Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Цифровой регулятор мощности

  Это устройство предназначено для фазового регулирования мощности в трехфазных электротепловых установках. Допустимая мощность нагрузки в первую очередь зависит от мощности коммутирующих элементов регулятора. С неменьшим успехом он может работать и в однофазных сетях, а также с нагрузкой меньшей мощности. Особенность регулятора состоит в том, что значение угла управления может быть задано в цифровом виде; иными словами, мощностью нагрузки может управлять микропроцессор. В регуляторе использован импульсный метод регулирования коммутирующими элементами – симметричными тиристорами. Время фазового регулирования определяет число разрядов в счетчике узла управления и период сетевого напряжения. Структурная схема трехфазного варианта регулятора изображена на рис.1.


  Цифровой код регулирования от управляющего микропроцессора поступает на вход трех одинаковых по схеме узлов управления – каналов А, В и С.

Фазовая информация, необходимая для работы каждого канала, поступает от трехфазной сети питания нагрузки. Каждый канал вырабатывает сигнал управления своим симистером. Для питания цепей каналов служит отдельный источник стабилизированного напряжения 5 В.

  Принципиальная схема одного из каналов представлена на рис.2. Синусоидальное фазное напряжение через резистор R1 поступает к узлу синхронизации, выполненному на сдвоенном оптроне U1. При положительной полуволне ток протекает через светодиод оптрона U1.1 и транзистор этого оптрона открыт, поэтому на входах логического элемента DD1.1 низкий уровень сигнала. При отрицательной полуволне открыт транзистор оптрона U1.2 и на входах элемента DD1.1 также низкий уровень. Но в моменты, когда сетевое напряжение переходит через нуль, оба светодиода выключены, транзисторы оптронов закрыты, а на входах элемента DD1.1 на короткие отрезки времени появляется уровень 1. На выходе этого элемента формируются прямоугольные синхроимпульсы в моменты, когда фазное сетевое напряжение равно нулю.

Синхроимпульсы поступают одновременно на вход разрешения записи РЕ счетчика DD2, на один из входов RS-триггера, собранного на элементах DD3.1, DD3.2, и на управляющий вход генератора импульсов (на один из входов элемента DD1.3). Когда на вход РЕ счетчика DD2 приходит напряжение низкого уровня, то код, зафиксированный ранее по параллельным входам D1-D4 счетчика, загружается в него независимо от сигналов на тактовых входах, т. е. операция параллельной загрузки асинхронна.

  В исходном положении на выходе >=15 счетчика высокий уровень. Если счет достиг максимума, то с приходом следующего отрицательного тактового перепада на вход +1 счетчика на его выходе появится уровень 0. Таким образом, на входы RS-триггера DD3.1, DD3.2 поступают импульсы низкого уровня: синхроимпульс с логического элемента DD1.1 и выходной импульс счетчика DD2, смещенный по отношению к синхроимпульсу на время, определяемое цифровым кодом на параллельных входах D1- D4 счетчика. На выходе RS-триггера появляется сигнал высокого уровня, разрешающий прохождение импульсов генератора на выход элемента совпадения DD4.

1. Этот элемент формирует пачки коротких импульсов, которые через импульсный трансформатор Т1 поступают на управляющий переход симистора канала и открывают его. Импульсный трансформатор позволяет гальванически развязать цепи канала от сети.

  Ток, потребляемый всеми тремя каналами от источника стабилизированного напряжения 5 В,- около 100 мА. Генератор импульсов выполнен на логических элементах DD1.2-DD1.4. Частоту fг импульсов генератора выбирают в соответствии с зависимостью fг=2Fc(2n-1), Гц, где Fc – частота питающей сети, Гц; n -число разрядов счетчика. Для рассматриваемого случая fг=2*50*(24-1)=1500 Гц. Импульсный трансформатор Т1 – серийный, МИТ-4, имеющий три одинаковые обмотки по 100 витков. Налаживание регулятора мощности заключается в установке требуемой частоты генератора.

В. КАЛАШНИК
г. Георгиу-Деж
Радио №1, 1991

Источник: shems.h2.ru

Ошибка 404 | НПФ КонтрАвт.

КИПиА для АСУ ТП

Выберите продукцию из спискаНормирующие преобразователи измерительные …НПСИ-ТП нормирующий преобразователь сигналов термопар и напряжения …НПСИ-237-ТП нормирующий преобразователь сигналов термопар и напряжения, IP65 …НПСИ-ТС нормирующий преобразователь сигналов термосопротивлений …НПСИ-237-ТС нормирующий преобразователь сигналов термосопротивлений, IP65 …НПСИ-150-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-150-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-110-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-110-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-230-ПМ10 нормирующий преобразователь сигналов потенциометров …НПСИ-200-ГРТП модули гальванической развязки токовой петли…НПСИ-200-ГР1/ГР2 модули гальванической развязки токового сигнала (4…20) мА…НПСИ-200-ГР1.2 модуль разветвления 1 в 2 и гальванической развязки сигнала (4…20) мА…НПСИ-ДНТВ нормирующий преобразователь действующих значений напряжения и тока. ..НПСИ-ДНТН нормирующий преобразователь действующих значений напряжения и тока …НПСИ-200-ДН/ДТ нормирующие преобразователи действующих значений напряжения и тока…НПСИ-МС1 преобразователь мощности, напряжения, тока, коэффициента мощности…НПСИ-500-МС3 измерительный преобразователь параметров трёхфазной сети с RS-485 и USB …НПСИ-500-МС1 измерительный преобразователь параметров однофазной сети с RS-485 и USB …НПСИ-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией…НПСИ-237-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией, IP65 …НПСИ-ЧВ/ЧС нормирующие преобразователи частоты, периода, длительности сигналов, частоты сети…ПНТ-х-х нормирующий преобразователь сигналов термопар…ПСТ-х-х нормирующий преобразователь сигналов термосопротивлений…ПНТ-a-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-a-Pro нормирующий преобразователь сигналов термосопротивлений программируемый…ПНТ-b-Pro нормирующий преобразователь сигналов термопар программируемый. ..ПCТ-b-Pro нормирующий преобразователь сигналов термосопротивлений программируемыйБарьеры искробезопасности (искрозащиты)…КА5011Ех барьеры искробезопасности активные, одноканальные приёмники сигнала (4…20) мА от пассивных или активных источников, HART …КА5022Ех барьеры искробезопасности активные двухканальные приёмники сигнала (4…20) мА от пассивных источников…КА5013Ех барьеры искробезопасности активные, разветвители сигнала 1 в 2, HART, шина питания …КА5031Ех барьеры искробезопасности активные, одноканальные приёмники сигнала (4…20) мА от активных источников, HART …КА5032Ех барьеры искробезопасности активные, двухканальные приёмники сигнала (4…20) мА от активных источников, HART …КА5131Ех барьеры искробезопасности активные, одноканальные передатчики сигнала (4…20) мА от активных источников, HART …КА5132Ех барьеры искробезопасности активные, двухканальные передатчики сигнала (4…20) мА от активных источников…КА5241Ех барьеры искробезопасности, приёмники дискретных сигналов, 1 канал. ..КА5242Ех барьеры искробезопасности, приёмники дискретных сигналов, 2 канала…КА5262Ех барьеры искробезопасности, приёмники дискретных сигналов, 2 канала…КА5232Ех барьеры искробезопасности, приёмники дискретных сигналов, 2 канала…КА5234Ех барьеры искрозащиты, приёмники дискретных сигналов, 4 каналаКонтроллеры, модули ввода-вывода…MDS CPU1000, MDS CPU1100 Программируемые логические контроллеры…MDS AIO-1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-1/F1 Модули комбинированные функциональные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4/F1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов, 4 ПИД регулятора…MDS AI-8UI Модули ввода аналоговых сигналов тока и напряжения…MDS AI-8TC Модули ввода сигналов термопар, тока и напряжения…MDS AI-8TC/I Модули ввода сигналов термопар, тока и напряжения с индивидуальной изоляцией между входами. ..MDS AI-3RTD Модули ввода сигналов термосопротивлений и потенциометров…MDS AO-2UI Модули вывода сигналов тока и напряжения…MDS DIO-16BD Модули ввода-вывода дискретных сигналов…MDS DIO-4/4 Модули ввода-вывода дискретных сигналов …MDS DIO-12h4/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DIO-8H/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DI-8H Модули ввода дискретных сигналов высоковольтные…MDS DO-8RС Модули вывода дискретных сигналов …MDS DO-16RA4 Модули вывода дискретных сигналов …MDS IC-USB/485 преобразователь интерфейсов USB и RS-485…MDS IC-232/485 преобразователь интерфейсов RS-232 и RS-485…I-7561 конвертер USB в RS-232/422/485…I-7510 повторитель интерфейса RS-485/RS-485…I-7520 преобразователь интерфейса RS-485/RS-232Измерители-регуляторы технологические…МЕТАКОН-6305 многофункциональный ПИД-регулятор с таймером выдержки…МЕТАКОН-4525 многоканальный ПИД-регулятор…МЕТАКОН-1005 измеритель технологических параметров, щитовой монтаж, RS-485. ..МЕТАКОН-1015 измеритель, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1105 измеритель, позиционный регулятор, щитовой монтаж, RS-485…МЕТАКОН-1205 измеритель-регулятор, нормирующий преобразователь, контроллер, щитовой монтаж, RS-485…МЕТАКОН-1725 двухканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1745 четырехканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-512/522/532/562 многоканальные измерители-регуляторы…Т-424 универсальный ПИД-регулятор…МЕТАКОН-515 быстродействующий универсальный ПИД-регулятор…МЕТАКОН-513/523/533 ПИД-регуляторы…МЕТАКОН-514/524/534 ПДД-регуляторы…МЕТАКОН-613 программные ПИД-регуляторы…МЕТАКОН-614 программные ПИД-регуляторы…СТ-562-М источник тока для ПМТ-2, ПМТ-4Регистраторы видеографические…ИНТЕГРАФ-1100 видеографический безбумажный 4/8/12/16 канальный регистратор данных …ИНТЕГРАФ-1000/1010 видеографические безбумажные 8/16 канальные регистраторы данных . ..ИНТЕГРАФ-3410 видеографический безбумажный регистратор-контроллер термообработки… DataBox Накопитель-архиваторСчётчики, реле времени, таймеры…ЭРКОН-1315 восьмиразрядный одноканальный счётчик импульсов, поддержка RS-485, щитовой монтаж…ЭРКОН-315 счётчик импульсов одноканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-325 счетчик импульсов двухканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-415 тахометр-расходомер…ЭРКОН-615 счетчик импульсов реверсивный многофункциональный, поддержка RS-485, щитовой монтаж…ЭРКОН-714 таймер астрономический…ЭРКОН-214 одноканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-224 двухканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-215 реле времени программируемое одноканальное, поддержка RS-485, щитовой монтаж, цифровая индикацияБлоки питания и коммутационные устройства…PSM-120-24 блок питания 24 В (5 А, 120 Вт)…PSM-72-24 блок питания 24 В (3 А, 72 Вт)…PSM-36-24 блок питания 24 В (1,5 А, 36 Вт). ..PSL низковольтные DC/DC–преобразователи на DIN-рейку 3 и 10 Вт…PSM-4/3-24 многоканальный блок питания 24 В (4 канала по 0,125 А, 3 Вт)…PSM-2/3-24 блок питания 24 В (2 канала по 0,125 А, 3 Вт)…PSM/4R-36-24 блок питания и реле, 24 В (1,5 А, 36 Вт)…БП-24/12-0,5 блок питания 24В/12В (0,5А)…ФС-220 фильтр сетевой…БПР блок питания и реле…БКР блок коммутации реверсивный (пускатель бесконтактный реверсивный)…БР4 блок реле…PS3400.1 блок питания 24 В (40 А) …PS3200.1 блок питания 24 В (20 А)…PS3100.1 блок питания 24 В (10 А)…PS3050.1 блок питания 24 В (5 А)…PS1200.1 блок питания 24 В (20 А)…PS1100.1 блок питания 24 В (10 А)…PS1050.1 блок питания 24 В (5 А)Программное обеспечение…SetMaker конфигуратор……  История  версий…MDS Utility конфигуратор…RNet программное обеспечение…OPC-сервер для регулятров МЕТАКОН…OPC-сервер для MDS-модулей

DEC Цифровой регулятор мощности

Описание

Bartec DEC Цифровой регулятор мощности — это программируемый регулятор мощности. С ним можно идеально подобрать выходную мощность от 10 % до 100 % с шагом 10 %. В месте с серией DPC, DTL III Ex и Pt100 Ex регулятор мощности DEC также применяется для управления нагревателями во взрывоопасных областях.

Преимущества

  • Управление переменным током AC 230 В
  • Питающее напряжение AC 230 В
  • Фиксируется на DIN шине
  • Регулируемая выходная мощность от 10 % до 100 % с шагом 10 %
  • Коммутационная способность — переменный ток 230 В, 20 A
  • Дисплей: питающее напряжение, обогрев включен

 

Конструкция

Корпус DEC может быть зафиксирован на DIN шине, что помогает провести монтаж легко и быстро. Питающее напряжение регулятора мощности составляет 230 В. Соединительные клеммы рассчитаны на сечение до 2,5 мм 2. Управление DEC производится через переменный ток 230 В. На передней панели корпуса находится 10-ступенчатый переключатель для постепенной регулировки мощности от 10 % до 100 %. Оптический значок на передней панели показывает, есть ли на DEC питающее напряжение.

Второй значок показывает, активен или неактивен выход DEC.

Функции

Управление DEC осуществляется от переменного тока 230 В. Через 10-ступенчатый переключатель включается периодический групповой контроллер и подбирается выходная мощность DEC от 10 % до 100 %.

Как купить DEC Цифровой регулятор мощности? 

Для заказа DEC Цифровой регулятор мощности и сопутствующих товаров для монтажа используйте заказ на сайте, номера, указанные в шапке, и e-mail. Прием заказов осуществляется круглосуточно.

Мы осуществляем недорогую доставку не только по Москве, но и по всей России! Подробнее см. «Доставка».

А еще у нас более 350 пунктов самовывоза в 214 городах России!

Для Вашего удобства мы работаем с несколькими службами доставки, что позволяет нам доставить Ваш заказ недорого (

часто бесплатно), быстро (как правило, 1-6 дней) и безопасно (все наши отправления страхуются).

Купили DEC Цифровой регулятор мощности не у нас?

У Вас возникли вопросы по эксплуатации, монтажу или настройке? Звоните нам, мы профессионально проконсультируем Вас по возникшим вопросам.

«Представленная информация, касающаяся технических характеристик, внешнего вида, комплекта поставки товара, стране его изготовления, носит справочный характер и предоставлена на основании последних сведений, имеющихся на момент публикации описания товара.»

* Право на изменение комплектов и места производства остается за фирмой-производителем, без уведомления дилеров!

Цифровой регулятор мощности Impuls ET7

Цифровой регулятор мощности T7

Цифровой регулятор мощности T7 ТЕХНИЧЕСКИЙ ПАСПОРТ Продукция сертифицирована в Системе Сертификации ГОСТ Р ГОССТАНДАРТА РОССИИ Назначение и область применения г. Москва Регулятор мощности прибор, предназначенный

Подробнее

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

РЕГУЛЯТОРЫ МОЩНОСТИ ТИРИСТОРНЫЕ РМТ-40, РМТ-100 Руководство по эксплуатации v. 2016-03-10 VAK Регуляторы мощности тиристорные РМТ предназначены для регулирования напряжения в трехфазных сетях переменного

Подробнее

Аналоговый регулятор мощности SIPIN

Аналоговый регулятор мощности SIPIN Руководство по эксплуатации Продукция сертифицирована в Системе Сертификации ГОСТ Р ГОССТАНДАРТА РОССИИ г. Москва Тиристорные регуляторы мощности SIPIN Предназначены

Подробнее

г. Москва Тел.: (495) (495)

ООО «ХайТек» г. Москва Тел.: (495) 737-70-83 (495) 488-96-02 [email protected] = OOO «ХайТек» ИНН/КПП: 7719813745/771901001; 129164, г. Москва, ул. Ярославская, д.8, корп. 7, офис 309. м. ВДНХ, Алексеевская

Подробнее

КОНТРОЛЛЕРЫ УКРМ MCC СЕРИИ EFFICA

Паспорт 4210-051-40059233-2017 ПС КОНТРОЛЛЕРЫ УКРМ MCC СЕРИИ EFFICA www. elvert.ru 1. Назначение Контроллеры УКРМ MCC серии Effica применяются для автоматического управления в установках компенсации реактивной

Подробнее

Применение тиристорных регуляторов

Применение тиристорных регуляторов Тиристорные регуляторы предназначены для плавной регулировки ламп, нагревателей и некоторых других типов нагрузок. Контроллер температуры в сочетании с тиристорным регулятором

Подробнее

Регуляторы мощности серий DSC/TSC/EPS/TPS

Регуляторы мощности серий DSC/TSC/EPS/TPS Регуляторы мощности Fotek это тиристорные устройства с цифровой схемой, предназначенные для плавной регулировки переменного напряжения в диапазоне от нуля до напряжения

Подробнее

Тиристорные регуляторы серии W5

Тирисные регуляы серии W5 Тирисный регуля семейства W5.

Независимая регулировка выходного напряжения (MAX) и минимального входного рабочего напряжения (BIAS). Открывающаяся вниз панель для смены предохранителей.

Подробнее

PEL3DT DOC072011

ПУСКАТЕЛЬ ЭЛЕКТРОННЫЙ ПЕЛ-3-050(100)(150)-ДТ ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ PEL3DT.04.09.DOC072011 ТО Киев 2011 2 3 СОДЕРЖАНИЕ ВВЕДЕНИЕ… 4 1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ.. 4 2.

Подробнее

Выбор. Аналоговые контроллеры мощности ACI

Назначение Аналоговый контроллер мощности ACI предназначен для высокоточного управления температурой нагревательных элементов и трансформаторами. Благодаря встроенному микропроцессору контроллер может

Подробнее

ЦИФРОВОЕ ТЕМПЕРАТУРНОЕ РЕЛЕ TР-100

ЦИФРОВОЕ ТЕМПЕРАТУРНОЕ РЕЛЕ TР-100 ПАСПОРТ 1 индикатор включения реле расцепления; 2 индикатор включения реле тревоги или включения режима программирования; 3 индикатор отказа прибора и включения реле

Подробнее

Ультразвуковой генератор «УЗГ-100»

ОКП 34 1500 Ультразвуковой генератор «УЗГ-100» РМПА 11. 00.000.01 ПС 2016 г. 2 УЗГ-100 Настоящее руководство по эксплуатации содержит сведения о конструкции, принципе действия, технических характеристиках

Подробнее

ТЕПЛОКОМ БЛОК УПРАВЛЕНИЯ БУ

ТЕПЛОКОМ БЛОК УПРАВЛЕНИЯ БУ 2 Руководство пользователя РБЯК.648233.030 Д1 www.teplocom.nt-rt.ru с. 2 Руководство пользователя 1 Общие положения Блок управления БУ 2 используется для силового управления

Подробнее

БЛОК УПРАВЛЕНИЯ ТИРИСТОРАМИ БУТ1-В01

БЛОК УПРАВЛЕНИЯ ТИРИСТОРАМИ БУТ1-В01 Руководство по эксплуатации Приборостроительное предприятие «МЕРАДАТ» Россия, 614031, г. Пермь, ул. Докучаева, 31А Технические характеристики БУТ1-В01 Вход Входное

Подробнее

РЕГУЛЯТОР ТЕМПЕРАТУРЫ МР-44

РЕГУЛЯТОР ТЕМПЕРАТУРЫ МР-44 Руководство по эксплуатации. г. Днепропетровск 2007 2 Содержание Содержание…2 1.Введение…3 2.Назначение…3 3.Технические данные…3 4.Комплект поставки…4 5.Устройство

Подробнее

Блок силовой «TSR 6-32LX»

Блок силовой Инструкция по эксплуатации Паспорт управление DMX512 жидкокристаллический дисплей с подсветкой меню на русском языке тестирование блока и нагрузки без пульта управления установка начального

Подробнее

Omega SP4-RS Усилитель-разветвитель порта RS485

Многофункциональная система оповещения Omega SP4 Omega SP4-RS Усилитель-разветвитель порта ИНСТРУКЦИЯ ПО УСТАНОВКЕ 1. ОБЩИЕ СВЕДЕНИЯ Усилитель – разветвитель порта (далее изделие) предназначен для увеличения

Подробнее

Источник питания PW8

Источник питания PW изделия Источник питания PW предназначен для питания средств измерений, средств автоматизации промышленных объектов стабилизированным напряжением постоянного тока В. Технические характеристики

Подробнее

Паспорт Руководство по эксплуатации

О О О «Н П Ф Т е х э н е р г о к о м п л е к с» Блок питания от токовых цепей и управления высоковольтным выключателем БП-ТЭК-220-5-2 У4 Паспорт Руководство по эксплуатации 2013г. 22 Блок питания от токовых

Подробнее

руководство по эксплуатации

ИСТОЧНИК ПИТАНИЯ СТАБИЛИЗИРОВАННЫЙ ИПС-500-220В/220В-2А-D ИПС-500-220В/110В-4А-D ИПС-500-220В/60В-8А-D ИПС-500-220В/48В-10А-D ИПС-500-220В/24В-15А-D AC(DC)/DC руководство по эксплуатации СОДЕРЖАНИЕ 1.

Подробнее

УСТРОЙСТВО ПЛАВНОГО ПУСКА СЕРИИ ЛД1100

УСТРОЙСТВО ПЛАВНОГО ПУСКА СЕРИИ ЛД1100 версия 1.00 МОСКВА, ЗЕЛЕНОГРАД. 1.ТЕХНИКА БЕЗОПАСНОСТИ И ПРЕДУПРЕЖДЕНИЯ Перед установкой проверьте характеристики устройства плавного пуска (указаны на табличке на

Подробнее

Блок питания встраиваемый

Блок питания встраиваемый БП150-12А БП150-12Б БП300-12А БП300-12Б БП200-24А БП200-24Б БП300-24A БП300-24Б Техническое описание, Инструкция по эксплуатации 1 1. Основные сведения 1.1. Блок питания встраиваемый

Подробнее

Группа компаний «Связьэнергосервис»

Группа компаний «Связьэнергосервис» www.kuppol.ru Устройства зарядно-питающие УЗПС 24-40, УЗПС 36-30, УЗПС 48-20, УЗПС 60-15 и УЗПС 72-15 Краткое руководство по эксплуатации 1 Назначение устройства Устройства

Подробнее

Цифровой регулятор мощности — d.lab

Вариация на тему регуляторов мощности для 220В. Схема построена на симисторе с «опторазвязкой» и контролем перехода фазы через «0». Управляется все это микроконтроллером ATmega8A. Мощность выбирается кнопками и показывается на LED-дисплее.

Вершина эволюции регулятора мощности – сделать его цифровым. Не ахти как полезно, скорее все же трудоемко и затратно, но данный вариант регулятора намного удобнее «аналогового» в плане управления и информативности. Кроме того управляющие цепи гальванически развязаны с сетью 220В, что немного «развязывает руки» монтажнику систем и конечному пользователю.

Кратко об основных особенностях регулятора:

  • Индикация мощности на LED-индикаторе от 1 до 100%.
  • Мощность регулируется нажатием кнопок UP/DOWN.
  • Мощность регулируется пошагово через 10%
  • Выбранное значение мощности сохраняется в памяти при отключении и восстанавливается при запуске.
  • Используется LED-индикатор повышенной яркости.
  • Нажатия кнопок подтверждаются звуковым сигналом.
  • Гальваническая развязка сети 220В и органов управления.
  • Силовой компонент регулятора – симистор.
  • Контроль перехода фазы через «0».
  • Использование помехоподавляющих компонентов в цепи управления симистором.
  • Сигнализация готовности регулятора к работе после подключения к сети.

Основа регулятора микроконтроллер ATmega8A в корпусе DIP-28 только потому, что был экземпляр с убитым АЦП. При этом порт ввода/вывода PORT.C работал. Особой необходимости такого контроллера в такой схеме нет и при самостоятельной разработке печатной платы его можно заменить на любой другой – из 8кб памяти используется не более 20%. Мега удобна своим количеством ног – к ней напрямую, без дополнительных микросхем, подключен LED-индикатор, кнопки, пищалка и управление симистором. Кроме того, цена на нее совсем немного дороже ATtiny2313, а возможностей гораздо больше.

Микроконтроллер тактируется от внутреннего генератора 8МГц – это нужно учесть при прошивке fuse-ов. Т.к. микроконтроллер впаивается в печатную плату без использования «панельки/кроватки», «фьюзы» лучше прошить перед впаиванием – на случай, если что-то пойдет не так. Такой способ монтажа микросхемы МК позволил отказаться от использования межслойных перемычек. На всей плате нет ни одной перемычки – активно используются выводы компонентов.

Управляющая программа МК написана на бейсике в BASCOM-AVR. Принцип фазного управления симистором прекрасно описан здесь. Думаю, нет смысла переписывать чужой труд заново.  Тем более, мой исходник на бейсике хорошо прокомментирован и трудностей с пониманием возникнуть не должно.

'------------------------------------------------------------------------------
$regfile = "m8adef. dat"                                     
'ATmega8A
$crystal = 8000000                                          '8МГц (деление на 8 отключить)

$baud = 9600
'------------------------------------------------------------------------------
Ddrb = &B11111111                                           'PB7, PB6, PB5, PB4, PB3, PB2, PB1, PB0

Ddrc = &B11111111                                           'N/C, RESET, PC5, PC4, PC3, PC2, PC1, PC0

Ddrd = &B11001010                                           'PD7, PD6, PD5, PD4, PD3, PD2, TXD, RXD

'------------------------------------------------------------------------------

Dim Count_led As Byte                                       'счетная переменная

Dim Count_debounce As Byte                                  'счетная переменная

Dim N(3) As Integer                                         'значения трех разрядов

Dim Wt As Byte                                              'регулировка времени открытия симистора
Dim Led As Byte                                             'индикация мощности
'------------------------------------------------------------------------------
Config Int0 = Falling                                       'вход детектора 0
On Int0 Imp_0                                               'обработка прерывания INT0
'------------------------------------------------------------------------------
Config Timer0 = Timer , Prescale = 1024                     'переполнение каждые 0,032сек.
On Timer0 Perepolnenie_0                                    'обработка прерывания TIMER0
'------------------------------------------------------------------------------
Dig1 Alias Portc.1                                          'сотни
Dig2 Alias Portc.3                                          'десятки
Dig3 Alias Portc.5                                          'единицы

Opto Alias Portd.3                                          'управление симистором

Up_button Alias Pind.4                                      'кнопка UP
Down_button Alias Pind.5                                    'кнопка DOWN

Buzzer Alias Portd.6                                        'пищалка
'------------------------------------------------------------------------------
Enable Interrupts                                           'разрешаем использование прерываний
Enable Timer0                                               'разрешаем прерывание по переполнению TIMER0
Enable Int0                                                 'разрешаем внешнее прерывание INT0
'------------------------------------------------------------------------------
Wt = 195                                                    'минимальный накал

Maine:                                                      'основной цикл

   Do

      If Count_debounce > 40 Then Reset Buzzer              'антидребезг

      Gosub Refresh_led                                     'обработка индикации

      If Up_button = 0 And Buzzer = 0 Then
         If Wt < 255 Then Wt = Wt + 6                       'увеличиваем мощность
         Set Buzzer                                         'пикаем
         Count_debounce = 0                                 'сбрасываем счетчик антидребезга
      End If

      If Down_button = 0 And Buzzer = 0 Then
         If Wt > 195 Then Wt = Wt - 6                       'уменьшаем мощность
         Set Buzzer                                         'пикаем
         Count_debounce = 0                                 'сбрасываем счетчик антидребезга
      End If

      Select Case Wt                                        'соответствие открытия симистора % мощности
         Case 195 : Led = 1
         Case 201 : Led = 10
         Case 207 : Led = 20
         Case 213 : Led = 30
         Case 219 : Led = 40
         Case 225 : Led = 50
         Case 231 : Led = 60
         Case 237 : Led = 70
         Case 243 : Led = 80
         Case 249 : Led = 90
         Case 255 : Led = 100
      End Select

   Loop
End
'------------------------------------------------------------------------------
Refresh_led:                                                'подготовка данных для вывода на индикатор

   N(1) = Led                                               'разбиваем число на цифры
   N(2) = N(1)
   N(3) = N(1)

   N(1) = N(1) / 100                                        '1 цифра
   N(1) = Abs(n(1))

   N(2) = N(2) Mod 100                                      '2 цифра
   N(2) = N(2) / 10
   N(2) = Abs(n(2))

   N(3) = N(3) Mod 10                                       '3 цифра
   N(3) = Abs(n(3))

   Incr Count_led                                           'выбираем разряд для загрузки
   If Count_led > 3 Then Count_led = 1                      'всего 3 разряда

   Set Dig1 : Set Dig2 : Set Dig3                           'гасим индикатор

   Portb = Lookup(n(count_led) , Digits)                    'закидываем в порт код цифры

   Select Case Count_led                                    'включаем соответствующий разряд индикатора
      Case 1 : If N(1) <> 0 Then Reset Dig1                 'гашение незначащего 0 в 1 разряде
      Case 2 : If N(3) <> 1 Then Reset Dig2                 'гашение незначащего 0 в 2 разряде
      Case 3 : Reset Dig3                                   '3 разряд
   End Select

   Waitms 2                                                 'частота обновления индикатора

Return
'------------------------------------------------------------------------------
Imp_0:                                                      'прерывание от детектора нуля

   Timer0 = Wt                                              'чем большее значение, тем быстрее переполнится таймер
   Start Timer0

Return
'------------------------------------------------------------------------------
Perepolnenie_0:                                             'переполнение TIMER0

   Stop Timer0
   Set Opto                                                 'включение симистора
   Waitus 100                                               'курим
   Reset Opto                                               'выключение симистора

   Incr Count_debounce                                      'антидребезг

Return
'------------------------------------------------------------------------------
Digits:                                                     'цифры, выводимые на LED-индикатор

   Data &B00000011 , &B10011111 , &B00100101 , &B00001101 , &B10011001       '0 1 2 3 4
   Data &B01001001 , &B01000001 , &B00011111 , &B00000001 , &B00001001       '5 6 7 8 9
'------------------------------------------------------------------------------

LED-индикатор работает в режиме динамической индикации. Используется яркий красный 3-разрядный индикатор с общим анодом. Аноды разрядов индикатора подключены к МК через инверторы на транзисторах. Катоды сегментов объединены внутри индикатора и подключены к МК через токоограничивающие резисторы. Такой способ позволяет использовать довольно мощные (яркие) индикаторы, что особенно важно при эксплуатации регулятора в производственных условиях.

Стоит сказать, что схема напрочь отказалась симулироваться в Proteus-е. Ни в одной, даже самой новой версии. Восьмая версия Proteus вообще бесполезный монстр – нововведений ноль, ресурсов жрет больше, удобства меньше, прежние косяки остались. Файлы симулятора есть в приложенном архиве, если кому интересно.

П/п двухсторонняя, компоненты и проводники располагаются по обеим сторонам. Размер 73х84мм, при желании можно уменьшить плату на пару сантиметров. Китайцы наверняка уместили бы все в спичечном коробке, как обычно наплевав на надежность. Цитата из «видика» 90-х: «Дружище тебя, как и всех, привлекли красные точки…?». Просто в DipTrace-е до сих пор нет нормальных 3D компонентов, вот и приходится выкручиваться. Самое интересное, как обычно, с другой стороны.

Тактовые кнопки используются «большие», т.к. регулятор делается для практического применения, а не для понта. Незадействованные участки платы «залиты землей», кроме высоковольтной части. Особое внимание заслуживает способ монтажа радиатора симистора — получается своеобразный сэндвич. На плате предусмотрены отверстия для крепления радиатора.

Стабилизатор напряжения 7805 в данной версии регулятора используется в корпусе ТО-220. Практические испытания показали, что в таком типоразмере нет необходимости (я перестраховался) и его вполне можно заменить стабилизатором 78L05 в корпусе ТО-92. «Пищалка» 5-вольтовая, потребляет ток не более 20мА, поэтому подключена напрямую к микроконтроллеру. Регулятор питается от трансформатора с выходным напряжением 10-15В, что в паре с оптронами позволило обеспечить 100% гальваническую развязку цепей управления.

Скачать архив к статье.

Радиосхемы. – Цифровой регулятор мощности паяльника

Цифровой регулятор мощности паяльника

категория

Электроника в быту

материалы в категории

П. ПОЛЯНСКИЙ, г. Москва
Журнал Радио 1998 год, номер 2

Оптимальная температура жала электропаяльника – важнейшее условие получения качественной пайки. В радиолюбительской практике это имеет особое значение, так как при монтаже радиотехнического устройства конструктору приходится пользоваться одним и тем же паяльником со сменными жалами, существенно отличающимися по своим теплотехническим характеристикам. Использование различных припоев, марки которых часто неизвестны, тоже требует экспериментального подбора температуры жала паяльника. Автор статьи анализирует эффективность регуляторов мощности, знакомых радиолюбителям по публикациям в нашем журнале, и предлагает для повторения свой вариант регулятора температуры нагрева паяльника – цифровой.

Способ управления нагревом паяльника [1], когда его мощность регулируется только в нерабочем состоянии (паяльник находится на подставке), а в рабочем мощность составляет 100 %, дает положительные результаты лишь при несменяемом жале. Радиолюбительская практика показывает, что хороших результатов можно добиться раздельным оперативным регулированием мощности паяльника в рабочем и дежурном режимах. Такой способ даже предпочтительнее однорежимной точной стабилизации температуры жала, поскольку позволяет находить компромисс между постоянным поддержанием паяльника в состоянии готовности в течение многих часов и износом рабочей части жала из-за растворения меди в припое.

В настоящее время установился некоторый, “радиолюбительский стандарт” на регуляторы средней мощности для тепловых приборов [2]. Суть его заключается в том, что регулирование осуществляется широтно-импульсным методом, с открыванием силового тринистора или симистора в моменты, близкие к переходу сетевого напряжения через “нуль”. Его часто называют методом “бесшумного регулирования”. Использование микросхем КМОП дает простое схемотехническое решение для формирования широтно-импульсного сигнала. К его недостаткам можно отнести разве что нечеткость работы генератора в крайних положениях движка задающего резистора и необходимость разметки шкалы мощности. От этих недостатков свободно устройство [3], в котором применен цифровой принцип формирования широтно-импульсного сигнала. Он особенно удобен при формировании многорежимного управления мощностью паяльника, поскольку не содержит элементов, требующих настройки при переключении режимов.

Схема такого варианта цифрового регулятора мощности паяльника приведена на рис. 1. В качестве базового решения использован симисторный регулятор, описанный в [4]. В источник питания микросхем добавлен светодиод НИ, сигнализирующий о включении устройства в сеть. Это добавление оказалось как бы “бесплатным* – светодиод питается полуволной сетевого тока, перезаряжающего гасящий конденсатор С1, непосредственно для питания устройства не используемой. Средний ток, текущий через светодиод» не превышает 15 мА. При смене полярности практически все обратное напряжение, равное по значению сумме напряжений стабилизации стабилитрона VDЗ и прямому падению напряжения на диоде VD2, приложено к диоду VD1, обратное сопротивление которого существенно больше, чем у светодиода.

Если устройство предполагается эксплуатировать при повышенной температуре, увеличивающей обратный ток диода VD1, для защиты светодиода от обратного напряжения его можно зашунтировать резистором сопротивлением 1 …3 кОм.

Транзистор VT1 используется для выделения момента перехода сетевого напряжения через “нуль”. Диод VD4 защищает эмиттерный переход этого транзистора от полуволны обратного напряжения. Транзистор VT2 инвертирует сигнал, снимаемый с коллектора транзистора VT1, увеличивает крутизну фронта, что позволяет подавать его непосредственно на вход СN десятичного счетчика DD1 без каких-либо дополнительных формирователей.

Фронт счетного импульса на входе микросхемы формируется в конце каждого положительного (относительно нижнего по схеме сетевого провода) полупериода напряжения сети. При этом на выходах 0-9 счетчика, имеющего встроенный дешифратор, появляется “бегущий* сигнал высокого уровня (лог. 1). Когда сигнал такого уровня возникает на выходе 9 (вывод 11) счетчика, RS-триггер, собранный на элементах DD2.1, DD2.2, устанавливается в состояние с высоким уровнем на выводе 10 элемента DD2.1, который запрещает работу генератора импульсов запуска симистора VS1. Генератор выполнен на элементах DD2.3, DD2.4. В таком состоянии нагрузка регулятора обесточена. Включение нагрузки в сеть произойдет после переключения RS-триггера в противоположное состояние сигналом высокого уровня на выводе 8 элемента DD2.1.

Момент прихода импульса включения нагрузки относительно импульса выключения определяется номером выхода счетчика, подключенного к выводу 8 элемента DD2.1. Таким образом, мощность, подводимую к паяльнику в рабочем режиме и режиме ожидания, определяет положение контактов переключателейSА1 и SА2 соответственно. Смена режимов происходит переключателем SF1 при нажатии на его кнопку коромыслом, удерживающим паяльник на подставке. В обоих режимах мощность от 10 до 100 % с шагом 10 % устанавливают переключателями SА1 и SА2. Резистор R7 устраняет неопределенность сигнала на выводе 8 элемента DD2.1 при переключениях.

В рабочих периодах сети генератор импульсов запуска симистора \/S1 работает непрерывно, что позволяет включать симистор с активной нагрузкой мощностью 60 Вт при напряжении сети около 20 В. Визуально оценить относительную мощность, отдаваемую в нагрузку, можно по свечению индикатора НL2. Хотя через него и проходят импульсы тока управляющего электрода симистора значением в несколько десятков миллиампер, средний же ток составляет единицы миллиампер. Поскольку на выходе регулятора постоянная составляющая сигнала близка к нулю, при определенных ограничениях им можно управлять мощностью низковольтных паяльников, включаемых в сеть через понижающий трансформатор. Ограничения связаны с особенностью работы трансформатора. Если нагрузка трансформатора отключена., к выходу регулятора оказывается подключенной высокодобротная катушка индуктивности, на которой возникают выбросы напряжения, практически равные удвоенному амплитудному напряжению питания – около 600 В. Такой режим крайне нежелателен, поэтому для обеспечения сохранности регулятора при случайных переключениях нагрузки выход регулятора зашунтирован варистором R11 с точкой излома характеристики 350…300 В. Но если регулятор будет использоваться только с активной нагрузкой, варистор можно исключить.

Второе ограничение связано с переходными процессами в трансформаторах, обусловленных их низкой рабочей частотой. При включении трансформатора в сеть (даже при нулевом напряжении) первый полупериод расходуется на первичное намагничивание магнитопровода, сопровождающееся повышенным током первичной обмотки. Например, для популярного паяльника ЭПСН 25/24 (ГОСТ 7219-83), подключенного к сети через трансформатор, амплитуда импульса тока составила 2,5 А, что в 12 раз больше, чем в установившемся режиме. Значение амплитуды тока второго полупериода превышало установившееся значение примерно на 50 %, а для третьего полупериода – около 10 %. Следовательно, включать даже нагруженный трансформатор желательно как можно реже. Этим обусловлено использование для регулирования мощности целого числа полных периодов, что, с одной стороны, обеспечивает близкое к нулевому значение постоянной составляющей, а с другой – компромисс между тепловой инерционностью нагрузки, легкостью реализации и уменьшением числа коммутаций нагрузки в единицу времени.

В свое время нашей промышленностью выпускались низковольтные паяльники, питаемые от сети через гасящий конденсатор, встроенный в пластмассовый корпус, близкий по размерам к трансформаторному блоку такой же мощности. Эти паяльники подключать к регулятору нельзя. А если такое все же случится, от выхода из строя регулятор защитит плавкий предохранитель FU1.

Внешний вид регулятора показан на рис. 2, а компоновка и монтаж его деталей — на рис. 3. Конструктивно он выполнен в виде подставки под паяльник (использован пластмассовый корпус от унифицированного блока питания бытовой радиоаппаратуры), Большая часть деталей размещена и смонтирована на универсальной печатной плате.

Паяльник кладут на две металлические стойки подставки, согнутые из стальной проволоки диаметром 2,5 мм. Носовая стойка подвижна, ее коромысло механически связано с нажимной кнопкой переключателя SF1 (МП1-1). Выключатель ЗВ1 (нажимного типа от настольной лампы), переключатели SА1,SА2 (МПН-1) и сеетодиоды НL1,HL2 вынесены на верхнюю панель устройства. Поскольку положение контактов переключателей SА1 и SА2 однозначно определяет мощность, отдаваемую в нагрузку, светодиод HL2 нужен только для общего контроля работоспособности устройства, поэтому его при желании можно исключить.

Если приобретение малогабаритных многопозиционных переключателей затруднительно, их заменяют гнездовой частью двухрядного многоконтактного разъема, используя в качестве подвижного контакта одиночную штыревую часть, припаяв к ней тонкий гибкий провод. Чтобы избежать контакта с питающей сетью, лучше применить разъем с утопленными гнездами, а в разрыв цепи подвижного контакта переключателя SF1 включить резистор сопротивлением 91 . ..100 кОм.

Регулятор рассчитан на мощность нагрузки до 150 Вт, поэтому симистор может работать без теплоотвода. Чтобы уменьшить габариты и облегчить компоновку деталей устройства, можно применить миниатюрный симистор ТС-106 в пластмассовом корпусе, установленный на алюминиевый флажковый радиатор теплоотвода с площадью поверхности 10 см2.

ЛИТЕРАТУРА

1. Аристов А. Автомат-регулятор мощности паяльника – Радио. 1981.╧ 12, с. 51.
2. Нечаев И. Регулятор мощности, не создающий помех. – Радио. 1991, ╧ 2, с. 67, 68.
3. Лукашенко С. Регулятор мощности, не создающий помех. – Радио, 1987, ╧12, с. 22. 23.
4. Бирюков С. Симисторные регуляторы мощности. – Радио. 1996, ╧ 1, с. 44-46.

Регулятор мощности РМ-2-16А

ПараметрЗначение
Диапазон входного напряжения при котором прибор сохраняет работоспособность, Вот 160 до 300
Диапазон задания напряжения поступающего на нагрузку, Вот 35 до 255
Стабильность поддержания заданного напряжения, В. ± 1
Максимальный ток нагрузки, А16
Максимальная мощность нагрузки, Вт3500
Размер на DIN-рейке (с запасом для вентиляции), модулей6
Температурный режим работы прибора, °C-5…+50 °C
Относительная влажность, при температуре 25 °C80%
Гарантия24 мес.

Общее описание

Цифровой высокоточный регулятор мощности РМ-2-16А является аналогом модели РМ-2, но обладает собственным встроенным симисторным силовым элементом, который рассчитан на максимальный ток 16 ампер или долговременную активную нагрузку до 3500 ватт. С высокой точностью поддерживает заданный пользователем уровень питающего напряжения, что обеспечивает потребление мощности на одном уровне, независимо от внешних колебаний в питающей сети 220 В. Имеет собственную независимую систему охлаждения без использования внешнего радиатора.

Регулятор мощности РМ-2-16А – это полностью законченное устройство для регулирования нормированного потребления энергии электроприборами с питанием от сети 220 вольт.

Для чего применяется

Регулятор мощности РМ-2-16А – это универсальный прибор, который может использоваться для следующих основных автоматизированных процессов:

  • борьба с высоким напряжением на целом объекте или для отдельных электроустройств с целью предотвращения их повреждения и продления срока эксплуатации
  • обеспечение стабильных характеристик производительности работающих приборов с преимущественно активной составляющей энергопотребления
  • предотвращение выхода из строя важных электроприборов в ходе производственного или иного процесса для предотвращения финансовых потерь из-за колебаний и скачков напряжения во внешней питающей сети.

Техническое описание конструкции

Как и было описано выше, регулятор мощности на симисторе РМ-2-16А – полностью автономный прибор АКИПиА для поддержания заданного уровня среднеквадратического значения U-ния с целью защиты и стабильных выходных характеристик электроприборов. Представляет из себя электронный цифровой прибор, шириной 70 мм (без учета зазора по вентиляции) для крепления на стандартную DIN-рейку 35мм. Совмещает в себе более простую модель – РМ-2, дополненную силовым исполнительным элементом (симистором), который смонтирован в силовую схему и обеспечивает электрическую часть управления нагрузкой.

На внешней стороне корпуса (справа) смонтирован вентилятор (кулер) для принудительного охлаждения полупроводника, расположенного внутри и является неотъемлемой частью самого устройства.

Какими устройствами может управлять

РМ-2-16А может, без каких-либо дополнительных устройств и электроэлементов управлять:

  • отдельным электроприбором до 3,5 кВт, который допускает в работе отклонение формы питающего сигнала от стандартной синусоидальной формы – все активные (ТЭНы, различные нагревательные элементы, стандартные и металгалогеновые лампы освещения, ИК – обогреватели и многие другие потребители ( до 90% от общего числа)
  • группа нагрузок, например установленные в одном помещении (доме), суммарным потреблением не более 3500 ватт (16А при U=220V).

Что делать если необходимо управлять более мощным оборудованием

Если планируемая к контролю нагрузка превышает это значение – необходимо использовать младшую модель – высокоточный цифровой регулятор мощности РМ-2 (расположен в этом разделе каталога), с использованием дополнительных внешних силовых устройств коммутации – мощный симистор, смонтированный на радиаторе охлаждения вплоть до 300 кВт.

Либо использовать модель, полностью аналогичной конструкции, для быстрого монтажа без использования навесного оборудования и рассчитанную на большее значение тока вплоть до 32А – регулятор мощности РМ-2-32А.

Достоинства и недостатки

Достоинства:

  • высокоточная регулировка
  • быстрый монтаж – не требует дополнительных внешних элементов и их сборки
  • достаточная мощность в большинстве случаев
  • контроль и индикация о повреждении силового элемента
  • возможность калибровки вольтметра

Недостатки:

  • максимальный ток ограничен 16 А

Гарантия: 24 мес.

регуляторов с цифровым программированием | Analog Devices

Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Файлы cookie для таргетинга / профилирования:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. С этой целью мы также можем передавать эту информацию третьим лицам. Цифровой регулятор мощности
Decline cookies

– купить цифровой регулятор мощности для с бесплатной доставкой на AliExpress

Отличные новости !!! Вы попали в нужное место для приобретения цифрового регулятора мощности для. К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший цифровой регулятор мощности вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели цифровой регулятор мощности на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в цифровом регуляторе мощности и думаете о выборе аналогичного товара, AliExpress – отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово – просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны – и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести цифровой регулятор мощности по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Лучший цифровой регулятор мощности – отличные предложения на цифровой регулятор мощности от глобальных продавцов цифровых регуляторов мощности

Отличные новости !!! Вы попали в нужное место для приобретения цифрового регулятора мощности. К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший цифровой регулятор мощности вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели цифровой регулятор мощности на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в цифровом регуляторе мощности и думаете о выборе аналогичного товара, AliExpress – отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово – просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны – и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести цифровой регулятор мощности по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Управление питанием, Глава 7: ИС регуляторов напряжения

Практически во всех источниках питания используются полупроводники для обеспечения регулируемого выходного напряжения. Если источник питания имеет вход переменного тока, он выпрямляется до постоянного напряжения. ИС преобразователя мощности принимает входной сигнал постоянного тока и выдает выходной сигнал постоянного тока или управляет внешними полупроводниковыми переключателями выходной мощности для создания выходного постоянного тока.Это регулятор напряжения, когда его выходное напряжение возвращается в цепь, которая обеспечивает постоянство напряжения. Если выходное напряжение имеет тенденцию повышаться или понижаться, обратная связь заставляет выходное значение оставаться прежним.

Преобразователь мощности может работать как по импульсной, так и по линейной схеме. В линейной конфигурации управляющий транзистор всегда рассеивает мощность, которую можно минимизировать, используя стабилизаторы с малым падением напряжения (LDO), которые регулируют должным образом даже при относительно низком перепаде напряжения между их входом и выходом.ИС LDO имеют более простые схемы, чем их собратья с импульсным режимом, и производят меньше шума (без переключения), но ограничены своей способностью выдерживать ток и рассеивать мощность. Некоторые микросхемы LDO рассчитаны на ток около 200 мА, а другие могут выдерживать ток до 1 А.

КПД ИС LDO может составлять 40-60%, тогда как ИС в режиме переключения могут показывать КПД до 95%. Топологии с коммутационным режимом являются основным подходом для встроенных систем, но LDO также находят применение в некоторых приложениях.

Линейный регулятор с малым падением напряжения (LDO)

Линейные стабилизаторы

LDO обычно используются в системах, где требуется малошумящий источник питания вместо импульсного стабилизатора, который может нарушить работу системы.LDO также находят применение в приложениях, где регулятор должен поддерживать регулирование с небольшими различиями между входным напряжением питания и выходным напряжением нагрузки, например, в системах с батарейным питанием. Их низкое падение напряжения и низкий ток покоя делают их подходящими для портативных и беспроводных приложений. LDO со встроенным силовым полевым МОП-транзистором или биполярным транзистором обычно обеспечивают выходные сигналы в диапазоне от 50 до 500 мА.

Стабилизатор напряжения LDO работает в линейной области с топологией, показанной на рис.7-1. Основными компонентами стабилизатора напряжения являются последовательный транзистор (биполярный транзистор или полевой МОП-транзистор), усилитель дифференциальной ошибки и точный источник опорного напряжения.

7-1. В базовом LDO один вход усилителя дифференциальной ошибки, установленный резисторами R1 и R2, контролирует процентное значение выходного напряжения. Другой вход усилителя ошибки – это стабильное опорное напряжение (V REF ). Если выходное напряжение увеличивается относительно VREF, усилитель дифференциальной ошибки изменяет выход проходного транзистора для поддержания постоянного выходного напряжения нагрузки (V OUT ).

Ключевыми рабочими факторами LDO являются его падение напряжения, коэффициент отклонения источника питания (PSRR) и выходной шум. Низкое падение напряжения относится к разнице между входным и выходным напряжениями, которая позволяет ИС регулировать выходное напряжение нагрузки. То есть LDO может регулировать выходное напряжение нагрузки до тех пор, пока его вход и выход не приблизятся друг к другу при падении напряжения. В идеале падение напряжения должно быть как можно меньшим, чтобы свести к минимуму рассеиваемую мощность и максимизировать эффективность.Обычно считается, что падение напряжения достигается, когда выходное напряжение упало на 100 мВ ниже номинального значения. Ток нагрузки и температура проходного транзистора влияют на падение напряжения.

Внутренний источник опорного напряжения LDO – это потенциальный источник шума, обычно выражаемый в микровольтах RMS в определенной полосе частот, например, 30 мкВ RMS в диапазоне от 1 до 100 кГц. Этот низкий уровень шума вызывает меньше проблем, чем переходные процессы переключения и гармоники импульсного преобразователя. На рис. 7-1 LDO имеет штырек байпаса (опорного напряжения) для фильтрации шума опорного напряжения с конденсатором относительно земли.Добавление входных, выходных и байпасных конденсаторов, указанных в таблице, обычно приводит к беспроблемному уровню шума.

Среди их эксплуатационных соображений – тип и диапазон приложенного входного напряжения, требуемое выходное напряжение, максимальный ток нагрузки, минимальное падение напряжения, ток покоя, рассеиваемая мощность и ток отключения.

Управление контуром компенсации частоты LDO с включением нагрузочного конденсатора снижает чувствительность к ESR конденсатора (эквивалентное последовательное сопротивление), что обеспечивает стабильный LDO с конденсаторами хорошего качества любого типа.Кроме того, выходной конденсатор должен располагаться как можно ближе к выходному.

Дополнительные функции в некоторых LDO:

• Вход разрешения, позволяющий внешнее управлять включением и выключением LDO.

• Плавный пуск, который ограничивает пусковой ток и контролирует время нарастания выходного напряжения при включении питания.

• Контакт байпаса, который позволяет внешнему конденсатору снижать шум опорного напряжения.

• Выходной сигнал ошибки, указывающий, выходит ли выход из регулирования.

• Тепловое отключение, при котором LDO отключается, если его температура превышает заданное значение.

• Защита от перегрузки по току (OCP), которая ограничивает выходной ток LDO и рассеиваемую мощность.

LT3042

LT3042 от Linear Technology – это линейный стабилизатор с малым падением напряжения (LDO), в котором используется уникальная архитектура для минимизации шумовых эффектов и оптимизации подавления пульсаций источника питания (PSRR).

PSRR описывает, насколько хорошо схема отклоняет пульсации, введенные на ее входе.Пульсации могут быть вызваны либо входным источником питания, например пульсациями питания 50/60 Гц, пульсациями переключения от преобразователя постоянного / постоянного тока, либо пульсациями из-за совместного использования входного питания с другими цепями.

Для LDO PSRR – это функция регулируемой пульсации выходного напряжения по сравнению с пульсацией входного напряжения в заданном частотном диапазоне (обычно от 10 Гц до 1 МГц), выраженная в децибелах (дБ). Это может быть важным фактором, когда LDO питает аналоговые схемы, потому что низкий PSRR может позволить пульсации на выходе влиять на другие схемы.

Выходные конденсаторы

с низким ESR и дополнительные конденсаторы обхода опорного напряжения улучшают характеристики PSRR. В аккумуляторных системах должны использоваться LDO, которые поддерживают высокий PSRR при низком напряжении аккумуляторной батареи.

LT3042, показанный на упрощенной схеме на рис. 7-2, представляет собой LDO, который снижает шум и увеличивает PSRR. Вместо опорного напряжения, используемого в большинстве традиционных линейных регуляторов, LT3042 использует опорный ток, который работает с типичным уровнем шумового тока 20 пА / √Гц (6nARMS в полосе пропускания от 10 Гц до 100 кГц).

7-2. LT3042 – это LDO-стабилизатор, в котором используется уникальная архитектура для минимизации шумовых эффектов и оптимизации подавления пульсаций источника питания (PSRR).

Источник тока сопровождается высокопроизводительным буфером напряжения Rail-to-Rail, что позволяет легко подключать его параллельно для дальнейшего снижения шума, увеличения выходного тока и распределения тепла на печатной плате. Параллельное подключение нескольких LT3042 дополнительно снижает уровень шума в √N раз, где N – количество параллельных цепей.

LT3080

LT3080 компании

Linear Technology является уникальным, 1.1A LDO, который можно подключить параллельно для увеличения выходного тока или распределения тепла в платах для поверхностного монтажа (рис. 7-3). Эта ИС выводит коллектор проходного транзистора, чтобы обеспечить работу с малым падением напряжения – до 350 мВ – при использовании с несколькими источниками питания. Функции защиты включают защиту от короткого замыкания и безопасную рабочую зону, а также тепловое отключение.

7-3. LT3080 может программировать выходное напряжение на любой уровень от нуля до 36 В.

Ключевой особенностью LT3080 является способность обеспечивать широкий диапазон выходного напряжения.Используя опорный ток через единственный резистор, выходное напряжение программируется на любой уровень от нуля до 36 В. Он стабилен с емкостью на выходе 2,2 мкФ и может использовать небольшие керамические конденсаторы, которые не требуют дополнительного ESR, в отличие от других регуляторов.

LT3080 особенно хорошо подходит для приложений, требующих нескольких рельсов. Его архитектура регулируется до нуля с помощью одного резистора, который обслуживает современные низковольтные цифровые ИС, а также обеспечивает простую параллельную работу и управление температурой без радиаторов.Регулировка выхода на «ноль» позволяет отключить схему с питанием, а когда вход предварительно регулируется – например, входной источник 5 В или 3,3 В – внешние резисторы могут помочь распределить тепло.

Прецизионный «0» внутренний источник тока TC 10 мкА подключается к неинвертирующему входу его операционного усилителя мощности, который обеспечивает низкоомный буферизованный выход для напряжения на неинвертирующем входе. Один резистор между неинвертирующим входом и землей устанавливает выходное напряжение; установка этого резистора на ноль дает нулевой выходной сигнал.Любое выходное напряжение может быть получено от нуля до максимального значения, определяемого входным источником питания.

Использование источника истинного тока позволяет регулятору демонстрировать усиление и частотную характеристику независимо от положительного входного импеданса. Старые регулируемые регуляторы изменяют коэффициент усиления контура с выходным напряжением и изменяют полосу пропускания при обходе регулировочного штифта. Для LT3080 коэффициент усиления контура не изменяется при изменении выходного напряжения или обходе. Регулировка выхода не фиксируется в процентах от выходного напряжения, а составляет фиксированную долю милливольт.Использование источника истинного тока позволяет обеспечить стабилизацию всего усиления буферного усилителя, и никакое усиление не требуется для повышения опорного напряжения до более высокого выходного напряжения.

ИС может работать в двух режимах. Один из них – это трехконтактный режим, который соединяет управляющий контакт с входным контактом питания, что ограничивает его падение до 1,35 В. В качестве альтернативы вы можете подключить вывод «control» к более высокому напряжению, а вывод питания IN к более низкому напряжению, что приведет к падению напряжения 350 мВ на выводе IN и минимизации рассеиваемой мощности.Это позволяет источнику питания 1,1 А регулировать от 2,5VIN до 1,8VOUT или от 1,8VIN до 1,2VOUT с низким уровнем рассеивания.

Импульсные ИС

На рис. 7-4 показан упрощенный ШИМ-контроллер, используемый с импульсным преобразователем. Во время работы часть выходного постоянного напряжения возвращается в усилитель ошибки, что заставляет компаратор управлять временем включения и выключения ШИМ. На рис. 7-4 показано, как изменяется ширина импульса ШИМ для разных процентов времени включения и выключения. Чем больше время включения, тем выше выпрямленное выходное напряжение постоянного тока.Регулировка выходного напряжения сохраняется, если выходной сигнал, отфильтрованный силовым полевым МОП-транзистором, имеет тенденцию к изменению, в этом случае обратная связь регулирует рабочий цикл ШИМ, чтобы поддерживать выходное напряжение на желаемом уровне.

7-4. Контроллер PWM генерирует прямоугольные волны разной ширины в зависимости от обратной связи по выходному напряжению.

Для генерации сигнала ШИМ усилитель ошибки принимает входной сигнал обратной связи и стабильное опорное напряжение для создания выходного сигнала, соответствующего разнице двух входов.Компаратор сравнивает выходное напряжение усилителя ошибки с пилообразной характеристикой генератора, создавая модулированную ширину импульса. Выход компаратора применяется к логической схеме переключения, выход которой поступает на выходной драйвер для внешнего силового полевого МОП-транзистора. Логика переключения обеспечивает возможность включения или отключения сигнала ШИМ, подаваемого на силовой полевой МОП-транзистор.

Большинство микросхем ШИМ-контроллеров обеспечивают токоограничивающую защиту, измеряя выходной ток. Если вход считывания тока превышает определенный порог, он завершает текущий цикл (поцикловое ограничение тока).

Компоновка схемы имеет решающее значение при использовании резистора считывания тока, который должен быть типа с низкой индуктивностью. Расположите конденсатор фильтра считывания тока очень близко и подключите непосредственно к выводу PWM IC. Кроме того, все чувствительные к шуму соединения маломощного заземления должны быть соединены вместе рядом с GND IC, а одно соединение должно быть выполнено с заземлением питания (точка заземления сенсорного резистора).

В большинстве микросхем ШИМ-контроллеров частоту генератора задает один внешний резистор или конденсатор.Чтобы установить желаемую частоту генератора, используйте уравнение в таблице данных контроллера для расчета номинала резистора.

Некоторые преобразователи ШИМ включают возможность синхронизации генератора с внешними часами с частотой, которая либо выше, либо ниже частоты внутреннего генератора. Если нет необходимости в синхронизации, подключите вывод синхронизации к GND, чтобы предотвратить шумовые помехи.

Поскольку ИС ШИМ является частью цепи обратной связи, на входе усилителя ошибки должна использоваться схема частотной компенсации для обеспечения стабильности системы.

Типичный преобразователь мощности принимает входной сигнал постоянного тока, преобразует его в частоту переключения, а затем выпрямляет его для получения выходного постоянного тока. Часть его выхода постоянного тока сравнивается с опорным напряжением (V REF ) и управляет ШИМ. Если выходное напряжение имеет тенденцию к увеличению, напряжение, подаваемое обратно в схему ШИМ, снижает ее рабочий цикл, в результате чего ее выходное напряжение уменьшается и поддерживается надлежащее регулируемое напряжение. И наоборот, если выходное напряжение имеет тенденцию к снижению, обратная связь приводит к увеличению рабочего цикла переключателя мощности, поддерживая регулируемый выход при надлежащем напряжении.

Обычно силовой полупроводниковый переключатель включается и выключается с частотой, которая может находиться в диапазоне от 100 кГц до 1 МГц, в зависимости от типа ИС. Частота переключения определяет физический размер и стоимость катушек индуктивности, конденсаторов и трансформаторов фильтра. Чем выше частота переключения, тем меньше физический размер и стоимость компонентов. Чтобы оптимизировать эффективность, материал магнитопровода для индуктора и трансформатора должен соответствовать частоте переключения. То есть материал сердечника трансформатора / катушки индуктивности следует выбирать таким образом, чтобы он эффективно работал на частоте переключения.

На рис. 7-5 показана упрощенная схема импульсного регулятора напряжения. Для импульсных преобразователей постоянного тока в постоянный требуется средство для изменения выходного напряжения в ответ на изменения нагрузки. Один из подходов заключается в использовании широтно-импульсной модуляции (ШИМ), которая управляет входом в соответствующий переключатель питания. Сигнал ШИМ состоит из двух значений: ВКЛ и ВЫКЛ. Фильтр нижних частот, подключенный к выходу переключателя питания, обеспечивает напряжение, пропорциональное времени включения и выключения контроллера ШИМ.

7-5. Импульсный преобразователь использует широтно-импульсный модулятор для управления регулированием

Существует два типа импульсных преобразователей: изолированные и неизолированные, что зависит от наличия прямого пути постоянного тока от входа к выходу. В изолированном преобразователе используется трансформатор, обеспечивающий изоляцию входного и выходного напряжения (рис. 7-6).

7-6. Изолированный импульсный преобразователь использует трансформатор для изоляции.

В неизолированном преобразователе обычно используется индуктор, и между входом и выходом нет развязки по напряжению (рис. 7-7). Для подавляющего большинства приложений подходят неизолированные преобразователи. Однако в некоторых приложениях требуется изоляция между входным и выходным напряжениями. Преимущество преобразователя на основе трансформатора заключается в том, что он может легко создавать несколько выходных напряжений, тогда как преобразователь на основе индуктора обеспечивает только один выход.

7-7.Неизолированный импульсный преобразователь.

Топологии цепей

В преобразователях питания постоянного тока используются две основные топологии ИС. Если выходное напряжение ниже входного напряжения, ИС называется понижающим преобразователем. Если выходное напряжение выше входного напряжения, ИС называется повышающим преобразователем.

В своей базовой схеме (рис. 7-8) понижающий стабилизатор принимает входной сигнал постоянного тока, преобразует его в частоту переключения ШИМ (широтно-импульсный модулятор), которая управляет выходным сигналом силового полевого МОП-транзистора (Q1).Внешний выпрямитель, катушка индуктивности и выходной конденсатор создают регулируемый выход постоянного тока. ИС регулятора сравнивает часть выпрямленного выходного напряжения постоянного тока с опорным напряжением (V REF ) и изменяет рабочий цикл ШИМ для поддержания постоянного выходного напряжения постоянного тока. Если выходное напряжение имеет тенденцию к увеличению, ШИМ уменьшает свой рабочий цикл, вызывая уменьшение выходного сигнала и поддержание регулируемого выходного сигнала при надлежащем напряжении. И наоборот, если выходное напряжение имеет тенденцию к снижению, обратная связь заставляет рабочий цикл ШИМ увеличиваться и поддерживать регулируемый выход.

7,8. Базовый понижающий преобразователь; индуктор всегда «противостоит» входному напряжению.

Топология понижающего или понижающего регулятора имеет преимущества простоты и низкой стоимости. Однако он имеет ограниченный диапазон мощности, и его прямой путь постоянного тока от входа к выходу может создать проблему, если есть закороченный переключатель питания.

LT8602

LT8602 от Linear Technology представляет собой монолитный понижающий импульсный стабилизатор постоянной частоты, работающий по току, с четырьмя выходными каналами (рис.7-9). Два канала – это каналы высокого напряжения с входом от 3 до 42 В, а два других – каналы низкого напряжения с входом от 2,6 до 5,5 В.

7-9. Четырехканальный понижающий преобразователь LT8602 имеет два канала высокого напряжения с входом от 3 до 42 В, а два других – каналы низкого напряжения с входом от 2,6 до 5,5 В.

В ИС используется один генератор, который генерирует два тактовых сигнала (CLK) на 180 градусов. не в фазе. Каналы 1 и 3 работают с CLK1, а каналы 2 и 4 работают с CLK2.Понижающий стабилизатор потребляет входной ток только во время верхнего цикла включения, поэтому многофазный режим снижает пиковый входной ток и удваивает частоту входного тока. Это снижает как пульсации входного тока, так и требуемую входную емкость.

Каждый канал высокого напряжения (HV) представляет собой синхронный понижающий стабилизатор, который работает от собственного вывода PVIN. Внутренний полевой МОП-транзистор с максимальной мощностью включается в начале каждого цикла генератора и выключается, когда ток, протекающий через верхний МОП-транзистор, достигает уровня, определяемого его усилителем ошибки.Усилитель ошибки измеряет выходное напряжение через внешний резистивный делитель, подключенный к выводу FB, для управления пиковым током в верхнем переключателе.

Пока верхний полевой МОП-транзистор выключен, нижний полевой МОП-транзистор включен на оставшуюся часть цикла генератора или до тех пор, пока ток в катушке индуктивности не начнет реверсировать. Если в результате перегрузки через нижний переключатель протекает ток более 2 А (канал 1) или 3,3 А (канал 2), следующий тактовый цикл будет отложен до тех пор, пока ток переключения не вернется к более низкому безопасному уровню.

Высоковольтные каналы имеют входы Track / Soft-Start (TRKSS1, TRKSS2). Когда на этом выводе ниже 1 В, преобразователь регулирует вывод FB на напряжение TRKSS вместо внутреннего опорного напряжения. Вывод TRKSS имеет подтягивающий ток 2,4 мкА. Вывод TRKSS также может использоваться, чтобы позволить выходу отслеживать другой регулятор, либо другой канал высокого напряжения, либо внешний регулятор.

Как показано на упрощенной схеме индуктивно-повышающего преобразователя постоянного тока (рис. 7-10), включение силового полевого МОП-транзистора вызывает нарастание тока через катушку индуктивности.При выключении силового МОП-транзистора ток через диод направляется к выходному конденсатору. Несколько циклов переключения создают напряжение выходного конденсатора из-за заряда, который он накапливает от тока катушки индуктивности. В результате выходное напряжение выше входного.

7-10. Базовый неизолированный импульсный индуктивно-повышающий преобразователь постоянного тока.

LTC3124

Типичная прикладная схема LTC3124 компании Linear Technology, показанная на рис. 7-11, использует внешний резистивный делитель напряжения от VOUT до FB и до SGND для программирования выхода из 2.От 5 до 15 В. При настройке на выход 12 В он может непрерывно выдавать до 1,5 А от входа 5 В. Ограничение по току 2,5 А на фазу, а также возможность программирования выходного напряжения до 15 В делают его пригодным для различных приложений.

7-11. В прикладной схеме LTC3124 используется внешний резистивный делитель напряжения от VOUT до FB и до SGND для программирования выхода от 2,5 до 15 В.

Использование двух фаз, расположенных на равном расстоянии 180 град. кроме того, удваивает частоту пульсаций на выходе и значительно снижает ток пульсаций выходного конденсатора.Хотя для этой архитектуры требуются две катушки индуктивности, а не одна, она имеет несколько важных преимуществ:

• Существенно более низкий пиковый ток индуктивности позволяет использовать индукторы меньшего размера и с меньшими затратами.

• Значительно сниженный выходной ток пульсации сводит к минимуму требования к выходной емкости.

• Более высокочастотные пульсации на выходе легче отфильтровать для приложений с низким уровнем шума.

• Входной ток пульсации также снижен для снижения шума VIN.

При двухфазном режиме работы одна фаза всегда подает ток на нагрузку, если VIN больше половины VOUT (для рабочих циклов менее 50%).По мере дальнейшего уменьшения рабочего цикла, ток нагрузки между двумя фазами начинает перекрываться, происходя одновременно для растущей части каждой фазы по мере того, как рабочий цикл приближается к нулю. По сравнению с однофазным преобразователем, это значительно снижает как выходной ток пульсации, так и пиковый ток в каждой катушке индуктивности.

LTC3124 обеспечивает преимущество для систем с батарейным питанием, он может запускаться от входов с низким напряжением 1,8 В и продолжать работать от входов с низким напряжением 0.5 В при выходном напряжении более 2,5 В. Это увеличивает время работы за счет максимального увеличения количества энергии, извлекаемой из входного источника. Ограничивающими факторами для применения являются способность источника питания обеспечивать достаточную мощность на выходе при низком входном напряжении и максимальный рабочий цикл, который ограничен 94%. При низких входных напряжениях небольшие падения напряжения из-за последовательного сопротивления становятся критическими и ограничивают подачу мощности преобразователем.

Даже если входное напряжение превышает выходное напряжение, ИС будет регулировать выход, обеспечивая совместимость с любым типом батарей.LTC3124 – идеальное решение для повышающих приложений, требующих выходного напряжения до 15 В, где определяющими факторами являются высокая эффективность, небольшие размеры и высокая надежность.

LTC3110

LTC3110 от Linear Technology представляет собой комбинацию понижающе-повышающего регулятора / зарядного устройства постоянного / постоянного тока на 2 А с выбираемыми контактами режимами работы для зарядки и резервного питания системы (рис. 7-12). Это двунаправленное, программируемое зарядное устройство для суперконденсаторов с понижающим и повышающим входным током обеспечивает активную балансировку заряда для суперконденсаторов 1-й или 2-й серии.Его запатентованная топология понижающего-повышающего шума с низким уровнем шума выполняет работу двух отдельных импульсных регуляторов, экономя размер, стоимость и сложность.

7-12. LTC3110 представляет собой комбинацию понижающе-повышающего регулятора / зарядного устройства постоянного / постоянного тока на 2 А с выбираемыми контактами режимами работы для зарядки и резервного питания системы.

Двунаправленный относится к потоку постоянного тока, связанному с VSYS, выводом источника питания для резервного выходного напряжения системы и входного напряжения зарядного тока. В одном направлении LTC3110 работает как понижающий-повышающий стабилизатор, снимая ток с суперконденсатора и обеспечивая регулируемое напряжение на нагрузке на выводе VSYS.В другом направлении знак тока меняется на противоположный, и точно ограниченный ток течет от системной шины обратно, чтобы зарядить суперконденсатор. Если VSYS падает из-за потери мощности, он может автономно переключать направление для стабилизации напряжения системы, подавая ток от суперконденсатора в VSYS.

Диапазон напряжения конденсатора / батареи от 0,1 В до 5,5 В LTC3110 и диапазона резервного напряжения системы от 1,8 В до 5,25 В делают его пригодным для широкого спектра приложений резервного копирования с использованием суперконденсаторов или батарей, например:

• Он объединяет все функции, необходимые для использования преимуществ суперконденсаторов, зарядки, балансировки и резервного копирования.

• Ограничение входного тока с точностью ± 2% исключает использование внешних компонентов, снижает IQ и позволяет использовать все возможности источника питания без превышения пределов безопасности.

• Распределение входной мощности позволяет LTC3110 и другим преобразователям постоянного / постоянного тока или нагрузкам использовать один и тот же источник питания с минимальным снижением номинальных характеристик / запасом.

• Активный балансировщик синхронно перемещает заряд между конденсаторами, устраняя внешние балластные резисторы и их потери мощности, что приводит к меньшему количеству циклов перезарядки и более быстрой зарядке.

• Он может автономно переходить из режима зарядки в резервный или переключать режимы на основе внешней команды.

На рис. 7-13 ШИМ-регулятор включает и выключает полевой МОП-транзистор. Без обратной связи рабочий цикл ШИМ определяет выходное напряжение, которое в два раза больше входного для 50% рабочего цикла. Увеличение напряжения в два раза приводит к тому, что входной ток в два раза превышает выходной ток. В реальной схеме с потерями входной ток немного выше.

7-13.Базовый прямой преобразователь может работать как повышающий или понижающий преобразователь. Теоретически он должен использовать «идеальный» трансформатор без потоков утечки, нулевого тока намагничивания и потерь.

Его преимущества – простота, низкая стоимость и возможность увеличения мощности без использования трансформатора. Недостатками являются ограниченный диапазон мощностей и относительно высокая пульсация на выходе из-за постоянной энергии, исходящей от выходного конденсатора.

Выбор индуктора является важной частью этой схемы повышения, поскольку значение индуктивности влияет на входные и выходные пульсации напряжения и токи.Индуктор с низким последовательным сопротивлением обеспечивает оптимальную эффективность преобразования энергии. Выберите номинальный ток насыщения катушки индуктивности так, чтобы он был выше установившегося пикового тока катушки индуктивности в приложении.

Для обеспечения стабильности для рабочих циклов выше 50% для индуктора требуется минимальное значение, определяемое минимальным входным напряжением и максимальным выходным напряжением. Это зависит от частоты переключения, рабочего цикла и сопротивления открытого МОП-транзистора.

Топология прямого преобразователя (рис.7-13) представляет собой изолированную версию понижающего преобразователя. Использование трансформатора позволяет прямому преобразователю быть либо повышающим, либо понижающим преобразователем, хотя наиболее распространенным применением является понижающий преобразователь. Основными преимуществами прямой топологии являются ее простота и гибкость.

Другая топология с трансформаторной изоляцией, упрощенный обратноходовой преобразователь (рис. 7-14), работает в режиме непрямого преобразования. Топология Flyback – один из наиболее распространенных и экономичных способов генерирования умеренного уровня изолированного питания в преобразователях переменного тока в постоянный.Он обладает большей гибкостью, поскольку может легко генерировать несколько выходных напряжений путем добавления дополнительных вторичных обмоток трансформатора. Недостатком является то, что регулирование и пульсации на выходе не так жестко контролируются, как в некоторых других топологиях, и нагрузки на выключатель питания выше.

7-14. Трансформатор базового обратноходового преобразователя обычно имеет воздушный зазор, что позволяет ему накапливать энергию во время работы и передавать энергию диоду во время простоя.

LT3798

LT3798 компании

Linear Technology представляет собой изолированный контроллер обратного хода с одноступенчатой ​​активной коррекцией коэффициента мощности (PFC). Эффективность более 86% может быть достигнута при уровнях выходной мощности до 100 Вт. В зависимости от выбора внешних компонентов, он может работать в диапазоне входных напряжений от 90 до 277 В переменного тока и может легко увеличиваться или уменьшаться. Кроме того, LT3798 может использоваться в приложениях с высоким входным напряжением постоянного тока, что делает его пригодным для использования в промышленности, электромобилях и сверхвысоких напряжениях, горнодобывающей промышленности и медицине.

На рис. 7-15 показано типичное приложение для LT3798. Эта ИС представляет собой контроллер переключения режима тока, специально предназначенный для создания источника постоянного тока / постоянного напряжения с изолированной обратноходовой топологией. Для поддержания регулирования в этой топологии обычно используется обратная связь по выходному напряжению и току от изолированной вторичной обмотки выходного трансформатора до VIN. Обычно для этого требуется оптоизолятор. Вместо этого LT3798 использует пиковый ток внешнего полевого МОП-транзистора, полученный из считывающего резистора, для определения выходного тока обратноходового преобразователя, не требуя оптопары.

7-15. Контроллер обратного хода LT3798 с одноступенчатой ​​активной коррекцией коэффициента мощности (PFC).

Как показано на рис. 7-15, выходной трансформатор имеет три обмотки, включая выходную. Сток внешнего полевого МОП-транзистора подключается к одной из первичных обмоток. Третья обмотка трансформатора определяет выходное напряжение, а также подает питание для установившегося режима работы. Вывод VIN подает питание на внутренний LDO, который генерирует 10 В на выводе INTVCC. Схема внутреннего управления состоит из двух усилителей ошибок, схемы минимума, умножителя, передаточного затвора, компаратора тока, генератора низкого выходного тока и главной защелки.Кроме того, схема выборки и хранения контролирует выходное напряжение третьей обмотки. Компаратор обнаруживает режим прерывистой проводимости (DCM) с конденсатором и последовательным резистором, подключенными к третьей обмотке.

Во время типичного цикла драйвер затвора включает внешний полевой МОП-транзистор, так что ток течет в первичной обмотке. Этот ток увеличивается со скоростью, пропорциональной входному напряжению и обратно пропорциональной индуктивности намагничивания трансформатора. Контур управления определяет максимальный ток, и компаратор выключает переключатель, когда он достигает этого значения.Когда переключатель выключается, энергия трансформатора вытекает из вторичной обмотки через выходной диод D1. Этот ток уменьшается со скоростью, пропорциональной выходному напряжению. Когда ток уменьшается до нуля, выходной диод отключается, и напряжение на вторичной обмотке начинает колебаться в зависимости от паразитной емкости и намагничивающей индуктивности трансформатора.

Напряжение на всех обмотках одинаковое, поэтому и третья обмотка тоже работает. Конденсатор, подключенный к выводу DCM, отключает компаратор, который служит детектором du / dt при возникновении звонка.Эта временная информация используется для расчета выходного тока. Детектор du / dt ожидает, пока сигнал вызывного сигнала достигнет своего минимального значения, а затем включается переключатель. Такое переключение аналогично переключению при нулевом напряжении и сводит к минимуму потери энергии при включении переключателя, повышая эффективность до 5%. Эта ИС работает на границе непрерывного и прерывистого режимов проводимости, что называется критическим режимом проводимости (или граничным режимом проводимости). Работа в режиме критической проводимости позволяет использовать трансформатор меньшего размера, чем конструкции, работающие в режиме постоянной проводимости.

SEPIC

Несимметричный преобразователь первичной индуктивности (SEPIC) представляет собой топологию преобразователя постоянного / постоянного тока, который обеспечивает положительное регулируемое выходное напряжение от входного напряжения, которое изменяется сверху вниз от выходного напряжения. В упрощенном преобразователе SEPIC, показанном на рис. 7-16, используются две катушки индуктивности, L1 и L2, которые могут быть намотаны на один и тот же сердечник, поскольку на протяжении всего цикла переключения к ним прикладываются одинаковые напряжения. Использование спаренного дросселя занимает меньше места на ПК. плата и, как правило, дешевле, чем два отдельных индуктора.Конденсатор C4 изолирует вход от выхода и обеспечивает защиту от короткого замыкания нагрузки.

7-16. Две катушки индуктивности в базовом преобразователе SEPIC могут быть намотаны на один и тот же сердечник, поскольку в течение всего цикла переключения к ним прикладываются одинаковые напряжения.

ИС регулирует выход с помощью ШИМ-управления в текущем режиме, которое включает силовой полевой МОП-транзистор Q1 в начале каждого цикла переключения. Входное напряжение подается на катушку индуктивности и сохраняет энергию по мере нарастания тока в катушке индуктивности.Во время этой части цикла переключения ток нагрузки обеспечивается выходным конденсатором. Когда ток катушки индуктивности повышается до порога, установленного выходом усилителя ошибки, выключатель питания выключается, и внешний диод Шоттки смещается в прямом направлении. Катушка индуктивности передает накопленную энергию для пополнения выходного конденсатора и подачи тока нагрузки. Эта операция повторяется в каждом цикле переключения. Рабочий цикл преобразователя определяется компаратором управления ШИМ, который сравнивает выходной сигнал усилителя ошибки и текущий сигнал.

Сигнал пилообразного изменения от генератора добавляется к пилообразному сигналу тока. Эта компенсация наклона предназначена для предотвращения субгармонических колебаний, которые присущи управлению режимом тока при скважности выше 50%. Контур обратной связи регулирует вывод FB до опорного напряжения через усилитель ошибки. Выход усилителя ошибки подключен к выводу COMP. К выводу COMP подключена внешняя RC-компенсационная цепь для оптимизации контура обратной связи для обеспечения стабильности и переходной характеристики.

TPS61170

TPS61170 – это монолитный высоковольтный импульсный стабилизатор от Texas Instruments со встроенным силовым МОП-транзистором 1,2 А, 40 В. Устройство может быть сконфигурировано в нескольких стандартных топологиях регулятора, включая повышающий и SEPIC. Рисунок 7-17 показывает конфигурацию SEPIC. Устройство имеет широкий диапазон входного напряжения для поддержки приложений с входным напряжением от батарей или регулируемых шин питания 5 В, 12 В.

7-17. TPS61170 сконфигурирован как преобразователь SEPIC.

В ИС встроен полевой транзистор нижнего уровня на 40 В для обеспечения выходного напряжения до 38 В. Устройство регулирует выход с помощью токового режима управления ШИМ (широтно-импульсной модуляцией). Частота переключения ШИМ составляет 1,2 МГц (типичное значение). Схема управления ШИМ включает переключатель в начале каждого цикла переключения. Входное напряжение подается на катушку индуктивности и сохраняет энергию по мере нарастания тока в катушке индуктивности. Во время этой части цикла переключения ток нагрузки обеспечивается выходным конденсатором.Когда ток катушки индуктивности повышается до порога, установленного выходом усилителя ошибки, выключатель питания выключается, и внешний диод Шоттки смещается в прямом направлении. Катушка индуктивности передает накопленную энергию для пополнения выходного конденсатора и подачи тока нагрузки. Эта операция повторяется каждый цикл переключения. Как показано на блок-схеме, рабочий цикл преобразователя определяется компаратором управления ШИМ, который сравнивает выходной сигнал усилителя ошибки и текущий сигнал.

TPS61170 работает на 1.Частота переключения 2 МГц, что позволяет использовать низкопрофильные катушки индуктивности и недорогие керамические входные и выходные конденсаторы. Он имеет встроенную защиту, включая ограничение перегрузки по току, плавный пуск и тепловое отключение.

Гистерезисный преобразователь

Базовый гистерезисный регулятор, показанный на рис. 7-18, представляет собой тип импульсного регулятора, в котором не используется ШИМ. Он состоит из компаратора с входным гистерезисом, который сравнивает выходное напряжение обратной связи с опорным напряжением. Когда напряжение обратной связи превышает опорное напряжение, выходной сигнал компаратора становится низким, отключая понижающий переключатель MOSFET.Переключатель остается выключенным до тех пор, пока напряжение обратной связи не упадет ниже опорного напряжения гистерезиса. Затем выходной сигнал компаратора становится высоким, включается переключатель и позволяет выходному напряжению снова расти.

7-18. Базовый гистерезисный регулятор представляет собой самый быстрый способ управления преобразователем постоянного тока.

Базовый гистерезисный преобразователь состоит из компаратора ошибок, управляющей логики и внутреннего задания. Выход обычно управляет синхронным выпрямителем, который может быть внутренним или внешним.Часть выходного напряжения возвращается в компаратор ошибок, который сравнивает его с опорным напряжением. Если выходное напряжение стремится к низкому уровню относительно опорного напряжения, выходной конденсатор заряжается до тех пор, пока не достигнет равновесия с опорным напряжением. Затем компаратор включает синхронный выпрямитель. Когда синхронный выпрямитель включен, выходное напряжение падает достаточно низко, чтобы преодолеть гистерезис компаратора, и в это время синхронный выпрямитель отключается, начиная новый цикл.

В гистерезисном регуляторе нет усилителя ошибки напряжения, поэтому его реакция на любое изменение тока нагрузки или входного напряжения практически мгновенно. Следовательно, гистерезисный регулятор представляет собой самый быстрый способ управления преобразователем постоянного тока. Недостатком обычного гистерезисного регулятора является то, что его частота изменяется пропорционально ESR выходного конденсатора. Поскольку начальное значение часто плохо контролируется, а ESR электролитических конденсаторов также изменяется с температурой и возрастом, практические изменения ESR могут легко привести к изменениям частоты порядка одного-трех.Однако существует модификация гистерезисной топологии, которая устраняет зависимость рабочей частоты от ESR.

LM3475

LM3475 – это понижающий (понижающий) контроллер постоянного / переменного тока, в котором используется гистерезисная архитектура управления, которая обеспечивает регулирование с частотно-импульсной модуляцией (ЧИМ) (рис. 7-19). Схема гистерезисного управления не использует внутренний генератор. Частота переключения зависит от внешних компонентов и условий эксплуатации. Рабочая частота снижается при малых нагрузках, что обеспечивает превосходную эффективность по сравнению с архитектурами с ШИМ.Поскольку переключение напрямую контролируется выходными условиями, гистерезисное управление обеспечивает исключительную переходную характеристику нагрузки.

7-19. LM3475 – это понижающий (понижающий) контроллер постоянного и переменного тока, в котором используется гистерезисная архитектура управления, которая обеспечивает регулирование с частотно-импульсной модуляцией (ЧИМ).

LM3475 использует контур управления напряжением на основе компаратора. Напряжение на выводе обратной связи сравнивается с опорным напряжением 0,8 В с гистерезисом 21 мВ. Когда входное напряжение FB компаратора падает ниже опорного напряжения, выход компаратора становится низким.Это приводит к тому, что выходной сигнал драйвера PGATE переводит затвор PFET в низкий уровень и включает PFET.

При включенном PFET входной источник питания заряжает COUT и подает ток на нагрузку через PFET и катушку индуктивности. Ток через катушку индуктивности линейно нарастает, а выходное напряжение увеличивается. Когда напряжение FB достигает верхнего порога (опорное напряжение плюс гистерезис), выход компаратора становится высоким, и PGATE выключает PFET. Когда PFET выключается, загорается диод, и ток через катушку индуктивности падает.Когда выходное напряжение падает ниже опорного напряжения, цикл повторяется.

Конвертер Cuk

Преобразователь Cuk – это преобразователь постоянного тока, величина выходного напряжения которого может быть больше или меньше входного напряжения. По сути, это повышающий преобразователь, за которым следует понижающий преобразователь с конденсатором для передачи энергии. Это инвертирующий преобразователь, поэтому выходное напряжение отрицательно по отношению к входному. Неизолированный преобразователь Cuk может иметь только противоположную полярность между входом и выходом.Он использует конденсатор в качестве основного элемента накопления энергии, в отличие от большинства других типов преобразователей, в которых используется катушка индуктивности.

Как и другие преобразователи (понижающий преобразователь, повышающий преобразователь, понижающий-повышающий преобразователь), преобразователь Cuk может работать в режиме непрерывного или прерывистого тока. Однако, в отличие от этих преобразователей, он также может работать в режиме прерывистого напряжения (напряжение на конденсаторе падает до нуля во время цикла коммутации).

LM2611 от Texas Instruments представляет собой преобразователь Cuk, который состоит из контроллера режима тока со встроенным первичным переключателем и встроенной схемой измерения тока (рис.7-20). Обратная связь подключена к усилителю внутренней ошибки и использует внутреннюю компенсацию типа II / III. Генератор рампы обеспечивает некоторую компенсацию наклона системе. Вывод SHDN – это логический вход, предназначенный для отключения преобразователя.

7-20. LM2611 сконфигурирован как преобразователь Cuk

Импульсный ШИМ-стабилизатор с фиксированной частотой

А, LM2611 имеет опорное напряжение -1,23 В, что делает его идеальным для использования в преобразователе Cuk. Конвертер Cuk инвертирует вход и может повышать или понижать абсолютное значение.Используя катушки индуктивности как на входе, так и на выходе, преобразователь Cuk производит очень небольшие колебания входного и выходного тока. Это значительное преимущество по сравнению с другими инвертирующими топологиями, такими как повышенно-понижающий и обратный.

Многофазный преобразователь

По мере увеличения требований к току возрастает и потребность в увеличении количества фаз в преобразователе. Однофазные понижающие контроллеры подходят для низковольтных устройств с токами примерно до 25 А, однако рассеивание мощности и эффективность являются проблемой при более высоких токах.Одним из подходов к более высоким токовым нагрузкам является многофазный понижающий контроллер. Их производительность делает их идеальными для питания персональной электроники, портативных промышленных устройств, твердотельных накопителей, приложений с малыми ячейками, ПЛИС и микропроцессоров.

Двухфазная схема, показанная на рис. 7-21, имеет чередование фаз, что снижает токи пульсаций на входе и выходе. Это также уменьшает количество горячих точек на печатной плате или отдельном компоненте. Двухфазный понижающий преобразователь вдвое снижает рассеиваемую мощность тока RMS в полевых МОП-транзисторах и катушках индуктивности.Перемежение также снижает переходные потери.

7-21. Базовый многофазный преобразователь имеет две чередующиеся фазы, что снижает токи пульсаций на входе и выходе.

Многофазные элементы работают на общей частоте, но сдвинуты по фазе, так что переключение преобразования происходит через равные промежутки времени, контролируемые общей микросхемой управления. Микросхема управления смещает время переключения каждого преобразователя таким образом, чтобы фазовый угол между переключениями преобразователя составлял 360 градусов./ n, где n – количество фаз преобразователя. Выходы преобразователей параллельны, так что эффективная частота пульсаций на выходе равна n × f, где f – рабочая частота каждого преобразователя. Это обеспечивает лучшие динамические характеристики и значительно меньшую развязывающую емкость по сравнению с однофазной системой.

Разделение тока между многофазными ячейками необходимо, чтобы не потреблять слишком много тока. В идеале каждая многофазная ячейка должна потреблять одинаковое количество тока.Чтобы добиться равного распределения тока, необходимо контролировать и контролировать выходной ток для каждой ячейки.

Многофазный подход также предлагает преимущества упаковки. Каждый преобразователь выдает 1 / n от общей выходной мощности, уменьшая физический размер и ценность магнитных полей, используемых в каждой фазе. Кроме того, силовые полупроводники в каждой фазе должны обрабатывать только 1 / n общей мощности. Это распределяет внутреннее рассеивание мощности между несколькими силовыми устройствами, устраняя концентрированные источники тепла и, возможно, необходимость в радиаторе.Несмотря на то, что здесь используется больше компонентов, компромисс по стоимости может быть благоприятным.

Многофазные преобразователи имеют важные преимущества:

• Пониженный среднеквадратичный ток конденсатора входного фильтра, позволяет использовать меньшие и менее дорогие типы

• Распределенный отвод тепла, снижает температуру горячих точек, повышая надежность

• Повышенная общая мощность

• Повышенная эквивалентная частота без увеличения коммутационных потерь, что позволяет использовать меньшие эквивалентные индуктивности, сокращающие переходное время нагрузки.

• Пониженный ток пульсаций в выходном конденсаторе снижает пульсации напряжения на выходе и позволяет использовать меньшие и менее дорогие выходные конденсаторы

• Превосходная реакция на переходные процессы при нагрузке во всем диапазоне нагрузок

Многофазные преобразователи

также имеют некоторые недостатки, которые следует учитывать при выборе количества фаз, например:

• Необходимость в большем количестве переключателей и выходных катушек индуктивности, чем в однофазной конструкции, что приводит к более высокой стоимости системы, чем однофазное решение, по крайней мере, ниже определенного уровня мощности

• Более сложное управление

• Возможность неравномерного распределения тока между фазами

• Добавлена ​​сложность топологии схемы

Синхронное выпрямление

Эффективность – важный критерий при проектировании преобразователей постоянного тока, что означает, что потери мощности должны быть минимизированы.Эти потери вызваны переключателем мощности, магнитными элементами и выходным выпрямителем. Для уменьшения потерь в переключателе мощности и магнитных потерь требуются компоненты, которые могут эффективно работать на высоких частотах переключения. В выходных выпрямителях могут использоваться диоды Шоттки, но синхронное выпрямление (рис. 7-22), состоящее из силовых полевых МОП-транзисторов, может обеспечить более высокий КПД.

7-22. Синхронный выпрямитель более эффективен, чем диодный выпрямитель.

Полевые МОП-транзисторы

имеют более низкие потери прямой проводимости, чем диоды Шоттки.В отличие от обычных самокоммутирующихся диодов, полевые МОП-транзисторы включаются и выключаются с помощью управляющего сигнала затвора, синхронизированного с работой преобразователя. Основным недостатком синхронного выпрямления является дополнительная сложность и стоимость, связанные с устройствами MOSFET и соответствующей управляющей электроникой. Однако при низких выходных напряжениях результирующее повышение эффективности более чем компенсирует недостаток стоимости во многих приложениях.

Компенсация регулятора напряжения

Импульсные источники питания

используют отрицательную обратную связь для регулирования своей выходной мощности до желаемого значения.Оптимальная система управления SMPS, использующая отрицательную обратную связь, должна обеспечивать скорость, точность и отклик без колебаний. Один из способов добиться этого – ограничить частотный диапазон, в котором реагирует SMPS. Чтобы быть стабильным, частотный диапазон или полоса пропускания должны соответствовать частоте, на которой тракт передачи с обратной связью от входа к выходу падает на 3 дБ (так называемая частота кроссовера). Обязательно ограничивайте полосу пропускания до того, что на самом деле требуется вашему приложению. Принятие слишком широкой полосы пропускания влияет на помехозащищенность системы, а слишком низкая пропускная способность приводит к плохой переходной характеристике.Вы можете ограничить полосу пропускания системы управления SMPS, сформировав ее кривую усиления контура (V OUT / V IN ) с помощью блока компенсатора G (s), показанного на рис. 7-23. Этот блок гарантирует, что после определенной частоты амплитуда усиления контура упадет и опустится ниже 1 или 0 дБ.

7-23. Типичная модель импульсного источника питания с отрицательной обратной связью использует блок компенсации G (s) и H (s), коэффициент усиления разомкнутого контура. VIN (s) – это вход, а VOUT (s) – это выход.

Кроме того, для получения отклика, сходящегося к стабильному состоянию, нам необходимо убедиться, что фаза, при которой величина усиления контура равна 1, меньше -180 градусов. Чтобы убедиться, что мы держимся подальше от -180 град. на частоте кроссовера компенсатор G (s) должен адаптировать отклик контура на выбранной частоте кроссовера для создания необходимого запаса по фазе. Соответствующий запас по фазе гарантирует, что, несмотря на внешние возмущения или неизбежные спреды добычи, изменения в усилении контура не поставят под угрозу стабильность системы.Запас по фазе также влияет на переходную характеристику системы. Следовательно, компенсатор G (s) должен обеспечивать желаемые характеристики усиления и фазы.

Используя анализатор цепей, вы можете определить запасы устойчивости, измерив коэффициент усиления и фазу контура управления, а затем просмотреть полученный график Боде (рис. 7-24), который представляет собой график зависимости коэффициента усиления и фазы от частоты источника питания. . 60 град. запас по фазе предпочтителен, но 45 град. обычно приемлемо. Обычно приемлемым считается коэффициент усиления –10 дБ.Коэффициент усиления и запас по фазе важны, потому что фактические значения компонентов могут изменяться в зависимости от температуры. Таким образом, значения компонентов могут отличаться от блока к блоку при производстве, в результате чего коэффициент усиления по напряжению и фаза контура управления изменяются соответствующим образом. Кроме того, значения компонентов могут изменяться со временем и вызывать нестабильность.

7-24. Типичный график Боде для импульсного стабилизатора напряжения IC показывает частоту кроссовера, усиление и запас по фазе.

Если значения компонентов приводят к обнулению фазы на частоте кроссовера, регулятор становится нестабильным и колеблется.Целью компенсации является обеспечение наилучшего запаса по усилению и фазе при максимально возможной частоте кроссовера. Высокая частота кроссовера обеспечивает быструю реакцию на изменения тока нагрузки, тогда как высокое усиление на низких частотах обеспечивает быстрое установление выходного напряжения. Значения компонентов и вариации V OUT / V IN могут привести к компромиссу между высокой частотой кроссовера и высоким запасом устойчивости.

7-25. LM21305 – это ИС импульсного регулятора, в котором используется один узел компенсации, для которого требуются компоненты компенсации RC и CC1, подключенные между контактом COMP и AGND.

Определение компенсации для источника питания не всегда легко, потому что оценка графика Боде невозможна, когда нет доступа к петле обратной связи к детали. В других случаях доступ к контуру обратной связи затруднен, потому что оборудование интегрировано или потребуется вырезать дорожку на печатной плате. В других случаях устройства либо содержат несколько контуров управления, и только один из них доступен, либо порядок контура управления выше второго порядка, и в этом случае график Боде является плохим предиктором относительной стабильности.Еще одна сложность заключается в том, что во многих портативных электронных устройствах, таких как сотовые телефоны и планшеты, схемы очень малы и густо заполнены, оставляя мало препятствий для доступа к элементам контура управления.

В вышеуказанных случаях единственный способ проверить стабильность – это оценка неинвазивного запаса стабильности (NISM). Он получен на основе легко доступных измерений выходного импеданса. Математическое соотношение, которое позволяет точно определять стабильность контура управления по данным выходного импеданса, было разработано Picotest и включено в программное обеспечение OMICRON Lab Bode 100 Vector Network Analyzer (VNA).На рисунке 7-26 показана испытательная установка для этого измерения.

7-26. Недоступные измерения выходного импеданса (Пикотест).

Один из первых методов компенсации предусматривал использование регулятора напряжения с внешними узлами, чтобы разработчик мог вставлять компоненты компенсации. Определение значений компонентов компенсации включало анализ ИС регулятора и его внешних компонентов. После определения необходимой компенсации разработчик смоделировал или измерил схему регулятора с установленными компенсационными компонентами.Для получения желаемых результатов этот процесс обычно требовал нескольких итераций.

Для правильного внедрения компенсационной сети требуются инженеры со специальными инструментами, навыками и опытом. Если схема была смоделирована, а не измерена, разработчик должен был в конечном итоге вставить фактические компоненты компенсации для измерения характеристик источника питания. Моделирование было настолько хорошо, насколько хорошо дизайнер знал компоненты и паразиты. Модель могла быть неполной или отличаться от реальной схемы, поэтому компенсацию необходимо было проверить путем измерения реальной схемы.Неизменно требовалась доработка из-за возможных ошибок, связанных с заменой компонентов. Ремонтные работы также могут изменить характеристики источника питания и повредить цепи, питаемые от регулятора.

Некоторые поставщики ИС регуляторов включали компоненты внутренней компенсации, поэтому конструкция не нуждалась в дальнейшем анализе. Однако разработчику пришлось использовать внешние компоненты, указанные производителем.

Единичный компенсационный узел был следующим этапом в этой эволюции. Примером этого является ИС импульсного регулятора LM21305 компании Texas Instruments, показанная на рис.7-25. LM21305 обычно требует только одного резистора и конденсатора для компенсации. Однако иногда требовался дополнительный конденсатор.

Автоматическая компенсация

Для устранения проблем, связанных с ручным определением компенсации источника питания, две компании разработали технологию автоматической компенсации. В результате были разработаны ИС регулятора смешанных сигналов с автоматической компенсацией. Это избавило проектировщика от необходимости в специальных инструментах, знаниях или опыте для оптимизации производительности.Автоматическая компенсация устанавливает выходные характеристики таким образом, чтобы изменения из-за допусков компонентов, старения, температуры, входного напряжения и других факторов не влияли на производительность.

Семейство цифровых источников питания

CUI NDM2Z (рис. 7-27) включает автоматическую компенсацию с использованием ИС регулятора Intersil / Zilker ZL8101M. Автоматическая компенсация обходит традиционную практику создания маржи для учета вариаций компонентов, что может привести к более высоким затратам на компоненты и более длительным циклам проектирования.

7-27. В семействе источников питания CUI NDM2Z используется автоматическая компенсация, которая позволяет динамически устанавливать оптимальную стабильность и переходную характеристику.

Источники питания NDM2Z на 50 А обеспечивают эффективность 91% при входном напряжении 12 В постоянного тока и выходном напряжении 1,0 В при нагрузке 50%. Все эти источники питания имеют входной диапазон от 4,5 до 14 В постоянного тока и программируемый выход от 0,6 до 5,0 В постоянного тока в версии 12 А и от 0,6 до 3,3 В постоянного тока в версиях на 25 и 50 А.

Функции модуля

включают активное разделение тока, последовательность напряжения, отслеживание напряжения, синхронизацию и распределение фазы, программируемый плавный пуск и останов, а также множество возможностей мониторинга.Простой и легкий в использовании графический интерфейс пользователя CUI помогает в этих проектах.

ZL8101

В NMD2Z используется синхронный понижающий контроллер Intersil / Zilker ZL8101, работающий в режиме напряжения, с широтно-импульсным модулятором постоянной частоты (PWM). В этом цифровом контроллере третьего поколения используется специальный оптимизированный конечный автомат для генерации точных импульсов ШИМ и собственный микроконтроллер, используемый для настройки, обслуживания и оптимизации (рис. 7-28). Для этого требуются внешние драйверы, силовые полевые МОП-транзисторы, конденсаторы и катушки индуктивности.Интегрированная подрегулировка позволяет работать от одного источника питания от 4,5 В до 14 В. Используя простые соединения контактов или стандартные команды PMBus, вы можете настроить обширный набор функций управления питанием с помощью графического интерфейса Intersil PowerNavigator.

7-28. Блок-схема Intersil ZL8101 IC показывает выходы PWM (PWMH и PWML), которые взаимодействуют с внешним драйвером, таким как ZL1505.

Первоначально автоматическая компенсация ZL8101 измеряет характеристики силовой передачи и определяет требуемую компенсацию.ИС сохраняет значения компенсации и использует их при последующих входах. После включения ZL8101 готов к регулированию мощности и выполнению задач управления питанием без необходимости программирования. Расширенные параметры конфигурации и изменения конфигурации в реальном времени доступны через интерфейс I2C / SMBus. Встроенная энергонезависимая память (NVM) сохраняет данные конфигурации.

Вы должны выбирать полевые МОП-транзисторы с внешним питанием в первую очередь для RDS (ON) и во вторую очередь для полного заряда затвора. Фактический выходной ток преобразователя мощности зависит от характеристик драйверов и выходных полевых МОП-транзисторов.

Конфигурируемые функции защиты цепи непрерывно защищают ИС и нагрузку от повреждений из-за сбоев системы. ZL8101 непрерывно контролирует входное напряжение, выходное напряжение / ток, внутреннюю температуру и температуру внешнего термодиода. Вы также можете установить параметры мониторинга для определенных предупреждений о неисправности.

Петля с нелинейным откликом (NLR) улучшает время отклика и снижает переходные отклонения выходного сигнала нагрузки. Чтобы оптимизировать эффективность преобразователя мощности, ZL8101 отслеживает его рабочие условия и постоянно регулирует время включения и выключения полевых МОП-транзисторов высокого и низкого напряжения.Алгоритмы адаптивной оптимизации производительности, такие как управление мертвым временем, эмуляция диодов и адаптивная частота, обеспечивают большее повышение эффективности.

Сигнал Power-Good (PG) указывает, что выходное напряжение находится в пределах указанного допуска от целевого уровня, и условия неисправности отсутствуют. По умолчанию вывод PG определяет, находится ли выходное напряжение в пределах -10% / + 15% от целевого напряжения. Вы можете изменить эти пределы и полярность через интерфейс I2C / SMBus.

Внутренний контур фазовой автоподстройки частоты (ФАПЧ) служит синхронизатором для внутренних схем.Вы можете управлять ФАПЧ от внешнего источника синхронизации, подключенного к выводу SYNC. Вы можете установить частоту переключения от 200 кГц до 1,33 МГц.

Графический интерфейс на базе Windows обеспечивает полную настройку и возможность мониторинга через интерфейс I2C / SMBus.

NDM3Z-90

CUI – это модуль на 90 А, который имеет несколько функций, обеспечивающих высокую эффективность преобразования мощности. Адаптивные алгоритмы и управление зарядом от цикла к циклу сокращают время отклика и уменьшают отклонение выходного сигнала в результате переходных процессов нагрузки.

ZL8800

NDM3Z использует Intersil ZL8800 для автоматической компенсации. Это двойной или двухфазный цифровой контроллер постоянного / постоянного тока. Каждый выход может работать независимо или использоваться вместе в двухфазной конфигурации для сильноточных приложений. ZL8800 поддерживает широкий диапазон выходных напряжений (от 0,54 В до 5,5 В), работая от входных напряжений от 4,5 до 14 В. На рис. 7-29 показана двухфазная конфигурация, в которой используются внешние модули питания DRMOS.

7-29.Intersil ZL8800 сконфигурирован как двухфазный преобразователь

Благодаря полностью цифровому управлению ChargeMode Control, ZL8800 будет реагировать на скачок нагрузки в течение одного цикла переключения. Этот уникальный метод модуляции без компенсации позволяет конструкциям соответствовать требованиям к переходным процессам с минимальной выходной емкостью, что позволяет сэкономить средства и место на плате.

Фирменная однопроводная последовательная шина DDC (Digital-DC) компании

Intersil позволяет ZL8800 обмениваться данными между другими ИС Intersil.Используя DDC, ZL8800 выполняет сложные функции, такие как балансировка фазных токов между ИС, упорядочивание и устранение неисправностей, устраняя необходимость в сложных системах управления источниками питания с многочисленными внешними дискретными компонентами.

ZL8800 имеет пошаговую защиту от перегрузки по току на выходе. Входное и выходное напряжение, а также напряжение питания драйвера DrMOS / MOSFET защищены от повышенного и пониженного напряжения. Для контроля температуры доступны два внешних и один внутренний датчик температуры, один из которых используется для защиты от пониженной и повышенной температуры.Функция параметрического захвата моментальных снимков позволяет пользователям делать снимки рабочих данных и данных о неисправностях в нормальных условиях или в условиях сбоя.

Интегрированные регуляторы с малым падением напряжения (LDO)

позволяют ZL8800 работать от одного источника питания, устраняя необходимость в дополнительных линейных регуляторах. Выход LDO может использоваться для питания внешних драйверов или устройств DrMOS.

Благодаря полной совместимости с PMBus, ZL8800 способен измерять и сообщать входное напряжение, входной ток, выходное напряжение, выходной ток, а также внутреннюю температуру устройства, внешние температуры и вход вспомогательного напряжения.

Этот блок питания включает в себя широкий спектр настраиваемых функций управления питанием, которые легко реализовать с минимальным количеством внешних компонентов. Кроме того, источник питания имеет функции защиты, которые постоянно защищают нагрузку от повреждений из-за неожиданных системных сбоев.

Стандартная конфигурация источника питания подходит для работы в широком диапазоне значений входного напряжения, выходного напряжения и нагрузки. Конфигурация хранится во внутренней энергонезависимой памяти (NVM).Все функции управления питанием можно перенастроить с помощью интерфейса PMBus.

Автоматическая компенсация Powervation

Компания

Bellnix Co. Ltd. (Япония) использует цифровой контроллер ROHM PV3012 Powervation в своем низкопрофильном модуле постоянного / постоянного тока на 60 А. Цифровой модуль питания BDP12-0.6S60R0 представляет собой неизолированный понижающий преобразователь, совместимый с PMBus, который удовлетворяет потребности в конструкциях с малым форм-фактором, обеспечивая при этом высокую надежность и высокую производительность. ROHM PV3012 – это цифровой двухфазный контроллер (рис.7-30).

7-30. ИС PV3012 от Powervation – это ИС с автоматической компенсацией в реальном времени с одним выходом, двух- или однофазным цифровым синхронным понижающим контроллером для приложений POL.

Используется BDP на 60 А, и параллельная работа модуля BDP поддерживается через шину разделения тока DSS компании ROHM. Этот совместимый с PMBus модуль обеспечивает точные измерения и телеметрические отчеты, полную линейку программируемых функций защиты источника питания, хорошее энергопотребление и дополнительную функцию отслеживания – все в компактном 32.Дизайн корпуса SMD, соответствующий ROHS, 8 мм × 23,0 мм.

Цифровой контроллер

ROHM PV3012 Powervation также используется в сильноточных цифровых модулях POL серии iJB от TDK-Lambda. Продукты серии iJB поддерживают работу при низком напряжении и сильном токе, обеспечивая точность заданного значения ± 0,5% по линии, нагрузке и диапазону температур. В то время как функциональность модуля PMBus обеспечивает телеметрию напряжения, тока и температуры в реальном времени и обеспечивает полную программируемость преобразователя постоянного / постоянного тока, в продуктах серии iJB также используются контакты для настройки функций, что позволяет использовать их в приложениях, не связанных с PMBus. .

Используя интеллектуальную технологию автонастройки Powervation, Auto-Control, модули iJB POL обеспечивают лучшую динамическую производительность и стабильность системы для приложения. Auto-Control – это запатентованная технология адаптивной компенсации, которая оптимизирует динамические характеристики и стабильность системы в реальном времени, не требуя внесения шума или недостатков периодических методов. Это ключевое преимущество для модулей и других конструкций, которые управляют неизвестными или переменными нагрузками на выходе, и решает проблемы, связанные с дрейфом параметров нагрузки, возникающим в зависимости от температуры и времени.

Еще одним пользователем цифрового контроллера PV3012 является модуль DC / DC OKLF-T / 25-W12N-C компании Murata Power Solutions. Это неизолированный преобразователь постоянного тока в постоянный, вырабатывающий максимум 25 А при выходном напряжении 1,2 В при работе до 70 ° C с потоком воздуха 200 LFM. Регулируемые выходы обеспечивают точное регулирование от 0,69 В до 3,63 В в широком диапазоне входных сигналов (от 6,5 В до 14 В).

Модуль OKLF 25 A компании

Murata Power Solutions обеспечивает сверхбыструю реакцию на переходные процессы при нагрузке, исключительные характеристики снижения номинальных характеристик и типичный КПД> 90% в форм-факторе с высокой плотностью мощности.Модуль представляет собой полноценный автономный источник питания; Благодаря использованию ИС цифрового управления PV3012 он обеспечивает полный набор функций защиты и прецизионную точность уставки.

Этот преобразователь POL обеспечивает прецизионную точность уставки ± 0,5% по линии, нагрузке и диапазону температур – намного лучше, чем аналоговые варианты. Кроме того, это предложение повышает ценность за счет использования компактных приподнятых катушек индуктивности и функции автоматического управления Powervation.

PV3204

Одним из новых продуктов Powervation от ROHM, обеспечивающих автокомпенсацию, является PV3204, двухфазный цифровой синхронный понижающий контроллер с адаптивной компенсацией контура для приложений точки нагрузки (POL) (рис.7-31). Выход может подавать от 0,6 В до 5,5 В и может быть настроен и управляться через PMBus или посредством программирования, хранящегося в энергонезависимой памяти (NVM). Помимо интерфейса SMBus, PV3204 предоставляет 3-битный параллельный интерфейс VID с отображением от 0,85 В до 1,0 В с шагом 25 мВ и 1,05 В.

7-31. Powervation PV3204 – это двухфазный цифровой синхронный понижающий контроллер с адаптивной автоматической компенсацией контура для приложений точки нагрузки (POL).

PV3204

PV3204 использует фирменный адаптивный цифровой контур управления Powervation, Auto-Control, технологию адаптивной компенсации контура в реальном времени для импульсных преобразователей мощности, которая автономно уравновешивает компромисс между динамическими характеристиками и стабильностью системы.Auto-Control избавляет от сложных вычислений и настройки оптимальной стабильности, используемой с традиционными методами компенсации. Функция Auto-Control регулирует коэффициенты P, I и D в каждом цикле переключения для непрерывного достижения оптимальной стабильности в широком диапазоне помех. Автоматическое управление встроено в архитектуру управления цифровых устройств Powervation и не зависит от шума, вносимого периодическими калибровками. Непрерывный характер автоматического управления позволяет ему управлять изменениями в системе, которые происходят в режиме реального времени или медленно с течением времени при использовании источника питания.Эта самокомпенсация происходит от цикла к циклу, поэтому Auto-Control может непрерывно регулироваться в соответствии с изменениями температуры, которые происходят во время использования источника питания, и учитывает другие факторы, такие как старение и дрейф.

Этот контроллер может использоваться в одно- или двухфазном режиме. При использовании в двухфазном режиме фазы могут добавляться или удаляться по мере изменения нагрузки, так что эффективность максимальна во всем диапазоне нагрузки. Кроме того, выходы фаз чередуются, так что эффективная частота переключения на выходе увеличивается вдвое.

Цифровые функции этого контроллера преобразователя мощности PMBus позволяют осуществлять системную телеметрию (удаленное измерение и составление отчетов) о токе, напряжении и температуре.

Кроме того, чтобы максимизировать производительность и надежность системы, ИС обеспечивает температурную коррекцию / компенсацию нескольких параметров.

DVC 310

Разработанный для генераторов переменного тока с возбуждением SHUNT, AREP или PMG, цифровой контроллер напряжения DEIF, DVC 310, представляет собой цифровой автоматический регулятор напряжения, который контролирует и регулирует выходное напряжение генератора.Контроллер может улучшить производительность генераторной установки, обеспечивая до 10% увеличения ударной нагрузки нагрузки и подходит для любого применения в сегментах критического питания, IPP и аренды. В частности, критически важные силовые установки выиграют от улучшенного контроля последовательности закрытия перед возбуждением, что повысит безопасность и обеспечит более быстрый запуск.

Увеличение мощности генератора не требуется

Из-за высоких пусковых токов во время пуска генераторы для пуска электродвигателей и намагничивания трансформатора часто имеют завышенный размер до 200%.Благодаря индуктивному запуску двигателя и усилению намагничивания, DVC 310 от DEIF сводит к минимуму требования к габаритам.

Повышенная производительность

По сравнению с аналоговыми AVR, цифровой AVR от DEIF работает с большими шагами нагрузки в тех же границах частоты / напряжения. Обычно генераторные установки принимают 10% дополнительной номинальной нагрузки. Благодаря встроенным функциям справки это увеличивает производительность.

Защитите генератор от влажности

Скопление конденсата во время простоя – обычная проблема в тропическом климате.Благодаря специальному режиму вентиляции DVC 310 удаляет влагу из обмоток с помощью вентилятора генератора и позволяет производить электроэнергию только тогда, когда это безопасно.

Раствор для управления генераторной установкой

Встроенная в DVC 310 связь на основе J1939 предлагает эксклюзивный канал связи для усовершенствованных контроллеров DEIF. Эта функция является уникальной на рынке, предоставляя большое количество данных для отображения, трансляции или профилактического обслуживания. Использование связи по шине CAN для регулирования напряжения снижает потенциальное количество источников отказа.Используйте DVC 310 вместе с нашими контроллерами AGC-4, AGC 200 или GPC-3, чтобы получить максимальную выгоду.

Цифровой регулятор напряжения

MEC-20 – товарный знак WPP 6293

Позвоните, чтобы узнать цены Состояние: Новое Количество: 4

Информация о двигателе

  • Производитель двигателя: Marelli

Дополнительная информация

  • Год выпуска: 2021
  • Модель (и): MEC20
  • P / N SM31FA600A

Выбирая Worldwide Power Products, вы получаете больше, чем просто качественное оборудование – вы получаете качественные новые и бывшие в употреблении генераторы и двигатели, когда они вам нужны, где бы вы ни находились, с оперативным и индивидуальным обслуживанием.Имея на складе подобранное вручную оборудование для выработки электроэнергии на миллионы долларов, мы гордимся тем, что у нас есть все, что вам нужно, чтобы вы могли включить его.

<Вернуться к результатам

Позвоните, чтобы узнать цены Состояние: Новое Количество: 4

Информация о цифровом регуляторе напряжения MEC-20

Заполните форму ниже, чтобы запросить дополнительную информацию, и представитель WPP свяжется с вами.

Цифровой регулятор мощности

– 2-фазный, HI-8003 M Цифровой регулятор мощности

– 2-фазный, HI-8003 M – Henix Мы используем файлы cookie, чтобы обеспечить максимальное удобство использования нашего веб-сайта. Если вы продолжите использовать этот сайт, мы будем считать, что он вам нравится. Хорошо.

Характеристики

  • СИСТЕМНЫЙ ВХОД: 2 ФАЗА 440 В переменного тока ± 10% 50 Гц
  • РЕЖИМ УПРАВЛЕНИЯ: УПРАВЛЕНИЕ УГЛОМ ФАЗЫ
  • КОНФИГУРАЦИЯ SCR
  • : ПОЛНЫЙ ПРЕОБРАЗОВАТЕЛЬ, ПОДХОДЯЩИЙ ДЛЯ УПРАВЛЕНИЯ УГЛОМ ФАЗЫ
  • ТИП НАГРУЗКИ: РЕЗИСТИВНЫЙ / ИНДУКТИВНЫЙ
  • ПИТАНИЕ: В соответствии с требованиями заказчика (максимум: 30 кВт)
  • МАКСИМАЛЬНЫЙ ТОК НАГРУЗКИ: 50A
  • УПРАВЛЯЮЩИЙ ВХОД: 4-20 мА ( или 0-10 В постоянного тока)

Сопутствующие товары

HI-8003A40 – Аналоговый тиристорный контроллер мощности

Характеристики
  • МЯГКИЙ ПУСК и МЯГКИЙ КОНЕЦ: При плавном пуске выходная мощность передается нагрузке экспоненциально.Этот символ предотвращает появление избыточного пускового тока в нагревателях или трансформаторах. Эта функция увеличивает срок службы нагрузки.
  • ОТКЛЮЧЕНИЕ ПРИ ПЕРЕГРУЗКЕ: Отключение при ПЕРЕГРУЗКЕ может регулироваться от 110% до 200% от номинального выходного значения. Если происходит ПЕРЕГРУЗКА, выход отключается.
  • АВТОМАТИЧЕСКИЙ СБРОС : Когда происходит отключение ПЕРЕГРУЗКА, через три секунды задержки тиристор снова запускается нормально и выдает выходной сигнал. Если отключение ПЕРЕГРУЗКА происходит более трех раз в течение 10 минут, выход отключается навсегда.
  • ПЕРЕКЛЮЧАТЕЛЬ СБРОСА: Если на выходе или входе возникает какая-либо проблема, и выход отключен, включается гудок. На этом этапе устраните проблему и нажмите кнопку сброса.
  • ПЕРЕКЛЮЧАТЕЛЬ ВКЛЮЧЕНИЯ: Также имеется дополнительный переключатель включения.

Цифровые контроллеры мощности – HI-8003-DP-C3

Характеристики
  • МЯГКИЙ ПУСК и МЯГКИЙ КОНЕЦ: При плавном пуске выходная мощность передается нагрузке экспоненциально.Этот символ предотвращает появление избыточного пускового тока в нагревателях или трансформаторах. Эта функция увеличивает срок службы нагрузки.
  • ОТКЛЮЧЕНИЕ ПРИ ПЕРЕГРУЗКЕ: Отключение при ПЕРЕГРУЗКЕ может регулироваться от 110% до 200% от номинального выходного значения. Если происходит ПЕРЕГРУЗКА, выход отключается.
  • АВТОМАТИЧЕСКИЙ СБРОС : Когда происходит отключение ПЕРЕГРУЗКА, через три секунды задержки тиристор снова запускается нормально и выдает выходной сигнал. Если отключение ПЕРЕГРУЗКА происходит более трех раз в течение 10 минут, выход отключается навсегда.
  • ПЕРЕКЛЮЧАТЕЛЬ СБРОСА: Если на выходе или входе возникает какая-либо проблема, и выход отключен, включается гудок. На этом этапе устраните проблему и нажмите кнопку сброса.
  • ПЕРЕКЛЮЧАТЕЛЬ ВКЛЮЧЕНИЯ: Также имеется дополнительный переключатель включения.

Цифровой контроллер мощности на основе тиристоров – HI-8003 M

Характеристики
  • МЯГКИЙ ПУСК и МЯГКИЙ КОНЕЦ: При плавном пуске выходная мощность передается нагрузке экспоненциально.Этот символ предотвращает появление избыточного пускового тока в нагревателях или трансформаторах. Эта функция увеличивает срок службы нагрузки.
  • ОТКЛЮЧЕНИЕ ПРИ ПЕРЕГРУЗКЕ: Отключение при ПЕРЕГРУЗКЕ может регулироваться от 110% до 200% от номинального выходного значения. Если происходит ПЕРЕГРУЗКА, выход отключается.
  • АВТОМАТИЧЕСКИЙ СБРОС : Когда происходит отключение ПЕРЕГРУЗКА, через три секунды задержки тиристор снова запускается нормально и выдает выходной сигнал. Если отключение ПЕРЕГРУЗКА происходит более трех раз в течение 10 минут, выход отключается навсегда.
  • ПЕРЕКЛЮЧАТЕЛЬ СБРОСА: Если на выходе или входе возникает какая-либо проблема, и выход отключен, включается гудок. На этом этапе устраните проблему и нажмите кнопку сброса.
  • ПЕРЕКЛЮЧАТЕЛЬ ВКЛЮЧЕНИЯ: Также имеется дополнительный переключатель включения.

Аналоговые тиристорные контроллеры мощности HI-8003 -TP-C3-ED

Характеристики
  • МЯГКИЙ ПУСК и МЯГКИЙ КОНЕЦ: При плавном пуске выходная мощность передается нагрузке экспоненциально.Этот символ предотвращает появление избыточного пускового тока в нагревателях или трансформаторах. Эта функция увеличивает срок службы нагрузки.
  • ОТКЛЮЧЕНИЕ ПРИ ПЕРЕГРУЗКЕ: Отключение при ПЕРЕГРУЗКЕ может регулироваться от 110% до 200% от номинального выходного значения. Если происходит ПЕРЕГРУЗКА, выход отключается.
  • АВТОМАТИЧЕСКИЙ СБРОС : Когда происходит отключение ПЕРЕГРУЗКА, через три секунды задержки тиристор снова запускается нормально и выдает выходной сигнал. Если отключение ПЕРЕГРУЗКА происходит более трех раз в течение 10 минут, выход отключается навсегда.
  • ПЕРЕКЛЮЧАТЕЛЬ СБРОСА: Если на выходе или входе возникает какая-либо проблема, и выход отключен, включается гудок. На этом этапе устраните проблему и нажмите кнопку сброса.
  • ПЕРЕКЛЮЧАТЕЛЬ ВКЛЮЧЕНИЯ: Также имеется дополнительный переключатель включения.
.

Добавить комментарий

Ваш адрес email не будет опубликован.