Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Термистор [Robotic & Microcontroller Educational Knowledgepage

NTC термистор

Термистор – это резистор, сопротивление которого меняется от температуры. Термисторы бывают двух типов: с положительным и отрицательным температурным коэффициентом. У терморезистора с положительным коэффициентом при повышении температуры сопротивление возрастает, а с отрицательным коэффициентом - уменьшается. Их сокращённые названия на английском языке: PTC (positive temperature coefficient) и NTC (negative temperature coefficient).

Использование термистора усложняет нелинеарность температурной зависимости его сопротивления. Зависимость является линеарной только в маленьких пределах, для вычисления нескольких десятков градусов и большей границы измерения подходит экспоненциальное уравнение третьего порядка Стейнхарта-Харта. Для NTC терморезисторов существует следующее упрощенное уравнение с B – параметром:

где:

  • T0 - номинальная температура, например 25 °C.

  • R0 - cопротивление при номинальной температуре.

  • B - B–параметр.

B – параметр это коэффициент, который обычно дается в спецификации термистора. В то же время, он достаточно постоянен только в известных температурных промежутках, к примеру, 25–50 °C или 25–85 °C. Если измеряемый температурный промежуток больше, то при возможности следует использовать уравнение, находящееся в спецификации.

Сопротивление термистора измеряется косвенно делителем напряжения, где вместо одного резистора устанавливается термистор и входное напряжение которого постоянное. Измеряется выходное напряжение делителя напряжения, которое изменяется вместе с изменением сопротивления термистора. При подаче напряжения через термистор проходит электрический ток, который нагревает термистор из-за его сопротивления и таким образом изменяет сопротивление. Ошибку, возникающую при нагревании термистора, можно компенсировать вычислительно, но легче использовать термистор с большим сопротивлением, который нагревается меньше.

Из-за ограниченного ресурса и отсутствия необходимости применения большой точности, используются заранее вычисленные таблицы взаимозависимых температуры и сопротивления. В таблице, в целом, записаны показания температуры с точным интервалом, в соответствии с сопротивлением датчика, напряжением или значением аналогово-дигитального преобразователя. Для таблицы все экспоненциальное вычисление сделано заранее и в программе нужно всего лишь найти ряд, соответствующий измеренному параметру и прочесть температуру.

Плата модуля «Датчики» Домашней Лаборатории снабжена термистором типа NTC с номинальным сопротивлением 10 kΩ. При температуре 25-50 °C B – параметр равен 3900. Один вывод термистора подключен к питанию +5 V и другой к каналу 2 (вывод PF2) аналогово-дигитального преобразователя микроконтроллера. С тем же выводом микроконтроллера и землей соединен обычный 10 kΩ резистор, который вместе с терморезистором образует делитель напряжения. Так как имеется дело с NTC термистором, сопротивление которого уменьшается с повышением температуры, тогда в это же время поднимается и выходное напряжение делителя напряжения.

Для поиска температуры целесообразно использовать таблицу преобразования значений температуры и аналого-дигитального преобразователя. Разумно для каждого градуса найти соответствующее значение аналого-дигитального преобразователя из желаемого интервала температур, потому что противоположная таблица будет слишком большой из-за количества 10-битных ADC значений. Для создания таблицы желательно использовать какую-либо программу по вычислению таблиц (MS Excel, Openoffice Calc или другие). При помощи приведенного выше уравнения Стейнхарта-Харта, адаптированного для NTC термисторов, можно найти соответствующее температуре сопротивление терморезистора. Из сопротивления можно вычислить выходное напряжение делителя напряжения и в свою очередь из него - значение ADC. Найденные значения можно следующим образом записать в программу:

//
// Таблица для перевода температуры в значение ADC.
// Каждый элемент массива обозначает один градус Цельсия.
// Элементы начинаются от -20 градусов и кончаются 100 градусами. 
// В целом в массиве 121 элемент.
//
const signed short min_temp = -20;
const signed short max_temp = 100;
 
const unsigned short conversion_table[] =
{                           
	91,96,102,107,113,119,125,132,139,146,153,
	160,168,176,184,192,201,210,219,228,238,247,
	257,267,277,288,298,309,319,330,341,352,364,
	375,386,398,409,421,432,444,455,467,478,489,
	501,512,523,534,545,556,567,578,588,599,609,
	619,629,639,649,658,667,677,685,694,703,711,
	720,728,736,743,751,758,766,773,780,786,793,
	799,805,811,817,823,829,834,839,844,849,854,
	859,863,868,872,876,880,884,888,892,896,899,
	903,906,909,912,915,918,921,924,927,929,932,
	934,937,939,941,943,945,947,949,951,953,955
};

 

Для того, чтобы в таблице найти температуру по значению ADC , можно использовать следующий алгоритм:

//
// Перевод значения ADC в градусы Цельсия.
//
signed short thermistor_calculate_celsius(unsigned short adc_value)
{
	signed short celsius;
 
	// Прохождение таблицы наоборот
	for (celsius = max_temp - min_temp; celsius >= 0; celsius--)
	{
		// Если значение таблицы такое же или больше чем измеренный результат,
		// тогда температура примерно такая же высокая,
		// как и температура соотвествуящая элементам.
if (adc_value >= conversion_table[celsius]) { // Так как таблица начинается с нуля, // а значение элемента – 20 градусов, то придется значение сдвинуть return celsius + min_temp; } }   // Если значение не найдено, то возвращается минимальная температура return min_temp; }

Алгоритм ищет в таблице интервал, в котором находится значение ADC, и узнаёт нижнюю границу порядкового номера интервала. Порядковый номер обозначает градусы, к нему следует лишь прибавить начальную температуру и таким образом получается точность температуры в 1 градус.

Приведенные таблица перевода и функция уже имеются в библиотеке Домашней Лаборатории, так что в данном упражнении их самим писать не надо. У функции преобразования в библиотеке есть название thermistor_calculate_celsius. Нужно учитывать, что преобразовании подходит только термистору, находящемуся в модуле «Датчики» Домашней Лаборатории. Для использования других термисторов придется создавать таблицу переводов самому и использовать сложные функции, описанные в инструкции библиотеки.

В упражнении для примера программы есть термометр, который измеряет температуру в Цельсиях и отображает это на буквенно-цифровом LCD экране.

 

//
// Пример программы термистора модуля «Датчики» Домашней Лаборатории.
// На LCD дисплее отображается температура в градусах.
//
#include <stdio.h>
#include <homelab/adc.h>
#include <homelab/module/sensors.h>
#include <homelab/module/lcd_alpha.h>
 
//
// Основная программа
//
int main(void)
{
	unsigned short value;
	signed short temperature;	
	char text[16];
 
	// Настройка LCD экрана
	lcd_alpha_init(LCD_ALPHA_DISP_ON);
 
	// Очистка LCD экрана
	lcd_alpha_clear();
 
	// Название программы
	lcd_alpha_write_string("Термометр");
 
	// Настройка ADC преобразователя
	adc_init(ADC_REF_AVCC, ADC_PRESCALE_8);
 
	// Бесконечный цикл
	while (true)
	{
		// Считывание значения напряжения термистора, округленное в 4-раза
		value = adc_get_average_value(2, 4);
 
		// Пересчитывание значения ADC в градусы
		temperature = thermistor_calculate_celsius(value);
 
		// Перевод температуры в текст
		// Для отображения знака градуса октановое число 337
		sprintf(text, "%d\337C   ", temperature);
 
		// Отображение текста в начале второго ряда LCD
		lcd_alpha_goto_xy(0, 1);
		lcd_alpha_write_string(text);
	}
}

назначение, сопротивление и характеристики, маркировка, принцип работы, как проверить и подключить

Люди, далекие от радиоэлектроники, смутно представляют назначение и принцип действия терморезистора. Какие функции выполняет этот элемент? Для его он предусмотрен? Как маркируется? О каких тонкостях проверки и подключения необходимо знать? Какие бывают виды, и в чем их особенности? Эти и другие вопросы рассмотрим ниже.

Что такое терморезистор, общие положения

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.

С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.

В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов.  Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.

Где используется (сфера применения)

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Устройство и виды

Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:

  1. Термисторы — детали с негативным температурным коэффициентом (NTC). Их особенность состоит в падении сопротивления при росте температуры.
  2. Позисторы — элементы, имеющие «плюсовой» температурный коэффициент (PTC). В отличие от прошлого вида, при повышении T сопротивление, наоборот, растет.

В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.

Типы по принципу действия

Терморезисторы различаются по принципу действия. Выделяется два типа:

  1. КОНТАКТНЫЕ. К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.
  2. БЕСКОНТАКТНЫЕ. В эту группу входят терморезисторы, построенные на инфракрасном принципе действия. Они активно применяются в оборонной сфере, благодаря способности выявлять тепловое излучение ИК и оптических лучей (выделяются газами и жидкостями).

Классификация по температурному срабатыванию

Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:

  1. НИЗКОТЕМПЕРАТУРНЫЕ. Такие элементы срабатывают при температуре ниже 170 Кельвинов (минус 102С). 1 Кельвин = минус 272,15С.
  2. СРЕДНЕТЕМПЕРАТУРНЫЕ. Здесь диапазоне работы выше и находится между 170 и 510 Кельвинами.
  3. ВЫСОКОТЕМПЕРАТУРНЫЕ. Терморезисторы такого класса работают при температурах от 570 Кельвинов.
  4. ОТДЕЛЬНЫЙ КЛАСС. Выделятся также индивидуальная группа высокотемпературных термических резисторов, работающих в диапазоне от 900 до 1300 К.

Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.

Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.

По виду нагрева

По способу нагревания терморезисторы делятся на два типа:

  1. ПРЯМОГО НАГРЕВА. Подразумевается изменение температуры детали под действием окружающего воздуха или тока, протекающего через деталь. Устройства с прямым нагревом чаще всего применяются для решения двух задач — изменения температуры или восстановления нормального режима. Такие терморезисторы применяются в градусниках, ЗУ, термостатах и других устройствах.
  2. КОСВЕННОГО НАГРЕВА. В отличие от прошлого типа здесь нагрев происходит из-за элементов, находящихся в непосредственной близости от резистора. Узлы никак не взаимосвязаны. При таком подходе сопротивление полупроводника обуславливается изменением тока, который проходит через близлежащий элементы. Терморезисторы, работающие на косвенном принципе, нашли применение в мультиметрах (комбинированных приборах).

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Параметры терморезисторов:

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Базовые характеристики терморезисторов

При оценке терморезисторов нужно учесть и проанализировать их характеристики:

  1. Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
  2. Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
  3. Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.

Общий принцип действия

Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.

Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.

Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

NTC

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

PTC

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

  1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
  2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
  3. Нагревательный узел в пистолетах для приклеивания.
  4. В машинах для нагрева тракта впуска.
  5. Размагничивание ЭЛТ-кинескопов и т. д.

Как проверить с помощью мультиметра

Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.

С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.

Алгоритм действий:

  1. Перевод прибора в режим замера сопротивления.
  2. Подключение щупов к клеммам терморезистора (расположение не имеет значения).
  3. Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
  4. Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
  5. Если сопротивление снижается или увеличивается, полупроводник работает правильно.

Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.

После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.

Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.

Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.

Как подключить

Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.

Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.

Вторую отпайку терморезистора необходимо посадить на «землю». Центр двух резисторов подключается к контакту «Аналог 0).

<

Где находится на схеме

Отображение терморезистора на схеме может различаться. Изделие легко найти по обозначениям t и t0. Внешне оно отражается как сопротивление, через которое проходит полоска по диагонали с «подставкой» под t0 снизу. Главные обозначения — R1, Th2 или RK1.

Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.

Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.

SMD и встроенные терморезисторы

Существует также еще два вида терморезисторов, которым стоит уделить внимание:

  1. SMD — детали с особым типом монтажа (для внешнего крепления). Внешне они не сильно отличаются от конденсаторов SMD, изготовленных из керамики. Габариты соответствуют стандартному ряду — 1206, 0805, 0603 и т. д. По виду отличить такие изделия от терморезисторов SMD почти невозможно.
  2. Встроенные. Применяются в паяльных станциях (для контроля температуры жала), в том числе термовоздушного типа.

В дополнение стоит сказать, что в электронике вместе с терморезисторами используются термореле и термические предохранители, которые работают на похожем принципе и также устанавливаются в электронных приборах.

<

определение, виды, как работает и как выбрать

Термистор представляет собой резистивный термометр или резистор, сопротивление которого зависит от температуры.  Термин представляет собой комбинацию термо и резистор. Он изготовлен из оксидов металлов, спрессован в шарики, диски или цилиндрическую форму, а затем герметизирован непроницаемым материалом, таким как эпоксидная смола или стекло.

Существует два типа термисторов: отрицательный температурный коэффициент (NTC) и положительный температурный коэффициент (PTC). С термистором NTC, когда температура увеличивается, сопротивление уменьшается. И наоборот, когда температура снижается, сопротивление увеличивается. Этот тип термистора используется чаще всего.

Термистор PTC работает немного по-другому. Когда температура увеличивается, сопротивление увеличивается, а когда температура уменьшается, сопротивление уменьшается. Этот тип термистора обычно используется в качестве предохранителя. Огромный выбор терморезисторов вы можете посмотреть и приобрести на Алиэкспресс:

Как правило, термистор достигает высокой точности в ограниченном температурном диапазоне около 50ºC относительно целевой температуры.  Этот диапазон зависит от базового сопротивления.

Термистор на схеме

Стрелка Т обозначает, что сопротивление является переменным в зависимости от температуры. Направление стрелки или полосы не имеет значения.

Термисторы просты в использовании, недороги, прочны и предсказуемо реагируют на изменения температуры. Хотя они не очень хорошо работают при чрезмерно высоких или низких температурах, они являются предпочтительным датчиком для применений, которые измеряют температуру в желаемой базовой точке. Они идеальны, когда требуются очень точные температуры.

Некоторые из наиболее распространенных применений термисторов используются в цифровых термометрах, в автомобилях для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, но они также встречаются практически в любом приложении, где для обеспечения безопасности требуются защитные контуры отопления или охлаждения. Для более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью, встроен термистор. Например, термистор 10 кОм является стандартом, который встроен в лазерные пакеты.

История термистора

Майкл Фарадей — английский ученый впервые открыл понятие термисторов в 1833 году, сообщая о полупроводниковом поведении сульфида серебра. Благодаря своим исследованиям он заметил, что устойчивость к сульфидам серебра снижалась с повышением температуры. Это открытие впоследствии привело к коммерческому производству термисторов в 1930-х годах, когда Сэмюэль Рубен изобрел первый коммерческий термистор.  С тех пор технология улучшилась; прокладывать дорогу к совершенствованию производственных процессов; наряду с доступностью более качественного материала.

Как работает термистор

Термистор на самом деле ничего не «читает», вместо этого сопротивление термистора меняется в зависимости от температуры. Степень изменения сопротивления зависит от типа материала, используемого в термисторе.

В отличие от других датчиков, термисторы являются нелинейными, то есть точки на графике, представляющие взаимосвязь между сопротивлением и температурой, не будут образовывать прямую линию. Расположение линии и степень ее изменения определяется конструкцией термистора. Типичный график термистора выглядит следующим образом:

Как изменение сопротивления преобразуется в измеримые данные, будет подробно рассмотрено ниже.

Разница между термистором и другими датчиками

В дополнение к термисторам используются несколько других типов датчиков температуры. Наиболее распространенными являются резистивные датчики температуры (RTD) и интегральные схемы (IC), такие как типы LM335 и AD590.  Какой датчик лучше всего подходит для конкретного использования, зависит от многих факторов. В приведенной ниже таблице дано краткое сравнение преимуществ и недостатков каждого из них.

ПараметрТермисторRTDLM335AD592
Разница температурВ пределах ~ 50° С от заданной центральной температурыОт −260° C до + 850° C  От −40° C до + 100° C  От -20° C до + 105° C  
Относительная стоимость  НедорогойСамый дорогойДорогойДорогой
Постоянная времениОт 6 до 14 секундОт 1 до 7 секундОт 1 до 3 секундОт 2 до 60 секунд
СтабильностьОчень стабильный, 0,0009° C~0.05° С~0.01° С~0.01° С
Чувствительность  ВысокоНизкийНизкийНизкий
Преимущества  Долговечный
Долгоиграющий
Высокочувствительный
Маленький размер
Самая низкая
СтоимостьЛучше всего подходит для измерения температуры в одной точке  
Лучшее время отклика
Линейный выход
Самый широкий диапазон рабочих температур
Лучше всего для измерения диапазона температур  
Умеренно дорого
Линейный выход  
Умеренно дорого
Линейный выход  
НедостаткиНелинейный выход
Ограниченный температурный диапазон
Медленное время отклика  
Дорого
Низкая чувствительность  
Ограниченный температурный диапазон
Низкая чувствительность
Большой размер  
Самое медленное время отклика
Ограниченный температурный диапазон
Низкая чувствительность
Большой размер  

Температурный диапазон: приблизительный общий диапазон температур, в которых может использоваться тип датчика.  В пределах заданного температурного диапазона некоторые датчики работают лучше, чем другие.

Относительная стоимость: относительная стоимость, поскольку эти датчики сравниваются друг с другом. Например, термисторы недороги по отношению к термометрам сопротивления, отчасти потому, что предпочтительным материалом для термопреобразователей сопротивления является платина.

Постоянная времени: приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое термистору требуется для достижения 63,2% разницы температур от начального показания до окончательного.

Стабильность: способность контроллера поддерживать постоянную температуру на основе обратной связи датчика температуры.

Чувствительность: степень реакции на изменение температуры.

Преимущества и недостатки NTC и PTC

Термисторы NTC прочны, надежны и стабильны, и они оборудованы для работы в экстремальных условиях окружающей среды и помехоустойчивости в большей степени, чем другие типы датчиков температуры.

  • Компактный размер: варианты упаковки позволяют им работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
  • Быстрое время отклика: небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
  • Экономичность: термисторы не только дешевле, чем другие типы датчиков температуры; Если приобретенный термистор имеет правильную кривую RT, никакая другая калибровка не требуется во время установки или в течение срока ее эксплуатации.
  • Совпадение точек: способность получить определенное сопротивление при определенной температуре.
  • Соответствие кривой: сменные термисторы с точностью от + 0,1 ° C до + 0,2 ° C.

Какие типы и формы термистора доступны на рынке

Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему.  Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа.

Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей. Термисторный чип обычно монтируется на печатной плате (PCB). Существует много, много разных форм термисторов, и некоторые примеры:

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.

Какое сопротивление термистора и ток смещения следует использовать

Термисторы классифицируются по величине сопротивления, измеренной при комнатной температуре окружающей среды, которая считается 25° C.  Устройство, температуру которого необходимо поддерживать, имеет определенные технические характеристики для оптимального использования, как определено производителем. Они должны быть определены до выбора датчика. Поэтому важно знать следующее.

Каковы максимальные и минимальные температуры для устройства

Термисторы идеально подходят для измерения температуры в одной точке, которая находится в пределах 50 ° C от температуры окружающей среды. Если температура слишком высокая или низкая, термистор не будет работать. Хотя есть исключения, большинство термисторов работают лучше всего в диапазоне от -55 ° C до + 114 ° C.

Поскольку термисторы являются нелинейными, то есть значения температуры и сопротивления изображены на графике в виде кривой, а не прямой линии, очень высокие или очень низкие температуры регистрируются неправильно. Например, очень небольшие изменения при очень высоких температурах будут регистрировать незначительные изменения сопротивления, которые не приведут к точным изменениям напряжения.

Каков оптимальный диапазон термисторов

В зависимости от тока смещения от контроллера каждый термистор имеет оптимальный полезный диапазон, то есть диапазон температур, в котором небольшие изменения температуры точно регистрируются.

В таблице ниже приведены наиболее эффективные диапазоны температур для термисторов с длиной волны при двух наиболее распространенных токах смещения.

Лучше всего выбрать термистор, где заданная температура находится в середине диапазона. Чувствительность термистора зависит от температуры. Например, термистор может быть более чувствительным при более низких температурах, чем при более высоких температурах, как в случае с термистором TCS10K5 10 кОм длины волны. В TCS10K5 чувствительность составляет 162 мВ на градус Цельсия в диапазоне от 0 до 1° C, и 43 мВ / °C в диапазоне от 25 до 26 ° C, и 14 мВ ° C в диапазоне от 49 до 50 ° C. C.

Каковы верхний и нижний пределы напряжения на входе датчика регулятора температуры

Пределы напряжения обратной связи датчика к регулятору температуры устанавливаются производителем.  В идеале следует выбрать комбинацию термистора и тока смещения, которая создает напряжение в пределах диапазона, разрешенного регулятором температуры.

Напряжение связано с сопротивлением по закону Ома. Это уравнение используется для определения того, какой ток смещения необходим. Закон Ома гласит, что ток через проводник между двумя точками прямо пропорционален разности потенциалов между двумя точками и для этого тока смещения записывается как:

V = I BIAS x R

Где: 
V — напряжение, в вольтах (В) 
BIAS — ток, в амперах или амперах (A) 
BIAS — постоянный ток, 
R — сопротивление, в Ом (Ом)

Контроллер генерирует ток смещения для преобразования сопротивления термистора в измеряемое напряжение. Контроллер принимает только определенный диапазон напряжения. Например, если диапазон контроллера составляет от 0 до 5 В, напряжение термистора должно быть не ниже 0,25 В, чтобы электрические помехи на нижнем конце не мешали считыванию, и не должно превышать 5 В для считывания.

Предположим, что используется вышеуказанный контроллер и термистор 100 кОм, такой как TCS651 длины волны, и температура, которую необходимо поддерживать устройству, составляет 20° C. Согласно спецификации TCS651, сопротивление составляет 126700 Ом при 20 ° C. Чтобы определить, может ли термистор работать с контроллером, нам нужно знать полезный диапазон токов смещения. Используя закон Ома, чтобы решить для I BIAS , мы знаем следующее:

V / R = I BIAS

0,25 / 126700 = 2 мкА — нижний 
предел диапазона 5,0 / 126700 = 39,5 мкА — верхний предел

Да, этот термистор будет работать, если ток смещения регулятора температуры можно установить в диапазоне от 2 мкА до 39,5 мкА.

При выборе термистора и тока смещения лучше всего выбрать тот, в котором развиваемое напряжение находится в середине диапазона. Входной сигнал обратной связи контроллера должен быть под напряжением, которое выводится из сопротивления термистора.

Поскольку люди наиболее легко относятся к температуре, сопротивление часто нужно менять на температуру.  Наиболее точная модель, используемая для преобразования сопротивления термистора в температуру, называется уравнением Стейнхарта-Харта.

Термистор — электронный компонент, области применения, для чего нужен

Термистор (терморезистор, temperature-sensitive resistor — eng.) – резистор на основе полупроводника, значительно уменьшающий своё сопротивление при понижении температуры. На основе этих данных можно измерять температуру в понятном для микроконтроллёров виде.

Основным материалом для изготовления термистора (с отрицательным ТКС*) служат поликристаллические оксидные полупроводники (окислы металлов).

Существует также разновидность терморезисторов (с положительным ТКС*) – позисторы. Их получают из титана вкупе с бариевой керамикой и редкоземельными металлами. Значительно увеличивают сопротивление при увеличении температуры. Основное применение – температурная стабилизация устройств на транзисторах.

Термистор изобретён Самуэлем Рубеном (Samuel Ruben) в 1930 году.

Термисторы применяются в микроэлектронике для контроля температур, тяжёлой промышленности, мобильных измерительных устройствах, выполняют функцию защиты импульсных блоков питания от больших зарядных токов конденсаторов & etc.

Очень часто встречаются на компьютерных комплектующих.

Позволяют измерять температуру процессоров, оперативной памяти, видеокарт, систем питания, чипсетов, жёстких дисков и прочих компонентов. Довольно надёжны, хотя не редок заводской брак, когда температура смещена на несколько десятков градусов, либо вообще находится в минусе.

Существуют также термисторы с собственным встроенным подогревом. Служат для ручного включения подогрева и подачи сигнала с резистора о изменении сопротивления, либо для контроля подачи питания сети (при отключении резистор перестанет нагреваться и изменит сопротивление).

Формы и размеры термисторов могут быть разными (диски, бусинки, цилиндры & etc).

Основными характеристиками полупроводникового термистора являются: ТКС*, диапазон рабочих температур, максимально допустимая мощность рассеяния, номинальное сопротивление.

Термисторы (большинство) выносливы к различным температурам, механическим нагрузкам, к износу от времени, а при определённой обработке и к агрессивным химическим средам.

*Температурный Коэффициент Сопротивления

характеристики и параметры, принцип действия и классификация

Развитие электроники с каждым годом набирает обороты. Но, несмотря на новые изобретения, в электрических схемах надёжно работают устройства, сконструированные ещё в начале XX века. Один из таких приборов — термистор. Форма и назначение этого элемента настолько разнообразны, что быстро отыскать его в схеме удаётся только опытным работникам сферы электротехники. Понять, что такое термистор, можно лишь владея знаниями о строении и свойствах проводников, диэлектриков и полупроводников.

Описание прибора

Датчики температуры широко используются в электротехнике. Почти во всех механизмах применяются аналоговые и цифровые микросхемы термометров, термопары, резистивные датчики и термисторы. Приставка в названии прибора говорит о том, что термистор — это такое устройство, которое зависит от влияния температуры. Количество тепла в окружающей среде — главенствующий показатель в его работе. Благодаря нагреванию или охлаждению, меняются параметры элемента, появляется сигнал, доступный для передачи на механизмы контроля или измерения.

Термистор — это прибор электроники, у которого значения температуры и сопротивления связаны обратной пропорциональностью.

Существуют и другое его название — терморезистор. Но это не вполне правильно, так как на самом деле термистор является одним из подвидов терморезистора. Изменение теплоты может влиять на сопротивление резистивного элемента двумя способами: либо увеличивая его, либо уменьшая.

Поэтому термосопротивления по температурному коэффициенту подразделяются на РТС (положительные) и NTC (отрицательные). РТС — резисторы получили название позисторов, а NTC — термисторов.

Отличие РТС и NTC приборов состоит в изменении их свойств при воздействии климатических условий. Сопротивление позисторов прямо пропорционально количеству тепла в окружающей среде. При нагреве NTC — приборов его значение уменьшается.

Таким образом, повышение температуры позистора приведёт к росту его сопротивления, а у термистора — к падению.

Вид терморезистора на электрических принципиальных схемах похож на обыкновенный резистор. Отличительной чертой является прямая под наклоном, которая перечёркивает элемент. Тем самым показывая, что сопротивление не постоянно, а может изменяться в зависимости от увеличения или уменьшения температуры в окружающей среде.

Основное вещество для создания позисторов — титанат бария. Технология изготовления NTC — приборов более сложная из-за смешивания различных веществ: полупроводников с примесями и стеклообразных оксидов переходных металлов.

Классификация термисторов

Габариты и конструкция терморезисторов различны и зависят от области их применения.

Форма термисторов может напоминать:

  • плоскую пластину;
  • диск;
  • стержень;
  • шайбу;
  • трубку;
  • бусинку;
  • цилиндр.

Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.

Классификация терморезисторов по числу градусов в Кельвинах:

  • сверх высокотемпературные — от 900 до 1300;
  • высокотемпературные — от 570 до 899;
  • среднетемпературные — от 170 до 510;
  • низкотемпературные — до 170.

Максимальный нагрев хоть и допустим для термоэлементов, но сказывается на их работе ухудшением качества и появлением значительной погрешности в показателях.

Технические характеристики и принцип действия

Выбор терморезистора для контролирующего или измерительного механизма проводят по номинальным паспортным или справочным данным. Принцип действия, основные характеристики и параметры термисторов и позисторов похожи. Но некоторые отличия все же существуют.

РТС — элементы оцениваются тремя определяющими показателями: температурной и статической вольт — амперной характеристикой, термическим коэффициентом сопротивления (ТКС).

У термистора список более широкий.

Помимо параметров, аналогичных позистору, показатели следующие:

  • номинальное сопротивление;
  • коэффициенты рассеяния, энергетической чувствительности и температуры;
  • постоянная времени;
  • температура и мощность по максимуму.

Из этих показателей основными, которые влияют на выбор и оценивание термистора, являются:

  • номинальное сопротивление;
  • термический коэффициент сопротивления;
  • мощность рассеяния;
  • интервал рабочей температуры.

Номинальное сопротивление определяется при конкретной температуре (чаще всего двадцать градусов Цельсия). Его значение у современных терморезисторов колеблется в пределах от нескольких десятков до сотен тысяч ом.

Допустима некоторая погрешность значения номинального сопротивления. Она может составлять не более 20% и должна быть указана в паспортных данных прибора.

ТКС зависит от теплоты. Он устанавливает величину изменения сопротивления при колебании температуры на одно деление. Индекс в его обозначении указывает на количество градусов Цельсия либо Кельвина в момент измерений.

Выделение теплоты на детали появляется из-за протекания по ней тока при включении в электрическую цепь. Мощность рассеяния — величина, при которой резистивный элемент разогревается от 20 градусов Цельсия до максимально допустимой температуры.

Интервал рабочей температуры показывает такое её значение, при котором прибор работает длительное время без погрешностей и повреждений.

Принцип действия термосопротивлений основан на изменении их сопротивления под влиянием теплоты.

Происходит это по нескольким причинам:

  • из-за фазового превращения;
  • ионы с непостоянной валентностью более энергично обмениваются электронами;
  • сосредоточенность заряженных частиц в полупроводнике распределяется другим образом.

Термисторы используются в сложных устройствах, которые применяются в промышленности, сельском хозяйстве, схемах электроники автомобилей. А также встречаются в приборах, которые окружают человека в быту — стиральных, посудомоечных машинах, холодильниках и другом оборудовании с контролем температуры.

Терморезисторы. Виды и устройство. Работа и параметры

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

На электрических схемах терморезисторы обозначаются:

Устройство и работа

Они имеют простую конструкцию, выпускаются разных размеров и формы.

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

Основные параметры
  • ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.
Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды. Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью. При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Применение термисторов
  • Измерение температуры.
  • Бытовая техника: морозильники, фены, холодильники и т.д.
  • Автомобильная электроника: измерение охлаждения антифриза, масла, контроль выхлопных газов, системы торможения, температура в салоне.
  • Кондиционеры: распределение тепла, контроль температуры в помещении.
  • Отопительные котлы, теплые полы, печи.
  • Блокировка дверей в устройствах нагревания.
  • Электронная промышленность: стабилизация температуры лазерных фотоэлементов и диодов, а также медных обмоток катушек.
  • В мобильных телефонах для компенсации нагрева.
  • Ограничение тока запуска двигателей, ламп освещения, импульсных блоков питания.
  • Контроль наполнения жидкостей.
Применение позисторов
  • Защита от короткого замыкания в двигателях.
  • Защита от оплавления при токовой перегрузке.
  • Для задержки времени включения импульсных блоков питания.
  • Мониторы компьютеров и кинескопы телевизоров для размагничивания и предотвращения нарушения цвета.
  • В пускателях компрессоров холодильников.
  • Тепловая блокировка трансформаторов и двигателей.
  • Приборы измерения.
  • Автоматика управления техникой.
  • Устройства памяти информации.
  • В качестве нагревателей карбюраторов.
  • В бытовых устройствах: закрывание дверки стиральной машины, в фенах и т.д.
Похожие темы:

Терморезисторы.

Обозначение на схеме, разновидности, применение

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его "потроха". Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

  • Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

  • Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

Давайте разберёмся, какая между ними разница.

NTC-термисторы.

Своё название NTC-термисторы получили от сокращения NTC – Negative Temperature Coefficient, или "Отрицательный Коэффициент Сопротивления". Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.


Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР'а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 - VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить "плавный запуск" электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в "подогретом" состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Далее на фото наглядный пример – сгоревший NTC-термистор 5D-11, который был установлен в зарядном устройстве ИКАР-506. Он ограничивал пусковой ток при включении.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт, называют позисторами. Они же PTC-термисторы (PTC - Positive Temperature Coefficient, "Положительный Коэффициент Сопротивления").

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Условное обозначение позистора на схеме.

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук "бдзынь", когда включается телевизор - это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

Далее на фото трёхвыводный позистор СТ-15-3.

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-"таблеток", которые установлены в одном корпусе. На вид эти "таблетки" абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3 ~ 3,6 кОм, а у другой всего лишь 18 ~ 24 Ом.

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.

Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора - это самовосстанавливающийся предохранитель.

SMD-терморезисторы.

С активным внедрением SMT-монтажа, производители стали выпускать миниатюрные терморезисторы, адаптированные и под него. Размеры их корпуса, как правило, соответствуют стандартным типоразмерам (0402, 0603, 0805, 1206), которые имеют чип резисторы и конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Что такое термистор и как он работает? Для чего они нужны?

Термин термистор происходит от терминов «термический» и «резистор». Термистор - это тип резистора, сопротивление которого зависит от температуры; это термометр сопротивления. Они сделаны из оксида металла, которому придают форму бусинки, диска или цилиндра, а затем покрывают эпоксидной смолой или стеклом.

Термисторы плохо работают при экстремальных температурах, но они идеально подходят для измерения температуры в определенной точке; они точны, когда используются в ограниченном диапазоне температур i. е. в пределах 50 ° C от заданной температуры; этот диапазон зависит от сопротивления базы.

Термисторы просты в использовании, относительно дешевы и долговечны. Они обычно используются в цифровых термометрах, в транспортных средствах для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, и предпочтительны для приложений, в которых для безопасной работы требуются схемы защиты от нагрева или охлаждения.

Термистор встроен для более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью.Например, термистор 10 кОм является стандартным, встраиваемым в лазерные блоки.

Как работает термистор?

Существует два типа термисторов. Наиболее часто используется термистор с отрицательным температурным коэффициентом (NTC). Сопротивление NTC уменьшается с повышением температуры, и наоборот. При использовании термистора с положительным температурным коэффициентом (PTC) сопротивление увеличивается с увеличением температуры, и наоборот; обычно используется как предохранитель.

Тип материала, используемого в термисторе, будет определять степень изменения сопротивления, которое изменяется в зависимости от температуры. Термисторы нелинейны, то есть связь между сопротивлением и температурой не будет прямой линией, она будет образовывать кривую на графике; где находится линия и насколько она меняется, зависит от того, как сделан термистор.

Как изменение сопротивления преобразуется в измеряемые данные?

Изменение сопротивления необходимо преобразовать в температуру, которая затем дает измеримые данные.

Сравнение термисторов с другими датчиками

К другим типам используемых датчиков температуры относятся резистивные датчики температуры (RTD) и интегральные схемы. У каждого типа датчика есть свои плюсы и минусы, и приложение определит лучший инструмент для использования.

1. Термистор

Преимущества:

* кВт изображение

  • Долговечный
  • Чувствительный
  • Маленький
  • Относительно доступный
  • Лучше всего подходит для измерения температуры в одной точке

Недостатки:

  • Изогнутый выход
  • Ограниченный диапазон температур

2. Температурные датчики сопротивления

Преимущества:

  • Чрезвычайно точный
  • Линейный выход
  • Широкий температурный диапазон

Недостатки:

Типы термисторов:

От чипа до стержневой формы, существует множество формы, доступные для поверхностного монтажа или встраивания.

Форма определяется типом контролируемого материала, то есть твердым, жидким или газообразным. Они могут быть заключены в смолу / стекло, обожжены на феноле или окрашены в зависимости от применения.Например, микросхемы термисторов устанавливаются на печатные платы, тогда как термистор с шариковыми выводами может быть встроен в устройство. Независимо от области применения, максимальный контакт поверхности с контролируемым устройством и использование теплопроводящей (не электропроводящей) пасты или эпоксидного клея для соединения являются идеальным решением.

Как термистор работает в управляемой системе?

Контроллер температуры контролирует температуру термистора, который затем дает команду нагревателю или охладителю, когда нужно включить или выключить, чтобы поддерживать температуру датчика (термистора), а также целевого устройства. Они широко используются в таких приложениях, как кондиционирование воздуха, холодильники / морозильники с витринами и многое другое.

Через датчик проходит небольшой ток (ток смещения), который посылается контроллером температуры. Контроллер не может считывать сопротивление, поэтому его необходимо преобразовать в изменения напряжения, используя источник тока для подачи тока смещения на термистор для создания управляющего напряжения.

Чтобы гарантировать точность, термистор следует размещать рядом с устройством, которое требует контроля температуры, встроенным или присоединенным.Если термистор расположен слишком далеко от устройства, время тепловой задержки резко снизит точность измерения температуры, а размещение термистора слишком далеко от термоэлектрического охладителя (нагревает и охлаждает целевое устройство) снижает стабильность. Чем ближе термистор к устройству, тем быстрее он будет реагировать на изменения температуры и тем точнее будет, что очень важно, когда требуются точные температуры.

После определения размещения термистора необходимо определить сопротивление базового термистора, ток смещения и заданную (желаемую) температуру нагрузки на контроллере температуры.

Как определить, какое сопротивление и ток смещения использовать?

Термисторы классифицируются по величине сопротивления, измеренной при комнатной температуре, например, 25 ° C; производитель определяет определенные технические характеристики для оптимального использования.

Температуры и диапазон:
Термисторы работают лучше всего при измерении одной температуры в диапазоне от -55 ° C до + 114 ° C, т.е. при измерении в пределах 50 ° C от окружающей среды; очень высокие или низкие температуры не регистрируются правильно.Лучше всего использовать термистор, когда заданная температура находится в середине диапазона.

В зависимости от тока смещения от контроллера каждый термистор имеет идеальный диапазон, то есть диапазон температур, в котором точно регистрируются небольшие изменения температуры. Чувствительность термистора зависит от температуры. Например, некоторые термисторы более чувствительны при более низких температурах, чем при более высоких температурах.

Пределы напряжения на входе термистора регулятора температуры:

Изготовитель указывает пределы напряжения обратной связи термистора с регулятором температуры.Лучше всего выбрать комбинацию термистора и тока смещения, которая обеспечивает напряжение в пределах диапазона, разрешенного регулятором температуры, а в идеале - в середине диапазона.

Вход обратной связи регулятора температуры должен быть под напряжением, которое исходит от сопротивления термистора; обычно ее нужно изменить на температуру. Самый точный способ преобразовать сопротивление термистора в температуру - использовать уравнение Стейнхарта-Харта.

Что такое уравнение Стейнхарта-Харта и как оно используется?

Уравнение Стейнхарта-Харта - это простой метод более простого и точного моделирования температур термисторов. Это был ручной расчет, который был разработан до компьютеров, но теперь может быть рассчитан автоматически с помощью компьютерного программного обеспечения.

Уравнение вычисляет фактическое сопротивление термистора как функцию температуры с максимальной точностью; чем уже диапазон температур, тем точнее будет расчет сопротивления.


Вкратце:

Термисторы изменяют сопротивление при изменении температуры; это резисторы, зависящие от температуры.Они идеально подходят для сценариев, в которых необходимо поддерживать одну определенную температуру, они чувствительны к небольшим изменениям температуры. Они могут измерять жидкость, газ или твердые тела, в зависимости от типа термистора.

Это лучший способ измерить и контролировать температуру термоэлектрического охладителя, как часть системы контроля температуры, благодаря их способности регулировать с небольшими приращениями. Чем ближе термистор к устройству, за которым нужно следить, тем лучше будет результат; они могут быть встроены в устройство или монтироваться на поверхность.

Обратите внимание, что термисторы бывают самых разных типов. Если вам нужен термистор производства Pyrosales - просьба иметь как можно больше информации, включая стоимость лампы. Свяжитесь с нами для получения дополнительной информации или позвоните по телефону 1300 737 976 .

Что такое термистор? - Информация о термисторе

Термисторы - это термочувствительные резисторы, основная функция которых - показывать большое, предсказуемое и точное изменение электрического сопротивления при соответствующем изменении температуры тела.Термисторы с отрицательным температурным коэффициентом (NTC) демонстрируют снижение электрического сопротивления при повышении температуры тела, а термисторы с положительным температурным коэффициентом (PTC) демонстрируют увеличение электрического сопротивления при повышении температуры тела. U.S. Sensor Corp.®, приобретенная Littelfuse в 2017 году, производит термисторы, способные работать в диапазоне температур от -100 ° до + 600 ° по Фаренгейту. Из-за их очень предсказуемых характеристик и превосходной долговременной стабильности термисторы обычно считаются наиболее предпочтительными датчиками для многих приложений, включая измерение и контроль температуры.

С тех пор, как отрицательный температурный коэффициент сульфида серебра был впервые обнаружен Майклом Фарадеем в 1833 году, технология термисторов постоянно совершенствовалась. Самой важной характеристикой термистора, несомненно, является его чрезвычайно высокий температурный коэффициент сопротивления. Современная термисторная технология позволяет производить устройства с чрезвычайно точными характеристиками сопротивления в зависимости от температуры, что делает их наиболее выгодными датчиками для широкого спектра применений.

Изменение электрического сопротивления термистора из-за соответствующего изменения температуры очевидно независимо от того, изменяется ли температура корпуса термистора в результате проводимости или излучения из окружающей среды или из-за «самонагрева», вызванного рассеянием мощности внутри устройства.

Когда термистор используется в цепи, в которой мощность, рассеиваемая в устройстве, недостаточна для «самонагрева», температура корпуса термистора будет соответствовать температуре окружающей среды.Термисторы не являются «самонагревающимися» для использования в таких приложениях, как измерение температуры, контроль температуры или температурная компенсация.

Когда термистор используется в цепи, где мощность, рассеиваемая внутри устройства, достаточна для «самонагрева», температура корпуса термистора будет зависеть от теплопроводности окружающей среды, а также от его температуры. Термисторы являются «самонагревающимися» для использования в таких приложениях, как определение уровня жидкости, определение расхода воздуха и измерение теплопроводности.

Что такое термистор

Термистор - это термочувствительный резистор, который демонстрирует точное и предсказуемое изменение сопротивления, пропорциональное небольшим изменениям температуры тела. Насколько изменится его сопротивление, зависит от его уникального состава. Термисторы являются частью большой группы пассивных компонентов. И в отличие от своих активных компонентов, пассивные устройства не способны обеспечить усиление мощности или усиление схемы.

История термистора

Майкл Фарадей; Английский ученый впервые открыл концепцию термисторов в 1833 году, когда писал о полупроводниковом поведении сульфида серебра. В ходе своих исследований он заметил, что сопротивление сульфидам серебра снижается с повышением температуры. Это открытие позже привело к коммерческому производству термисторов в 1930-х годах, когда Самуэль Рубен изобрел первый коммерческий термистор. С тех пор технология улучшилась; прокладывая путь к совершенствованию производственных процессов; наряду с наличием более качественного материала.

Типы термисторов

Есть два типа термисторов. NTC или термисторы с отрицательным температурным коэффициентом и PTC или термисторы с положительным температурным коэффициентом . Разница в том, что термисторы NTC демонстрируют УМЕНЬШЕНИЕ сопротивления при повышении температуры тела, в то время как термисторы PTC демонстрируют УВЕЛИЧЕНИЕ сопротивления при повышении температуры тела.

Применения термисторов NTC и PTC включают:

  • Температурная компенсация
  • Измерение температуры
  • Контроль температуры
  • Ограничение пускового тока

Преимущества термисторов NTC и PTC

Термисторы

NTC прочные, надежные и стабильные, они лучше других типов датчиков температуры приспособлены для работы в экстремальных условиях окружающей среды и обладают большей помехоустойчивостью.

  • Компактный размер : варианты упаковки позволяют работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
  • Быстрое время отклика : Небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
  • Экономичный : Термисторы не только дешевле, чем другие типы датчиков температуры; Если у приобретенного термистора правильная кривая RT, никакая другая калибровка не требуется во время установки или в течение его срока службы.
  • Точечное совпадение : Способность получить определенное сопротивление при определенной температуре.
  • Curve match : Сменные термисторы с точностью от + 0,1 ° C до + 0,2 ° C.

Общие рекомендации по выбору

Независимо от того, устанавливаете ли вы новую систему или просто заменяете устройство в существующей системе, вы должны рассмотреть эти ключевые моменты, прежде чем делать свой выбор, чтобы гарантировать желаемый результат.

  1. Базовое сопротивление : Если вы устанавливаете новое приложение, обязательно выберите правильное базовое сопротивление в зависимости от требований вашего приложения. Если вы заменяете термистор, убедитесь, что оно соответствует текущему сопротивлению базы.
  2. Кривая зависимости сопротивления от температуры : Если вы устанавливаете новое приложение, определите правильную зависимость сопротивления от кривой температуры. Если вы заменяете устройство, убедитесь, что совпадают данные с существующим термистором.
  3. Упаковка термистора : Убедитесь, что выбранная упаковка соответствует требованиям вашего приложения.

Для получения дополнительной помощи в процессе выбора посетите нашу страницу Выбор термисторов NTC

Термисторы NTC являются нелинейными, и, как следует из их названия, их сопротивление уменьшается с увеличением температуры.Явление, называемое самонагревом, может повлиять на сопротивление термистора NTC. Когда ток проходит через термистор NTC, он поглощает тепло, вызывая повышение собственной температуры.

Приложения

  • Измерение температуры
  • Температурная компенсация
  • Контроль температуры

Посетите нашу страницу, посвященную применению термисторов, чтобы получить дополнительную информацию обо всем - от расчета температурного коэффициента термистора до измерения температуры с помощью моста Уитстона.

Преимущества

  • Время отклика до (± 1%).
  • Точность: термисторы NTC имеют диапазон точности от 0,05 до 0,20 ˚C с долговременной стабильностью. Другие датчики температуры могут со временем дрейфовать.
  • Упаковка: Термисторы NTC можно настроить в соответствии с требованиями различных приложений.
  • Помехоустойчивость: термисторы NTC обеспечивают превосходную устойчивость к электрическим помехам и сопротивление проводов больше, чем другие типы датчиков температуры.
  • Рентабельность: из-за своего небольшого размера и простоты производства термисторы с NTC и PTC оказываются очень экономичным выбором.

Производственный процесс NTC

Мы производим термисторы NTC, используя смесь оксидов металлов, таких как марганец, никель или медь; вместе со связующими и стабилизаторами. Материал прессуется в вафельные формы и спекается при экстремальных температурах; делая пластины готовыми либо к разрезанию на термисторы меньшего размера, либо оставленным в виде дискового термистора.

Конфигурации

Термисторы

NTC доступны в различных конфигурациях, как указано ниже:

  • Диск и микросхема : Они поставляются с покрытием или без покрытия с лужеными медными выводами с быстрым откликом (± 1%). Также имеется широкий диапазон значений сопротивления для любой ситуации
  • Эпоксидное покрытие : Эпоксидное покрытие, нанесенное методом погружения и припаянное между тефлоновыми / ПВХ проводами в оболочке. Их небольшие размеры позволяют легко устанавливать, и они могут быть согласованы по точкам или кривой
  • Glass-Encapsulated : отличный выбор для работы в экстремальных условиях окружающей среды. Конфигурации включают радиальные или осевые выводы
  • Зонд в сборе : доступны в различных корпусах в зависимости от требований приложения
  • Поверхностный монтаж : Варианты конфигурации включают навал, на ленту и катушку, двусторонний и наматывающий с наконечниками из палладиевого серебра. Эти термисторы, изготовленные из никелевого барьера, отлично работают в прецизионных схемах

Словарь термисторов NTC

  • Константа рассеяния (D.C. или дельта d) : Константа рассеяния - это отношение, обычно выражаемое в милливаттах на градус C (мВт / ° C) при заданной температуре окружающей среды, между изменением рассеиваемой мощности в термисторе и результирующим изменением температуры тела
  • Постоянная материала (бета β) : Постоянная материала термистора NTC является мерой его сопротивления при одной температуре по сравнению с его сопротивлением при другой температуре. Его значение можно рассчитать по приведенной ниже формуле и выразить в градусах кельвина (° k).β = ln (R @ T2 / R @ T1) / (T2- 1 - T 1-1)
  • Максимальная номинальная мощность : Максимальная номинальная мощность термистора - это максимальная мощность, выраженная в ваттах или милливаттах (Вт или мВт), которую термистор будет рассеивать в течение длительного периода времени с приемлемой стабильностью его характеристик.
  • Steinhart-Hart : Это эмпирическое выражение, которое было определено как лучшее математическое выражение для определения зависимости сопротивления от температуры термисторов NTC и узлов датчиков NTC
  • Температурный коэффициент сопротивления (Alpha, α) : Отношение при заданной температуре T скорости изменения сопротивления нулевой мощности с температурой к сопротивлению нулевой мощности термистора.Температурный коэффициент; обычно выражается в процентах на градус Цельсия (% / ˚C)
  • Температурный допуск : Температурный допуск равен тому, сколько отклонений в ° C можно ожидать от термистора при определенной температуре
  • Температурная постоянная времени (T. C. или tau, t) : Время, необходимое термистору для изменения 63,2% общей разницы между его начальной и конечной температурой корпуса, когда он подвергается ступенчатому изменению температуры в условиях нулевой мощности.Обычно выражается в секундах

Термисторы с положительным температурным коэффициентом (PTC)

предлагают пассивный подход к ограничению пускового тока. Используя термистор с положительным температурным коэффициентом, вы, вероятно, увидите снижение эксплуатационных расходов и более высокую надежность; без ущерба для защиты. Термисторы PTC испытывают изменение сопротивления при изменении температуры окружающей среды или при самонагреве устройства из-за поглощения входящего тока.А поскольку ограничение пускового тока зависит от указанного сопротивления термистора PTC, правильный выбор играет решающую роль в защите системы.

Типы термисторов PTC

  • Керамические переключающие термисторы PTC
  • Кремниевые кремниевые термисторы PTC
  • Полимерные термисторы PPTC

Процесс изготовления термистора PTC

Процесс производства PTC требует тщательного контроля как материала, так и размера частиц, чтобы производить качественные устройства с надлежащими характеристиками переключения и номинальными напряжениями.

Общие приложения термистора PTC

  • Задержка по времени
  • Размагничивание
  • Запуск двигателя
  • Максимальная токовая защита

Если вы хотите узнать больше о термисторах PTC и их отличиях от термисторов NTC, посетите Wikipedia

Керамические переключающие термисторы PTC

Термисторы этого типа демонстрируют сильно нелинейную кривую зависимости сопротивления от температуры. И поскольку термисторы PTC обладают сопротивлением с положительным температурным коэффициентом, они показывают незначительную часть отрицательного температурного коэффициента, пока не достигнут критической температурной точки, известной как «кюри» или переходное состояние.Когда это произойдет, устройство начнет показывать положительный температурный коэффициент и значительное увеличение сопротивления.

Производственный материал

Керамические переключающие термисторы PTC

производятся из поликристаллического керамического материала, содержащего титанат бария, который был легирован редкоземельными материалами для придания ему сопротивления с положительным температурным коэффициентом.

Приложения

  • Защита от перегрева
  • Защита от перегрузки по току
  • Температурная компенсация
  • Время задержки

Преимущества термисторов PTC для ограничения пускового тока

Чтобы продемонстрировать универсальность термисторов PTC, ниже приведены несколько примеров, когда их использование в качестве ограничителя пускового тока является оптимальным выбором.

  • Температура окружающей среды выше 65 ° C.
  • Температура окружающей среды ниже нуля ° C.
  • Время возврата должно быть близко к нулю ° C.
  • Проблемы с коротким замыканием.

Посетите Термисторы PTC для ограничения пускового тока, чтобы увидеть, как термистор PTC сравнивается с термистором NTC, и получить дополнительную информацию об особых обстоятельствах, когда термистор PTC явно является лучшим выбором для ограничения пускового тока.

Конфигурации

  • С радиальными выводами
  • Крепление на поверхность

Словарь термисторов PTC

  • Константа рассеяния (постоянный ток или дельта d) : Константа рассеяния - это отношение, обычно выражаемое в милливаттах на градус C (мВт / ° C) при заданной температуре окружающей среды, при изменении рассеиваемой мощности в термисторе к результирующее изменение температуры тела.
  • Теплоемкость (Hc) : Теплоемкость термистора - это количество тепла, необходимое для повышения температуры его тела на один градус Цельсия (1 ° C).Теплоемкость - это общий показатель стандартных термисторов PTC, который выражается в ватт-секундах на кубический дюйм на градус Цельсия (ватт-сек / м3 / ° C). Отношение теплоемкости на единицу объема стандартных термисторов PTC составляет примерно 50 Вт-сек / м3 / ° C.
  • Максимальный ток в установившемся режиме (Imax) : Максимальный ток в установившемся режиме - это номинальное значение максимального тока, обычно выражаемого в амперах (A), который может проводиться термистором NTC, ограничивающим броски тока, в течение длительного периода времени.
  • Рабочая температура : Рабочая температура - это диапазон температур, в котором термистор может работать без сбоев.
    Switch Current: Минимальный ток, обычно выражаемый в амперах (A), который при прохождении через стандартный термистор PTC требуется для переключения в состояние с высоким сопротивлением.
  • Температура переключения : Температура стандартного термистора PTC, при которой его сопротивление начинает быстро увеличиваться.
  • Время переключения : Время, необходимое для переключения PTC в состояние высокого сопротивления.
  • Температура переключения : удвоение сопротивления нулевой мощности PTC при 25 ˚C.

Кремниевые PTC-термисторы

Silicon « Silistor » PTC-термисторы - это линейные устройства, которые демонстрируют значительное сопротивление с положительным температурным коэффициентом. Однако если температура превысит 150 ° C, они, скорее всего, будут иметь отрицательный температурный коэффициент.

Приложения

  • Температурная компенсация
  • Датчик температуры

Преимущества

Что особенного в кремниевых термисторах? Во-первых, кремний по своей природе является стабильным материалом, поэтому, если вам нужен термистор, который обеспечивает стабильность и более длительный срок службы, кремниевые термисторы будут хорошим выбором.

Другие преимущества включают:

  • Высокотемпературный коэффициент
  • Несколько конфигураций
  • Высокая надежность

Производственный материал

Материалы, используемые для изготовления кремниевых терморезисторов, представляют собой композит из полимерных материалов, таких как полупроводниковый монокристаллический кремний, а также других проводящих частиц.

Конфигурации

  • Чип SMD
  • Эпоксидная
  • Стекловолокно
  • Зонд в сборе

Полимерные термисторы PPTC

Полимерный термистор (PPTC) представляет собой термистор с положительным температурным коэффициентом, также известный как «самовосстанавливающийся предохранитель », и он демонстрирует нелинейный эффект PTC. Поскольку они являются устройствами с термической активацией, любые колебания температуры окружающей среды будут влиять на работу термистора. В нормальных условиях эксплуатации полимерный PTC демонстрирует минимальное сопротивление по сравнению с остальной частью схемы и практически не влияет на характеристики схемы в целом.

Однако, если система переходит в состояние отказа, PPTC реагирует переходом в состояние с высоким сопротивлением или состояние « срабатывание» . После устранения условий отказа PPTC сбрасывается, и схема возвращается в нормальное рабочее состояние. Посетите Википедию для получения дополнительной информации о сбрасываемых предохранителях и о том, как они работают.

Приложения

  • Управление технологическим процессом и защита медицинского оборудования
  • Бытовая электроника
  • Автомобильная промышленность
  • Telcom

Производственный материал

Непроводящие кристаллические органические материалы, смешанные с частицами сажи, используются для создания полимерных термисторов, благодаря чему они становятся проводящими.

Преимущества

Термисторы PPTC следует рассматривать, если вы часто сталкиваетесь с перегрузкой по току или если приложение требует постоянного времени безотказной работы.Нельзя отрицать, что стоимость компонентов - не единственная проблема. Спрос на более мелкие технологии, такие как носимые устройства, никуда не денется, и защита схем имеет решающее значение. Стоимость гарантийного ремонта может быстро перевесить стоимость датчиков, которые их защищают. Если вам необходимо определить надежность термистора для вашего приложения, посетите нашу страницу «Надежность термистора», чтобы просмотреть формулу для расчета надежности термистора PPTC.

Другие преимущества включают:

  • Сбрасываемый
  • Компактный размер
  • Минимальная потеря мощности.
  • Низкое сопротивление
  • Конфигурации
  • С радиальными выводами
  • Крепление на поверхность

Посетите Википедию, чтобы узнать больше о полимерных термисторах PPTC.

Глоссарий термисторов полимерных PPTC

  • Удерживающий ток : Удерживающий ток - это максимальный установившийся ток, который может пройти через сбрасываемый предохранитель PPTC при 23 C, не вызывая его срабатывания.
  • Максимальный ток : Максимальный ток - это максимальный ток повреждения, который может протекать через PPTC.
  • Максимальное начальное сопротивление : Это максимальное сопротивление PPTC в исходном состоянии при 23 ˚C.
  • Максимальное напряжение : Максимальное напряжение - это максимальное значение напряжения, которому может подвергаться PPTC.
  • Минимальное начальное сопротивление : Это минимальное сопротивление PPTC в его начальном состоянии при 23 ˚C.
  • Post Trip R1 : Это максимальное сопротивление PPTC через час после срабатывания.
  • Рассеиваемая мощность : Рассеиваемая мощность - это количество рассеиваемой мощности, когда PPTC находится в отключенном состоянии.
  • Время до отключения : это время, которое требуется PPTC для переключения в состояние отключения после подачи определенного тока.
  • Ток отключения : Ток отключения - это минимальный ток, протекающий через PPTC, который приведет к его отключению при 23 ° C.

Ресурсы термистора

Узнайте больше о термисторах и их использовании. Следуйте ссылкам на другие ценные ресурсы и информацию.

Математика термистора

Зонд в сборе и кривые NTC RT

Таблица температурных коэффициентов

Мы здесь, чтобы помочь

Наша миссия компании Ametherm - обеспечить вас всеми необходимыми инструментами и знаниями для правильного выполнения работы с первого раза.Вот почему наша команда инженеров всегда готова помочь вам. Свяжитесь с нами по телефону 800-808-2434 или 775-884-2434 , где по вы получите техническую поддержку в реальном времени. Вы также можете в любое время зайти в Интернет, чтобы задать нам вопрос. Ваш успех это и наш успех!

Оцените нашу продукцию

Мы знаем, что выбор подходящего термистора для работы очень важен, поэтому мы рекомендуем вам протестировать наши продукты, прежде чем вы решите купить что-то, что окажется неправильным решением.Свяжитесь с нами, чтобы заказать бесплатный образец, и мы бесплатно отправим его по США и Канаде. Позвоните нам по телефону 800-808-2434 или 775-884-2434 или нажмите здесь, чтобы начать.

Наши продукты доступны для немедленной доставки через наших дистрибьюторов. Пожалуйста, посетите их сайты для получения дополнительной информации о продукте.

Термисторная технология, типы и применение »Электроника

Термистор - это простое устройство, сопротивление которого изменяется в зависимости от температуры.Это можно использовать для многих целей.


Resistor Tutorial:

Обзор резисторов Углеродный состав Карбоновая пленка Металлооксидная пленка Металлическая пленка Проволочная обмотка SMD резистор MELF резистор Переменные резисторы Светозависимый резистор Термистор Варистор Цветовые коды резисторов Маркировка и коды SMD резисторов Характеристики резистора Где и как купить резисторы Стандартные номиналы резисторов и серия E


Название термистор является сокращением слов термический резистор. По сути, это термочувствительный резистор, дающий изменение сопротивления при изменении температуры.

Термисторы

можно использовать по-разному, позволяя температуре среды, окружающей устройство, или самому устройству изменять его сопротивление. Затем это может быть обнаружено оборудованием и использовано для всего, от широкого измерения температуры до устройств защиты от перегрузки и многих других идей.

Термисторы

используются во многих схемах и оборудовании, обеспечивая простой и экономичный, но эффективный метод измерения температуры.

Обозначение цепи термистора

Термистор распознается в цепях по собственному символу цепи. В условном обозначении термисторной цепи в качестве основы используется стандартный прямоугольник резистора, через который проходит диагональная линия с небольшим вертикальным сечением.

Обозначение цепи термистора

Показанное выше обозначение схемы является наиболее распространенным. Можно увидеть и другие типы, но, как правило, они следуют аналогичному подходу - обычно с использованием старого символа резистора в виде зигзагообразной линии в качестве основы с той же линией, проходящей через него, как и с более традиционным прямоугольным резистором.

Типы термисторов

Термисторы можно разделить на разные типы термисторов несколькими способами. Первый зависит от того, как они реагируют на тепло. Некоторые увеличивают свое сопротивление с повышением температуры, тогда как другие демонстрируют падение сопротивления.

Чтобы расширить эту идею, можно использовать очень упрощенное уравнение кривой термистора:

Где
ΔR = изменение сопротивления.
ΔT = изменение температуры.
k = температурный коэффициент сопротивления первого порядка.

В большинстве случаев зависимость между температурой и сопротивлением нелинейна, но при небольших изменениях можно предположить линейную зависимость.

Для некоторых термисторов значение k положительно, а для других - отрицательно, и, соответственно, термисторы можно классифицировать в соответствии с этим аспектом их характеристик.

  • Отрицательный температурный коэффициент (термистор NTC) Термистор этого типа имеет свойство, при котором сопротивление уменьшается с повышением температуры, т. е.е. k отрицательно. Термин термистор NTC широко используется в технических описаниях и данных о компонентах.
  • Положительный температурный коэффициент (термистор PTC) Этот тип имеет свойство, при котором сопротивление увеличивается с увеличением температуры, то есть значение k является положительным.

Помимо характера изменения сопротивления, термисторы также можно классифицировать по типу используемого материала.Обычно используют один из двух материалов:

  • Металлические соединения, включая оксиды и т. Д.
  • Монокристаллические полупроводники

Как впервые были разработаны термисторы

Еще в девятнадцатом веке люди смогли продемонстрировать изменение резистора в зависимости от температуры. Их использовали по-разному, но многие из них имеют сравнительно небольшие отклонения даже в большом диапазоне температур. Термисторы обычно подразумевают использование полупроводников, и они обеспечивают гораздо большее изменение сопротивления при заданном изменении температуры.

Из двух типов материалов, используемых для термисторов, металлические соединения были открыты первыми. Отрицательный температурный коэффициент наблюдал Фарадей в 1833 году, когда он измерял изменение сопротивления сульфида серебра в зависимости от температуры. Однако только в 1940-х годах оксиды металлов стали коммерчески доступными.

В рамках работ, которые были предприняты в области полупроводниковых материалов после Второй мировой войны, были изучены термисторы из кристаллического германия, а позже - кремниевые термисторы.

Хотя существует два типа термисторов: оксиды металлов и полупроводники, они охватывают разные диапазоны температур и, таким образом, не конкурируют друг с другом.

Структура и состав термистора

Термисторы

бывают разных форм и размеров, и они изготавливаются из множества материалов в зависимости от их предполагаемого применения и диапазона температур, в котором они должны работать. По своей физической форме они могут представлять собой плоские диски для применений, где им необходимо соприкасаться с плоской поверхностью.Однако они также могут быть выполнены в форме шариков или даже стержней для использования в датчиках температуры. Фактически, фактическая форма термистора очень зависит от требований к применению.

Металлооксидные термисторы обычно используются для температур в диапазоне 200–700 К. Эти термисторы изготавливаются из мелкодисперсного порошка материала, который сжимается и спекается при высокой температуре. Чаще всего для изготовления этих термисторов используются оксид марганца, оксид никеля, оксид кобальта, оксид меди и оксид железа.

Полупроводниковые термисторы используются для гораздо более низких температур. Германиевые термисторы более широко используются, чем их кремниевые аналоги, и используются при температурах ниже 100 К, то есть в пределах 100 градусов от абсолютного нуля. Кремниевые термисторы можно использовать при температуре до 250 ° К. Выше этой температуры устанавливается положительный температурный коэффициент. Сам термистор сделан из монокристалла, который был легирован до уровня 10 16 - 10 17 на кубический сантиметр.

Применения термистора

Существует множество различных применений термисторов - они используются во многих приложениях. Они предоставляют очень дешевые, но эффективные элементы в схемах и поэтому очень привлекательны в использовании. Фактические применения зависят от того, имеет ли термистор положительный или отрицательный температурный коэффициент.

  • Области применения термисторов с отрицательным температурным коэффициентом:
    • Термометры для очень низких температур: Они используются в качестве термометров сопротивления при измерениях очень низких температур.
    • Цифровые термостаты: Эти термисторы также широко используются в современных цифровых термостатах.
    • Мониторы аккумуляторных батарей: Термисторы NTC также используются для контроля температуры аккумуляторных блоков во время зарядки. Поскольку современные батареи, такие как литий-ионные, очень чувствительны к перезарядке, температура очень хорошо показывает состояние зарядки и время завершения цикла зарядки.
    • Устройства защиты от броска напряжения: Термисторы NTC могут использоваться в качестве устройств ограничения пускового тока в цепях питания. Первоначально они имеют более высокое сопротивление, что предотвращает протекание больших токов при включении, а затем нагреваются и становятся намного более низкими, чтобы обеспечить протекание большего тока во время нормальной работы. Эти термисторы обычно намного больше, чем термисторы измерительного типа, и предназначены для этого применения.

  • Применения для термисторов с положительным температурным коэффициентом:
    • Устройства ограничения тока: Термисторы PTC могут использоваться в качестве устройств ограничения тока в электронных схемах, где они могут использоваться как альтернатива предохранителям. Ток, протекающий через устройство в нормальных условиях, вызывает небольшой нагрев, который не вызывает каких-либо нежелательных эффектов. Однако, если ток большой, он вызывает больше тепла, которое устройство не сможет передать в окружающую среду, и сопротивление возрастет. В свою очередь, это приводит к большему тепловыделению в результате эффекта положительной обратной связи. По мере увеличения сопротивления ток падает, тем самым защищая устройство.

Термисторы могут использоваться в самых разных областях.Они представляют собой простой, надежный и недорогой метод измерения температуры. Как таковые, они могут быть найдены в большом количестве устройств от пожарной сигнализации до термостатов. Хотя они могут использоваться сами по себе, они могут также использоваться как часть моста Уитстона для обеспечения более высокой степени точности.

Другое применение термистора - устройства компенсации температуры. Большинство резисторов имеют положительный температурный коэффициент, их сопротивление увеличивается с повышением температуры. В приложениях, где требуется стабильность, в цепь можно включить термистор с отрицательным температурным коэффициентом, чтобы противодействовать влиянию компонентов с положительным температурным коэффициентом.

Технические характеристики термистора

Хотя термисторы имеют базовые характеристики сопротивления, другие параметры, такие как температурный коэффициент, очень важны.

Параметры, указанные в технических паспортах, включают базовое сопротивление, допуск на основное сопротивление, допуск на коэффициент теплового рассеяния, максимальную рассеиваемую мощность и диапазон рабочих температур.

Термисторы - это очень полезная форма резистора, которая может использоваться для определения температуры.Обычно может использоваться для регулирования температуры, в схемах защиты и множеством других способов. Их можно использовать в пожарных извещателях, поскольку они очень быстро реагируют на нагрев и представляют собой надежный компонент для этого типа приложений и многих других.

Другие электронные компоненты: Резисторы
Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Что такое термистор? И как они используются?

Что такое термистор? И как они используются?

Что такое термистор? Слово Термистор происходит от слов ТЕРМОЧувствительный резистор.

Термистор - это термочувствительный керамический полупроводник, сопротивление которого изменяется при изменении температуры.

Как работает термистор?

Существует два типа термисторов: термисторы NTC (отрицательный температурный коэффициент) и термисторы PTC (положительный температурный коэффициент).

NTC (отрицательный температурный коэффициент), термисторы предлагают множество преимуществ в области измерения температуры, включая чувствительное измерение изменения температуры (изменение сопротивления от -3% до -6% при повышении температуры на 1 ° C) , что делает его очень точным средством измерения температуры.

Термистор PTC - это термочувствительный резистор, сопротивление которого значительно увеличивается с температурой. Термисторы PTC обычно используются в защите электродвигателей в качестве устройств ограничения тока.

Общие приложения термистора

Ответив на вопрос « Что такое термистор ?» Теперь мы можем дать базовый общий обзор того, как они используются: -

Термисторы используются как датчики температуры. Их можно найти в бытовых приборах, таких как пожарная сигнализация, духовки и холодильники. Они также используются в цифровых термометрах и во многих автомобильных приложениях для измерения температуры.

Еще несколько коммерческих применений термисторов включают приложения в промышленной электронике, медицинской электронике, пищевой промышленности, авиакосмической промышленности, связи и приборостроении.

Какие типы термисторов может предложить Variohm?

У нас есть ряд термисторов, которые были разработаны и одобрены для различных промышленных применений. Ознакомьтесь с нашим ассортиментом термисторов , пригодных для использования в космосе, и нашим ассортиментом термисторов NTC . Мы также предлагаем множество различных типов датчиков температуры , ознакомьтесь со всеми здесь .

Термистор | Типы резисторов | Руководство по резистору

Что такое термистор?

Термистор - это термочувствительный резистор, их часто используют в качестве датчика температуры.Термин термистор является сокращением слов «термический» и «резистор». Все резисторы имеют некоторую зависимость от температуры, которая описывается их температурным коэффициентом. В большинстве случаев для резисторов (фиксированных или переменных) температурный коэффициент минимизирован, но в случае термисторов достигается высокий коэффициент. В отличие от большинства других резисторов, термисторы обычно имеют отрицательный температурный коэффициент (NTC), что означает, что сопротивление уменьшается при повышении температуры. Эти типы называются термисторами NTC.Терморезисторы с положительным температурным коэффициентом называются термисторами PTC (Positive Temperature Coefficient).

Определение термистора

Резистор, сопротивление которого значительно изменяется при изменении температуры.

Виды и применение

Термисторы - керамические полупроводники. В большинстве случаев они состоят из оксидов металлов, которые сушат и спекают для получения желаемого форм-фактора. Типы оксидов и добавок определяют их характерное поведение.Для NTC обычными оксидами являются кобальт, никель, железо, медь или марганец. Для производства PTC обычно используются титанаты бария, стронция или свинца.

Термистор NTC

Тип NTC используется, когда требуется изменение сопротивления в широком диапазоне температур. Они часто используются в качестве датчиков температуры в диапазоне от -55 ° C до 200 ° C, хотя их можно производить для измерения гораздо более низких или более высоких температур. Их популярность объясняется быстрым откликом, надежностью, надежностью и низкой ценой.

Термистор PTC

Тип PTC, используемый, когда требуется резкое изменение сопротивления при определенной температуре. Они демонстрируют резкое увеличение сопротивления выше определенной температуры, называемое переключением, переходом температуры Кюри. Наиболее распространенные температуры переключения находятся в диапазоне от 60 ° C до 120 ° C. Они часто используются для саморегулирующихся нагревательных элементов и самовосстанавливающейся защиты от перегрузки по току.

NTC PTC
Температурный коэффициент Отрицательный Положительно
Оксиды металлов кобальт, никель, железо, марганец, титан титанат бария, свинца, стронция
Общий диапазон температур от -55 ° C до 200 ° C от 60 ° C до 120 ° C (температура переключения. )
Приложения Измерение и регулирование температуры, ограничение пускового тока, измерение расхода защита от перегрузки по току, саморегулирующийся нагреватель, выдержка времени, определение уровня жидкости

Пакеты термисторов

Доступны несколько типов корпусов и размеров, наиболее распространен тип корпуса с радиальными выводами, который в основном изготовлен из эпоксидной смолы. Для применения в суровых условиях больше подходят герметичные стеклянные упаковки.Также доступны интегрированные пакеты, такие как корпуса с резьбой, наконечники или датчики для облегчения монтажа. В следующей таблице показаны некоторые примеры доступных типов пакетов.

Обозначения термисторов

Следующие символы используются в соответствии со стандартом IEC.

Обозначение термистора NTC Стандарт IEC Обозначение термистора PTC Стандарт IEC

Термисторы - обзор | Темы ScienceDirect

2 АНЕМОМЕТРИЯ ТЕРМИСТОРА

Термисторы могут обеспечивать измерения скорости в ответ на изменения теплопередачи, которая для данной геометрии в основном зависит от скорости и температуры воздуха. Преимущества термисторов перед другими термоанемометрами, такими как термоанемометры, включают точность при низких скоростях, надежность и стабильность. Небольшой размер и низкая стоимость термисторов означают, что, несмотря на то, что они являются устройством вмешательства, их можно использовать в большом количестве в плоскости радиатора. Высокое разрешение устройства, которое можно получить с помощью термисторной анемометрии, рассматривается как главное преимущество этого метода.

Термисторы - это полупроводники, которые демонстрируют значительные и точные изменения электрического сопротивления в ответ на изменения температуры их тела.Термисторы, которые использовались во время этого исследования, представляли собой термисторы с герметизированными стеклянными шариками с отрицательным температурным коэффициентом (NTC).

Расмуссен [3] показал, что термисторы NTC демонстрируют следующее соотношение между температурой и сопротивлением ( R T ):

RT = R0eβ1T − 1T0

Где R 0 - это эталонное сопротивление термистора. при эталонной температуре T 0 , и β - постоянная материала.Температурный коэффициент сопротивления α равен:

[3] α = 1RdRdT = −βT2

Если питание подается на термистор посредством приложения электрического тока I , рассеиваемая мощность составляет P, и температура окружающей жидкости составляет T e , , тогда уравнение теплопередачи принимает следующий вид:

[3] cdTdt = P − κT − Te

Где c - теплоемкость, которая является свойством материала и конструкции термистора, а κ - коэффициент рассеяния.

Коэффициент рассеяния можно интерпретировать как мощность, необходимую для повышения температуры термистора на один градус выше температуры окружающей жидкости. Температура термистора и, следовательно, его сопротивление будут реагировать на изменение коэффициента рассеяния. Именно эта характеристика делает термисторы подходящими для таких приложений, как анемометрия. Если термистор используется в однонаправленном ламинарном потоке с постоянными другими свойствами жидкости, коэффициент рассеяния можно рассматривать только как функцию скорости жидкости.Следуя Расмуссену [3]:

T = Te + Pκ (U)

Если эталонное сопротивление термистора ( R e ) измеряется при температуре жидкости, температуру корпуса термистора можно выразить следующим образом:

T = αeTe2αeTe −lnRRe

Приравнивая два приведенных выше уравнения, получаем:

κ (U) = PTeαeTelnRRe − 1

Это уравнение предоставляет метод для расчета значения коэффициента рассеяния в терминах просто определяемых значений. К сожалению, трудно найти аналитические решения для взаимосвязи между скоростью жидкости и коэффициентом рассеяния, поскольку форма, соотношение материалов и, следовательно, тепловые характеристики значительно различаются между отдельными термисторами.Измерения постоянной рассеяния или зависимости между сопротивлением термистора и скоростью потока лучше всего проводить эмпирически путем калибровки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *