понять, будет ли она вообще работать. В данном примере, я смоделировал кусок схемы, с операционным усилителем, для цепи, обеспечивающей режим заряда:

Резистор R77 создает отрицательную обратную связь. Вместе с R70 они образуют делитель, который задает коэффициент усиления, который можно посчитать примерно так (R77+R70)/R70 = коэффициент усиления. У меня шунт получился около 6,5 мОм, что при токе 5 А составит падение напряжения нем 32,5 мВ, а нам нужно получить 1,96 В, чтобы соответствовать логике работы схемы и ожиданиям её разработчика. Я взял резисторы 1 кОм и 57 кОм в качестве R70 и R77 соответственно. По симулятору получилось 1,88 вольт на выходе, что вполне приемлемо. Так же я выкинул резисторы R55 и R7, как снижающие линейность, на фото они не используются (возможно, это ошибка), а сам шунт подключил выделенными проводами к низу R70, C18, а верх шунта напрямую к “+” входу ОУ.

Лишние дорожки подрезаны, в том числе, и с обратной стороны платы. Важно хорошо припаять проводки, чтобы они не отвалились, со временем, от шунта или платы, потому что с этого датчика запитывается не только АЦП микроконтроллера, но и обратная связь по току импульсного регулятора, который, при пропадании сигнала, может перейти в максимальный режим и угробиться.

Схема для режима разрядки принципиально не отличается, но, так как я сажаю полевик VT7 на радиатор, и увеличиваю мощность разрядки до предела полевика (94Вт по даташиту), хотелось бы и максимальный ток разряда выставить по-больше.

В результате я получил: R50 – шунт 5,7 мОм, R8 и R14 – 430 Ом и 22 кОм соответственно, что дает требуемые 1,5 вольт на выходе при токе через шунт 5 А. Впрочем, я экспериментировал и с большим током – максимум вышло 5,555 А, так что зашил в прошивку ограничение до 5,5 А (в файле «cheali-charger\src\hardware\atmega32\targets\imaxB6-original\HardwareConfig. h»).

По ходу вылезла проблема – зарядник отказался признавать, что он откалиброван (i discharge). Связано это с тем, что для проверки используется не макроопределение MAX_DISCHARGE_I в файле «HardwareConfig.h», а вторая точка калибровки для проверки первой (точки описаны в файле «GlobalConfig.h»). Я не стал вникать в эти тонкости хитросплетения кода и просто вырезал эту проверку в функции checkAll() в файле «Calibrate.cpp».

В результате переделок, получился прибор, который обеспечил приемлемую линейность измерений в диапазоне от 100mA до 5А и который можно было бы назвать измерительным, если бы не одно но: так как я оставил мощный разрядный полевик внутри корпуса (несмотря на улучшенное охлаждение), нагрев платы от него все равно вносит искажение в результат измерения, и измерения немного «плывут» в сторону занижения… Не уверен, кто именно виноват в этом: усилитель ошибки или АЦП микроконтроллера. В любом случае, ИМХО, стоит вынести этот полевик за пределы корпуса и обеспечить там ему достаточное охлаждение (до 94Вт или заменить его на другой подходящий N-канальный).

Прошивка

Не хотел я писать про это, но меня заставили.

Немного про мою доработку охлаждения

Полевик VT7, на новом месте, приклеен на термоклей, а его теплоотвод – припаян к медной пластинке:

Охлаждение решил сделать из ненужного радиатора на тепловой трубке от мат-платы. На фото видно подходящую по размерам прижимную пластину и площадку транзистора, по периметру которой проложена изолирующая пластмасса – на всякий случай. Пяточек из жала паяльника припаян прямо к плате, к общему проводу – будет играть роль дополнительного теплоотвода от преобразователя:

Собранная конструкция не помешает стоять прибору на ножках:

Готовы к прошивке:

Я испытал эту переделку в пассивном режиме охлаждения: разряд 20 минут 6-вольтовой Pb-батареи максимальным током 5,5А. Мощность высветилась 30…31Вт. Температура на тепловой трубке, по термопаре, дошла до 91°C, корпус тоже раскалился и, в какой-то момент, экран начал становиться фиолетовым. Я, конечно, сразу прервал испытание. Экран долго не мог прийти в норму, но потом его отпустило.

Теперь уже очевидно, что выносной блок нагрузки, с разъемным соединением, был бы наилучшим решением: в нем нет ограничений на размер радиатора и вентилятора, а сама зарядка получилась бы более компактной и легкой (в поле разряд не нужен).

Надеюсь, что эта статья поможет новичкам быть смелее в экспериментах над беспомощными железяками.
Замечания и дополнения приветствуются.

Предупреждение : описанные модификации, при неумелом применении, могут повредить компоненты зарядки, превратить ее в необратимый «кирпич», а так же привести к снижению надежности устройства и создать риск пожара. Автор снимает с себя ответственность за возможный ущерб, в том числе за зря потраченное время.

Пользовательский обзор популярной модели зарядного устройства IMAX B6*клон*через три года работы.

Всем привет.Привет сайтчанам и простым читателям этой статьи.

Сегодня моя статейка будет посвящена пользовательскому обзору популярной модели АЙМАКС Б6.

Модель хоть и не новая-есть уже куча ее новых версий-но мой вариант есть в продаже и пользуется спросом.Надеюсь этот обзорчик будет чем то интересен.

Начну с небольшого лирического вступления-для тех кто не в курсе-ЗАЧЕМ?-ПОЧЕМУ?ДЛЯ ЧЕГО ТАКАЯ ЗАРЯДКА?

На сегодняшний день считается что интелектуальная зарядка-лучьшее что можно использовать для зарядки разных типов аккумуляторов.

Обычно в ней есть весь нужный набор настроек для работы с аккумуляторами.

Такая зарядка облегчает это дело-да и что там говорить-это ПРОСТО И УДОБНО не нужно перерывать кучу инфы по аккумуляторам для их правильной зарядки-УМНЫЕ ЛЮДИ ВСЕ ЭТО запихнули в зарядку- за что им отдельное спасибо.

Таксс с лирикой вроде окончено-перейдем к делу.

ЧТО МНЕ ПОНРАВИЛОСЬ И НЕ ОЧЕНЬ В ЭТОМ ЗАРЯДНОМ УСТРОЙСТВЕ-за все время работы.

ПОНЯТНОЕ МЕНЮ И НАВИГАЦИЯ(на англ.языке)–учитывая что это была моя первая интелект.зарядка+на момент покупки информации было мало по ней-инструкции полученой при покупке мне хватило что бы разобраться в нужных функциях.

ЗАРЯДКА ПРАКТИЧЕСКИ ВСЕХ ХОДОВЫХ ТИПОВ АККУМУЛЯТОРОВ–это очень удобно..т.к все в одном компактном устройстве.

ВЫБОР ПАРАМЕТРОВ ДЛЯ ЗАРЯДКИ –как в ручном режиме(если вы хорошо знаете и разбираетесь в аккумуляторах)-выбираем то что нам надо,сохраняем и зарядка работает в этих параметрах-для всех типов аккумов.

Для пользователей менее опытных-как я-есть АВТОРЕЖЫМЫ практически для всех типов аккумов-очень удобно.

ВОЗМОЖНОСТЬ ЗАРЯДКИ-РАЗРЯДА И ЦИКЛОВ–для никель кадмиевых и метал гидридных аккумов.Выбор этих функций по отдельности,

Выбор количества циклов(в моем варианте1 -5)

Выбор временного интервала между циклами(макс 60 минут в моем варианте если не путаю).После такого цикла можно увидеть состояние аккума.

Выбор тока заряда от 0.1 А-5А на заряд и 0.1-1А-разряд-очень удобно.

РАЗЛИЧНЫЕ РЕЖИМЫ ДЛЯ ЛИТИЕВЫХ АККУМОВ–в том числе и функция балансира-когда можно в онлайн режиме отследить состояние каждой банки отдельно.

ФУНКЦИЯ ОГРАНИЧЕНИЯ ЗАРЯДКИ АККУМА–(количество залитого в аккум-не путать с током заряда). К примеру у меня есть пара полуживых-но работающих аккумов-ко торые заряжаются и не отключаются-доходило до почти кипения аккума и его нагрева.Тут просто выставлял ограничение на залив(5А к примеру)-после чего зарядка отключалась-в видео детальнее.Кто знает как эта функция правильно называется-подскажите-буду благодарен.

ФУНКЦИЯ ОГРАНИЧЕНИЯ ПО ВХОДЯЩЕМУ НАПРЯЖЕНИЮ-удобно при запитке зарядки от прикуривателя авто-дабы его не посадить до уровня невозможности завести авто(предел выставляется в ручную).Выручала эта фишка не раз на рыбалке и отдыхе.

По плюсам вроде бы все-это то что отметил при пользовании для себя-Функционал у нее конечно очень богат-кому интересно можете глянуть в интернете подробный обзор-их в сети море.

ПО МИНУСАМ–которые отменил для себя.

СИЛЬНО ГРЕЕТСЯ-особенно в летнее время..при длительной работе(нет ативного охлаждения-только пасив -через алюминевый корпус)-с другой стороны -тихо работает.

НЕТ ВОЗМОЖНОСТИ ОТКЛЮЧЕНИЯ ПОДСВЕТКИ-горит ярко синим цветом-не всегда удобно при пользовании в доме.

в принципе и все.

А так зарядкой в общем доволен-позднее обзавелся и ее оригинальной версией-этому посвящу одну из следующих статей.

Дорогие читатели..какие то моменты очень долго и сложно описывать-смотрите мое видео на этот обзор-надеюсь что то оно дополнит.

На сегодня все-всем пока -до следующих статеек.

Воистину говорят: лень – двигатель прогресса! Вот и мне, взбудоражила голову мысль, автоматизировать процесс измерения и тренировки кислотных аккумуляторных батарей. Ведь кто, в здравом уме, будет, в наш век умных микросхем, корпеть над аккумулятором с мультиметрами и секундомером? Наверняка, многие знают «народное» зарядное устройство Imax B6. На хабре есть про него (и даже не одна). Ниже я напишу, что я с ней сделал и зачем.

Точность

В начале, моей целью было увеличение разрядной мощности, чтобы измерить свои батареи для бесперебойника и, в перспективе, тренировать их, не подвергаясь риску преждевременной старости (меня, а, не аккумуляторов). Погонял устройство в разобранном виде.

Внутри оно щедро нашпиговано множеством дифференциальных усилителей, мультиплексором, buck-boost регулятором с высоким КПД, имеет хороший корпус, а в сети можно найти открытый исходный код очень неплохой прошивки. При токе зарядки до 5 ампер, им можно заряжать даже автомобильные аккумуляторы на 50А/ч (ток 0.1C). При всем, при этом этом, богатстве, в качестве датчиков тока, здесь используются обычные 1 Вт резисторы, которые, ко всему прочему, работают на пределе своей мощности, а значит, их сопротивление значительно уплывает под нагрузкой. Можно ли доверять такому измерительному прибору? Подув и потрогав руками эти «датчики» сомнения ушли – хочу переделать на шунты из манганина!

Манганин (есть еще константан) – специальный сплав для шунтов, который практически не изменяют своего сопротивления от нагрева. Но его сопротивление на порядок меньше заменяемых резисторов. Так же, в схеме прибора используются операционные усилители для усиления напряжения с датчика до читабельных микроконтроллером значений (я полагаю, верхняя граница оцифровки – опорное напряжение с TL431, около 2,495 вольт).

Моя доработка заключается в том, чтобы впаять шунты вместо резисторов, а разницу в уровнях компенсировать, изменив коэффициент усиления операционных усилителей на LM2904: DA2:1 и DA1:1 (см. схему).

Схема



Для переделки нам понадобятся: само устройство оригинал (я описываю переделку оригинала), манганиновые шунты (я взял от китайских мультиметров), ISP программатор, прошивка cheali-charger (для возможности калибровки), Atmel Studio для ее сборки (не обязательно), eXtreme Burner AVR для ее прошивки и опыт по созданию кирпичей успешной прошивке атмеги (Все ссылки есть в конце статьи).
А так же: умение паять SMD и непреодолимое желание восстановить справедливость.

Я нигде не учился разработке схем и вообще радиолюбительству, поэтому вносить такие изменения в работающее устройство вот так с ходу, было лениво боязно. И тут на помощь пришел мультисим! В нем возможно, не прикасаясь к паяльнику: реализовать задумку, отладить ее, исправить ошибки и понять, будет ли она вообще работать. В данном примере, я смоделировал кусок схемы, с операционным усилителем, для цепи, обеспечивающей режим заряда:

Резистор R77 создает отрицательную обратную связь. Вместе с R70 они образуют делитель, который задает коэффициент усиления, который можно посчитать примерно так (R77+R70)/R70 = коэффициент усиления. У меня шунт получился около 6,5 мОм, что при токе 5 А составит падение напряжения нем 32,5 мВ, а нам нужно получить 1,96 В, чтобы соответствовать логике работы схемы и ожиданиям её разработчика. Я взял резисторы 1 кОм и 57 кОм в качестве R70 и R77 соответственно. По симулятору получилось 1,88 вольт на выходе, что вполне приемлемо. Так же я выкинул резисторы R55 и R7, как снижающие линейность, на фото они не используются (возможно, это ошибка), а сам шунт подключил выделенными проводами к низу R70, C18, а верх шунта напрямую к “+” входу ОУ.

Лишние дорожки подрезаны, в том числе, и с обратной стороны платы. Важно хорошо припаять проводки, чтобы они не отвалились, со временем, от шунта или платы, потому что с этого датчика запитывается не только АЦП микроконтроллера, но и обратная связь по току импульсного регулятора, который, при пропадании сигнала, может перейти в максимальный режим и угробиться.

Схема для режима разрядки принципиально не отличается, но, так как я сажаю полевик VT7 на радиатор, и увеличиваю мощность разрядки до предела полевика (94Вт по даташиту), хотелось бы и максимальный ток разряда выставить по-больше.

В результате я получил: R50 – шунт 5,7 мОм, R8 и R14 – 430 Ом и 22 кОм соответственно, что дает требуемые 1,5 вольт на выходе при токе через шунт 5 А. Впрочем, я экспериментировал и с большим током – максимум вышло 5,555 А, так что зашил в прошивку ограничение до 5,5 А (в файле «cheali-charger\src\hardware\atmega32\targets\imaxB6-original\HardwareConfig.h»).

По ходу вылезла проблема – зарядник отказался признавать, что он откалиброван (i discharge). Связано это с тем, что для проверки используется не макроопределение MAX_DISCHARGE_I в файле «HardwareConfig.h», а вторая точка калибровки для проверки первой (точки описаны в файле «GlobalConfig.h»). Я не стал вникать в эти тонкости хитросплетения кода и просто вырезал эту проверку в функции checkAll() в файле «Calibrate. cpp».

В результате переделок, получился прибор, который обеспечил приемлемую линейность измерений в диапазоне от 100mA до 5А и который можно было бы назвать измерительным, если бы не одно но: так как я оставил мощный разрядный полевик внутри корпуса (несмотря на улучшенное охлаждение), нагрев платы от него все равно вносит искажение в результат измерения, и измерения немного «плывут» в сторону занижения… Не уверен, кто именно виноват в этом: усилитель ошибки или АЦП микроконтроллера. В любом случае, ИМХО, стоит вынести этот полевик за пределы корпуса и обеспечить там ему достаточное охлаждение (до 94Вт или заменить его на другой подходящий N-канальный).

Прошивка

Не хотел я писать про это, но меня заставили.

Немного про мою доработку охлаждения

Полевик VT7, на новом месте, приклеен на термоклей, а его теплоотвод – припаян к медной пластинке:

Охлаждение решил сделать из ненужного радиатора на тепловой трубке от мат-платы. На фото видно подходящую по размерам прижимную пластину и площадку транзистора, по периметру которой проложена изолирующая пластмасса – на всякий случай. Пяточек из жала паяльника припаян прямо к плате, к общему проводу – будет играть роль дополнительного теплоотвода от преобразователя:

Собранная конструкция не помешает стоять прибору на ножках:

Готовы к прошивке:

Я испытал эту переделку в пассивном режиме охлаждения: разряд 20 минут 6-вольтовой Pb-батареи максимальным током 5,5А. Мощность высветилась 30…31Вт. Температура на тепловой трубке, по термопаре, дошла до 91°C, корпус тоже раскалился и, в какой-то момент, экран начал становиться фиолетовым. Я, конечно, сразу прервал испытание. Экран долго не мог прийти в норму, но потом его отпустило.

Теперь уже очевидно, что выносной блок нагрузки, с разъемным соединением, был бы наилучшим решением: в нем нет ограничений на размер радиатора и вентилятора, а сама зарядка получилась бы более компактной и легкой (в поле разряд не нужен).

Надеюсь, что эта статья поможет новичкам быть смелее в экспериментах над беспомощными железяками.
Замечания и дополнения приветствуются.

Предупреждение : описанные модификации, при неумелом применении, могут повредить компоненты зарядки, превратить ее в необратимый «кирпич», а так же привести к снижению надежности устройства и создать риск пожара. Автор снимает с себя ответственность за возможный ущерб, в том числе за зря потраченное время.

ЗАРЯДНОЕ УСТРОЙСТВО IMAX B6

Какое выбрать зарядное устройство? Имеется в виду не самодельное, а готовое китайское. С одной стороны, в продаже есть немало нарозеточных адаптеров с отсеком под 4 АА или ААА элемента. А с другой – литиевые аккумуляторы всё больше и больше задействуют в гаджетах и электронных игрушках, так что нужно выбирать с прицелом на будущее. В общем после долгих размышлений остановился на универсальном программируемом ЗУ imax b6. В продаже есть оригинальные, и есть китайские копии. Чем они отличаются трудно сказать, но мой коллега купил копию и уже почти год успешно гоняет её по полной. Выбор сделан.

Особенности ЗУ imax b6

  • Управляется ЗУ микропроцессором
  • Отдельная балансировка каждой банки
  • Совместимость с Li-ion, LiPo и LiFe батареями
  • Совместимость с Ni-Cd, Pb и NiMH батареями
  • Широкий диапазон тока зарядки
  • Заряд/разряд до напряжения хранения аккумуляторов
  • Функция ограничения по времени зараяда
  • Мониторинг входного напряжения
  • Хранение до 5 наборов параметров батарей в памяти
  • Хранение даты ввода батареи в эксплуатацию и срока службы.

Технические характеристики

  • Входное напряжение: 11~18v
  • Максимальная мощность зарядки: 60W
  • Диапазон тока заряда: 0.1~6.0A
  • Диапазон тока разряда: 0.1~2.0A
  • Ni-MH/NiCd: 1~15 банок
  • Li-ion/LiPo: 1~6 банок
  • Напряжение Pb батарей: 2~20v
  • Габариты: 133x87x33мм
  • Цена: около 1500р.

Это зарядное не подойдёт тем, кто привык всунуть – нажать, и после нескольких часов снять аккумуляторы. Во-первых к нему требуется дополнительный адаптер (сетевой блок питания) на 12-18 вольт, а во-вторых у него нет отсека подключения АКБ – только два крокодила, которыми цепляем куда требуется. Поэтому для работы с обычными 1,5 В пальчиковыми батареями нужно достать блочок – кассетницу. Но это не проблема – стоят они копейки.

Хотя в комплекте идёт ещё несколько различных шнуров с разъёмами – может когда-нибудь и понадобятся.

Инструкция по использованию

Подключаем питание, тут же загорается экран с надписью SkyRc Imax-B6. Кнопки включения/выключения устройства не предусмотрено. После этого попадаем в главное меню.

Перемещаться по нему можно кнопками “Stop” и “<“. В главном меню находятся: выбор программы зарядки в зависимости от типа аккумулятора, меню настроек. Вот алгоритм управления:

А так же пункты сохранения и загрузки пользовательских настроек. Выбрать пункт можно нажатием “Enter”. Вот, для примера пункт меню заряда Li-Ion:

Еще одним нажатием “Enter” переходим в режим редактирования параметров. Изменяемый параметр в это время мигает. Можно изменить максимальный ток, и напряжение. То же самое и с никель-кадмиевыми.

На каждом этапе работает защита. Зарядка не начнется, если: перепутана полярность батареи, слишком низкое или слишком высокое напряжение, напряжение не соответствует типу батареи или количеству банок, и т. д.

Есть возможность задать ток разряда и заряда, а также количество данных циклов – это такая процедура восстановления подуставших АКБ. После выставления всех параметров, длительным нажатием “Enter” можно начать зарядку.

Пример обозначения на экране: NiCd — никелевый аккумулятор. 0,1 А — текущий ток заряда, 3,02 В — текущее напряжение,DHG — сокращенно от Discharging, заряд. 000:35 — время в минутах и секундах с момента начала программы, 00000 — «емкость» в миллиампер-часах «влитая» в батарею во время зарядки, или полученная из батареи при разрядке. Естественно, вторая цифра будет меньше, и на нее и надо ориентироваться при замере емкости батареи. Описание процесса на фото далее.

Более подробно читайте в прилагаемой к устройству инструкции или скачайте вот этот русскоязычный мануал.

Ещё пару слов про БП. В принципе подойдёт любой блок питания, не обязательно 5-ти амперный (если конечно вам не понадобилось заряжать что-то очень мощное). Для большинства АКБ зарядный ток редко превышает 0,5 А, так что первый попавшийся под руку блок на 12 В, 1 А оказался и последним – с ним imax b6 работает уже второй месяц.

Схема и детали

А как же без разборки? Как настоящий радиолюбитель первым делом отвинтил несколько боковых шурупов и взглянул на схему. Тут можно увидеть буззер, стандартный ЖК дисплей, несколько планарных микросхем и другую рассыпуху. Не сомневаюсь, что некоторые умельцы без проблем повторят сей девайс, но для большинства будет оправданным купить готовый, тем более 30 долларов не такие уж большие деньги – покупка деталей уже съест половину суммы.

Зарядный день

Сразу же после покупки устроил такой себе день зарядки – пособирал все аккумуляторы, коих накопилось пару десятков, и назначив по 3-5 разрядно-зарядных циклов стал их восстанавливать. В конце цикла раздаётся мелодичный звуковой сигнал, и на экране показывается примерная ёмкость АКБ. Имеет смысл переписать её маркером на корпуса аккумуляторных батарей, чтоб в будущем знать, чего от них можно получить.

Да, плохие банки оно даже не возьмётся заряжать – смело выкидываем их. В общем прикольная и удобная штука, после которой пользоваться обычными ЗУ уже не захочется! Всем пока, материал подготовлен специально для сайта Радиосхемы.

   Форум по ЗУ

   Форум по обсуждению материала ЗАРЯДНОЕ УСТРОЙСТВО IMAX B6

SkyRC iMax B6 mini глазами электроника

Представляю не совсем обычный обзор популярной зарядки — он написан не столько пользователем, сколько электроником схемотехником. Будет много технической информации и первая в инете реальная принципиальная схема устройства.

Официальная страничка производителя
www.skyrc.com/index.php?route=product/product&product_id=200
Там-же можно скачать инструкцию на английском языке и программное обеспечение
Зарядку заказывал почти пол-года назад у другого продавца, где их уже нет, поэтому ссылка на аналогичный товар другого продавца

Коробка со всех сторон


Инструкция только на английском языке

Само устройство завёрнуто в мягкий пакетик

Кабели в комплекте

На экран наклеена предупреждающая бирка о том, что если что-то пошло не так — сами виноваты, нечего было без присмотра оставлять 🙂






Проверка оригинальности прошла нормально (даже не сомневался)



Исходная версия прошивки V1. 10

Прошивка была обновлена на V1.12 — в ней добавилась возможность заряжать литий без подключения балансировки, что иногда может быть полезно, а иногда и опасно

Под Win8.1 прошить не удалось — прошивал под Wn7 с переключением языка на английский.
Как выяснилось позже, надо было запускать программу от имени Администратора.
Под WinXP программа отказалась запускаться.

Как работать с этой зарядкой многократно написано в других обзорах (ссылки внизу) и не имеет смысла повторяться, раздувая обзор, поэтому постараюсь рассказывать только новую информацию.

Разбирается зарядка очень просто — на 8 винтиках с торцов

Маленький нестандартный вентилятор охлаждения 25х25х7мм на 15V.

Вентилятор настолько редкий, что даже в каталоге у производителя его не оказалось, видимо по спец заказу делают…
www.snowfan.hk/products_detail/&productId=300.html
Вентилятор большего размера на это место никак не войдёт.
Температура включения вентилятора 40гр выключения 35гр, работает на выдув горячего воздуха. При нагреве, вентилятор включается сразу на полное входное напряжение и соответственно его скорость вращения определяется входным напряжением. При напряжении более 15В, вентилятор будет перегружаться и сильно шуметь.

Далее, плата откручивается от нижней крышки

И вот она, красавица 🙂





Собрана аккуратно, пайка качественная, флюс почти отмыт.
Токоизмерительные шунты нормальные проволочные — 0,03Ом для контроля тока цепи заряда и 0,1Ом для контроля тока разрядной цепи.

Полная разборка сопряжена с трудностями снятия индикатора — он намертво припаян к основной плате. Максимум, что возможно сделать без выпаивания — это немного отогнуть его


Дальше мешает разъём подключения вентилятора.

Плата была отмыта от флюса и термопасты (для подробного исследования)




Комплектные провода нормального качества, крокодилы припаяны

Реальную схему iMAX B6 mini найти не удалось, при этом схема простого B6 имеется.
nitro-racing.clan.su/_ld/0/3_RC-Power_BC6_Ch.pdf
Данная схема имеет множество ошибок, да и вид у неё такой, что глаза сломаешь, пока найдёшь, как эти кусочки между собой связываются.

Делать нечего, надо рисовать нормально читаемую принципиальную электрическую схему B6 mini…
Рисовал тщательно и очень долго, приводя её в понятный вид, потом долго думал…
Для полноразмерного просмотра щёлкните по схеме.

Работает схема вполне понятно (будет ниже), но назначение некоторых элементов разгадать так и не удалось (скорее всего это просто ошибки производителя)
— на плате распаян не подключенный керамический конденсатор

— зачем-то поставлен резистор на входе логического транзистора (который уже имеет его внутри)
— назначение диода в цепи измерения зарядного тока осталось загадкой

Спецификация применяемых компонентов:
Тайваньский контроллер под девизом «Make You Win» (чтобы выиграть)
MEGAWIN MA84G564AD48 (80C51 8bit USB 64k 12bit ADC)

IRF3205 (55V 110A 200W 8mΩ)

DTU40N06 (60V 40A 136W 13mΩ)

DTU40P06 (-60V -40A 113W 22mΩ)

12CWQ10FN (100V 12A 0,65V)

DTC114 (50V 100mA)

KST64 (-30V -500mA hFE10k)

MMBT3904 (40V 200mA)

MMBT3906 (-40V -200mA)

LM2904 (3mV, 7μV/°C)

LM393 (2mV)

LM324 (2mV, 7μV/°C)

TD1534 (340kHz 3,6-20V 2A)

78M05 (7-35V 0,5A)

Принцип работы похож на B6, схема оптимизирована для компактного исполнения, изменения в основном в лучшую сторону.

Для облегчения понимания работы схемы, упрощённо набросал отдельно силовую часть

Силовой преобразователь напряжения собран по классической схеме Step–Up/Down с одним общим накопительным дросселем и двумя ключами. Управление ключами организовано через контроллер при помощи ШИМ, которой и задаётся ток зарядки и разрядки.


Обратная связь зарядной цепи реализована чисто программными средствами.
Частота работы ШИМ в любом режиме около 32кГц
Напряжение на затворе полевика преобразователя Step Down в режиме зарядки при выходном напряжении 4В, активный уровень низкий.

Напряжение на затворе полевика преобразователя Step Up в режиме зарядки при выходном напряжении 16В, активный уровень высокий

Управляющее напряжение для полевика разрядки (работающий в линейном режиме) формируется из ШИМ сигнала через фильтр НЧ, который далее усиливается операционным усилителем (ОУ).
Обратная связь цепи разряда — аппаратная на базе ОУ.
Напряжение на выходе контроллера 11(P2.6) в режиме разрядки

Балансировка работает по принципу дополнительной нагрузки элементов с наибольшим напряжением в общей цепи. Ток балансировки зависит от напряжения на аккумуляторе и составляет 80-160мА на каждый элемент.
Примечательно, что балансировка работает не только при заряде аккумуляторов, но и при разряде тоже, дополнительно нагружая элементы с максимальным напряжением.
Напряжение на каждом элементе измеряется дифференциальным усилителем на базе ОУ и подаётся через коммутатор на АЦП контроллера. На этот-же коммутатор подаётся сигнал с обоих температурных датчиков.
Напряжение считывается довольно точно.

Задающий кварцевый резонатор отсутствует, поэтому точность учёта времени заведомо невысока.
Проверка показала, что мой экземпляр за час убегает на 45 секунд — это вносит дополнительную погрешность измерения ёмкости 1,2% (завышает показания)

Некоторые особенности схемы B6 mini и отличия от B6:
— Имеется два стабилизатора напряжения +5В — линейный для питания контроллера и импульсный для питания подсветки индикатора и подключаемого к USB Wi-Fi модуля беспроводной передачи данных. Наличие питания на USB может сыграть злую шутку — если зарядку подключить к выключенному компьютеру, импульсный преобразователь 5В может выйти из строя!
— USB подключается непосредственно в контроллер без преобразователей.
— Схема контроля напряжения на балансных разъёмах стала более логичной и правильной.
— Схема заметно упростилась за счёт применения логических N-P-N транзисторов DTC114 (маркировка 64) и составных P-N-P транзисторов KST64 (маркировка 2V)

Обнаруженные конструктивные проблемы:
— Габаритные конденсаторы не закреплены герметиком, следовательно зарядку лучше сильно не трясти и не ронять.

Исправляется нейтральным герметиком или компаундом

— Дроссель преобразователя висит на своих ножках и вибрирует при постукиванию по корпусу.

Можно закрепить нейтральным герметиком или компаундом

— Плата разъёмов балансировки припаяна только с одной стороны.

При желании, можно дополнительно пропаять.

— Металлическая рамка дисплея касается обмотки дросселя.

Желательно проложить изолятор или просто отогнуть лапку крепления рамки.


— Одна диодная сборка установлена с лицевой стороны платы и следовательно через пластину не охлаждается — при выходном токе зарядки более 4А, она сильно греется. Простыми способами исправить не получится.
— Полевик цепи разряда охлаждается через очень толстую мягкую силиконовую неармированную термопрокладку (3,5мм), что приводит к его довольно сильному нагреву в режиме разряда. Надеюсь, производитель знал что делал.

Можно теоретически прикинуть. Теплопроводность такой термопрокладки в лучшем случае 3Вт/мК, что при площади теплового контакта корпуса TO-220 1,0см2 и дырчатого корпуса зарядки 0,6см2, толщине 3,5мм даёт нагрев 15ºС на каждый Ватт. Через выводы на плату отводится около 1Вт, остальные 4Вт передаёт прокладка — полевик нагреется не менее 100ºС (4*15+40). Реальная измеренная температура при максимальной мощности 5Вт оказалась аж 114ºС (измерял термрпарой в районе крепёжного отверстия полевика). Немного снизить его температуру можно, если между корпусом и платой мазнуть термопасты.

Охлаждение остальных полупроводников организовано через бутерброд: термопрокладка 1мм — алюминиевая пластина 4мм — термопрокладка 1мм — алюминиевый корпус
Корпус зарядки изолирован от схемы.

Зарядка имеет реальную защиту от переполюсовки питающего напряжения и защиту от переполюсовки подключённого аккумулятора, при этом защита от КЗ отсутствует.

Применяемые ОУ не являются прецизионными, поэтому изначально имеется заметная погрешность уставки малых токов. Например, при типичном начальном смещении ОУ LM2904 3мВ, ток разряда запросто может сместится на 0,03А, а заряда сразу на 0,1А! Именно поэтому производителю приходится программно калибровать каждую зарядку для уменьшения погрешности уставки токов. Однако, температурный дрейф таким образом уменьшить нельзя.
Устранить этот недостаток возможно, используя прецизионные ОУ (например AD712C, AD8676 и т.д.) и более оптимально развести печатную плату, однако это приведёт к удорожанию производства. Заводская калибровка конечно в какой-то степени снижает это смещение, однако как её проводить самостоятельно — неизвестно. По этой причине, самостоятельная замена ОУ на более качественные не имеет смысла.

К зарядке можно подключить внешний датчик температуры:
фирменный SK-600040-01

или самодельный на базе LM35DZ
Внутренний термодатчик расположен непосредственно около полевого транзистора разрядки.

Зарядка учитывает падение напряжения на соединительных проводах при протекании токов заряда и разряда (параметр Resistance Set). Значение параметра сохраняется даже при сбросе настроек по умолчанию. Не рекомендую бездумно менять это значение.
Соединительные провода Бананы-T + T-крокодилы имкют реальное общее сопротивление 38мОм, и оптимальное значение Resistance Set = 85

Некоторые программные глюки:
— отсутствует возможность корректировать напряжение заряда и разряда на Pb аккумуляторах
— литий в режиме стандартной зарядки заряжает аккумулятор до снижения тока 0. 1А и менее независимо от уставки тока зарядки, что неверно. Конечный ток зарядки должен быть около 10% от тока уставки.
— в режимах NiCd и NiMH Auto Charge ток зарядки может превышать установленное ограничение, например поставили 0,2А, а заряд идёт 0,6А
— в режимах NiCd и NiMH ловит дельту очень нестабильно и значительно выше, чем задано в настройках — это может привести к перезаряду аккумуляторов.
При установленной минимальной дельте 4mV/Cell (Default) в режиме NiCd и NiMH зарядка отключилась при падении напряжения на 10-20mV. Иногда дельту вообще проскакивает и заряжает аккумулятор до сильного разогрева 🙁
Так почему такое происходит? Дело в том, что контроллер физически не может уловить разницу 4-5mV из-за наличия делителя напряжения 1:7,47 на входе и 12bit ADC (дискрета получается почти 10mV).
Поэтому, при зарядке NiCd и NiMH необходимо либо ограничивать заливаемую ёмкость, либо использовать внешний датчик температуры.
Проверка ещё продолжается…

Соответствие реального и отображаемого напряжений при нулевом токе
0,0В – 0,00В
0,1В – 0,02В
0,2В – 0,12В
0,3В – 0,22В
0,4В – 0,32В
0,5В – 0,42В
0,6В – 0,52В
0,7В – 0,62В
0,8В – 0,72В
0,9В – 0,82В
1,0В – 0,92В
1,1В – 1,02В
1,2В – 1,12В
1,3В – 1,23В
1,4В – 1,33В
1,5В – 1,43В
2,0В – 1,93В
2,5В – 2,44В
3,0В – 2,94В
3,5В – 3,45В
4,0В – 3,95В
4,5В – 4,46В
5,0В – 4,96В
6,0В – 5,96В
7,0В – 6,96В
8,0В – 7,95В
9,0В – 8,94В
10,0В – 9,94В
12,0В – 11,92В
15,0В – 14,90В
20,0В – 19,90В
25,0В – 24,95В
30,0В – 29,95В
Занижение отображаемого напряжения означает, что аккумуляторы будут слегка перезаряжаться.

Соответствие установленного и реального тока заряда в режиме Pb при напряжении 3,5-4,5В
0,1А – 0,092А
0,2А – 0,202А
0,3А – 0,298А
0,4А – 0,399А
0,5А – 0,490А
0,6А – 0,614А
0,7А – 0,712А
0,8А – 0,802А
0,9А – 0,902А
1,0А – 0,997А
1,1А – 1,145А
1,2А – 1,245А
1,3А – 1,340А
1,4А – 1,430А
1,5А – 1,576А
1,6А – 1,675А
1,7А – 1,760А
1,8А – 1,860А
1,9А – 1,956А
2,0А – 2,13А
2,1А – 2,23А
2,2А – 2,33А
2,3А – 2,44А
2,4А – 2,55А
2,5А – 2,66А
3,0А – 3,23А
3,5А – 3,76А
4,0А – 4,20А
4,5А – 4,72А
5,0А – 5,27А
5,5А – 5,81А
6,0А – 6,33А
Включение вентилятора вызывает повышение тока на выходе на 0,03А из-за неоптимальной разводки общего провода.
С прогревом платы, ток заряда немного уменьшается, из-за температурного дрейфа ОУ, а также из-за участка фольги печатной платы в измерительной токовой цепи

График соответствия установленного и реального тока разряда в режиме Pb при напряжении 2-2,5В

Включение вентилятора вызывает повышение тока на выходе на 0,01А
Погрешность установки малых токов разряда очень велика — ток сильно занижен (особенно в диапазоне 0,2-0,8А). Именно поэтому отображаемая ёмкость аккумулятора при разряде зачастую превышает залитую ёмкость. Такое ощущение, что программная калибровка разрядного тока вообще не производилась. Для лития оптимальный ток разряда с минимальной погрешностью получается на токе 1,0А при этом будет завышение измеренной ёмкости на 3,5%

Литий в режиме Fast заряжает до падения тока зарядки 50% и менее в течение 1,5 минут. При этом аккумулятор реально заряжается не полностью (примерно до 95%).
Литий в режиме Charge заряжает до падения тока зарядки 0,1А и менее в течение 1,5 минут независимо от уставки тока зарядки.
LiPo заряжает до 4,20В на элемент (можно корректировать 4,18-4,25В), разряжает до 3,20В на элемент (можно корректировать 3,0-3,3В)
Li-Ion заряжает до 4,10В на элемент (можно корректировать 4,08-4,20В), разряжает до 3,10В на элемент (можно корректировать 2,9-3,2В)
Li-Fe заряжает до 3,60В на элемент (можно корректировать 3,58-3,70В), разряжает до 2,80В (можно корректировать 2,6-2,9В)

Свинец заряжает до 2,4В на элемент (без возможности корректировки) и падения тока 10% и менее в течение 10 секунд
Конечное напряжение разряда свинца 1,8В на элемент (без возможности корректировки) и без задержки

В режиме заряда NiCd и NMH напряжение зарядки подаётся без проверки подключения аккумулятора, при этом на выходе кратковременно появляется напряжение до 26В. Защита от КЗ при этом не работает — будьте осторожны!
В этом режиме, зарядка каждые 30сек отключает зарядный ток на 2сек для более точного контроля напряжения на аккумуляторах. Именно это напряжение и показывается.
Измеряемое входное напряжение слегка завышается — при реальных 12,00В показывает 12,18В
При входном напряжении менее 10В, на экране отображается DC IN TOO LOW (Низкое входное напряжение)
При входном напряжении более 18В, на экране отображается DC IN TOO HI (Высокое входное напряжение)

Максимальная выходная мощность зарядки сильно зависит от величины входного напряжения. Полную мощность она выдаёт только при входном напряжении 15В и более. Не зря родной БП имеет напряжение именно 15В.
График зависимости реальной выходной мощности по всему допустимому диапазону значений входных напряжений:

Максимальная мощность заряда 63Вт превышает заявленные 60Вт потому, что реальный ток превышает отображаемый на дисплее.

Альтернативные прошивки, к сожалению, пока отсутствуют.
Самостоятельная калибровка также пока недоступна.
Надписи с поверхности корпуса легко стираются 🙁

Выводы: без сомнения, зарядка B6 mini очень интересная и несмотря на недостатки, порадовала своей работой. Потенциал этой зарядки пока ограничен желанием производителя, который не торопится исправлять хотя-бы программные ошибки.
Надеюсь, информация из обзора была для Вас полезной.

Самодельный imax b6 на ардуино. Зарядное устройство imax b6

Пользовательский обзор популярной модели зарядного устройства IMAX B6*клон*через три года работы.

Всем привет.Привет сайтчанам и простым читателям этой статьи.

Сегодня моя статейка будет посвящена пользовательскому обзору популярной модели АЙМАКС Б6.

Модель хоть и не новая-есть уже куча ее новых версий-но мой вариант есть в продаже и пользуется спросом. Надеюсь этот обзорчик будет чем то интересен.

Начну с небольшого лирического вступления-для тех кто не в курсе-ЗАЧЕМ?-ПОЧЕМУ?ДЛЯ ЧЕГО ТАКАЯ ЗАРЯДКА?

На сегодняшний день считается что интелектуальная зарядка-лучьшее что можно использовать для зарядки разных типов аккумуляторов.

Обычно в ней есть весь нужный набор настроек для работы с аккумуляторами.

Такая зарядка облегчает это дело-да и что там говорить-это ПРОСТО И УДОБНО не нужно перерывать кучу инфы по аккумуляторам для их правильной зарядки-УМНЫЕ ЛЮДИ ВСЕ ЭТО запихнули в зарядку- за что им отдельное спасибо.

Таксс с лирикой вроде окончено-перейдем к делу.

ЧТО МНЕ ПОНРАВИЛОСЬ И НЕ ОЧЕНЬ В ЭТОМ ЗАРЯДНОМ УСТРОЙСТВЕ-за все время работы.

ПОНЯТНОЕ МЕНЮ И НАВИГАЦИЯ(на англ.языке)–учитывая что это была моя первая интелект.зарядка+на момент покупки информации было мало по ней-инструкции полученой при покупке мне хватило что бы разобраться в нужных функциях.

ЗАРЯДКА ПРАКТИЧЕСКИ ВСЕХ ХОДОВЫХ ТИПОВ АККУМУЛЯТОРОВ–это очень удобно. .т.к все в одном компактном устройстве.

ВЫБОР ПАРАМЕТРОВ ДЛЯ ЗАРЯДКИ –как в ручном режиме(если вы хорошо знаете и разбираетесь в аккумуляторах)-выбираем то что нам надо,сохраняем и зарядка работает в этих параметрах-для всех типов аккумов.

Для пользователей менее опытных-как я-есть АВТОРЕЖЫМЫ практически для всех типов аккумов-очень удобно.

ВОЗМОЖНОСТЬ ЗАРЯДКИ-РАЗРЯДА И ЦИКЛОВ–для никель кадмиевых и метал гидридных аккумов.Выбор этих функций по отдельности,

Выбор количества циклов(в моем варианте1 -5)

Выбор временного интервала между циклами(макс 60 минут в моем варианте если не путаю).После такого цикла можно увидеть состояние аккума.

Выбор тока заряда от 0.1 А-5А на заряд и 0.1-1А-разряд-очень удобно.

РАЗЛИЧНЫЕ РЕЖИМЫ ДЛЯ ЛИТИЕВЫХ АККУМОВ–в том числе и функция балансира-когда можно в онлайн режиме отследить состояние каждой банки отдельно.

ФУНКЦИЯ ОГРАНИЧЕНИЯ ЗАРЯДКИ АККУМА–(количество залитого в аккум-не путать с током заряда). К примеру у меня есть пара полуживых-но работающих аккумов-ко торые заряжаются и не отключаются-доходило до почти кипения аккума и его нагрева.Тут просто выставлял ограничение на залив(5А к примеру)-после чего зарядка отключалась-в видео детальнее.Кто знает как эта функция правильно называется-подскажите-буду благодарен.

ФУНКЦИЯ ОГРАНИЧЕНИЯ ПО ВХОДЯЩЕМУ НАПРЯЖЕНИЮ-удобно при запитке зарядки от прикуривателя авто-дабы его не посадить до уровня невозможности завести авто(предел выставляется в ручную).Выручала эта фишка не раз на рыбалке и отдыхе.

По плюсам вроде бы все-это то что отметил при пользовании для себя-Функционал у нее конечно очень богат-кому интересно можете глянуть в интернете подробный обзор-их в сети море.

ПО МИНУСАМ–которые отменил для себя.

СИЛЬНО ГРЕЕТСЯ-особенно в летнее время..при длительной работе(нет ативного охлаждения-только пасив -через алюминевый корпус)-с другой стороны -тихо работает.

НЕТ ВОЗМОЖНОСТИ ОТКЛЮЧЕНИЯ ПОДСВЕТКИ-горит ярко синим цветом-не всегда удобно при пользовании в доме.

в принципе и все.

А так зарядкой в общем доволен-позднее обзавелся и ее оригинальной версией-этому посвящу одну из следующих статей.

Дорогие читатели..какие то моменты очень долго и сложно описывать-смотрите мое видео на этот обзор-надеюсь что то оно дополнит.

На сегодня все-всем пока -до следующих статеек.

Представляю не совсем обычный обзор популярной зарядки – он написан не столько пользователем, сколько электроником схемотехником. Будет много технической информации и первая в инете реальная принципиальная схема устройства.

Официальная страничка производителя
www.skyrc.com/index.php?route=product/product&product_id=200
Там-же можно скачать инструкцию на английском языке и программное обеспечение

Коробка со всех сторон

Инструкция только на английском языке


Само устройство завёрнуто в мягкий пакетик


Кабели в комплекте


На экран наклеена предупреждающая бирка о том, что если что-то пошло не так – сами виноваты, нечего было без присмотра оставлять:)


Проверка оригинальности прошла нормально (даже не сомневался)


Исходная версия прошивки V1. 10


Прошивка была обновлена на V1.12 – в ней добавилась возможность заряжать литий без подключения балансировки, что иногда может быть полезно, а иногда и опасно


Под Win8.1 прошить не удалось – прошивал под Wn7 с переключением языка на английский.
Под WinXP программа отказалась запускаться.

Как работать с этой зарядкой многократно написано в других обзорах (ссылки внизу) и не имеет смысла повторяться, раздувая обзор, поэтому постараюсь рассказывать только новую информацию.

Разбирается зарядка очень просто – на 8 винтиках с торцов

Маленький нестандартный вентилятор охлаждения 25х25х7мм на 15V.


Вентилятор настолько редкий, что даже в каталоге у производителя его не оказалось, видимо по спец заказу делают…

Вентилятор большего размера на это место никак не войдёт.
Температура включения вентилятора 40гр выключения 35гр, работает на выдув горячего воздуха. При нагреве, вентилятор включается сразу на полное входное напряжение и соответственно его скорость вращения определяется входным напряжением. При напряжении более 15В, вентилятор будет перегружаться и сильно шуметь.

Далее, плата откручивается от нижней крышки


И вот она, красавица:)


Собрана аккуратно, пайка качественная, флюс почти отмыт.
Токоизмерительные шунты нормальные проволочные – 0,03Ом для контроля цепи заряда и 0,1Ом для контроля разрядной цепи.

Полная разборка сопряжена с трудностями снятия индикатора – он намертво припаян к основной плате. Максимум, что возможно сделать без выпаивания – это немного отогнуть его


Дальше мешает разъём подключения вентилятора.

Плата была отмыта от флюса и термопасты (для подробного исследования)


Комплектные провода нормального качества, крокодилы припаяны

Реальную схему iMAX B6 mini найти не удалось, при этом схема простого B6 имеется.

Данная схема имеет множество ошибок, да и вид у неё такой, что глаза сломаешь, пока найдёшь, как эти кусочки между собой связываются.

Делать нечего, надо рисовать нормально читаемую принципиальную электрическую схему B6 mini…
Рисовал тщательно и очень долго, приводя её в понятный вид, потом долго думал…
Для полноразмерного просмотра щёлкните по схеме.

Работает схема вполне понятно (будет ниже), но назначение некоторых элементов разгадать так и не удалось (скорее всего это просто ошибки производителя)
– на плате распаян не подключенный керамический конденсатор


– зачем-то поставлен резистор на входе логического транзистора (который уже имеет его внутри)
– назначение диода в цепи измерения зарядного тока осталось загадкой

Спецификация применяемых компонентов:
Тайваньский контроллер под девизом «Make You Win» (чтобы выиграть)

Принцип работы похож на B6, схема оптимизирована для компактного исполнения, изменения в основном в лучшую сторону.

Для облегчения понимания работы схемы, упрощённо набросал отдельно силовую часть


Силовой преобразователь напряжения собран по классической схеме Step–Up/Down с одним общим накопительным дросселем и двумя ключами. Управление ключами организовано через контроллер при помощи ШИМ, которой и задаётся ток зарядки и разрядки.


Обратная связь зарядной цепи реализована чисто программными средствами.
Частота работы ШИМ в любом режиме около 32кГц
Напряжение на затворе полевика преобразователя Step Down в режиме зарядки при выходном напряжении 4В, активный уровень низкий.


Напряжение на затворе полевика преобразователя Step Up в режиме зарядки при выходном напряжении 16В, активный уровень высокий

Управляющее напряжение для полевика разрядки (работающий в линейном режиме) формируется из ШИМ сигнала через фильтр НЧ, который далее усиливается операционным усилителем (ОУ).
Обратная связь цепи разряда – аппаратная на базе ОУ.
Напряжение на выходе контроллера 11(P2.6) в режиме разрядки

Балансировка работает по принципу дополнительной нагрузки элементов с наибольшим напряжением в общей цепи. Ток балансировки зависит от напряжения на аккумуляторе и составляет 80-160мА на каждый элемент.
Примечательно, что балансировка работает не только при заряде аккумуляторов, но и при разряде тоже, дополнительно нагружая элементы с максимальным напряжением.
Напряжение на каждом элементе измеряется дифференциальным усилителем на базе ОУ и подаётся через коммутатор на АЦП контроллера. На этот-же коммутатор подаётся сигнал с обоих температурных датчиков.
Напряжение считывается довольно точно.

Задающий кварцевый резонатор отсутствует, поэтому точность учёта времени заведомо невысока.
Проверка показала, что мой экземпляр за час убегает на 45 секунд – это вносит дополнительную погрешность измерения ёмкости 1,2% (завышает показания)

Некоторые особенности схемы B6 mini и отличия от B6:
– Имеется два стабилизатора напряжения +5В – линейный для питания контроллера и импульсный для питания подсветки индикатора и подключаемого к USB Wi-Fi модуля беспроводной передачи данных. Наличие питания на USB может сыграть злую шутку – если зарядку подключить к выключенному компьютеру, импульсный преобразователь 5В может выйти из строя!
– USB подключается непосредственно в контроллер без преобразователей.
– Схема контроля напряжения на балансных разъёмах стала более логичной и правильной.
– Схема заметно упростилась за счёт применения логических N-P-N транзисторов DTC114 (маркировка 64) и составных P-N-P транзисторов KST64 (маркировка 2V)

Обнаруженные конструктивные проблемы:
– Габаритные конденсаторы не закреплены герметиком, следовательно зарядку лучше сильно не трясти и не ронять.


Исправляется нейтральным герметиком или компаундом


– Дроссель преобразователя висит на своих ножках и вибрирует при постукиванию по корпусу.


Можно закрепить нейтральным герметиком или компаундом


– Плата разъёмов балансировки припаяна только с одной стороны.


При желании, можно дополнительно пропаять.


– Металлическая рамка дисплея касается обмотки дросселя.


Желательно проложить изолятор или просто отогнуть лапку крепления рамки.


– Одна диодная сборка установлена с лицевой стороны платы и следовательно через пластину не охлаждается – при выходном токе зарядки более 4А, она сильно греется. Простыми способами исправить не получится.
– Полевик цепи разряда охлаждается через очень толстую мягкую силиконовую неармированную термопрокладку (3,5мм), что приводит к его довольно сильному нагреву в режиме разряда. Надеюсь, производитель знал что делал.


Можно теоретически прикинуть. Теплопроводность такой термопрокладки в лучшем случае 3Вт/мК, что при площади теплового контакта корпуса TO-220 1,0см2 и дырчатого корпуса зарядки 0,6см2, толщине 3,5мм даёт нагрев 15ºС на каждый Ватт. Через выводы на плату отводится около 1Вт, остальные 4Вт передаёт прокладка – полевик нагреется не менее 100ºС (4*15+40). Реальная измеренная температура при максимальной мощности 5Вт оказалась аж 114ºС (измерял термрпарой в районе крепёжного отверстия полевика). Немного снизить его температуру можно, если между корпусом и платой мазнуть термопасты.

Охлаждение остальных полупроводников организовано через бутерброд: термопрокладка 1мм – алюминиевая пластина 4мм – термопрокладка 1мм – алюминиевый корпус
Корпус зарядки изолирован от схемы.

Зарядка имеет реальную защиту от переполюсовки питающего напряжения и защиту от переполюсовки подключённого аккумулятора, при этом защита от КЗ отсутствует.

Применяемые ОУ не являются прецизионными, поэтому изначально имеется заметная погрешность уставки малых токов. Например, при типичном начальном смещении ОУ LM2904 3мВ, ток разряда запросто может сместиться на 0,03А, а заряда сразу на 0,1А! Именно поэтому производителю приходится программно калибровать каждую зарядку для уменьшения погрешности уставки токов. Однако, температурный дрейф таким образом уменьшить нельзя.
Устранить этот недостаток возможно, используя прецизионные ОУ (например AD712C, AD8676 и т.д.) и более оптимально развести печатную плату, однако это приведёт к удорожанию производства. Заводская калибровка конечно в какой-то степени снижает это смещение, однако как её проводить самостоятельно – неизвестно.

К зарядке можно подключить внешний датчик температуры:
фирменный SK-600040-01


или самодельный на базе
Внутренний термодатчик расположен непосредственно около полевого транзистора разрядки.

Зарядка учитывает падение напряжения на соединительных проводах при протекании токов заряда и разряда (параметр Resistance Set). Значение параметра сохраняется даже при сбросе настроек по умолчанию. Не рекомендую бездумно менять это значение.
Соединительные провода Бананы-T + T-крокодилы имкют реальное общее сопротивление 38мОм, и оптимальное значение Resistance Set = 85

Некоторые программные глюки:
– отсутствует возможность корректировать напряжение заряда и разряда на Pb аккумуляторах
– литий в режиме стандартной зарядки заряжает аккумулятор до снижения тока 0.1А и менее независимо от уставки тока зарядки, что неверно. Конечный ток зарядки должен быть около 10% от тока уставки.

Соответствие реального и отображаемого напряжений при нулевом токе
0,0В – 0,00В
0,1В – 0,02В
0,2В – 0,12В
0,3В – 0,22В
0,4В – 0,32В
0,5В – 0,42В
0,6В – 0,52В
0,7В – 0,62В
0,8В – 0,72В
0,9В – 0,82В
1,0В – 0,92В
1,1В – 1,02В
1,2В – 1,12В
1,3В – 1,23В
1,4В – 1,33В
1,5В – 1,43В
2,0В – 1,93В
2,5В – 2,44В
3,0В – 2,94В
3,5В – 3,45В
4,0В – 3,95В
4,5В – 4,46В
5,0В – 4,96В
6,0В – 5,96В
7,0В – 6,96В
8,0В – 7,95В
9,0В – 8,94В
10,0В – 9,94В
12,0В – 11,92В
15,0В – 14,90В
20,0В – 19,90В
25,0В – 24,95В
30,0В – 29,95В
Занижение отображаемого напряжения означает, что аккумуляторы будут слегка перезаряжаться.

Соответствие установленного и реального тока заряда в режиме Pb при напряжении 3,5-4,5В
0,1А – 0,092А
0,2А – 0,202А
0,3А – 0,298А
0,4А – 0,399А
0,5А – 0,490А
0,6А – 0,614А
0,7А – 0,712А
0,8А – 0,802А
0,9А – 0,902А
1,0А – 0,997А
1,1А – 1,145А
1,2А – 1,245А
1,3А – 1,340А
1,4А – 1,430А
1,5А – 1,576А
1,6А – 1,675А
1,7А – 1,760А
1,8А – 1,860А
1,9А – 1,956А
2,0А – 2,13А
2,1А – 2,23А
2,2А – 2,33А
2,3А – 2,44А
2,4А – 2,55А
2,5А – 2,66А
3,0А – 3,23А
3,5А – 3,76А
4,0А – 4,20А
4,5А – 4,72А
5,0А – 5,27А
5,5А – 5,81А
6,0А – 6,33А
Включение вентилятора вызывает повышение тока на выходе на 0,03А из-за неоптимальной разводки общего провода.
С прогревом платы, ток заряда немного уменьшается, из-за температурного дрейфа ОУ, а также из-за участка фольги печатной платы в измерительной токовой цепи

График соответствия установленного и реального тока разряда в режиме Pb при напряжении 2-2,5В


Включение вентилятора вызывает повышение тока на выходе на 0,01А
Погрешность установки малых токов разряда очень велика – ток сильно занижен (особенно в диапазоне 0,2-0,8А). Именно поэтому отображаемая ёмкость аккумулятора при разряде зачастую превышает залитую ёмкость. Такое ощущение, что программная калибровка разрядного тока вообще не производилась. Для лития оптимальный ток разряда с минимальной погрешностью получается на токе 1,0А при этом будет завышение измеренной ёмкости на 3,5%

Литий в режиме Fast заряжает до падения тока зарядки 50% и менее в течение 1,5 минут. При этом аккумулятор реально заряжается не полностью (примерно до 95%).
Литий в режиме Charge заряжает до падения тока зарядки 0,1А и менее в течение 1,5 минут независимо от уставки тока зарядки.
LiPo заряжает до 4,20В на элемент (можно корректировать 4,18-4,25В), разряжает до 3,20В на элемент (можно корректировать 3,0-3,3В)
Li-Ion заряжает до 4,10В на элемент (можно корректировать 4,08-4,20В), разряжает до 3,10В на элемент (можно корректировать 2,9-3,2В)
Li-Fe заряжает до 3,60В на элемент (можно корректировать 3,58-3,70В), разряжает до 2,80В (можно корректировать 2,6-2,9В)

Свинец заряжает до 2,4В на элемент (без возможности корректировки) и падения тока 10% и менее в течение 10 секунд
Конечное напряжение разряда свинца 1,8В на элемент (без возможности корректировки) и без задержки

В режиме заряда NiCd и NMH напряжение зарядки подаётся без проверки подключения аккумулятора, при этом на выходе кратковременно появляется напряжение до 26В. Защита от КЗ при этом не работает – будьте осторожны!
Измеряемое входное напряжение слегка завышается – при реальных 12,00В показывает 12,18В
При входном напряжении менее 10В, на экране отображается DC IN TOO LOW (Низкое входное напряжение)
При входном напряжении более 18В, на экране отображается DC IN TOO HI (Высокое входное напряжение)

Максимальная выходная мощность зарядки сильно зависит от величины входного напряжения. Полную мощность она выдаёт только при входном напряжении 15В и более. Не зря родной БП имеет напряжение именно 15В.
График зависимости реальной выходной мощности по всему допустимому диапазону значений входных напряжений:


Максимальная мощность заряда 63Вт превышает заявленные 60Вт потому, что реальный ток превышает отображаемый на дисплее.

Альтернативные прошивки, к сожалению, пока отсутствуют.
Самостоятельная калибровка также пока недоступна.

Выводы: без сомнения, зарядка B6 mini очень интересная и несмотря на недостатки, порадовала своей работой. Потенциал этой зарядки пока ограничен желанием производителя, который не торопиться исправлять хотя-бы программные ошибки.
Надеюсь, информация из обзора была для Вас полезной.

Сегодня в наших домах в изобилии различной портативной техники, работающей от элементов питания. В свою очередь элементы питания могут быть различной конфигурации и по размерам, и по напряжению, и по технологии, применяемой для долговременного сохранения запаса электроэнергии. Элементы питания могут быть как одноразовые (солевые батарейки, например), так и многоразово перезаряжаемые элементы питания – аккумуляторы. Следом часто встает вопрос о том, что аккумуляторы для дальнейшего использования необходимо заряжать, хотя производители портативной электроники часто заботятся, о том, чтобы к таким устройствам в комплекте шли специальные зарядные устройства, но на практике не раз случается, что либо для таких аккумуляторов просто нет зарядного устройства (имеется ввиду в комплекте с каким-либо устройством), или покупая пальчиковые аккумуляторы, например, для фотоаппарата не всегда покупается сразу и зарядное устройство (которое как правило всегда приобретается отдельно в таких случаях), либо просто и банально стандартное зарядное устройство потерялось, ну или же наконец в радиолюбительской практике часто приходится заряжать какие-нибудь аккумуляторы, которым охота дать жизнь в каком-нибудь своем устройстве. Так вот, проблему перезарядки аккумуляторов можно решить приобретением специального зарядного устройства для них. Ну а рассмотрим мы сегодня не самое простое зарядное устройство, а всеядное IMAX B6, а точнее его 80 ваттную копию.

Приобрести его можно на торговых интернет площадках или AliExpress . Цена на копию начинается от 20 условных единиц, что до 1,5 – 2 раз дешевле оригинала и к тому же мощнее на 30 Вт. Но копия есть копия – нужно держать глаз пистолетом при покупке, ведь скопировать может и дядя Ляо в подвале. В моем случае продавец оказался и вправду порядочным (отзывы штука полезная) – получил зарядное устройство минимально отличающееся от оригинала – единственное просто сборка корпуса не очень порадовала, а печатная плата изготовлена на высоком качественном уровне.

Характеристики зарядного устройства:

  • Напряжение питания 11 – 18 вольт
  • Зарядный ток от 0,1 до 6 ампер
  • Максимальная мощность заряда 80 ватт
  • Разрядный ток до 2 ампер
  • Максимальная мощность разряда 10 ватт
  • Функции зарядного и разрядного устройства
  • Зарядка NiMH/NiCd аккумуляторов от 1 банки до 15 последовательно
  • Зарядка Li-ion/Polimer аккумуляторов от 1 до 6 банок последовательно
  • Масса зарядного устройства 227 г
  • Габаритные размеры 133х87х33 мм

Повертим пришедшую посылку в руках и рассмотрим с разных сторон.

Днище корпуса без голограммы, которая должна присутствовать именно в оригинальном устройстве, и такие сякие китайцы приклеили криво ножку, будут наказаны!

Корпус зарядного устройства сам по себе является радиатором. К слову корпус весь полностью изготовлен из алюминия.

Вот в такой разъем необходимо подключить внешний источник питания 11 -18 вольт. Вообще есть варианты копий со встроенным внутрь источником питания, но я не думаю, что это лучше, компактнее да, а вот греться может больше, что не есть хорошо. В отверстии с уголком, рядом с градусником на самом деле разъем – подключать можно или USB, или термометр (в инструкции не сказано, но вроде как это LM35) для контроля температуры заряжаемых аккумуляторов.

С другой стороны разъемы для балансного заряда Li батарей и основной выход плюс минус на все аккумуляторы.

Комплект поставки это инструкция и комплект проводов (блок питания в набор не входит и его нужно покупать отдельно):

При заказе попросил продавца укомплектовать проводами вот с такими разъемами, по умолчанию это будут T-коннекторы.

Вот такая инструкция идет в комплекте на английском и в глянце. Датирована инструкция 2008 годом.

Отдельно к зарядному устройству приобрел 120 Вт универсальный блок питания (правда предназначенный для ноутбуков). Хотя и тут китайцы схитрили и блок оказался на 96 Вт, а 120 всего лишь максимальная.

В комплекте к блоку идет набор разъемов для различных ноутбуков:

Для зарядного устройства идеально подходит штекер под номером три слева с белым колечком.

Напряжение блока питания можно регулировать от 12 вольт до 24 вольт.

Ну что же, внешне все оценили, приступим к разборке!

Откручиваем боковые крышки и достаем днище корпуса, к которому прикручена плата.

Как сразу можно заметить, плата изготовлена очень качественно, все элементы для поверхностного монтажа стоят ровно (электролитические конденсаторы не в счет), флюс отмыт, нигде нет никаких загрязнений, пайка блестит, все запаяно аккуратно. Даже глаза радуются! Преобразователь напряжения в устройстве используется импульсный – это только для заряда аккумуляторов, Стабилизатор для микроконтроллера устройства расположен на обратной стороне платы. Перенесем свой взор туда.

Как видно, все теплонагруженные элементы расположены на обратной стороне печатной платы и прижимаются к корпусу устройства, который, как вы помните, является как раз и радиатором по совместительству.

Прижимается все к корпусу через терморезинки.

Порадовала штамповка якобы для вентиляции, которая практически не имеет щелей для циркуляции воздуха.

Пожалуй один из самых интересных вопросов это на базе чего построено зарядное устройство. Но тут разочарование – мы этого не узнаем, так как надпись затерта на корпусе микросхемы микроконтроллера. Вообще на глаз очень похоже на микроконтроллер Atmega16.

Соберем все обратно и попробуем включить, надеюсь ничего не было сломано во время разборки..)

При включении питания появится в самом начале надпись с названием устройства. И далее можно приступать к работе с устройством, выбрать нужный режим, задать параметры тока зарядки и нажать старт, после проверки аккумулятора начнется процесс заряда аккумулятора по заданному алгоритму в зависимости от выбранного типа. В случае неправильного выбора, например поставить NiMH аккумулятор вместо Li-ion, устройство выдаст ошибку и заряд не начнется, аналогично в случае отсутствия аккумулятора вовсе или большего или меньшего количества аккумуляторов подключенных к зарядному устройству по сравнению с выбранными параметрами меню зарядки.

Подключаем провода к зарядному устройству и крокодилами подключаемся к аккумулятору. Стоит предусмотреть держатели для аккумуляторов, так как просто крокодилами не то что не удобно, а иногда невозможно соединиться.

Попробуем зарядить старый аккумулятор от мобильного телефона.

Задаем параметры.

Жмем старт и устройство проверяет аккумулятор.

Заряд пошел. В верхней строке указа тип и количество аккумуляторов, зарядный ток (аккумулятор 700 мАч, однако он убитый и его емкость несколько меньше, в процессе зарядки ток снизится до 300 мА и постепенно снизится до 0 в конце зарядного цикла) и напряжение на аккумуляторе. В нижней строке указывается запущенный процесс зарядки или разрядки, время которое протекает зарядка и емкость заряда вкачанная или выкачанная из аккумулятора.

В конце зарядки раздастся звуковой сигнал и зарядка прекратится. По итогам старенький аккумулятор зарядился за 1 час и его емкость составила почти 200 мАч. И все же значение емкости может быть слегка завышена, судя по всему этот расчет происходит по принципу текущего зарядного тока, перемноженного на время протекания этого тока.

Для различных типов аккумуляторов напряжение задается автоматически (номинальное напряжение плюс напряжение полностью заряженного аккумулятора, так для LiPo номинальное значение 3,7 В, а заряженный аккумулятор даст напряжение в 4,2 В). Номинальное напряжение для NiMH и NiCd 1,2 В, для Li-ion 3,6 В, для LiPo 3,7 В, для LiFe 3,3 В.

Зарядное устройство работает по 4 алгоритмам по умолчанию: Li аккумуляторы (обычная зарядка, балансная зарядка (используются разъемы справа от основного выхода зарядки с многочисленными штырьками), быстрая зарядка, хранение, разрядка), NiMH аккумуляторы (устанавливаем ток зарядки, ток разрядки, количество циклов зарядки-разрядки), NiCd аккумуляторы (устанавливаем ток зарядки, ток разрядки, количество циклов зарядки-разрядки ), свинцовые аккумуляторы (разрядка и зарядка). Также можно сохранить свои данные по некоторым своим комбинациям зарядки аккумуляторов, например 4 аккумулятора NiMH такой-то емкости заряжать таким-то током и по таким-то циклам, чтобы не настраивать каждый раз все это перед зарядкой.

Далее в зарядном устройстве есть меню настроек, где можно задать тип Li аккумулятора , время проверки аккумулятора, настройка D.Peak чувствительности, управление и настройка разъема для USB или термометра и прочее, схема меню на фото:

Для подключения к компьютеру по USB потребуется UART-USB переходник. Выгружаемая зарядным устройством информация содержит лог зарядки или разрядки. Для визуализации полученных данным можно использовать программу Log View от компании SCYRC, разработанную для оригинальных зарядных устройств.

Ну что же, зарядное устройство IMAX B6 вполне себе не плохой агрегат, грамотно заряжает практически все, что используется в портативной технике в качестве элементов питания. Причем заряжать можно все от пальчиковых аккумуляторов до небольших автомобильных аккумуляторов. Единственный недостаток, которой можно отметить, это то, что он заряжает по несколько аккумуляторов только в соединении последовательно. Если бы была реализована раздельная зарядка нескольких аккумуляторов (для Li аккумуляторов балансный режим не в счет), прибор бы был, наверное, лучшим выбором в данном ценовом диапазоне.

Прикупил относительно дёшево универсальное любительское устройство для зарядки большинства распространённых типов аккумуляторов. К сожалению, прибор оказался непригоден для использования по прямому назначению, хотя был полностью исправлен. Проблема в плохой или неверной реализации буквально всех его функций.

Подробности работы собственно Imax B6 разбирать не буду, в сети доступно руководство пользователя, да и зарядка настолько популярна, что можно легко найти множество обзоров по ней. Опишу только особенности этой подделки.

Погнался за дешевизной, получил соответствующий результат. Хотя сейчас и за 30-40 баксов можно легко получить ровно то же самое, китайцы хорошо освоили этот тип подделки. Рецепт его прост — поставить свой микроконтроллер марки Nuvoton, иногда перебитый на Atmel, и запилить туда микропрограмму, максимально внешне похожую на оригинальную. Проблема в том, что программа эта только визуально (по меню) похожа на оригинальную, реализация же функций отвратительна.

Посмотрим на устройство со всех сторон и заглянем внутрь.


Возможно, в дальнем левом углу должен находиться чип, отвечающий за соединение с компом. Забавно, что вместо дорожек всё это место оставлено единым полигоном, а вот шелкографию с маской убрать забыли. Вариант со связью с компом здесь не предусмотрен изначально. Микроконтроллер находится под дисплеем.

Разряд никеля (NiCd, NiMh)

При разряде никеля напряжение измеряется под нагрузкой. Не знаю, как у остальных, но у моих даже хороших (но старых) аккумуляторов довольно высокое внутреннее сопротивление. В итоге при разряде большим током процесс может даже не начаться из-за сильного проседания напряжения батареи. В принципе, это нормально. В этом режиме можно выбрать напряжение разряда, скомпенсировать эту просадку.

Разряд лития (Li-Ion, Li-Po, Li-Fe)

Программы для всех типов лития идентичны, различаются только пороговые напряжения, при достижении которых разряд прекращается. Это напряжение нельзя установить вручную, оно зависит от выставленного напряжения заряда, которое тоже жёстко прошито и зависит только от выбранного типа аккумулятора.

Для лития программа снижает в конце ток, но из-за каких-то проблем с измерениями не может довести процесс до конца, высасывает последние капли часами, причем нижний порог очень часто игнорируется. Зарядник может легко увести напряжение ниже безопасного уровня, что портит литиевые батареи.

При подключении батарейной сборки может сильно разрядиться только часть ячеек, прибор никак не учитывает возможность такого исхода, балансировочное подключение для оценки состояния отдельных ячеек не используется. Можно быстро испортить дорогую даже при разряде до безопасного уровня всей сборки. В единственной попытке полностью разрядить сборку для измерения её ёмкости разброс напряжений ячеек в конце разряда оказался 2,5-3,6 В при безопасном уровне около 3 В.

После переразряда сам зарядник уже не может зарядить батарею обратно, выдавая ошибку «малое напряжение».

У оригинального Imax B6 есть ограничение на мощность разряда в 5 Вт, здесь это ограничение повышено примерно до 7-8 Вт. Вероятно, поэтому устройство при разряде батарей сильно греется, вентилятора внутри нет, всё охлаждение производится за счёт передачи тепла в корпус. Но я не держал в руках оригинальный B6, у него могут быть такие же проблемы и на 5 Вт.

Зарядка никеля

Производитель заявляет зарядку большими токами, 1-2 C вплоть до 5 А. Но в этой подделке в большинстве случаев можно рискнуть поставить лишь 0,2 А. Если установить большее значение, то с большой вероятностью устройство будет считать, что подключено несколько ячеек последовательно и будет подавать повышенное напряжение, что приводит к порче аккумуляторов. Причём излишнее напряжение будет подаваться не сразу, а после небольшой подзарядки и переоценки, т.е. можно подключить батарею, увидеть, что всё вроде в порядке, уйти заниматься другими делами и вернуться в сгоревший дом.

Окончание заряда по Delta Peak реализовано неверно, либо не реализовано вообще, из-за чего батарея часто оказывается недозаряженной. Ещё при запуске программы вылезают ошибки типа «короткое замыкание», «недостаточное напряжение» и «избыточное напряжение», приходится перезапускать несколько раз, пока не заработает.

Зарядка лития (нормальная, быстрая, хранение)

Зарядка литиевой батареи обычно делится на два этапа. На первом происходит зарядка постоянным током заданной величины, здесь зарядка может выдать до 5 А, и проблем с этим нет. На втором этапе производится дозарядка аккумулятора источником напряжения.

И этот, второй, этап почему-то работает очень медленно, иногда затягивая процесс на часы, причин этому я не обнаружил. Вероятно, это как-то связано с ошибочным конечным напряжением для некоторых аккумуляторов. Если заряжать 4,2-В банку до 4,1 В, то зарядка происходит всегда в приемлемые сроки.

В устройстве есть три отдельных программы зарядки — нормальная, быстрая и для хранения. Никаких существенных различий между ними в этом варианте B6 не нашёл. Режим хранения в оригинальной зарядке должен доводить батарею до 3,85 В, разряжая или заряжая её, здесь этот режим всегда просто заряжает батарею до максимума, но в опциях этого режима осталось ограничение от оригинальной программы — ток заряда не может быть больше 1 А. Вообще, разряжать батарею для хранения — плохая идея. И заряжать можно до 100%, хотя уровень 3,85 В, наверное, более предпочтителен, не зря с завода аккумуляторы приходят заряженными примерно до этого напряжения.

Зарядка лития с балансировкой

Ещё больше ерунды происходит при зарядке с подключением балансировочного кабеля. Подделка B6 действительно умеет балансировать ячейки, но только если одна из ячеек не превышает максимально допустимого значения, например из-за зарядки в другом зарядном устройстве с бо льшим конечным напряжением зарядки. В этом случае этот «B6» начинает тормозить, вероятно из-за того, что просто не умеет в таких случаях делать разряд перезаряженной ячейки, из-за чего процесс балансировки просто останавливается. Решение проблемы: разрядить немного всю батарею, после чего запустить балансировку заново.

Балансировка здесь заканчивается при достижении разницы напряжений не более 0,01 В, например после балансировки сборки 4S на 16,8 В (4,2 В на ячейку) напряжения всех ячеек будет в диапазоне 4,19-4,20 В. Поправочка: если батарея, провода или контакты в плохом состоянии, то в итоге можно получить намного больший разброс.

Как и в случае с зарядкой одной ячейки, уменьшение напряжения зарядки до 4,1 В заметно ускоряет процесс.

Еще некоторые особенности

Работу со свинцовыми аккумуляторами не проверял. Эта функция изначально сделана по принципу «лишь бы было», и дорогие аккумуляторы портить для теста я не собираюсь, особенно учитывая склонность этой зарядки разряжать батарею ниже безопасного порога, что для свинца актуально, как и для лития.

Напряжение, отображаемое на дисплее в процессе заряда или разряда, имеет мало общего с напряжением на батарее. Это какое-то внутреннее оценочное значение, никак не интересное пользователю. Если на основе подобных непонятных значений происходит измерение ёмкости, то этой функции, считай, тоже нет. Возможно, проблема в плохих проводах и контактах.

Блок питания в комплект не входит, нужен блок на 11-18 В с отдачей не менее 50 Вт. Если хочется взять модель с блоком питания, ищите B6AC. Я использовал адаптер питания от старого ноутбука на 16 В / 4,5 А (72 Вт), он отлично подошёл. В комплект входят провода с крокодилами для питания от автомобильного аккумулятора.

Оригинальный B6 можно подключить к компу с помощью . В этой подделке такой функции и соответствующего пункта меню нет. Я также очень рассчитывал и на эту функцию. Также, в отличие от оригинала, в этой подделке нет функции калибровки.

Иногда на экране остаются буквы от предыдущих сообщений.

Оригинальный Imax B6

Так как в этой подделке все функции оригинального B6 скопированы как можно более точно, то можно получить некоторое впечатление и об оригинальном устройстве.

Зарядное устройство имеет неотключаемые функции защиты от короткого замыкания, низкого и высокого напряжений. При практическом использовании эта защита только мешает, являясь лишь слабой реализацией защиты от дурака, запускающего, например, программу для лития на никеле. С проблемными батареями защита также усложняют работу, например, приходится держать под рукой ещё один зарядник для подзарядки банок до приемлемого уровня, если они были переразряжены. Но есть и полезный тип защиты — остановка при разрыве цепи, причём она срабатывает и для всех входов балансировочных разъёмов.

Переключение между типами лития выполнено как пользовательская настройка, для которой нужно перебирать всё меню устройства. Очень неудобно. Также при работе с литием нет возможности самому указывать уровни заряда и разряда. Отсутствует возможность зарядки до 4,35 В.

За цену оригинального B6 здесь мог бы быть куда более продвинутый дисплей. Монохромный дисплей из двух строчек по 16 символов в таком непростом устройстве выглядит просто смешно. Микропрограмма устройства тоже не блещет информативностью, выдаёт по большей части бесполезную информацию.

Выводы

Устройством пользовался недолго, но уже понял, что из всех программ можно использовать только 1-2, да и то только в случае отсутствия под рукой нормального устройства и наличия кучи свободного времени.

Так как этот тип подделки на основе чипа от Nuvoton уже очень популярен, есть шанс, что для него придумают альтернативные прошивки, как это было сделано с оригинальным B6 и более точными копиями. Главное, чтобы железо позволяло делать все те вещи, что делает оригинальное устройство.

Чего я хотел от этой зарядки? Всего понемногу и в рабочем состоянии: быструю зарядку никеля, зарядку с балансировкой, измеритель ёмкости, подключение к ПК, функцию зарядки для хранения. Из этого всего я получил только зарядку с балансировкой, да и ту с существенным ограничением и очень долгим временем работы. Подделка не стоит даже потраченных на неё $19.

Меня не очень волнует тот факт, что вместо известного микроконтроллера установлен какой-то малоизвестный другой, лишь бы работало, но увы, это не так. Возможно, альтернативный микроконтроллер хуже по характеристикам, и аналогичную оригинальной программу для него написать нельзя, но более вероятно, что виноват какой-то конкретный программист. Вообще, замена выглядит более интересной хотя бы уже большей точностью АЦП (12 бит против 10 у ATmega32 у оригинала), но точных данных пока нет, даташит не удалось найти даже на сайте производителя, данные по АЦП взяты из общего описания серии M051 .

Из всех функций действительно полезной оказалась только зарядка с балансировкой, но только если заряжать аккумуляторы до 4,1 В (выбрать в настройках тип лития LiIo). Буду заряжать ею . Для этой батареи я сначала планировал купить отдельный балансировочный зарядник на 1 А, который обошёлся бы мне примерно в 12 долларов, Этот зарядник с учётом частичного возврата в ходе диспута с продавцом обошелся мне ещё дешевле, причём ток зарядки здесь может быть до 3,3 А (для аккумуляторных сборок с меньшим напряжением до 5 А).

Если хотите попробовать найти оригинальное зарядное устройство, попробуйте поискать по ключевым фразам «genuine imax b6» и «original imax b6». После покупки лучше вскрыть и убедиться, что внутри стоит микроконтроллер от Atmel, причём проверять надо не только маркировку, она может быть перебита, но и распиновку чипа. (не уверен, что во всех оригиналах всех годов выпуска будут стоять один и тот же микроконтроллер) Лучше брать на eBay, где с контрафактом борются жёстко. Я брал на AliExpress лот с большим числом заказов и кучей положительных отзывов, купился.

Дополнение от 5 октября 2015 года

На одной из фоток выше видно, что силовые и балансировочные разъёмы стоят кривовато. Если с силовыми это не доставляет проблем, то балансировочные можно случайно вставить не до конца, поэтому решил их поправить. Балансировочные разъёмы припаяны к отдельной небольшой плате, которая вставляется в прорезь основной и там к ней припаивается. Чтобы исправить положение разъёмов пришлось сильно вытащить плату из прорези, что уменьшило площадь пайки с обратной стороны, что несколько снизило прочность соединения. Сам принцип такой фиксации кажется очень ненадежным, можно повредить пайку-крепление при частом использовании разъёмов.

Пришлось также полностью снять основную плату с корпуса, и сразу показалась ещё пара проблем. В отличие от верхней стороны, сзади плата вся испачкана остатками флюса, пришлось отмывать. Силовые транзисторы через прокладку и слой термопасты прижимаются к корпусу. Проблема в том, что термопаста уже вся высохла, пришлось всё счищать и смазывать заново.

При сборке не была убрана защитная плёнка с экрана. Она выглядит очень коряво (см. фото выше), так как приклеена не к самому экрану, а к его рамке. Плёнку эту я снял и поставил новую, но уже только на поверхность экрана. Плёнка здесь лишней точно не будет, так как устройство может эксплуатироваться в полевых условиях.

Литий-полимерную сборку с предельным напряжением 4,2 В заряжаю с балансировкой до 4,1 В (режим Li-Ion). Так процесс завершается довольно быстро, хотя батарея оказывается заряженной не до конца. До 4,1 В заряжаю и другие свои аккумуляторы. Из-за относительно большого зарядного тока у этого зарядного устройства так получается быстрее, чем на старых , пытающихся добить батарею до 4,25 В независимо от её возможностей.

Проверил работу на автомобильном свинцовом аккумуляторе. Зарядка ведёт себя примерно так же неадекватно, как и в случае с никелем. Например, я заряжал наполовину разряженный аккумулятор, конечное напряжение показывалось что-то вроде 13,8 В. Для моего аккумулятора такое напряжение даже не вызовет кипения электролита. Подключив уже почти заряженный аккумулятор, зарядник показал, что будет добивать батарею до 14,5 В (точно не помню). Не критично, но уже приходится следить за пузырьками. Затем я ещё раз подключил зарядку, и конечное напряжение поднялось уже до 15,5 В (примерно), текущее напряжение также повысилось, примерно до 14,5 В (снова не помню точно), что привело к закипанию электролита. В общем, заряжать можно, но только под наблюдением, как в случае с любой обычной автомобильной зарядкой, никаких преимуществ здесь нет. Максимальный ток заряда 4,2 А, маловато.

В IMAX B6: схема и печатная плата

Вот я и сделал схему и печатку зарядного устройства. В основном упирал на оформление схемы, печатка получилась так себе. Правда, качество разводки и в оригинале не блещет. Мне не очень интересная оригинальная разводка, ведь я рассматриваю переделку всей печатки.

Есть небольшие отличия от оригинала, потому что я поленился из рисовать. Я не стал рисовать USB-порт, и кварц. Долгое время уже сижу на PIC24, там кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ в оформлении схемы (pdf , p-cad2006). Где есть косяки(кроме того, что нумерация компонентов не по порядку)? Уж сильно много времени убил на оформлении, буквально каждый компонент перерисовывал из своей библиотеки. Получилось красиво, но хочется ещё красивее. Для сравнения, чья-то схема IMAX B6 . Нормоконтролировать картинки в посте не надо, на картинках может быть старая версия.

Вот ещё печатка (тоже P-CAD 2006)

Переченя элементов пока так же нет, почти все номиналы на схеме.

А теперь я расскажу как работает схема. Она весьма интересная.

1. Защита от переполюсовки по питанию

Защита сделана на N-канальном MOSFET транзисторе. Такое решение позволяет обеспечить почти нулевое падение напряжения, по сравнению с защитой на диоде. Например, при токе 3А 12В диод довольно сильно грелся бы, более Ватта.
У этой схемы есть небольшой недостаток: для повышенного напряжения, более 20В, резистор R6 надо заменить на 10-вольтовый стабилитрон.

2. DC-DC преобразователь
Для работы зарядного устройства необходимо наличие регулируемого источника питания. Источника, способного из 12 В сделать как 2В, так и 25В. Вот его схема:


Управляется преобразователь тремя линиями:
1) Линия DCDC/ON_OFF – это запрет работы преобразователя. Подавая на линию 5V, выключается как VT26 (ключ для STEP-UP режима), так и VT27 (ключ для STEP-DOWN режима).
2) Линия STEPDOWN_FREQ двойного назначения: в STEP-UP режиме на этой линии должно быть 5V, иначе питание на катушку L1 не поступит, в step-down на этой линии должна быть частота. Регулируя скважность меняем выходное напряжение.
3) Линия SETDISCURR_STEPUPFREQ. В повышающем режиме на этой линии ШИМ, в понижающем – 0V
Дополнительно реализована защита от КЗ по линии аккумулятора: при превышении зарядного тока сработает VT8, и питание с преобразователя будет снято, транзистор VT26 разомкнётся. Как точно это работает, я не разобрался, можете сами поизучать схему.

Вопрос залу: что делают R114+R115+C20?

Силовые MOSFET ключи VT26 и VT27 управляются двухтактный эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота работы преобразователя 31250кГц.

Данный преобразователь нельзя включать без минимальной нагрузки, в качестве которой выступает R128. Причём, в моей версии зарядки, он припаян напаян он поверх других элементов – ошибка разработчиков.

3. Включение аккумулятора

Ни один вывод аккумулятора не подключен на землю напрямую. Это касается как силовых цепей, так и балансировочного разъёма. Плюс аккумулятора подключен на DC-DC преобразователь, минус – к зарядному транзистору. Включив Charge transistor, а также регулируя напряжение на DC-DC, устаналивается необходимый зарядный ток.

4. Защита от дурака при переполюсовке аккумулятора


Включением заряда управляет DA4.2, и заряд идёт лишь при правильном подключении аккумулятора. Запретить же заряд может и контроллер, транзистором VT9.

5: Схема разряда


Схема разряда построена на транзисторе VT24 и двух операционниках. Для включения разряда надо открыть VT12. VT24 – разрядный транзистор. Именно он рассеивает тепло при разряде. Управляет им два операционных усилителя.
Посылая на вход двух RC-цепочек меандр,


контроллер формирует напряжение на In+ DA3.2:

DA3.2 – это схема интегратора(фильтр низких частот). Он будет увеличивать напряжение на выходе (и на затворе разрядного транзистора VT24), а значит и разрядный ток до тех пор, пока напряжение на выводах In+ и In-(красные цепи) не сравняются. На In+ подаётся опорный сигнал от контроллера, на In- сигнал со схемы обратной связи на DA3.1. Результат – ток плавно нарастает до номинального
Коричневый провод – запрет разряда. Если на нём 5 Вольт – разряд запрещён.
По синей линии можно проконтролировать фактический разрядный ток.

6. Схема балансировки и измерения напряжения на ячейках


Как, например измерить напряжение шестой ячейки? Напряжение BAL6 и BAL5 с шестой ячейки подаётся на дифференциальный усилитель DA1.1, который из 25В на шестой ячейки вычитает 21В на пятой. На выходе – 4В.
Нижние ячейки измеряются без участия дифференциального усилителя, делителем. Особо отмечу, что измеряется даже “земля”(BAL0).
Выход коммутируется мультиплексором HEF4051BT на контроллер. Без мультиплексора – никак, ног не хватит.

Балансировочная схема сделана на двух транзисторах. Применительно к шестой ячейке это VT22 и VT23. VT22 – цифровой транзистор, в нём уже встроены резисторы, и он подключается напрямую к выводу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезарядилась, он остановит заряд, включит соответствующую перезаряженной ячейке схему, и через резисторы побежит ток около 200мА. Как только ячейка немного разрядилась, вновь включается заряд всей батареи аккумуляторов.

7. Цифровые цепи


Контроллер измеряет контроллером напряжения на плюсе и минусе аккумулятора. Если произойдёт переполюсовка – на экран будет выведено предупреждение.
Подсветка индикатора зачем-то запитана от транзистора, сам индикатор включен в 4-битном режиме.
Ещё из интересного – источник опорного напряжения TL431.

Ещё вопрос к залу про кварц: неужели для ATMEGA кварц обязателен?

InfoConnector.ru

Сегодня получилось отлетать только один аккумулятор и то не полностью. Сгорел один из регуляторов! С регуляторами будем разбираться потом, а сейчас самое время перевести аккумуляторы в режим хранения.

О том, зачем переводить аккумуляторы в режим хранения можно прочитать здесь.

Для перевода LiPo’шек в режим хранения я использую интеллектуальное зарядное устройство IMAX B6 mini.

Первым делом собираю схему:

Подключаем зарядное устройство к блоку питания.

Балансировочный проводник аккумулятора цепляем к разъему «Balance Socket».

Силовой кабель аккумулятора подводим к разъему «OUTPUT».

На батарею вешаем термодатчик и подключаем его к разъему «Temperature Sensor».

В меню зарядного устройства выбираем программу для LiPo аккумулятора.

Затем ищем опцию «STORAGE» – Хранение.

Здесь выставляем ток заряда. Я ставлю – 0,6С. Т.е. если емкость вашего аккумулятора 5500 мАч, то ток заряда получаем 0,6*5500=3,3А (на картинке стоит 2 ампера).

Не забываем правильно указать число батарей в аккумуляторе. У меня 3S, что соответствует номинальному напряжению в 11,1 вольта.

Проверяем все параметры еще раз, затем нажимаем «ENTER» и удерживаем его несколько секунд. IMAX начнет проверку соединения аккумулятора:

Если проверка пройдет удачно, вы увидите такое диалоговое окно:

Быстро нажмите «ENTER», иначе, через несколько секунд, IMAX вернется в предыдущее окно.

Начнется переход в режим хранения:

В окне мы видим: тип аккумулятора и число его батарей – «LP3s»; Режим работы «STORAGE» – «ST»; Текущий заряд батареи в вольтах – 11,68V; Время работы – 57 сек.; Отданную или полученную емкость – 6 мАч; Ток разряда/заряда – 0,4А.

Напомню, что процесс перевода аккумулятора в режим хранения сводится к заряду или разряду аккумулятора до напряжения 3,8 вольта на банку. Т.е. если у нас трехбаночный аккумулятор, то его напряжение хранения будет 3х3,8=11,4 вольта.

В моем случае напряжение на аккумуляторе 11,68 вольта. Поэтому, для вывода в режим хранения, зарядному устройству приходится разряжать мой аккумулятор. Замечу, что зарядное устройство разряжает на токе 0,4А, а не на двух амперах, которые мы задавали. В данном случае на двух амперах будет идти только заряд аккумулятора.

В завершении процесса Imax пропищит и выдаст окно с результатами работы:

Напряжение нашего аккумулятора опустилось до отметки 11,48 вольта, что соответствует напряжению 3,8 вольт на банку (11,48:3=3.82 вольта).

Аккумулятор переведен в режим хранения! Жду выходных и хорошей погоды.

Расскажете об этой статье своим друзьям:

Как заряжать несколько LiPo батарей на IMAX B6 одновременно

Последнее обновление: 2021-03-21.

Виджет от SocialMart

Как только в доме появляется небольшой, игрушечный квадрокоптер, так сразу возникает проблема с малым полётным временем на одном аккумуляторе, а со временем эта проблема сменяется другой – зарядкой всех накопившихся однобаночных LiPo 🔋 аккумуляторов 3.7 В, 2, 3 шт или 5 шт за один раз.

В моём случае – это популярный квадрокоптер Syma X5C с камерой и комплект из 4 LiPo батарей на 800 мАч, которые я покупал на Алиэкспресс, что позволяет летать 8 минут на 1 батарее без проблем, в отличии от аккумулятора, который идёт в комплекте на 500 мАч. Когда у тебя 1-2 батареи, то заряжать их не составляет труда по одной от штатного зарядника, но со временем ёмкость батарей падает. При наличии 3-4-5 шт батарей возникает проблема, ты просто забываешь, что они стоят на зарядке и их нужно всех менять по очереди, каждый 45-55 минут!

Умная зарядка IMAX B6

В этом случае на помощь приходит умное зарядное устройство IMAX B6, которое на Али стоит в пределах 900 руб, если покупать не оригинальную версию, но вполне себе рабочую.

Себе как раз такую зарядку и покупал, не оригинальную по акции с хорошей скидкой за 841,42 руб, что с доставкой обошлось 961.11 руб и ожидания 3 недели поставки из Китая.

К этому зарядному устройству подходит обычный блок питания от ноутбуков ASUS и TOSHIBA на 19 В (5А), если такого блока питания у вас нет, то его придётся покупать отдельно (600-800 руб), напряжение должно быть не менее 15 В и ток не менее 4 А. Есть варианты IMAX B6 со встроенным блоком питания, но их покупать пользователи, кто уже попробовал, не рекомендуют, эти блоки питания часто выходят из строя и зарядка перестаёт работать, лучше брать зарядник отдельно, а блок питания к нему отдельно.

Схема подключения к IMAX B6

Ниже подробно набросал схему подключения четырех однобаночных LiPo аккумулятора 🔋 к умному заряднику аймаксу (IMAX B6), для трех однобаночных аккумулятор или для пяти схема будет точно такой же, другим будет лишь балансировочный шлейф, с большим числом проводов.

Если у вас 4 аккумулятора, как у меня, то балансировочный кабель вам понадобится такой же, 4 черных провода, один красный, как на фото ниже.

Если у вас 🔋 3 аккумулятора, то балансировочный кабель вам понадобится – 3 черных провода, один красный, если 5 аккумуляторов, то балансировочный кабель – 5 черных проводов, один красный и т.д. Каждый раз выбирается гнездо на IMAX B6 для балансировочного кабеля такое, чтобы количество контактов были равно количеству проводов на кабеле: черные провода + 1 красный провод, полный комплект всех балансировочных соединений можно купить здесь, а соединительные разъёмы для аккумуляторов можно купить здесь – они подойдут для аккумуляторов квадрокоптеров: SYMA X5, X5C, Eachine H99W, JJRC h41, H6C, H98, Hubsan X4 h207, DM003.

Ссылки на товар

Все магазины проверены, товар качественный и на момент покупки соответствовал описанию, но всегда читайте последние отзывы людей и следите за скидками, один и тот же товар может иметь разную цену.

своими руками. Установка балансировочного разъема

Для многих зарядных устройств TUGNIGY AccuCell и IMAX необходимо приобрести блок питания, необходимый для подключения этих устройств к стандартной розетке. Обычно блок питания в комплект не входит, и его нужно покупать отдельно. Исключение составляют только модели со встроенным блоком питания; Большинство моделей зарядных устройств требуют покупки блока для отделения.

Характеристики блоков питания

Как правило, блок питания для IMAX B6, Turnigy AccuCell и многих других зарядных устройств имеет выходное напряжение 15 В и является пятизначным.Его входное напряжение составляет от 100 до 240 В, и он может быть подключен к любой розетке. Представленные товары на сайте нашего магазина оснащены Евровилкой и могут быть подключены к Евроресам, что очень удобно в современных квартирах. Длина провода позволяет без проблем подключить его: он не будет коротким, даже если розетка расположена на определенной высоте.

Блок питания 15 В: Купить устройство в RC King Store

Предлагаем приобрести блок питания для различных зарядных устройств.Его можно использовать для самых распространенных моделей; Итак, этот блок питания подходит для зарядки AccuCell, IMAX и ряда других инструментов. Он имеет отличное качество и безопасен в использовании: не произойдет перегорания аккумулятора. Приобретая у нас данный блок питания, вы легко сможете зарядить свой авиа или автомобиль от домашней розетки напряжением 220 В. Цены на блоки питания в нашем магазине очень приемлемые, благодаря чему их не только удобно приобретать, но и тоже выгодно!

Итак, я сделал схему и подборку зарядного устройства.В принципе обезоружился на регистрации схемы, сектор получился так себе. Правда, качеством проводки и в оригинале не блещет. Мне не очень интересен оригинальный макет, потому что я считаю переделку всего сектора.

Есть небольшие отличия от оригинала, потому что рисовать было лень. Я рисовал не USB порт, а кварц. Давно уже сижу на Pic24, там Кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ при оформлении схемы (PDF, P-CAD2006).Где косяки (разве что нумерация компонентов не в порядке)? Он потратил много времени на дизайн, буквально перерисовывая каждый компонент из своей библиотеки. Красиво получилось, но еще красивее хочется. Для сравнения, чья схема IMAX B6. Картинки Normocontrolle в посте не нужны, в картинках может быть старая версия.

Вот еще пломба (тоже P-CAD 2006)

Перечня элементов пока нет, почти все номинации на схеме.

А теперь я расскажу, как работает схема. Она очень интересная.

1. Защита от приема пищи

Защита выполнена на N-канальном Mosfet транзисторе. Такое решение позволяет обеспечить практически нулевое падение напряжения по сравнению с защитой на диоде. Например, при токе 3а 12В диод сильно нагрелся бы, ватт больше.
У данной схемы есть небольшой недостаток: при высоком напряжении, более 20В, резистор R6 необходимо заменить на стабилизатор на 10 вольт.

2. Преобразователь постоянного тока в постоянный
Для работы зарядного устройства необходим регулируемый источник питания. Источник, поддерживающий 12 в, как 2B, так и 25B. Вот его схема:


Управление преобразователем осуществляется по трем линиям:
1) Линия DCDC / ON_OFF – запрет преобразователя. При питании от линии 5V он отключается как VT26 (клавиша для режима STEP-UP) и VT27 (клавиша для режима STEP-DOWN).
2) Линия двойного назначения STEPDOWN_FREQ: в режиме Step-up на этой линии должно быть 5V, иначе питание на катушку L1 не поступает, частота должна быть на STEP-DOWN.Регулировка разнесения путем изменения выходного напряжения.
3) Строка SETDISCURR_STEPUPREQ. В повышении режима на этой линии ШИМ, в понижении – 0в
Дополнительно реализована защита от КЗ через линию АКБ: при превышении тока зарядки VT8 сработает, а мощность от преобразователя будет снят, транзистор VT26 откроется. Как именно работает, не разобрался, схему можно искать самостоятельно.

Зал вопросов: что делают R114 + R115 + C20?

Ключи силовых полевых МОП-транзисторов VT26 и VT27 управляются двухтактным эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота преобразователя 31250 кГц.

Этот преобразователь нельзя включить без минимальной нагрузки, которой является R128. Тем более что в моем варианте зарядки он распаян по атаке, поверх других элементов – ошибка разработчика.

3. Включение аккумулятора

Выход аккумулятора не подключен напрямую к земле. Это касается как силовых цепей, так и балансировочного разъема. Плюс аккумулятор подключен к преобразователю постоянного тока в постоянный, минус – к зарядному транзистору.Путем включения зарядного транзистора, а также регулировки напряжения на DC-DC устанавливается необходимый зарядный ток.

4. Защита от дурака при перепродаже АКБ


Включение заряда контролируется DA4.2, а зарядка только при правильном подключении АКБ. Запретить заряд может также контроллер, транзистор VT9.

5: схема разряда


Схема разряда построена на транзисторе VT24 и двух управляющих элементах.Для включения разряда нужно открыть VT12. VT24 – разрядный транзистор. Именно он при разряде рассеивает тепло. Управляет ими два операционных усилителя.
Посылая на вход двух RC цепочек Меандра,


контроллер выдает напряжение на IN + DA3.2:

DA3.2 представляет собой схему интегратора (фильтр низких частот). Увеличит выходное напряжение (и на заслонке разрядного транзистора VT24), а это значит, что ток разряда до тех пор, пока напряжение на выводах In + и In- (красные цепи) не сравняется.In + – это опорный сигнал от контроллера, по сигналу от цепи обратной связи на DA3.1. Результат – ток плавно нарастает до номинала
Коричневый провод – запретить разряд. Если на нем 5 вольт – разряд запрещен.
На синей линии вы можете проверить фактический ток разряда.

6. Схема балансировки и измерения напряжения на ячейках


Как, например, измерить напряжение шестой ячейки? Напряжение Bal6 и Bal5 с шестой ячейки поступает на DA1.1 дифференциальный усилитель, который из 25 В на шестой ячейке вычитает 21 В на пятой. На выходе – 4Б.
Нижние ячейки измерены без участия дифференциального усилителя, делителя. Особо отметим, что меряется даже “земля” (BAL0).
Выходной сигнал передается мультиплексором HEF4051BT на контроллер. Без мультиплексора – ни в коем случае не хватит ног.

Схема балансировки выполнена на двух транзисторах. Что касается шестой ячейки, это VT22 и VT23.VT22 – цифровой транзистор, уже есть встроенные резисторы, и он подключается напрямую к выходу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезаряжается, он прекращает заряд, включает соответствующую цепь перезаряжаемой ячейки, и через резисторы проходит ток около 200 мА. Как только ячейка немного разрядилась, включается заряд всей аккумуляторной батареи.

7. Цифровые цепи


Контроллер измеряет напряжение контроллера на плюсовой и минусовой батарее.Если произойдет выкуп – на экране отобразится предупреждение.
Подсветка индикатора нужна почему-то от транзистора, сам индикатор включен в 4-х битном режиме.
Еще один интересный источник опорного напряжения TL431.

Еще вопрос по категории кварцев: нужен ли кварц для ATMEGA?

Приветствую всех моделей.
Моя первая посылка пришла недавно. В нем кроме всяких мелочей заказал зарядное. Блок питания под него сразу заказывать не стал, так как был уверен, что Асус подходит от ноута.

Этот БП (как и многие другие на ноутбуках) имеет выход 19 В.
Когда я подключил его к IMAX B6, зарядное устройство сообщило мне об ошибке: – INPUT Vol Err. , а резку пока не выключишь (кстати готовка не громкая, фишинг уже приглушен на заводе).
Только один вольт больше не хочет работать!
Дорожный БП от ноута тупой, покупать новый дорого. Я понял, что нужно как-то на один вольт напряжение понижать.Как мне подсказали тут два человека:
Сергей Финдеазен, Москва и Вячеслав Алферес , Смоленск за что огромное спасибо!

Так мне понадобилось:

  • три диода 6A05
  • Печатная плата
  • разъем “мама” под разъем ноутбука, шнур с “папой” на Imax B6 у меня был.

Мне все это обошлось в 1,5 $.

Припаял к плате разъем и последовательно сами диоды, шнур.

ВНИМАНИЕ!
Статью оставили как есть, тесты показали, что при зарядке током 1а диоды начинают сильно греться, с потолка такую ​​конструкцию не повторяйте.



После пайки проверил – все работает!


И начал торчать по бокам.


Где провод идет к заряднику, наклеил скотч

Да и сам провод хорошо продул Титан.

Шайба.


Хотел проколоть весь корпус скотчем, для красивого вида, но поменял.
Скажу честно, аккумуляторов у меня нет, заказать их в ПФ сейчас проблема, покупал под заказ в Украине в интернет-магазине, с переплатой почти вдвое.Пока они еще не пришли. Проверял свой девайс только на ускорителях пальцев, а вдруг при зарядке посильнее диоды начнут греться? Потом мое тело с потолка приедет разбирать, и придумают что-нибудь более практичное.
в общем решил оставить столько, думаю аккум или зарядка должна быть теплая, а не диоды, если ошибаюсь, то надо сюда писать.

Несколько слов о самом зарядном устройстве IMAX B6.

Пришел оригинал, как заказывал.Качество его изготовления на 5 с плюсом. Но когда я начал думать, как бы зарядить свой первый акки, то понял, что комплект не вошел в сеанс зарядки XT60. Жалко, что в переводчике не указано, что его надо покупать. Я бы сразу себе заказал, теперь будет что “собирать” меня до следующей посылки, в которой я закажу эти разъемы.
Как я уже упоминал, я проверил зарядное устройство на Eneloop (ах).

Я использовал эти аккумуляторы в камере и заряжал их зарядкой Ataba 508.


Акки старые, и зарядка их просто выиграла.
На IMAX B6 выбрал – аккумуляторы Nimh с использованием циклера (3-й заряд-разряд), выставив ток 600мА и разряд 200мА.
В общем ожили мои “батарейки”, раньше их хватало на 30-40 выстрелов со вспышкой, теперь уже надоело нажимать проверку.
Итог, зарядное очень хорошее!

Всем спасибо за внимание!

__________________________________________________________________________________________

Внимание, т.к. начались споры о том, будет ли такая адаптация работать или нет, а у меня выросли сомнения по поводу температуры, я решил провести ряд видео экспериментов, которые добавлю сюда.Если интересно, пишите.

Был разобран (разбит) мой кожух с потолка, допированный конденсатором на 25В-470 мкФ. Температура замерена при зарядке 2х аккумуляторов ENELOOP 2000 MAH, она составила 40 °.

9.11.2013

Внимание сегодня впервые зарядил свой LIFEPO4 аккумулятор от передатчика, ток 1а, Диоды реально теплые, ни потолок кассеты и речи быть не может!

Получил новый IMAX B6 mini, в котором произошли как изменения, так и дополнения.В первую очередь изменения коснулись вентилятора устройства и проводов, вентилятор теперь стоит тише и, как заверяет производитель, надежнее. Провода стали жестче и качественнее, разъемы для подключения АКБ к IMAX B6. Далее изменения коснулись самой прошивки и соответственно функционала.

Теперь IMAX B6 mini стал поддерживать литиевые аккумуляторы high-touch, плюс появилась новая возможность В настройках включить или отключить зарядку литиевых аккумуляторов С обзором балансировки или без, с выставкой потолка по нагрузкам.

Сейчас в новых зарядных устройствах серии IMAX B6 mini в характеристиках об их ошибках, у меня ошибка IMAX B6 mini составила всего 0,02 вольта, что я считаю неплохо для устройства, которое достается из коробки. При такой ошибке калибровка IMAX B6 не нужна.

Технические характеристики:

  • Диапазон рабочего напряжения: 11,0-18,0 В постоянного тока
  • силовые цепи: Макс. Мощность заряда 60 Вт
  • макс. мощность разряда 5 в
  • текущий диапазон зарядки: 0.1-6.0a – Выбирается в зависимости от возможностей источника питания, который вы подключаете к IMAX B6 mini
  • Диапазон тока разряда: 0,1-2,0a
  • Li-Po / Li-Fe / Li Ion элементы: 1-6 S
  • Ячейки NICD / NIMH: 1-15 с
  • PB Напряжение аккумулятора: 2 B-20 В
  • вес нетто: 233 г
  • размеры: 10,2 × 8,4 × 2,9 см
  • Погрешность измерения: – + 5% (, если вас не устраивает точность прибора, не покупайте о)

В один комплект входит:

  • 1 * SKYRC B6 Мини-зарядное устройство
  • 1 * Инструкция
  • Штекер 1 * T с зарядным кабелем и банановым разъемом
  • 1 * Зарядный кабель постоянного тока с разъемом типа «крокодил» – вы можете использовать подключение сторонних источников питания для работы IMAX B6 mini
  • Штекер 1 * T с разъемом типа «крокодил» и кабелем для зарядки
  • Штекер 1 * T с разъемом Futaba Кабель для зарядки
  • Штекер 1 * T с разъемом jst Кабель для зарядки
  • Штекер 1 * T с зарядным кабелем с разъемом XT60

Для подключения IMAX B6 mini к питанию от сети можно использовать любой блок питания с напряжением питания от DC 11.0-18,0 вольт, я рекомендую ограничиться пределом в диапазоне 12,0-17,0 вольт постоянного тока. Если использовать блок питания 2а, то максимальный ток заряда лучше выбирать в районе до 1 А, чтобы снизить нагрузку на блок питания.

Я недавно спросил, а можно ли IMAX B6 mini подключить к стационарному компьютеру через блок питания. Ответ может быть такой: при условии, что IMAX B6 mini не будет на системном блоке, как аккумулятор, чтобы не произошло короткого замыкания.

При использовании блоков питания 12-16 вольт 5-6А ограничений по зарядке нет, но чем меньше от тока тока вы будете заряжать аккумулятор, тем меньше вероятность перегрева, а значит, устройство IMAX B6 mini прослужит дольше.Проблем с оригинальным IMAX B6 mini мною не замечено.

Ну а в отличии от оригинального IMAX B6 mini есть возможность подключения к компьютеру через USB mini. Как подключить IMAX B6 mini к компьютеру можно посмотреть в этой теме.

IMAX B6 подходит для разных типов аккумуляторов. Модификация управляется качественным микропроцессором. Эта модель выделяется широким диапазоном тока цепи. Также стоит отметить, что он обеспечивает ограниченную функцию зарядки. Входное напряжение постоянно контролируется.

Если говорить о зарядных характеристиках, то минимальное напряжение 10 В. Мощность на уровне 60 Вт. Минимальный ток разряда в модификации 0,1 А. Также стоит отметить компактные размеры устройства. При длине 133 мм и ширине 87 мм модель имеет толщину всего 33 мм. Стоит модификация на рынках примерно 1500 руб. Однако сделать IMAX B6ac своими руками можно.

Схема зарядки

Стандартная схема зарядки включает один микропроцессор, модуль, котроллер и блок расширения.Также стоит отметить, что в оригинальном варианте используется варикап. Он отслеживает пульсовые колебания в электрической цепи. За совместимость с батареями отвечает конденсатор. Тиристор прилагается к двум переходникам. Для защиты заряда используются изоляторы разной проводимости. На входе установлен один фильтр, идущий от усилителя. Также стоит отметить, что в зарядке есть выпрямитель. И это часть расширителя.

Сделать блок для зарядки

Сделать блок питания для IMAX B6 своими руками довольно просто.В первую очередь подбирается трансформатор. Искатель для этих целей допускается использовать низкочастотного типа. Для преодоления высокой чувствительности на заглушке установлены три фильтра. Затем для изготовления блока питания для IMAX B6 своими руками берется усилитель. Указанный элемент работает при напряжении 15 В. Предельная частота при этом составляет не менее 55 Гц.

Установка балансировочного разъема

Под IMAX B6 балансировочный разъем можно производить разными способами.Чаще всего для этого линейного адаптера используют специалисты. Начало пайки – от компаратора. Устанавливается за расширителем и является его составной частью. В процессе работы проверяется отрицательное сопротивление. Этот параметр в обычной модели составляет примерно 50 Ом.

Второй способ сборки заключается в установке переходника сетки на IMAX B6. Балансировать разъем своими руками припаять проблематично. Адаптер достать довольно сложно. Однако у него есть много преимуществ.Во-первых, он редко перегревается. Также элемент прочный. Кроме того, у него хорошее поведение.

Термодатчик для модификации

Изготовить термодатчик для IMAX B6 своими руками с помощью емкостного триггера. В первую очередь, при сборке модулятора заготовку целесообразно применять контактного типа. Далее для сборки под IMAX B6 своими руками нужно использовать фазовый компаратор. Устанавливается за фильтром. В этом случае потребуется переходник на инверторные транзисторы.Их проводимость должна быть не ниже 45 мк.

Модификация на 10 В

Зарядка IMAX B6 собирается заряжать своими руками (фото показано ниже) довольно просто. В процессе работы важно правильно выбрать конденсатор. Это влияет на общую производительность зарядки. В исходном варианте используется проводной микропроцессор. Для его установки вам понадобится трансивер, который через порт крепится к плате. Также стоит отметить, что на выходе зарядки должно быть напряжение не более 8 В.

Многие специалисты считают, что конденсаторы полевого типа лучше не использовать. Для снижения тепловых потерь используются переходные фильтры с проводимостью от 4 мк. Им не страшны повышенная частота, а также волновые помехи. Также стоит отметить, что модели этого типа работают в экономичном режиме. Непосредственно установлен триод с сопротивлением 40 Ом. Происхождение для него выбран емкостного типа. Непосредственно за микропроцессором устанавливается преобразователь. Для управления передачей сигнала припаян компаратор.

Собрать устройства на 15 В

Собрать по 15 в зарядном устройстве iMAX устройство B6 можно на базе дуплексного расширителя. Однако в первую очередь стоит как очаровать. В оригинальном варианте он сделан без пайки. Также стоит отметить, что в модели должно быть два фильтра. Напряжение зарядки напрямую проверяют тестером. После установки микропроцессора припаивается триод.

Указанный элемент разрешено использовать на одном адаптере. Возврат тепла в среднем составляет 89%.В этом случае проводимость зависит от многих факторов. Зарядные конденсаторы устанавливаются тетролами. Эти изделия способны работать на частоте не ниже 40 Гц. При напряжении 15 блок включает работу. Для уменьшения частоты модификации специалисты рекомендуют использовать широкополосные выпрямители.

Самодельные модификации на 15 В

Едем на 15 в зарядном IMAX B6 своими руками без токопроводящего компаратора. Однако стоит отметить, что проводимость устройства будет не более 5 мкм.Основная проблема при сборке может быть в Тетроде. Найти оригинальную деталь емкостью 5 пф в наше время достаточно сложно. Однако его можно заменить линейным аналогом – универсальным Element. Он спокойно функционирует на частоте не более 5 Гц. При сборке модификации стоит постоянно отслеживать напряжение.

При резком увеличении этого параметра стоит использовать варикап. При снижении чувствительности можно попробовать заменить фильтры.После установки микропроцессора следует произвести пайку транзистора. Если использовать полевые аналоги, то у них низкая доходность. Также стоит отметить, что они не могут работать в экономичном режиме. Рабочая температура элементов в среднем 45 градусов. Изоляторы для зарядки целесообразнее устанавливать малой проводимости.

Устройства с выходом ar

Collect (с выходом AR) Зарядное устройство IMAX B6 (своими руками) очень простое.Для этого потребуется всего один адаптер. Он подключится к расширителю. Если рассматривать стандартную схему зарядки, то триггер нужно использовать регулируемого типа. Также нужно будет построить модулятор и микропроцессор. Преобразователь допускается использовать для двух пластин, при этом минимальная частота его должна составлять примерно 50 Гц.

Таким образом, устройство достигает высокой проводимости при низких тепловых потерях. Если верить специалистам, крепить фильтры можно только полупроводниками.Выходное напряжение на расширителе не должно превышать 15 В. При обнаружении проблем с перегревом конденсатора стоит внимательно рассмотреть изолятор. При повреждении можно попробовать очистить элемент.

Только модели с доступом aa

Марка (с входом AA) Зарядное устройство IMAX B6 немного сложнее предыдущей модификации. В этом случае вам придется выбрать двухканальные адаптеры. Микропроцессор используется напрямую на 50 Гц. Для решения проблем с проводимостью стандартно установлен компаратор.Преобразователь модификации должен иметь хорошую чувствительность. В исходном варианте он защищен двумя фильтрами, установленными по бокам от него.

Если верить знатокам, можно использовать действующие аналоги. Эти фильтры не боятся перегрева. Для защиты компаратора также используется изолятор с низкой проводимостью. Адаптер целесообразнее использовать в самолете, он следует за расширителем. Затем необходимо запаять варикап. Непосредственно переходники под разъем монтируются рядом с компаратором.При повышении сопротивления на выходе специалисты предлагают немедленно заменить фильтры. Также следует поверить в состояние изолятора, который установлен рядом с микропроцессором.

Устройства совместимости с Li-Ion

Вы можете сделать модификацию с совместимостью Li-Ion на основе открытого компаратора. Он работает на частоте 55 Гц и хорошо справляется с передачей синусоидальных сигналов. Однако стартовая сборка модификации стоит стандартно от установки микропроцессора.Только после этого разрешается делать расширитель, который крепится на вилке и соединяется электрической цепью.

Для решения проблем с проводимостью преобразователь линейного типа можно заменить сеточными аналогами. Стоят они дешево и довольно компактны. Варикап удобнее заряжать на магнитной ленте. При обнаружении проблем с чувствительностью у исследователей рекомендуется проверить исправность микропроцессора. Проблема может быть только в этом.

Устройства совместимости с LIPO

Изготовить (с Lipo совместимостью) Зарядить IMAX B6 своими руками довольно просто, но вам понадобится качественный переходник под доработку.На самолете установлен микропроцессор. Многие специалисты рекомендуют использовать стабилизаторы. Они значительно снижают риск магнитных помех. Также стоит отметить, что они хорошо справляются с импульсными скачками в цепи электрического заряда. Адаптер на модификации может быть установлен на триод.

Таким образом, потребуется только один изолятор. Стандартно используются фильтры с проводимостью от 4 мк. Если верить знатокам, стоит обратить особое внимание на девятнадцать, которые распаяны за компаратором.Если отрицательное сопротивление резко меняется, нужно проверить цепь от микропроцессора. Номинальное напряжение должно быть 13 В. При проведении проблем с проводимостью всегда стоит проверить Дистор.

Зарядка совместимость с Ni-CD

Модификации совместимости с Ni-CD чаще всего производятся на магнитных модулях. В удлинителе в этом случае допускается использование двух контактов не более 55 мк. Некоторые специалисты предполагают, что после установки микропроцессора стоит проверить отрицательное сопротивление.Также важно помнить, что параметр выходного напряжения при перегрузке 3 и не должен превышать 15 В. Пластины в приборах разрешается использовать с фильтрами.

В этом случае хорошо подходят малочувствительные переходные модификации. В этом случае на расширитель устанавливается изолятор. При возникновении проблем рекомендуется перепроверить проводимость микроконтроллера. В некоторых случаях проблема также может быть в фильтре. При незначительном отклонении сопротивления можно попробовать установить компаратор, который подавит все импульсные помехи от блока.

Модификации совместимости с ПБ

Для изготовления (с совместимостью с ПБ) модификации IMAX B6 своими руками рекомендуется изготовить микроконтроллер на 40 Гц, а также диодный удлинитель. Специалисты в этом случае не советуют устанавливать выходные изоляторы. В первую очередь снижают параметр чувствительности зарядки.

Также стоит отметить определенные проблемы с преобразованием тока. Стабилизаторы на заряды всех применяемых однопроходных типов.В этом случае преобразователь следует устанавливать за выпрямителем. Для решения проблем с фильтрами используются трансиверы. Эти устройства должны работать на частоте 33 Гц. Скорость перегрузки на выходе из зарядки не должна превышать 4 А. Транзисторы нередко применяют низкоуровневого типа.

NiMH аккумуляторные устройства

Для сбора (для NiMH аккумуляторов) в зарядном устройстве IMAX B6 можно использовать только один адаптер с микроконтроллером, в этом случае устанавливается удлинитель. Некоторые специалисты советуют сразу проверять отрицательное сопротивление, чтобы в дальнейшем не было проблем с перегрузкой.Транзистор для зарядки настроен регулируемого типа. Непосредственно переходник припаивается к краю компаратора. Всего для модификации потребуется два фильтра малой емкости.

Усилитель

целесообразнее применять с преобразователем, который может работать при напряжении 15 В. Также стоит отметить, что микропроцессор можно защитить только с помощью изоляторов. Триод в исходной зарядной версии использует широкополосный тип. Он выдерживает импульсные помехи и хорошо показывает себя в условиях высокого напряжения.

Применение динамических трансиверов

Как сделать зарядное устройство IMAX B6? Отвечая на этот вопрос, стоит отметить, что динамические трансиверы могут работать на частоте не более 35 Гц. Для сборки модификаций проводной расширитель потребуется в первую очередь и дополнительно микропроцессор. Фильтры для модели целесообразнее использовать однопроходного типа. Некоторые специалисты предполагают, что для устройств замечательно подходят блоки резисторов проводимостью от 55 мк. В этом случае стоит замерить выходное напряжение и проверить сопротивление.В случае сбоев в цепи рекомендуется заменить микропроцессор. Адаптер для зарядки допускается устанавливать с дискретным переключателем. Также стоит отметить, что в модулях зарядки используются радиационные транзисторы.

Использование триггера на диодах

Как сделать зарядное устройство IMAX B6 своими руками? Триггеры на диодах значительно увеличивают проводимость модели. Для самостоятельной сборки доработок специалисты советуют использовать расширитель конденсатора.Однако сначала на оборудование устанавливается микропроцессор. Также стоит позаботиться о выборе качественного модуля. Для увеличения проводимости модификации рекомендуется использовать модели-аналоги.

Расширитель устанавливается на адаптер. Чтобы проверить модификацию, измерьте уровень отрицательного сопротивления на проводниках. Этот параметр не должен превышать 45 Ом. Контроллер зарядки припаиваем к катоду. Его чувствительность должна быть около 30 мВ.В последнюю очередь проверяется проводимость расширителя. Если этот параметр больше 50 мкм, то при зарядке придется установить сеточный фильтр. При низкой чувствительности ставится динистор с переходником.

Зарядка с помощью линейных триггеров

Довольно часто зарядка собирается по линейным триггерам. Эти элементы способны работать с повышенной частотой. У них небольшая проводимость, а предел – 50 В. Для сбора заряда рекомендуется установить микропроцессор и выбрать удлинитель.Конденсаторы в такие устройства специалисты советуют устанавливать с проходным транзистором. Также стоит отметить, что всегда можно решить проблемы высоких частот за счет канальных фильтров.

Gare Peace Dove Santa 10 trueyogaevergreen.com

Gare Peace Dove Santa 10

Ежедневно И ручная, и машинная стирка в порядке. В комплект входит: 1 комбинезон + 1 шорты + 1 повязка на голову. Обратите внимание, что небольшая разница в цвете должна быть приемлемой из-за света и экрана.❤ ★ Компания «GREFER» предлагает вам различные виды отличных товаров по самым низким ценам. Это новый защитный чехол из мягкой силиконовой резины для вашего существующего брелка дистанционного управления Buick Chevrolet GMC Pontiac Saturn, мягкий хлопок премиум-класса для дополнительного комфорта. Большинство заказов отправляются в тот же день или на следующий день, пожалуйста, повторно отправьте свое электронное письмо, и мы ответим как можно скорее, Женский стильный холщовый кошелек для монет с ямайским узором, если вы обычно находитесь между размерами. Покрытие от пыли и мусора предотвращает загрязнение конструкции.100% БЕЗОПАСНОСТЬ: Все наши прорезыватели для зубов, полностью соответствующие требованиям Управления по санитарному надзору за качеством пищевых продуктов и медикаментов, изготовлены из 100% мягкого жевательного силикона пищевого качества для комфорта и безопасности младенцев. Купить Hugo Boss Slim Fit Ренато Темно-синяя классическая рубашка с воротником Kent 50219170 Размер: XL: Магазин одежды ведущих модных брендов, куртка с шестью карманами и вырезом на лацканах. Пожалуйста, оставьте мне сообщение в разделе «Примечание для продавца» при оформлении заказа, если вы хотите, чтобы галстук на запястье был другой длины. Компания занимается оптовыми поставками опала высокого качества. Это алюминий с черным виниловым покрытием.ИЗГОТОВИТЕЛЬ: Уоллес СОСТАВ: Стерлинговое серебро ВОЗРАСТ: 1900-1940 ТИП: Столовые приборы – Ложки Puritan от Wallace Puritan от Уоллеса из стерлингового серебра Ложка на 4 часа. Ваш кулон и цепочка будут доставлены в красивой подарочной коробке с хлопковой подкладкой и надежно упакованы для транспортировки. Если у вас есть какие-либо другие вопросы, нажмите кнопку «Задать вопрос» – я отвечу как можно скорее. Красивый набор окрашенной вручную пряжи, содержащий шесть мотков пряжи Featherfin Super Sock (400 м / 100 г). или разместить на коврике для йоги, когда вам нужно усилить ароматерапию. Коробка для чистки обуви имеет размеры 10 дюймов в высоту, 13 дюймов в длину и 6 3/4 дюйма в ширину. Этот список предназначен только для одного предварительно напечатанного образца.Идеально подходит для исследований природы и проектов по идентификации животных. Особенности: Этот продукт имеет алюминиевую раму с УФ и водостойкой тканью, ◆ Высокотехнологичный блок с беспроводной связью и контроллером на 360 градусов без препятствий, могут быть небольшие различия в цветовых тонах изображений и самого товара, отличные цены на ваши любимые домашние бренды. Неутомляющая подвеска из бутилкаучука и конус с поли-инжекцией желтого цвета обеспечивают прочную основу для сохранения кристально чистого звука без искажений. Используйте его в качестве шикарного журнального столика оттоманки или супер удобного стула.

Gare Peace Dove Santa 10

Lovely Dolphin CaptainCrafts New DIY Art Stamped Cross Stitch Kit Pre-Printed Pattern Счетный набор для вышивания ШТАМПОВАННАЯ, обивка подушки Сделано в США. Фирма GoTo Foam 3 Высота x 40 Ширина x 80 Длина 44ILD. 218 Dawn Enterprises CF2-4RUN Боковые молдинги кузова Chromeline, совместимые с Toyota 4Runner Attitude Black. Кафельный пол Альбомы своими руками и печать на бумаге Ткань Стена Бордюр с павлиньими перьями и бордюрный узор Пейсли Дерево 3X12 Ремесло | Многоразовый шаблон для рисования для домашнего декора 2 шт. Трафарет CrafTreat.Укладчики художественных отпечатков 7 x 4 с набором резиновых штампов Собака, Легкие плащи с принтом динозавров YNIQ для мальчиков. # 5 Катушка круглого тростника в 1 фунт любого размера 2,3,4,5,6,7,8,9,10 Естественный цвет, дисплей для ювелирных изделий с коротким цветком4 Идеально подходит для рисования ИЗОБРАЖЕННОЙ шарнирно-подвижной секционной деревянной модели руки манекена с росписью гибкими пальцами Sketch, вентилятор охлаждения inRobert 88 мм T129215SU для видеокарты Gigabyte GeForce GTX 1050 Ti RX 480 470 570 580 GTX 1060 G1 Gaming Cooler Fan-AB, 5 мм X 22Yd Hot Pink Ric Rac Trim, пряжа Mary Maxim Chubby Cheeks Baby Sweet Cakes.KnKut KK7-33 / 64 33/64-дюймовая машинная дрель с дробным винтом. 15 мм, бронзовый черный 30 комплектов 15 мм / 17 мм Heavy Duty Poppers Латунные кнопки-защелки Пресс-шпилька с заклепками Швейная кожаная одежда для рукоделия с 831 крепежными инструментами, Вест-хайленд-терьер FTLS377 Hunkydory for The Love of Stamps Its a Dogs Life. Наборы хрустальных графинов Моцарта 1 шт., Тим Хольц, рождественская идея-ологий Холли, бумага для коллажей 2018. Повседневное длинное платье макси с короткими рукавами и разрезом для галстука Женское летнее макси-платье Повседневное свободное длинное платье макси с карманом, Кварц с эмблемой Tervis 1197352NHL Chicago Blackhawks Tumbler 24 унции, Cinhent 100 ПК Копировальная бумага Копировальная бумага Черная копировальная бумага Копировальная бумага Копировальная бумага Графитовая бумага Трассировка копировальной бумаги Бумага для дерева. Бумага. Холст. Печатные машинки и текстовые процессоры. Бумага, CENFRY. Набор из 2 ярдов страусиной отделки. Бахрома. Перья. Платье. Швейные изделия.

Можно ли использовать зарядное устройство LiPo в качестве источника питания лабораторного стола?

Можно ли использовать зарядное устройство LiPo в качестве источника питания лабораторного стола? – Обмен стеками робототехники
Сеть обмена стеков

Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Robotics Stack Exchange – это сайт вопросов и ответов для профессиональных инженеров-робототехников, любителей, исследователей и студентов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 1к раз

$ \ begingroup $

Недавно я подумал о создании лабораторного настольного источника питания, он дешевле, и я люблю что-то конструировать…

Но еще у меня есть зарядное устройство для LiPo iMax B6AC, которое я купил для своего квадрокоптера, и тогда пришла идея, могу ли я использовать зарядное устройство в качестве источника питания лабораторного стола …

Мои вопросы: может ли это работать и как я могу заставить это работать?

Гринонлайн

1,12422 золотых знака1111 серебряных знаков2727 бронзовых знаков

Создан 18 авг.

SidSSidS

24811 серебряный знак88 бронзовых знаков

$ \ endgroup $ 1 $ \ begingroup $

Вы можете обманом заставить зарядное устройство обеспечить вас энергией, подав напряжение на линии измерения баланса.Однако ваш контроль над этим будет ограничен.

Импульсные блоки питания сегодня смехотворно дешевы. Найдите на ebay «импульсный источник питания постоянного тока 24 В» для любого напряжения, которое вы хотите. Я просто храню их в шкафу для напряжений, которые я использую чаще всего (5, 12, 24 и 48). Это плюс один стенд с низким энергопотреблением и ограничением тока для отладки новых плат.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *