Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Достойный встраиваемый цифровой усилитель НЧ своими руками за разумные деньги

Добрый день, Хабр!

Наша прошлая статья о DIY-аудиотехнике вызвала довольно большой резонанс и сегодня мы хотели бы рассказать о другой нашей разработке из области аудио — высококачественном УНЧ. Устройство было создано Олегом Тетушкиным для собственных нужд. Но в результате усилитель прижился в офисе. Собран, разумеется, из того, что плохо лежало было под рукой на складе. В данном случае он собран в самодельном корпусе. Но по сути, его можно встроить куда угодно — хоть в мебель. На что хватит фантазии.

В комментах к вышеупомянутой статье разгорелся спор о том, что можно и что нельзя называть HiFi или даже просто качественным. Поэтому хочется пояснить — определение «качественный» основывается исключительно на нашем чувстве прекрасного. Мы считаем, что звук данного усилителя вполне достойный и удовлетворит любого среднего человека. Хотя у аудиофилов может быть другое мнение по этому поводу.


Вот такой красавец должен получиться в результате

Что было использовано:

  • MP5613 — Цифровой усилитель D-класса мощностью 2 x 150 Вт. Технология PurePath HD.
  • MP5630I2 — Индикатор для мощного усилителя НЧ (стерео).
  • MP1054 – Светодинамический стрелочный индикатор уровня сигнала.
  • MP1231 — Аудиорегулятор 2 канала.
  • ESE150-24 – Блок питания. 150 Вт. 24 В.
  • SL-01H — Теплоотвод с вентилятором.
  • WP4-18FB — Kлеммник нажимной 4 контакта
  • Светодиоды 5мм – 7 шт.

Как это работает?

Для MP5613 был использован блок питания в 24В, следовательно, в нагрузку 4 ОМа будет отдаваться около 70 Ватт на канал. Результат — получаем 2*70 Ватт качественного звука PurePath.

На входе усилителя устанавливаются MP1231 (сборка на AD8402), для работы регулятором громкости и баланса стереоканалов, плюс MP5630I2, который используется в роли предварительного усилителя. После этого этапа стереосигнал идет на вход MP5613, и уже потом — на акустические системы. Что касается сигнала для светодинамического стрелочного индикатора, то его снимаем с выхода усилителя мощности, прямо с акустических систем.

Как это сделать?


Регулировка громкости на МР1231. Основная схема

Начинаем процесс с входного каскада MP1231 + MP5630I2.

Вначале потенциометр МР1231 подключаем сразу перед МР563012 (это показано на схеме. Чтобы добиться задуманного, на обратной стороне платы МР563012, сразу после RCA-разъема (рис.1 и 1.2) нужно перерезать сигнальные проводники на печатной платы, с зачисткой обоих проводников с двух сторон. Разрез делается для того, чтобы здесь можно было установить потенциометр. Важная деталь: обязательно нужно использовать экранированный провод для соединения потенциометра и предварительного усилителя. Подключать все элементы (наверное, об этом на Хабре можно не говорить) нужно в полном соответствии как с цветом, так и с маркировкой.

А питание на МР1231 подводится с МР563012. На рисунке 2 это показано:


Рис.1


Рис.1.2


Рис. 2

Комментарий: Для того, чтобы улучшить помехозащищенность системы (MP1231 всем хорош, кроме помехозащиненности), нужно немного доработать схему. Для решения проблемы необходимо выполнить четыре простых шага (показано на рис. 3):

  • Непосредственно к клеммам питания MP1231 вместе с подводящими проводниками зажать электролит на 1000 мкФ или больше.
  • Электролит на 470 мкФ подпаять параллельно конденсатору С4.
  • Корпус валкодера у MP1231 соединить с GND. Зачистить маску рядом с ножкой корпуса и пропаять.
  • Соединить GND MP1231 и GND драйвера усилителя толстым проводом можно даже оплеткой. Это нужно сделать потому что источник 12В установлен на драйвере. Как это лучше всего сделать показано на рис.4.

Корпус и вывод индикаторов на переднюю панель

Перед тем, как приступить к сборке корпуса, необходимо немного доработать усилитель МР5613 и индикатор МР563012. Доработка заключается в подпайке выводных каналов к платам, на проводах с длиной 10-12 сантиметров. Что касается плат конфигуратора, то здесь установлены СМД-светодиоды, 6 штук, которые индицируют состояние усилителя: температурные режимы (2), ошибка, готовность, перегрузка и сброс. После доработки все это можно вставить на переднюю панель устройства:

Кроме того, на обратной стороне платы конфигуратора нужно подпаять провод длиной 15-20 сантиметров. Провод подпаивается к одному из выходов (можно использовать любой) каждого канала, через пленочные конденсаторы 0.1 мкФ. Таким образом организовывается снятие сигнала на индикатор уровня.

Теперь приступаем к созданию корпуса

Его мы вырезали и склеили из листов вспененного ПВХ. Этот материал нам понравился тем, что его очень легко обработать, плюс можно клеить любым клеем для пластика. Такой материал легко красится. Здесь можно скачать фалы передней и фальш-панели (формат .lay).

Размеры деталей:

  • боковых стенок – 110 * 200
  • дна и крышки – 210 * 200
  • задней стенки – 210 * 100

Корпус мы решили покрасить краской из обычного баллончика. Переднюю панель покрасили под металл, а сам корпус — темно-зеленой (почти черной) краской. На корпусе крепим модули индикатора и регулятора, винтами М3.

Под зажимы акустики вырезаем отверстие под выключатель, плюс сверлим отверстия под зажиммы акустики.

Блок питания, что логично, ставим на длинную сторону.

Усилитель крепится на дно через стойки 5 мм. Переднюю панель закрепляем с помощью саморезов для дерева.

Комментарий. Для того, чтобы полностью исключить помехи от ШИМ модуляции выполняем следующие шаги:

  • Соединяем последовательно GND всех задействованных модулей либо толстым проводом, либо оплеткой;
  • Около разъемов питания каждого модуля прикрепляем электролиты по 1000 мкФ или больше.

Теперь можно подключать мощные колонки и радоваться качественному звуку.

Если есть желание, можно модернизировать дизайн конструкции. Вот видео с демонстрацией работы всего, что получилось:

Усилитель мы сделали довольно давно, и он до сих пор служит нам верой-правдой. Возможно, вы сможете посоветовать, как сделать конструкцию лучше? Усилитель получился отличный, но нет пределу совершенства, это уже давно известно.

Если кому-то захочется повторить наш путь и за выходные обзавестись очень приличным усилителем, вот здесь есть вся его электронная начинка. Что касается корпуса, то это — дело вкуса и наличия подсобного материала.

Ваш Мастер Кит

Усилитель мощности звука на 1000 ватт

Представляем полностью цифровой усилитель НЧ класса D на мощность обеих каналов 1000 Вт. Корпус был взят от предыдущих проектов не слишком устраивавших по работе усилителей. Инвертор также используемая из предыдущих проектов, только эта версия была улучшена. Управление на SG3525 скопировано и чуть модифицировано с автомобильного усилителя Grundig PA240 + управляющий трансформатор и транзисторы. Блок питания 2×75 В, постоянная мощность выхода 1100 Вт и сердечник ETD49 прекрасно делают свое дело. Все работает с частотой 60 кГц. Полумостовая топология.

Схема УНЧ на 1 кВт класс D

Модули УМЗЧ класса D сделаны в соответствии с имеющимся проектом IRAUDAMP 9 (скачать полную документацию), плюс внесены минимальные изменения. Три пары транзисторов IRFP4332 на канал работают с тактовой частотой 300 кГц. DT 105 нс. Основа усилителя — IRS2092 + TC4420. Дроссель БП в феррите, индуктивность 22uH / 30A.

Модули будут выдавать 2500 Вт / 2 Ом при 10% и напряжении питания +/- 95 В постоянного тока, при тестах удалось выжать 1800 Вт, измеренные на динамиках.

Использовались популярные и эффективные средства защиты из серии биполярных усилителей. Те же схемы в модулях класса D имеют защиту от короткого замыкания и постоянного тока, также сделано дополнительное отключение этих защит на реле. За стандартной защитой находится ограничитель стартового тока, плавный запуск.


Самое приятное то, что весь усилитель имеет целых 14 предохранителей, чтобы избежать возгорания печатной платы в случае форс-мажора. Охлаждение, инвертор и модули имеют принудительное охлаждение, включающееся после достижения температуры 50C, но модули УМ при работе не нагреваются, а инвертор достигает максимальной температуры всего 40С.

Если подвести итоги общего времени на проект — это, вероятно, будет целая рабочая неделя. Спасло то, что не было серьезных проблем с запуском. После тщательной проверки и старта усилитель заработал сразу. Устройство при скачках с сетевым напряжением питания, то есть выше 250 В или ниже 200 В переменного тока, отключается. Если в громкоговорителе имеется короткое замыкание или перегрузка, усилитель также отключится, после его необходимо перезапустить с помощью переключателя.

Технические параметры УМЗЧ D класса

  • Непрерывное энергопотребление 1240 Вт при 228 В переменного тока.
  • Общая эффективность 84% (преобразователь имеет 89%).
  • Заявленная выходная мощность 2×500 Вт / 4 Ом RMS.
  • Мощность подается на оба канала 1050 Вт.
  • Минимальная нагрузка 2х2 Ом.

Все тестировалось с использованием среднеквадратичных измерителей и осциллографа, резистор 4 Ом 150 Вт. Напряжение 2×75 в режиме ожидания. Под нагрузкой оно падает до 65 В постоянного тока.

Что касается охлаждения, то воздух поступает через соответствующие. Вентиляторы никогда не включались и не включатся. Они только на тот случай, если УНЧ работает, например, в жаркую погоду на солнце. Раньше были модули класса AB, и здесь нужен был вентилятор. Самым нагревающимся элементом является выходной дроссель, он достигает постоянной температуры около 100С независимо от того, работает ли усилитель на полную мощность или стоит без сигнала.

Звучание усилителя и итоги работы

Конечно у большинства аудиофилов свои мнения и вкусы. Скажем лишь одну вещь от себя: по сравнению с классами AB и H, класс D имеет более линейный и детальный звук. Бас быстрый и динамичный, центр ровный, но ВЧ выше 10 кГц кажется затухающими. Мощность есть, контроль очень хороший.

Проект полностью оправдал ожидания. Единственным слабым звеном в целом является блок питания, если бы он был по мощнее, на выходе снималось бы и 2 х 1500 Вт. В настоящее время ведутся работы над новой версией блока питания мощностью 2 кВт, который в настоящее время несколько не вписывается в заданный размер.

Этому проекту, вероятно, 5 лет, и он все еще работает нормально. Было продано около десятка таких самодельных УМЗЧ, и они тоже работают. Регулярно этот импульсный усилитель с оконечником ADS LX 2000 берут для специальных мероприятий и концертов. Усилитель весит чуть более 5 кг. Для сравнения, тот же ADS LX 2000 весит около 30 кг, так что преимущества D класса налицо.


cxema.org - Мощный авто усилитель своими руками

Прежде, чем начну свою статью, хочу сказать, если у вас крепкие нервы, куча свободного времени, определенных навыков в электронике, любите слушать в машине очень громкую музыку, мощный бас и готовы потратить на такой проект немало денег, то эта статья именно для вас!

Идея о создании усилителя повышенной мощности была давно, но из-за отсутствия времени и финансов, проект откладывался. И вот лето... каникулы... Было решено воплотить идею в реальность и для этого было потрачено ровно 3 месяца, поскольку были большие проблемы с деталями но, не смотря на это, усилительный комплекс был с успехом собран и испытан.

Для начала хочу пояснить смысл выражения "усилительный комплекс". Дело в том, что было принято решение собрать высококачественный усилитель, который бы мог питать всю аудиосистему автомобиля. Всю силовую часть (усилители мощности) нужно было совместить "под одной крышей", в итоге получилось 5 отдельных усилителей с суммарной мощностью 680 ватт, не путайте с китайскими ваттами, тут чистые 680 ватт номинальной мощности, максимальная мощность системы доходит до 750 ватт.
Требования к комплексу были таковы.
1) Высокое качество звучания
2) Высокая выходная мощность
3) Относительно простая конструкция
4) Малые затраты, по сравнению с ценами заводских систем такого рода
5) Способность питать 10 -12 динамических головок + сабвуфер
Для выполнения этой идеи было использовано 5 отдельных усилителей мощности, в том числе и высококачественный усилитель по схеме Ланзара, для питания канала сабвуфера.

Ниже параметры и серии микросхем, которые были использованы в этом усилителе.
TDA 7384 - 4x40W (2штуки, суммарная мощность микросхем 320 ватт или 8 каналов, по 40 ватт на канал)
TDA 2005 - 1x20W (2x10W) (2 штуки, суммарная мощность 40 ватт или 2 канала по 20 ватт)

Вышеуказанные микросхемы предназначены для питания фронтальной акустики.Данное решение самое экономичное, для создания усилителя такого рода, с денежными затратами можете ознакомится в конце статьи.
Самая трудная часть в любом усилителе такого рода это преобразователь напряжении, он предназначен для питания усилителя сабвуфера, пожалуй, с него и начнем.
Преобразователь напряжения

На создание у меня ушло ровно две недели.

Генератор импульсов преобразователя напряжения (отныне ПН) построен на традиционной микросхеме TL494. Это двухтактный ШИМ контроллер высокой точности, отечественный аналог 1114ЕУ3/4.
Микросхема в себе не содержит дополнительный усилитель на выходе. Дополнительный каскад построен на маломощных транзисторах, сигнал от них подается на затворы полевых ключей.

Схема известна под названием пуш-пулл или двухтактный преобразователь. Схема не новая, но пришлось изменить некоторые номиналы схемы под свои нужды. На каждом плече стоят два мощных полевика серии IRF3205. Через теплопроводимые прокладки они укреплены на теплоотводы, которые были сняты из компьютерных БП

В выпрямительной части использованы диоды КД213А, они как раз для таких целей, поскольку могут работать на частотах 70-100 кГц, а максимальный ток доходит до 10 ампер, в данной схеме диоды в дополнительных теплоотводах не нуждаются, перегрева не замечал.

Реле по питанию использовал 2 штуки по 20 ампер каждая, но желательно поставить реле на 50-60 ампер, поскольку преобразователь тянет немалый ток.В ПН реализована система ремоут контроль (REM), т.е. для включения сабвуфера не нужны мощные переключатели. Подавая плюс на ремоут контроль, мгновенно срабатывают реле, и подается питание преобразователя.

Особо мучился с намоткой трансформатора, поскольку трансформатор был собственной задумки. К сожалению ферритовых колец, я не смог найти, поэтому пришлось идти на альтернативное решение.
На халяву достались несколько компьютерных блоков питания, из них были выпаяны большие трансформаторы.

Половинки феррита приклеены друг к другу намертво, поэтому их нужно греть зажигалкой в течении 30 секунд, затем осторожно вынимать из каркаса. В итоге, с трансформаторов были отмотаны штатные обмотки, а выводы зачищены.

Далее боковая стенка каждого каркаса была отрезана.

В конце каркасы прикреплены друг к другу. В итоге получился один удлиненный каркас, на который можно свободно мотать нужные нам обмотки

Путем опытов было найдено нужное количество витков в первичной обмотке. В итоге первичная обмотка содержит 10 витков (2х5вит) с отводом от середины.

Намотка делалась сразу 5-ю жилами провода 0,8 мм. Сначала по всей длине каркаса мотаются 5 витков, затем обмотку изолируем и поверх мотаем еще 5 витков идентично первой. Обмотки мотаем В ОДИНАКОВОМ НАПРАВЛЕНИИ, например по часовой стрелке.


После окончания намотки провода скручиваем в косичку, не забывая заранее сдирать лак, далее залуживаем покрывая слоем олова.
Теперь нужно сфазировать обмотки. На самом деле нечего трудного тут нету, просто нужно найти "начало" и "конец" обмоток и соединить, например, начало первой обмотки с концом второй или начало второй с концом первой, место соединения - отвод, на который подается плюс от общего питания (см. схему).
После фазировки обмоток мотаем пробную вторичную обмотку, она нужна для того, чтобы при неправильной фазировке не отмотать всю вторичную обмотку. Пробная обмотка может содержать любое количество витков, например 3 витка проводом 0,8 мм, далее собираем трансформатор, вставляя половинки сердечника.

Включая схему трансформатор не должен издавать "жужжания", транзисторы не должны перегреваться, если преобразователь работает в холостую. На вторичную обмотку подключаем лампу накаливания 12 вольт пару ватт, которая должна загораться почти полным накалом, при этом транзисторы должны быть холодными и только через несколько минут работы можно почувствовать незначительное тепловыделение. Если все нормально, то снимаем пробную обмотку и мотаем на ее место нормальную, которая мотается по тому же принципу, что и первичная.

На сей раз обмотка намотана двумя жилами провода 0,8-1мм и содержит 30 витков ( 2х15вит). Мотаются две идентичные обмотки, каждая по 15 витков и растянута по длине всего каркаса. После намотки первой половины, изолируем обмотку, поверх мотаем вторую. Обмоткифазируются по тому же принципу, что и первичная.

После намотки вторичной обмотки, провода на концах скручиваются и залуживаются. В конечном этапе укрепляются половинки сердечника. На этом трансформатор готов!

ВАЖНО! В преобразователях такого рода (пуш-пулл) между половинками сердечника не должно быть зазора! Даже малейший зазор в доли миллиметра повлечет за собой резкое повышению тока покоя и перегрев полевых транзисторов! Именно из-за неуклюжести я спалил несколько полевых транзисторов. Следите за тем, чтобы половинки феррита как можно сильнее прижимались друг к другу.Такой трансформатор способен обеспечивать нужное напряжение и ток, для питания сабвуферного усилителя.
Запаиваем трансформатор на плату и приступаем к намотке дросселей.

Дросселя
В схеме использовано 3 дросселя. Они предназначены для фильтрации ВЧ шумов и помех, которые могут образоваться на линиях питания.Главный дроссель использован на плюсовой линиипитании преобразователя. Он намотан 4-я жилами провода 0,8 мм. Кольцо использовал те, что в компьютерных блоках питания. Количество витков дросселя 13.

Остальные два дросселя стоят после диодного выпрямителя в ПН, тоже намотаны на кольцах из компьютерных БП и содержат 8 витков 3-я жилами провода 0,8мм.

Честно говоря, не ожидал что получится такой качественный ПН, ток покоя схемы не превышает 200 мА, для такого монстра это нормально, на выходе напряжение +/-63 вольта, уклон незначительный, всего в пол вольта.Максимальная мощность преобразователя позволило бы питать два таких усилителя, но тут он работает с большим запасом.


Усилители на TDA2005, для маломощных головок

Сборка этого блока отняло всего 2 часа. За это время были собраны два идентичных усилителя мощности. Усилители были выбраны как самый дешевый вариант для маломощных АС, их можно использовать для питания АС расположенных на передней доске автомобиля. Каждая микросхема развивает 20-24 ватт мощности и обладает весьма недурным качеством звучания.

Каждая микросхема подключена по мостовой схеме, при стереофоническом подключении одна микросхема способна отдавать до 12 ватт на нагрузку 4 Ом

Микросхемы через изоляционную прокладку установлены на теплоотвод. Громкость настраивается заранее, при помощи регулятора.Сначала планировалась другая плата, по этой и были собраны усилители, затем была придумана общая плата, которая введена в архив проекта.


TDA 7384 для, фронтальной АС

Для более мощных АС использованы квадрафонические микросхемыTDA 7384. Каждая из микросхем способна отдавать на нагрузку 4 Ом до 40 ватт мощности на канал. Итог - 8 каналов по 40 ватт, звучит очень хорошо.

Такие микросхемы используют в автомагнитолах, если лень купить, то можно достать из нерабочих магнитол.

Микросхемы имеют разные независимые друг от друга фильтры, если использовать общий фильтр, то возможны шумы и возбуждения.
Оба усилителя начинают работать при подаче +12вольт от аккумулятора на вывод REM. Усилители были собраны на одной плате, но позже пришлось переставлять блоки, поэтому каждый усилитель был реализован на отдельной плате.


Усилитель сабвуфера

Знаменитая схема Ланзара, полное описание, сборка, схема и настройка описана здесь, поэтому нет нужды рассказывать про этот усилитель. Усилитель полностью собран на транзисторах, обладает очень хорошим качеством звучания и повышенной выходной мощностью. В схеме я сделал некоторые замены и ниже представлена та схема, по которой я собирал, оригинал схемы в той же ветке форума.

Поскольку мне не удалось найти некоторые номиналы схемы, то пришлось делать некоторые замены, в частности эмиттерные резисторы были заменены на 0,39 Ом 5 ватт. Транзистор BD139 заменен на отечественный аналог KT815Г, кроме того заменены маломощные транзисторы дифференциальных каскадов и предвыходных каскадов схемы.

На входе можно убрать электролитические конденсаторы, если входной заменить на 2,2 мкф и более.

Первый запуск усилителя желательно делать с одной парой выходных транзисторов с закороченным на землю входом, чтобы при поломках не спалить транзисторы конечного каскада, они самое дорогое в этом усилителе.

Особое внимание обратите на монтаж схемы, следите за цоколевками транзисторов и правильностью подключения стабилитронов, последние при неправильном подключении работают как диод.Регулятор тока покоя я поставил обычный, никому не советую повторить мою ошибку, лучше поставить многооборотный, им можно точно настроить ток покоя схемы, также удобен для настройки.

Выходной каскад усилителя работает в режиме АВ, это по сути полностьюсимметричная схема, уровень нелинейных искажений сведен к минимуму. Благодаря своим высоким показателям, данный усилитель относится к усилителям категорииHi-Fi, получить 300 ватт на этом усилителе не проблема. Также есть возможность подключать на выходе нагрузку 2 Ом, т.е. можно питать целых два сабвуферные головки, подключая их параллельно.В этом случае нельзя поднимать напряжение усилителя выше 45-50 вольт.

Поднять мощность усилителя, можно добавлением еще одной или двух пар выходных транзисторов, но не забывайте о повышении питания, поскольку выходная мощность усилителя напрямую зависит от питания.


Защита АС

Не смотря на то, что усилитель мощности достаточно надежный, иногда могут быть неполадки. Выходной каскад ,самая уязвимая часть любого усилителя, из за выхода из строя выходных транзисторов образуется постоянное напряжение на выходе. Постоянка выводит из строя дорогостоящую динамическую головку. Любой усилитель такого рода имеет защиту, который защитит АС от постоянного напряжения.
При включении усилителя реле замыкается, включая головку, при постоянном напряжении на выходе УМ реле размыкается, сохраняяголовку

Защита имеет относительно простую схему, содержит 3 активных компонента (транзисторы), реле на 10-20 ампер, остальное мелочи. При включении УМ реле замыкается с небольшой задержкой. Питание на защиту подается от одного плеча преобразователя, через ограничительный резистор 1 килоом, резистор подобрать с мощностью 1-2 ватт.

Маломощные транзисторы могут быть заменены на любые другие, параметры которых схожи с используемыми. Реле подключен к коллектору более мощного транзистора, следовательно, конечный транзистор нужен более мощный. Из отечественного интерьера можно использовать транзисторы КТ 815,817 или более мощные - КТ805,819. Я заметил тепловыделение на этом транзисторе, поэтому укрепил его на небольшой теплоотвод. Защита и индикатор выходного сигнала смонтированы на одной плате.


Блок стабилизации

Двухполярный стабилизатор напряжения, обеспечивает нужное напряжение для питания блока фильтров и индикатора аудио сигнала. Стабилитроны стабилизируют напряжение до 15 вольт.

Этот блок собран на отдельной плате, стабилитроны желательно использовать с мощностью 0,5 ватт


Индикатор уровня звукового сигнала

Особо углубляться в работу схемы не стану, посколькусхема такого индикатора описана в одной из моих

статьей.

В индикаторе использованы микросхемыLM324. Использовать операционный усилитель для этих целей целесообразно, поскольку микросхемы стоят всего 0,7 $ (каждая). В индикаторе использовано 8 светодиодов, можно ставить любые светодиоды, которые под рукой. Индикатор работает в режиме "столб". Питание индикатора обеспечивает преобразователь напряжения, затем напряжениестабилизируетсядо нужного номинала и подается на индикатор уровня.Индикатор подключается на выход усилителя мощности, подстроечным регулятором настраиваем индикатор на нужный уровень срабатывания светодиодов.


Блок сумматора и ФНЧ

Сумматор предназначен для суммирования сигнала обеих каналов, поскольку сабвуфер у нас один. После этого сигнал фильтруется, срезаются частоты ниже, чем 16Гц и выше чем 300Гц. Регулирующий фильтр срезает сигнал от 35Гц - 150Гц.


Сборка

После тщательной проверки всех блоков, можно приступить к монтажу.

Корпус от DVD проигрывателя, другого удобного, к сожалению не нашел. На переднюю панель, где раньше располагался дисплей, прикрепил светодиоды индикатора. Все платы прикреплены ко дну усилителя через изолирующие шайбы, которые в свою очередь были сняты с отечественной аппаратуры

Все микросхемы и транзисторы прикручены к теплоотводам через изоляционные прокладки. Желательно использование термопасты, к сожалению, она у нас не продается, но и без нее все не так уж и страшно.
Входныеразъемы усилителей были выпаяны из DVD, в качестве клемм выходов был использованразъем от автомагнитолы.

В моей конструкции использован всего один кулер, он предназначен для охлаждения теплоотводов силовых ключей ПН и TDA7384, сабвуферный усилитель в принудительном охлаждении не нуждается, поскольку для него я подобрал громадный теплоотвод, который практически не греется.
Провода питания каждого усилителей присоединены к общим клеммам питания.REM контроль позволяет в нужный момент отключить любой из усилителей (например, пару TDA 2005) Питание каждого усилителя осуществляется через реле, которые активируются при подаче плюса на вывод REM.

Каждый из усилителей имеет отдельную систему ремоут контроля, которые выведены на контактную платформу с боковой стороны корпуса.

 

Ящик сабвуфера

Спустя пару месяцев после начала сборки, мне удалось купить сабвуферную головку SONY XPLOD XS-GTX120L, параметры головки ниже.
Номинальная мощность - 300 Вт
Пиковая мощность - 1000 Вт
Диапазон частот 30 - 1000 Гц
Чувствительность - 86 дБ
Выходное сопротивление - 4 Ом
Диапазон частот - 30 - 1000 Гц
Материал диффузора – полипропилен

Поскольку в магазинах продавали только ламинированные ДСП, а МДФ у нас вообще не встречается, то пришлось выбирать из того, что было. К счастью с материалом повезло. ДСП еще со времен СССР отлично сохранилось на чердаке, толщина 22 мм.

Далее в магазине были приобретены саморезы с длиной 50мм (50 шт.) и белый силиконовый герметик (если есть, купите прозрачный). Ящик был рассчитан с помощью программыWinISD. Объем порядка 83 литра.

Диаметр порта ФИ - 14 см, длина трубы 7 см.
Для головки было вырезано отверстие с диаметром 28 см. После изготовления всех частей ящика, настало время собрать его. Сборку удобно начать стыковкой дна и передней части ящика. Вначале дрелью были сделаны отверстия под шурупы (сверлом малого диаметра), а уже после были прикручены шурупы. Перед этим места креплений были покрыты клеем ПВА.
Клея жалеть не нужно, чтобы потом не жаловаться на свисты. У меня получился достаточно хороший ящик, работал как можно аккуратно. В конце швы были покрыты силиконом с внутренней стороны коробка (силикон имеет неприятный запах, поэтому эту работу следует выполнить в гараже или на свежем воздухе). После сбора ящика не удержался, поставил головку туда, где ей положено быть и включил

Я не могу передать это словами и даже роликом, поскольку это нужно чувствовать, а не слушать. Чувствуется весьобъем ящика, размах головки, мощь и качество Ланзара и все это воплощается в давление на груди.... Это словами не описать и только потом начинаешь понимать, что все кругом рушится и разваливается, стакан двигается по столу сам по себе, стекла начинают "вздуваться" от давления. Одним словом в доме все было под "дозой" вибрации.

Далее ящик был покрыт ковролином. Ковролин 120х200мм, хватило для всего ящика.

Специальный клей для ковролина у нас продавался, но банка аэрозоли стоит 25$, поэтому пришлось использовать клей ПВА. Для начала наждачкой обработал ящик, этот процесс отнял у меня 4 часа. На уже надрезанный ковролин наносим клей ПВА. После этого ящик нужно "прокатить" по заранее надрезанному ковролину. Завернули ящик, теперь для того, чтобы клей нормально высох, набиваем по краям мелкие гвозди, затем после высыхания их можно снять или оставить.

После вырезаем отверстияголовкиифазоинвертора.Головка прикрепляется к ящику десяти саморезами, это обеспечивает плотный контакт, никаких добавочных прокладок не нужно.

Выходные контакты ящика, сделаны из разъема для сетевого кабеля компьютерного БП, процесс изготовления понятен из фотографий.

Это альтернативное решение, опять же вызвано дефицитом заводскихразъемов.

Получилось неплохо. Для него было вырезано отдельное отверстие.
С внутренней стороны, после запайки провода, отверстиеразъема было загерметизирована силиконовым герметиком, во избежание свистов и нежелательных шумов.


Итоговые затраты на конструкцию

Преобразователь напряжения:
BC557 3шт - 2,5$
TL494 1шт - 1$
IRF3205 4шт - 10$
Диоды КД213А 4шт - 4$
Конденсаторы полярные - 10$
Конденсаторы неполярные - 3$
Резисторы - 2$
Дросселя и трансформаторы - из старых блоков питания ПК
Реле - из стабилизатора напряжения

Усилитель ланзар:
Транзисторы
2SA1943 2шт - 6$
2SC5200 2шт - 6$
2SB649 2шт - 2$
2SD669 2шт - 2$
2N5401 2шт - 1$
2N5551 2шт - 1$
Резисторы 5ватт - 4 шт - 3$
Остальные резисторы - 4$
Конденсаторы неполярные - 3$
Конденсаторы полярные - 5$
Стабилитроны - 2шт - 1$

Остальные усилители:
TDA7388 2шт - 15$
TDA2005 2шт - 2,5$
Резисторы - 2$
Конденсаторы неполярные - 4$
Конденсаторы неполярные - 6$

Блок фильтров:
TL072 1шт -1$
TL084 1шт - 1$
Конденсаторы неполярные - 3$
Резисторы - 2$
Регуляторы 3шт - 4$

Блок индикаторов:
LM324 2шт - 2$
Светодиоды и все остальное - 2$

Блок стабилизаторов:
Транзисторы 2$
Стабилитроны 13 вольт 6шт - 1,5$
Стабилизаторы 7815 2шт - 1,5$
Стабилитроны 7915 1шт - 0,7$
Остальное - 2$

Защита АС:
Транзисторы - 2$
Реле - даром
все остальное 1$
Штекеры, гнезда иразъемы к счастью имелись в запасе

Ящик сабвуфера:
Саморезы 50 шт - 0,5$
Герметик 2 флакона - 2$

ДСП - даром
Клей ПВА – даром
Головка - 65$
Ковролин - 15$

Итоги

Вот собственно и все. Результатами доволен, очень доволен! Купить подобный усилитель не возможно, аналогичные по мощностью усилители стоят от 400$! Хотя китайские производители предлагают за значительно малые деньги, но качество и надежность.... В общем, усилитель получился на трижды ура! Все работает отлично, осталось только купить машину и насладится рукотворным усилком, а усилитель пока будет работать дома, от мощного блока питания на 12 вольт.

Автор проекта - АКА КАСЬЯН. E-mail Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

СКАЧАТЬ ПОЛНЫЙ АРХИВ ПРОЕКТА С АВТОРСКИМИ СХЕМАМИ И ПЕЧАТНЫМИ ПЛАТАМИ МОЖНО ТУТ

N7DAMP, Четырехканальный на 100% цифровой усилитель 4 x 175Вт.

То, что у вас уже есть, вы можете удалить в корзине.

Реализовано одновременное подключение и инициализации двух цифровых усилителей мощности RDC2-0050 собранных на TAS3251.
Это проект для создания USB – I2S - DAC цифрового усилителя мощности. Четыре канала по 175 Вт.
В проекте задействованы:
1. USB / I2S преобразователь 32bit/96kHz, SUPER PRIME chipdip , USB Hi-Res Audio, квадро, построенный на микроконтроллере STM32F446RC
2. RDC2-0032. Управляющий элемент для проектов цифровой обработки звука. Микроконтроллер STM32F042
3. Два цифровых усилителя мощности RDC2-0050. 175Вт Stereo, TAS3251
4. Четыре LCF05, Выходной LC-фильтр второго порядка для усилителей мощности класса D.

Технические характеристики

Цифровой аудио вход USB
Аудио формат воспроизведения   4.0 quadro
Разрядность / Частота дискретизации 16/44.1кГц, 16/48кГц, 16/96кГц, 24/44.1кГц, 24/48кГц
Количество аудио каналов 4
Выходная мощность 4 x 175 Вт
Полоса воспроизводимых частот 10 – 22000 Гц
Кни 0,01
Минимальное сопротивление нагрузки 3 Ом
Регулировки Громкость, баланс:  лево – право, вперёд – назад, Mute
Совместимость Windows, iOS, Android, Linux
Напряжение питания 12 – 36В

Инструкция по сборке

В этом проекте инициализируются сразу два усилителя RDC2-0050(TAS3251). Инициализация и регулировки происходит по двум последовательным шинам I2C (SDA1/SCL1 и SDA2/SCL2)  от модуля управления RDC2-0032.
С помощью трех потенциометров, подключенных к аналоговым входам микроконтроллера STM32F042 на RDC2-0032, можно регулировать громкость всех четырех каналов (RV1) и балансы: лево/право (RV2), вперёд/назад (RV3). Кнопкой SW1, подключенной к дискретному входу, включается функция MUTE.
Всё будет работать сразу!
Соедините все модули согласно схеме подключения. Резисторы, подключаемые к RDC2-0032 должны быть с линейной характеристикой сопротивлением от 10 до 100 кОм.
Цифровые аудио (I2S) каналы соединяйте пятижильными шлейфами не длиннее 5см.каждый. А каналы I2C двухжильным проводом(шлейфом) не длиннее 10см.
Питание модуля RDC2-0032 = 3.3В подается от любой платы RDC2-0050 с разъема 3V3.
У USB/I2S преобразователя Super Prime с прошивкой старше v1.3 во время подключения к порту USB на ножке(3) появляется высокий логический уровень (3.3В) Его можно использовать для автоматического включения основного блока питания, если он имеет такую функцию.

Схема подключения

Прошивка модуля RDC2-0032


Cкачайте установщик программы DfuSeDemo от STMicroelectronics. Установите её на свой компьютер. Запустите программу.
На плате RDC2-0032 найдите контакты Boot и замкните их на время программирования. Подключите RDC2-0032 к порту USB. В DfuSeDemo в разделе “Upgrade or Verify Action” нажмите “Choose”.
 

Выберите файл прошивки с расширением.dfu”.
 

Выберите опцию “Verify after download”. Нажмите кнопку “Upgrade”. В появившемся окне нажмите «Да». Начнется загрузка программы в устройство.
 

Дождитесь окончания загрузки. Загрузка программы завершена, устройство готово к эксплуатации.
 

Блок питания для всей конструкции рекомендуется – однополярный 36В / 10А.
USB – I2S конвертер установите в режим квадро. Джамперы 13 и 14 установлены.
Подключите USB – I2S конвертер к компьютеру. Укажите, что ваше устройство воспроизведения – USB I2S PRIME SUPER Quadro 4.0. Выберите разрядность и частоту дискретизации и включайте музыку или играйте в игры.

Ошибки, неисправности

На каждой плате усилителя установлены четыре светодиода. Два из них показывают наличие напряжения 3.3В и 12В. А светодиоды FAULT и CLIP указывают на наличие серьёзных нарушений в работе. Распознать ошибки можно по нижеприведенной таблице:
FAULT CLIP Ошибка
0* 0 Ошибок нет
0 1* Температура микросхемы выше 125 ° C (предупреждение о перегреве)
1 0 Перегрузка (OLP) или пониженное напряжение (UVP).
1 1 Перегрев (OTE), перегрузка (OLP) или пониженное напряжение (UVP) Температура перехода выше 125 ° C
* 0–светодиод не светится. 1-cветодиод светится непрерывно  
 

Электронный конструктор "Усилитель звука своими руками" 1001

Электронный конструктор "Усилитель звука своими руками" (С помощью набора юный радиолюбитель сможет собрать модель простого и надежного усилителя звука, обладающего малыми габаритами. К собранной модели можно подключить какой-либо гаджет и послушать любимую музыку. С составляющими набора можно будет провести 2 интересных эксперимента с микроэлектроникой. Размер упак. 27х6х20 см.)

«Усилитель звука своими руками» из серии «Электронный конструктор» - увлекательный научно-познавательный набор, предназначенный для проведения опытов. В процессе эксперимента ребёнок узнает о том, что такое электрический ток, как работает микроэлектроника, и познакомится с простыми электрическими схемами.

В набор входит макетная плата, с помощью которой можно соединить между собой все необходимые электронные компоненты в правильной последовательности без пайки. Юный исследователь сможет собрать модель усилителя звука и изучить принципы его работы, а также провести 2 интересных опыта с микроэлектроникой.

Комплектация:

Макетная плата (1 шт.), провода (3 шт.), батарейка Крона (1 шт.), переходник для батарейки Крона (1 шт.), резистор 1 КОм (2 шт.), резистор 10 КОм (1 шт.), конденсатор электролитический 220 мкФ (1 шт.), конденсатор керамический (1 шт.), светодиод (2 шт.), штекер аудио 3,5 мм (1 шт.), тактовая кнопка (2 шт.), динамик (1 шт.), микросхема таймер LM386 (1 шт.), подробная иллюстрированная инструкция (1 шт.)

Дополнительные характеристики:

Материалы изготовления: электронные компоненты - металл, кремний, пластик; провода - резина, медь; макетная плата - металл, пластик; ложемент - полистирол; пакет зип-лок - полиэтилен; наклейки - бумага; коробка - микрогофрокартон.

Характеристики

Возраст:

от 8 лет

 

Производитель:

 

Заводской арт.:

1001

 

Размер:

ДxШxВ 27x20x6

 

Вес с упак.:

0.433 кг

🖐 Цифровой усилитель звука для колонок KENHY 0803 20 Вт understand

Купить


Обзор:

Усилитель звука на транзисторах своими руками

Усилитель класса AD 420 Ватт на канал.. Полный обзор - Продолжительность: 20:16 Radioblogful.. Обзор усилителя звука AK-699D с MP3 и FM тюнером + Пульт - Продолжительность: 7:06 4asovoy - обзоры и лайфхаки 27 383 просмотра. 7:06. 📻 Готовый усилитель с МР3 и караоке Ciclon AV-512 (обзор)...

Купить Усилители Hi-Fi по самым выгодным ценам в интернет магазине DNS. Широкий выбор товаров и акций. В каталоге можно ознакомиться с ценами, отзывами, фотографиями и подробными характеристиками товаров. Купить Усилители Hi-Fi в кредит или рассрочку.. Отличаются усилители и своей элементной базой. На сегодняшний день можно купить усилитель Hi-Fi ламповый или транзисторный. Ламповый усилитель обеспечивает высокое качество звучания и дает более чистый, мягкий звук. Большим его преимуществом является то, что он спокойно переносит короткие замыкания в нагрузке. Транзисторные усилители более детально воспроизводят средние и высокие частоты и обладают мощными басами.

В категории: Внешние усилители для колонок - купить по выгодной цене, доставка: Москва, скидки!. Цифровой усилитель звука для колонок KENHY 0803 20 Вт. Доставка: Москва. 2510 a. Подробнее. 2 страница из 52. Найдено в категориях. Обратная связь.
Мини стерео усилитель звука имеет портативные размеры и идеально подходит для дома. 2-х Канальный выход RMS, по 20 Вт мощности каждый Вход AUX IN: 2 х RCA / 1 x 3.5mm Регулировка высоких частот 10dB ± 10KHz Регулировка низких частот 10dB ± 10KHz Частотный диапазон: 20Гц-20кГц Суммарные гармонические искажения: 0,05% Разделение между каналами: 85 дБ Радиоприемник 87.5-108 мГц (автосканирование FM радиостанций) Поддержка карт.

ХОРОШИЙ УСИЛИТЕЛЬ ВСЕГО НА ОДНОЙ ДЕТАЛИ Транзистор П210А

Как сделать простой усилитель звука (мощности), 2 канала по 15 Вт своими руками. _v_

 

 

 

Тема: как собрать простой, самодельный стерео усилитель ЗЧ на микросхеме.

 

Как известно на таких устройствах как цифровой плеер, мобильный телефон, планшет, компьютер на своем звуковом выходе имею крайне слабый сигнал. Его хватает для наушников и относительно достаточной общей слышимости (звук через встроенные динамики). Если говорить о более высокой громкости звука, то тут возникает необходимость применять специальные усилители ЗЧ (звуковой частоты). Именно они повышают мощность звукового сигнала до нужных величин. Мощности 15 ватт вполне хватит для настольных колонок, которые будет хорошо слышно даже в соседней комнате. В этой теме хочу поделиться хорошей схемой такого усилителя мощности.

 

Наиболее простым вариантом сборки достаточно качественного усилителя звуковой частоты является использование специализированных микросхем. Одна из таких — TDA7297. Это микросхема двухканального (стерео) усилителя звука. Мощность каждого канала 15 Вт. Питается этот усилок от постоянного напряжения величиной от 6 до 18 вольт. Входное сопротивление 30 кОм. Имеется встроенная (в микросхему) тепловая защита, которая срабатывает при температуре 150 градусов. Она защищает от чрезмерного перегревания усилительной микросхемы.В целом звучание достаточно чистое и качественное.

 

 

Сама схема этого усилителя ЗЧ на микросхеме tda7297 проста, содержит всего несколько дополнительных компонентов. В моем случае я для сборки этого усилка использовал конструктор (купленный посылкой из Китая, который обошелся мне практически в копейки). В этом комплекте конструктора есть все части (и электрические и сама плата). Нужно просто спаять все воедино. Сборка простая и занимает крайне мало времени (спаять можно минут за 20). Все выводы и места для электронных компонентов помечены, ошибиться трудно.

 

 

 

 

Рекомендованное напряжение питания 16 вольт. Поскольку микросхема tda7297 двухканальная и мощность каждого канала по 15 ватт, то суммарная мощность будет 30 ватт. Следовательно, блок питания для этого усилителя нужен мощностью около 50 Вт (плюс небольшой запас в 20 Вт). Используя формулу электрической мощности можно рассчитать максимальный ток потребления: 30 ватт (общую мощность усилка) делим на 16 вольт (рекомендуемое напряжение питания) и получаем около 1,8 ампера. Значит в итоге нужен блок питания, который может легко обеспечить 3 ампера (наши 1,8 А и плюс небольшой запас).

 

Мощность 30 ватт и ток потребления 1,8 ампера как бы относительно немалые, при этих величинах микросхема нашего усилителя мощности будет достаточно сильно нагреваться. Следовательно, нужен подходящий радиатор, который будет рассеивать излишки тепла. Между самой микросхемой усилителя и радиатором нужно будет нанести теплопроводящую пасту (чтобы улучшить теплопередачу между этими частями). Наносить ее нужно тонким слоем (как можно тоньше). Радиатор не должен касаться других контактов схемы усилителя, так как это может привести возникновению короткого замыкания в цепи.

 

P.S. Этот усилитель мощности вполне подойдет и для автомобильной аудиосистемы. Напряжение питания автомобиля подойдет для питания этого усилка. Мощности в 30 ватт также хватит для нормальной слышимости звука в авто. Так как этот усилитель ЗЧ имеет достаточно компактные размеры, его легко будет вместить в любое подходящее место, даже с наличием охлаждающего радиатора. Останется только на вход усилка припаять гнездо входа звукового сигнала и спаренный переменный резистор, которым будет регулироваться громкость звука.

 

Как создать усилитель мощности класса D

Мощный усилитель класса D - соберите его сами и поразитесь его эффективности. Радиатор едва нагревается!

Вы всегда хотели создать свой собственный усилитель мощности звука? Электронный проект, в котором вы не только видите результаты, но и слышите их?

Если ваш ответ утвердительный, вам следует продолжить чтение этой статьи о том, как создать свой собственный усилитель класса D. Я объясню вам, как они работают, а затем шаг за шагом проведу вас, чтобы волшебство произошло самостоятельно.

Теоретические основы

Что такое усилитель мощности звука класса D? Ответ может быть длинным предложением: это коммутирующий усилитель. Но для того, чтобы полностью понять, как он работает, мне нужно научить вас всем его закоулкам и закоулкам.

Начнем с первого предложения. Традиционные усилители, такие как класс AB, работают как линейные устройства. Сравните это с переключающими усилителями, названными так потому, что силовые транзисторы (МОП-транзисторы) действуют как переключатели, меняя свое состояние с ВЫКЛ на ВКЛ.Это обеспечивает очень высокий КПД, до 80 - 95%. Благодаря этому усилитель не выделяет много тепла и не требует большого радиатора, как это делают линейные усилители класса AB. Для сравнения: усилитель класса B может достичь максимальной эффективности 78,5% (теоретически).

Ниже вы можете увидеть блок-схему базового усилителя ШИМ класса D, точно такого же, как тот, который мы строим.

Входной сигнал преобразуется в прямоугольный сигнал с широтно-импульсной модуляцией с помощью компаратора.Это в основном означает, что вход кодируется в рабочий цикл прямоугольных импульсов. Прямоугольный сигнал усиливается, а затем фильтр нижних частот дает более мощную версию исходного аналогового сигнала.

Существуют и другие методы преобразования сигнала в импульсы, такие как ΔΣ (дельта-сигма) модуляция, но для этого проекта мы будем использовать ШИМ.

Широтно-импульсная модуляция с использованием компаратора

На графике ниже вы можете увидеть, как мы преобразуем синусоидальный сигнал (входной) в прямоугольный сигнал, сравнивая его с треугольным сигналом.

Нажмите для увеличения

На положительном пике синусоиды коэффициент заполнения прямоугольного импульса составляет 100%, а на отрицательном пике - 0%. Фактическая частота сигнала треугольника намного выше, порядка сотен кГц, так что мы можем позже извлечь наш исходный сигнал.

Настоящий фильтр, а не идеальный, не имеет идеального "кирпичного" перехода от полосы пропускания к полосе задерживания, поэтому мы хотим, чтобы треугольный сигнал имел частоту как минимум в 10 раз выше 20 кГц, что соответствует верхнему уровню человеческого слуха. предел.

Силовой каскад - все кажется хорошим в теории

Теория - это один аспект, а практика - другой. Если мы захотим применить на практике предыдущую блок-схему, мы столкнемся с некоторыми проблемами.

Две проблемы - время нарастания и спада устройств в силовом каскаде и тот факт, что мы используем транзистор NMOS для драйвера верхнего плеча.

Поскольку переключение полевых МОП-транзисторов не происходит мгновенно, а больше похоже на подъем и спуск по холму, время включения транзисторов будет перекрываться, создавая низкоомное соединение между положительной и отрицательной шинами питания.Это вызывает прохождение сильноточного импульса через наши полевые МОП-транзисторы, что может привести к отказу.

Чтобы предотвратить это, нам нужно добавить некоторое время запаздывания между сигналами, которые управляют полевыми МОП-транзисторами с высокой и низкой стороны. Один из способов добиться этого - использовать специализированный драйвер MOSFET от International Rectifier (Infineon), например IR2110S или IR2011S. Кроме того, эти ИС обеспечивают повышенное напряжение затвора, необходимое для высокоскоростного NMOS.

Фильтр нижних частот

Для стадии фильтрации один из лучших способов сделать это - использовать фильтр Баттерворта.

Фильтры этого типа имеют очень ровный отклик в полосе пропускания. Это означает, что сигнал, которого мы хотим добиться, не будет слишком сильно ослаблен.

Мы хотим отфильтровать частоты выше 20 кГц. Частота среза рассчитывается как -3 дБ, поэтому мы хотим, чтобы она была немного выше, чтобы не фильтровать звуки, которые мы хотим слышать. Лучше всего выбирать от 40 до 60 кГц. Фактор качества \ [Q = \ frac {1} {\ sqrt {2}} \].

Это формулы, используемые для расчета номиналов индуктивности и конденсатора:

\ [L = \ frac {R_ {L} \ sqrt {2}} {2 \ cdot \ pi \ cdot f_ {c}} \]

\ [C = \ frac {1} {2 \ sqrt {2} \ cdot \ pi \ cdot f_ {c} \ cdot R_ {L}} \]

Создание усилителя своими руками (Luke-The-Warm)

Теперь, когда мы знаем, как работает усилитель класса D, давайте построим его.

Прежде всего, я назвал этот усилитель Luke-The-Warm, потому что радиатор почти не нагревается, в отличие от усилителя класса AB, у которого радиатор может сильно нагреваться, если не будет активно охлаждаться.

Ниже вы можете увидеть схему разработанного мной усилителя. Он основан на эталонном дизайне IRAUDAMP1 от International Rectifier (Infineon). Основное отличие состоит в том, что вместо ΔΣ-модуляции у меня используется ШИМ.

Нажмите для увеличения

Теперь я расскажу вам о некоторых вариантах дизайна и о том, как компоненты работают друг с другом. Начнем с левой стороны.

Входная схема

Для входной схемы я решил, что лучше всего использовать фильтр верхних частот, а затем фильтр нижних частот.Это так просто.

Генератор треугольников

В качестве генератора треугольников я использовал LMC555, который является КМОП-вариантом знаменитого чипа 555. Зарядка и разрядка конденсатора дает красивый треугольник, который не идеален (он поднимается и опускается экспоненциально), но если время нарастания и спада равны, он работает отлично.

Значения резистора и конденсатора устанавливают частоту примерно 200 кГц. Если оно будет выше, то мы столкнемся с проблемами, потому что компаратор и драйвер MOSFET - не самые быстрые устройства.

Компаратор

В качестве компаратора вы можете использовать любой компонент, который вам нужен - он просто должен быть быстрым. Я использовал то, что у меня было, LM393AP. При времени отклика 300 нс это не самый быстрый и, безусловно, можно улучшить, но он справляется со своей задачей. Если вы хотите использовать другие микросхемы, просто убедитесь, что контакты совпадают, иначе вам придется изменить конструкцию печатной платы.

Теоретически операционный усилитель можно использовать в качестве компаратора, но на самом деле операционные усилители предназначены для других типов работы, поэтому убедитесь, что вы используете настоящий компаратор.

Поскольку нам нужны два выхода компаратора, один для драйвера верхнего плеча и один для драйвера нижнего уровня, я решил использовать LM393AP. Это два компаратора в одном корпусе, и мы просто меняем входы для второго компаратора. Другой подход - использовать компаратор с двумя выходами, например LT1016 от Linear Technology. Эти устройства могут предложить несколько улучшенную производительность, но они также могут быть более дорогими.

Эти компараторы питаются от биполярного источника питания 5 В, обеспечиваемого двумя стабилитронами, которые регулируют напряжение от основного источника питания, которое составляет ± 30 В.

Драйвер MOSFET

Для драйвера MOSFET я выбрал IR2110. Альтернативой является IR2011, который используется в эталонном дизайне. Эта интегральная схема обязательно добавляет то мертвое время, о котором я говорил в предыдущем разделе.

Поскольку вывод VSS микросхемы подключен к отрицательному источнику питания, нам необходимо выровнять смещение сигналов от компаратора. Это делается с помощью транзистора PNP и диодов 1N4148.

Для управления полевыми МОП-транзисторами мы запитываем IR2110 12 В относительно отрицательного напряжения источника питания; это напряжение генерируется с помощью BD241 в сочетании с стабилитроном 12 В. Полевой МОП-транзистор высокого уровня должен управляться напряжением затвора, которое примерно на 12 В выше коммутирующего узла VS. Для этого требуется напряжение выше положительного напряжения питания; IR2110 обеспечивает это напряжение возбуждения с помощью конденсатора начальной загрузки C10.

Фильтр

Наконец-то фильтр.Частота среза составляет 40 кГц, а сопротивление нагрузки - 4 Ом, потому что у нас есть динамик на 4 Ом (значения, используемые здесь, также будут работать с динамиком на 8 Ом, но лучше всего настроить фильтр в соответствии с динамиком. твой выбор). Имея эту информацию, мы можем рассчитать номиналы катушки индуктивности и конденсатора:

\ [L = \ frac {4 \ sqrt {2}} {2 \ cdot \ pi \ cdot 40000} H = 22,508 \ mu H \]

Мы можем безопасно округлить до 22 мкГн.

\ [C = \ frac {1} {2 \ sqrt {2} \ cdot \ pi \ cdot 40000 \ cdot 4} F = 0.703 \ mu H \]

Ближайшее стандартное значение - 680 нФ.

Примечания к сборке

Теперь, когда вы знаете все о внутренней работе, все, что вам нужно сделать, это очень внимательно прочитать следующие несколько строк, загрузить файлы ниже, купить необходимые компоненты, протравить печатную плату и начать сборку.

Фильтр нижних частот

Для фильтра нижних частот вы можете использовать конденсатор 680 нФ, чтобы максимально приблизиться к расчетному значению, но вы также можете без проблем использовать конденсатор 1 мкФ (я спроектировал печатную плату так, чтобы вы могли использовать два конденсатора параллельно смешивать и сочетать).

Эти конденсаторы должны быть полипропиленовыми или полиэфирными - в общем, использование керамических конденсаторов для звуковых сигналов - не лучшая идея. И вам нужно убедиться, что конденсаторы, которые вы используете для фильтрации, рассчитаны на высокое напряжение, по крайней мере, 100 В переменного тока (больше не повредит). Остальные конденсаторы в конструкции также должны иметь соответствующее номинальное напряжение.

Я разработал этот усилитель для выходной мощности около 100–150 Вт. Следует использовать биполярный источник питания с шинами ± 30 В.Вы можете установить более высокое значение, но для напряжений около ± 40 В необходимо убедиться, что вы изменили значения резисторов R4 и R5 на 2K2.

Не обязательно, но настоятельно рекомендуется использовать радиатор для BD241C, поскольку он сильно нагревается.

МОП-транзисторы

Что касается силовых полевых МОП-транзисторов, я предлагаю использовать IRF540N или IRFB41N15D. Эти полевые МОП-транзисторы имеют низкий заряд затвора для более быстрого переключения и низкий уровень R DS (включено) для снижения энергопотребления.Вам также необходимо убедиться, что MOSFET имеет соответствующее максимальное значение V DS (напряжение сток-исток). Вы можете использовать IRF640N, но R DS (on) значительно выше, что приводит к усилителю с более низким КПД. Вот таблица, в которой сравниваются эти три полевых МОП-транзистора:

МОП-транзистор Макс. В DS (В) I D (А) Qg (нКл) R DS (вкл.) (Ом)
IRFB41N15D 150 41 72 0.045
IRF540N 100 33 71 0,044
IRF640N 200 18 67 0,15
Индуктор

Теперь индуктор. Вы можете купить уже сделанный, но я бы посоветовал вам намотать свой собственный - в конце концов, это проект DIY.

Купите тороид Т106-2. Это должен быть железный порошок; феррит может работать, но для этого потребуется зазор, иначе он пропитается.Используя указанный тороид, намотайте 40 витков эмалированного медного провода диаметром 0,8-1 мм (AWG20-18). Вот и все. Не волнуйтесь, если это не идеально - просто затяните.

Резисторы

Наконец, все резисторы, если не указано иное (R4, R5), имеют мощность 1/4 Вт.

Тестирование

Когда я проектировал печатную плату, я сделал ее так, чтобы ее было очень легко протестировать. Входной сигнал имеет собственный разъем и две плоские клеммы для заземления: одну для источника питания и одну для динамика.

Чтобы убрать гудение (50/60 Гц от частоты сети), я использовал конфигурацию "звезда-земля"; это означает подключение всех заземлений (заземления усилителя, заземления сигнала и заземления динамика) в одной и той же точке, предпочтительно на печатной плате источника питания, после схемы выпрямителя.

Полный список материалов можно найти в файлах ниже, где вы также можете найти файлы печатных плат как в формате PDF, так и в виде файлов KiCAD.

Goodies.zip

Заключительные мысли

Я надеюсь, что информации в этой статье достаточно для того, чтобы вы смогли создать свой собственный усилитель мощности звука.Я надеюсь, что это также вдохновит вас на создание собственного усилителя.

Есть много вещей, которые можно улучшить в этом проекте. У вас есть вся необходимая информация и файлы, но вам не нужно следовать им в точности.

Вы можете использовать компоненты SMD, улучшить схему компаратора, используя дополнительный выход, или попробовать IR2011S вместо IR2110. Просто запустите этот паяльник, протравите печатную плату и приступайте к работе.Не беда, если не получится с первого раза.

Все дело в методе проб и ошибок. Когда вы наконец услышите четкий звук из динамика, это того стоит.

Если у вас возникли проблемы с вашей сборкой, оставьте комментарий здесь или опубликуйте сообщение на форуме, используя как можно больше информации. Мы будем работать над этим.

Попробуйте сами! Получите спецификацию.

Сделайте свой первый серьезный усилитель: 10 шагов (с изображениями)

Теперь, когда у вас есть усилители, пора подключить питание, заземление и сигнал на пластине.Я нашел это самой сложной частью проекта. Возможно, это как-то связано с тем, что я выбрал двухточечную пайку вместо печатных плат. Это мудрость, которая приходит задним числом, но если я когда-нибудь сделаю еще один усилитель, я обязательно буду использовать печатные платы. Рисунок на рисунке 1 - это попытка показать, как я это настроил.

Результатом не очень доволен. Я уверен, что провода и соединения не вызовут коротких замыканий, но, боже, какой беспорядок! Если я когда-нибудь сделаю еще один усилитель, я хочу сделать это лучше.

Вот как я организовал проводку:
См. Рис. 1 и 5. Заземление: Сначала я хотел заземлить все компоненты в одном месте. Я читал здесь о "наземной звездной конфигурации", и это имело для меня смысл. Но есть цена, которую нужно заплатить: множество проводов, идущих к центральному заземлению, вызывают настоящую спагетти в проводке. Поэтому после одной или двух неудач я решил заземлить детали в двух разных, но близких местах.

Регулятор громкости:
Начни легко. См. Рисунок 2. Средний вывод идет к усилителям через резистор 1 кОм.Еще один провод идет на землю, оставшийся провод должен быть подключен ко входу. Нужно обратить внимание и припаять на потенциометр по два резистора на канал.

Разъемы:
Я установил разъемы на алюминиевую заднюю пластину. Проблема с проводкой начинается здесь: все разъемы должны быть заземлены, в результате 6 выводов к болту "заземления звезды" M4 на задней панели. Постарайтесь обрезать заземляющие провода как можно короче. Плетеные провода занимают место. См. Рис. 3.Начните с выбора одного из контактов разъема XLR в качестве заземления и подключите его к заземлению звездой. Также соедините заземление звезды на задней панели с заземлением звезды 2 на «полу».

V + и V-:
См. Рисунок 5: Я сделал выводы для соединений V + и V- сплошным электрическим проводом. Провода подключаются к разъемам на 16 ампер, которые прикручиваются к деревянному полу. Припаяйте выводы от штекера XLR к V + и V-.

Запишите номера контактов XLR, которые теперь подключены к заземлению, V + и V-.Это понадобится вам при подключении другой стороны штекера XLR к шнуру питания блока питания!

Радиатор:
Я приклеил кусок алюминиевой трубки (30x30 мм) по ширине пола эпоксидной смолой. Я сделал в нем несколько разрезов, чтобы улучшить вентиляцию и добавить немного площади. Недостатком этой конфигурации является то, что линейные провода и заземляющий провод должны проходить с по радиатора. Я накрыл провода термоусадочной трубкой, чтобы защитить их от тепла.Береженого Бог бережет.

Подключите его:
Теперь все готово к подключению. Подключите потенциометр к линейному входу и заземлению через радиатор. Затем установите оба усилителя на радиатор. Начните соединять провода один за другим, обрезая их как можно короче. По возможности используйте термоусадочную пленку, чтобы изолировать паяные соединения. Инцидент со спагетти происходит прямо у вас под руками! Приложив немного терпения и приличного паяльника, вы доберетесь до цели.

Полное руководство по проектированию и созданию усилителя Hi-Fi LM3886

Примечание. Редактируемые файлы печатной платы доступны для этого проекта здесь.

LM3886 - один из самых уважаемых усилителей для аудиочипов в сообществе DIY. Причина его популярности заключается в очень низком уровне искажений, минимальном количестве внешних компонентов и низкой стоимости. При правильной компоновке и выборе компонентов вы можете создать превосходно звучащий аудиоусилитель Hi-Fi, который будет конкурировать с высококачественными усилителями, продаваемыми в розницу за несколько тысяч долларов и более.

В этом уроке я шаг за шагом пройдусь через процесс проектирования усилителя по мере создания 40-ваттного стереоусилителя с использованием LM3886.Я объясню, что делает каждая часть схемы, и покажу вам, как рассчитать правильные значения компонентов на примерах из усилителя, который я строю. Я также покажу вам, как разместить печатную плату и подключить усилитель в корпусе для минимизации шума и гудения.

Мой усилитель построен на той же схеме, что и в таблице данных, со всеми дополнительными компонентами стабилизации.

БОНУС: Загрузите мой список деталей, чтобы увидеть компоненты, которые я использовал для получения отличного качества звука от этого усилителя.Я также включил схему и файлы Gerber для используемого мной источника питания.

Я настоятельно рекомендую прочитать техническое описание перед сборкой усилителя. У него есть все технические характеристики, абсолютные максимальные характеристики, схемы и советы по дизайну:

LM3886 Лист данных

Примечание по применению AN-1192 содержит дополнительную информацию, которая заполняет пробелы, не указанные в таблице данных. Также имеются схемы мостовых и параллельных цепей усилителя:

Инструкция по применению Overture AN-1192

Также хорошо иметь Руководство по дизайну Overture.Это таблица Excel, в которой вычисляются выходная мощность, размер радиатора, коэффициент усиления и другие полезные параметры:

Руководство по дизайну увертюры

Так как это довольно длинная статья, вот ссылки на разные разделы:

Вы также можете посмотреть это видео, чтобы увидеть краткий обзор процесса проектирования. В конце я подключаю усилитель, чтобы вы могли услышать, как он звучит:

Что нужно решить перед началом работы

Перед тем, как приступить к проектированию усилителя, вы должны иметь представление о том, какую выходную мощность вы хотите получить от него.Выходная мощность - это то, что вы обычно называете номинальной мощностью усилителя. Максимальная выходная мощность LM3886 составляет 68 Вт, но фактическая мощность, которую вы получите, будет зависеть от напряжения источника питания и сопротивления динамика.

Вам также необходимо знать импеданс ваших динамиков. Вы должны найти импеданс вашего динамика на задней панели динамика или в руководстве пользователя.

Наконец, вам нужно знать входное напряжение . Это выходное напряжение аудиоисточника, который вы будете усиливать.Это может быть в руководстве пользователя устройства, но если нет, вы можете получить приблизительную оценку, воспроизведя чистую синусоидальную волну 60 Гц (есть приложения, которые будут делать это) на полной громкости и измерить напряжение переменного тока между землей и левой или правый канал с мультиметром.

ПРЕДУПРЕЖДЕНИЕ: ДАННЫЙ ПРОЕКТ ПРЕДНАЗНАЧЕН ДЛЯ РАБОТЫ С НАПРЯЖЕНИЕМ СЕТИ, КОТОРОЕ МОЖЕТ СЕРЬЕЗНО ПОЛУЧИТЬ ВАС ИЛИ УБИТЬ. ОБЯЗАТЕЛЬНО ПРИНИМАЙТЕ ВСЕ НЕОБХОДИМЫЕ МЕРЫ БЕЗОПАСНОСТИ И НИКОГДА НЕ РАБОТАЙТЕ В РЕЖИМЕ ПИТАНИЯ !!

Определите необходимое напряжение и мощность источника питания

Давайте начнем с определения того, какое напряжение и мощность потребуются вашему усилителю от источника питания.Эти расчеты подскажут вам правильное напряжение и номинальные значения в ВА трансформатора, который вы будете использовать для питания усилителя. Этот шаг важен, потому что, если напряжение трансформатора слишком низкое, выходная мощность усилителя будет меньше ожидаемой. Если номинальная мощность трансформатора слишком мала, усилитель может обрезать или искажать звук при более высокой громкости.

Требуемое напряжение источника питания

Прежде чем вы сможете найти необходимое напряжение источника питания, вам необходимо рассчитать пиковое выходное напряжение усилителя .

Найдите максимальное выходное напряжение

Пиковое выходное напряжение (V opeak ) - это максимальное напряжение, измеренное на клеммах динамика усилителя. Пиковое выходное напряжение вашего усилителя будет зависеть от желаемой выходной мощности (P o ) и импеданса динамика по следующей формуле:

Усилитель, который я создаю, будет 40 Вт с динамиками 6 Ом, поэтому мое пиковое выходное напряжение составляет:

Найдите максимальное напряжение питания, необходимое усилителю

Теперь, когда вы определили пиковое выходное напряжение вашего усилителя, вы можете рассчитать максимальное напряжение питания (V max supply ) .Это напряжение, необходимое усилителю от источника питания для получения желаемой выходной мощности.

Чтобы найти максимальное напряжение питания, возьмите пиковое выходное напряжение и добавьте падение напряжения или ) LM3886 (4 В). Затем учитывайте регулировку трансформатора и изменение напряжения в сети.

Регулирование - это увеличение выходного напряжения трансформатора, когда нагрузка не потребляет ток (т.е. усилитель перестает воспроизводить музыку). Нормативные значения обычно можно найти в паспорте трансформатора, но если вы не знаете нормативов своего трансформатора, безопасное значение для использования составляет 15%.Регулировка трансформатора, который я буду использовать, составляет 6%.

Напряжение сети может варьироваться до 10% в зависимости от вашего местоположения. Обычно он достигает пика поздно ночью, когда люди спят, и падает днем, когда больше людей бодрствуют и потребляют ток из электросети.

Используйте эту формулу для расчета максимального напряжения питания, необходимого для вашего усилителя:

Для моего усилителя мощностью 40 Вт максимальное необходимое напряжение питания составляет:

Таким образом, мой блок питания должен обеспечивать пиковое напряжение ± 30.2 В для моего усилителя для вывода 40 Вт на динамики 6 Ом. Символ ± указывает, что напряжение составляет +30,2 В на положительной шине и -30,2 В на отрицательной шине.

Следующим шагом является определение номинального напряжения трансформатора, которое может обеспечить это максимальное напряжение питания.

Найдите максимальное выходное напряжение питания трансформатора

Имейте в виду, что номинальное напряжение трансформатора говорит вам только о том, что это выходное напряжение переменного тока . Напряжение постоянного тока будет выше после того, как диоды выпрямительного моста на вашем источнике питания преобразуют переменное напряжение в постоянное.

Чтобы найти максимальное выходное напряжение постоянного тока на выходе трансформатора и источника питания, возьмите номинальное напряжение переменного тока трансформатора и умножьте на 1,41 увеличение напряжения на выпрямительных диодах, 10% отклонение напряжения сети и регулировку трансформатора:

Я попробовал вышеуказанный расчет с трансформатором, рассчитанным на 18 В переменного тока, чтобы проверить, может ли он обеспечить максимальное напряжение питания 30,2 В, необходимое для моего усилителя. С трансформатором 18 В я бы получил максимальное напряжение питания:

29.6 В довольно близко к максимальному напряжению питания 30,2 В, необходимому для моего усилителя, но давайте точно посчитаем, какую выходную мощность я получу с этим трансформатором.

Найдите выходную мощность по номинальному напряжению трансформатора

Чтобы рассчитать выходную мощность, которую вы получите от номинального напряжения конкретного трансформатора, используйте следующую формулу:

Используя максимальное напряжение питания, которое я рассчитал для трансформатора 18 В (29,6 В), я получу выходную мощность:

38.Выходная мощность 2 Вт довольно близка к моей цели 40 Вт, поэтому трансформатор на 18 В будет работать нормально.

Требуемая мощность трансформатора

Теперь давайте определим минимальную номинальную мощность в ВА трансформатора, который будет питать ваш усилитель.

Сначала вам нужно рассчитать общую мощность (P , источник питания ) , необходимую для усилителя. Общая мощность зависит от максимального выходного напряжения источника питания, пикового выходного напряжения усилителя и импеданса динамика.Используемая формула:

Я уже рассчитал максимальное напряжение питания трансформатора 18 В (29,6 В) и пиковое выходное напряжение моего усилителя (21,9 В). Общий ток покоя (QPSC) указан в таблице данных LM3886 как 85 мА.

Итак, мой трансформатор 18 В должен обеспечивать усилитель как минимум:

Теперь по общей мощности можно определить минимальную номинальную мощность трансформатора в ВА.

Преобразование полной мощности в номинальную мощность трансформатора, ВА

Чтобы преобразовать полную мощность в номинальную мощность трансформатора, необходимо умножить ее на коэффициент 1.5:

Это ВА, необходимая для каждого канала, поэтому для стереоусилителя, питаемого от одного трансформатора, просто удвойте его:

Найти трансформатор с ВА 222 будет сложно, но вы можете округлить до ближайшего ближайшего значения и использовать трансформатор на 250 ВА или больше.

Определите подходящий размер радиатора

LM3886 нужен радиатор, достаточно большой, чтобы рассеивать выделяемое тепло, иначе он быстро выйдет из строя.Минимальный размер радиатора можно найти, рассчитав его максимальное тепловое сопротивление (в ° C / Вт) .

Однако сначала вам необходимо знать максимальную рассеиваемую мощность вашего LM3886 (P dmax ) и тепловое сопротивление на пути теплообмена от кристалла кристалла к окружающему воздуху.

Найдите максимальное рассеивание мощности

Максимальная рассеиваемая мощность - это предел, при котором активируется внутренняя схема SPiKe LM3886.При включении схемы SPiKe качество звука серьезно ухудшается, поэтому для предотвращения этого нам нужен радиатор с достаточно низким тепловым сопротивлением, чтобы рассеять максимальную мощность, рассеиваемую LM3886. P dmax зависит от максимального напряжения питания вашего источника питания и импеданса вашего динамика:

Максимальное выходное напряжение питания от моего блока питания составляет ± 29,6 В, и я буду использовать динамики с сопротивлением 6 Ом, поэтому мой P dmax составляет:

Итак, мой радиатор должен рассеивать 29.6 Вт мощности для предотвращения срабатывания схемы защиты SPiKe.

Найдите максимальное тепловое сопротивление радиатора

Есть три сопротивления тепловому потоку от LM3886:

θ jc : тепловое сопротивление от соединения микросхемы (кристалла) до корпуса.

θ cs : термическое сопротивление зазора между корпусом микросхемы и радиатором.

θ sa : Тепловое сопротивление радиатора окружающему воздуху.

Больше мощности будет рассеиваться при понижении любого из тепловых сопротивлений на пути к окружающему воздуху. θ jc - это свойство пластикового корпуса, в котором заключена матрица, поэтому мы ничего не можем сделать, чтобы уменьшить его.

θ cs можно уменьшить, используя термопасту между микросхемой и радиатором. Термопаста имеет тепловое сопротивление около 0,2 ° C / Вт, но точное значение используемого типа должно быть доступно у производителя.

Самый эффективный способ снизить общее тепловое сопротивление - снизить θ до с помощью более эффективного радиатора.Радиаторы с меньшим θ и лучше рассеивают тепло.

Радиатор будет рассеивать пиковую мощность, производимую усилителем (P dmax ), если его тепловое сопротивление (θ sa ) меньше или равно значению, рассчитанному по следующей формуле:

LM3886 производится в двух разных корпусах: LM3886T и LM3886TF. LM3886T имеет металлический фланец на задней части корпуса, а LM3886TF полностью пластиковый. Пластиковый корпус LM3886TF дает более высокий θ cs :

  • LM3886T: θ cs = 1 ° C / Вт
  • LM3886TF: θ cs = 2 ° C / Вт

T jmax - максимальная температура перехода , или температура на кристалле микросхемы, выше которой включается схема теплового отключения.В техническом описании указано значение T jmax , равное 150 ° C.

T amb - температура окружающей среды в ° C, при которой будет работать усилитель. Типичное значение для T amb - комнатная температура (25 ° C).

Таким образом, максимальное тепловое сопротивление (θ sa ) радиатора для моего усилителя с P dmax 29,6 Вт составляет:

Так что мне понадобится радиатор с номиналом меньше или равным 2,1 ° C / Вт, чтобы он мог рассеивать максимальную мощность, производимую LM3886.

Вот один канал моего усилителя, подключенный к радиатору подходящего размера:

Расчет значений компонентов

Теперь, когда вы рассчитали требования к источнику питания и радиатору, следующим шагом является определение значений для компонентов в цепи усилителя. Я буду использовать схему, представленную ниже. Он в основном такой же, как в таблице данных, но с дополнительными включенными компонентами стабильности:

Примечание. Компоненты помечены так, как они указаны в таблице.

Вот схема расположения выводов LM3886 для справки:

Найдите минимальный требуемый коэффициент усиления

Для усиления можно установить любое значение, превышающее минимальное для LM3886 значение 10 В o / V i , но для получения желаемой выходной мощности оно должно быть выше определенного минимального значения. Минимальная настройка усиления вашего усилителя будет зависеть от входного напряжения, импеданса динамика и выходной мощности по формуле:

Я планирую использовать iPhone в качестве источника звука для моего усилителя с выходным напряжением 1 В.Выходная мощность, которую я получу с трансформатором и блоком питания, составляет 38,2 Вт, а импеданс моих динамиков - 6 Ом. Итак, мой минимальный выигрыш:

.

Поэтому мне нужно установить усиление не менее 15,1 В o / V i , если мне нужна выходная мощность 38,2 Вт на колонки с сопротивлением 6 Ом при входном напряжении 1 В.

Настройка усиления

Коэффициент усиления LM3886 можно установить, изменив номиналы резисторов R i и R f1 . Эти резисторы образуют делитель напряжения, который определяет напряжение на инвертирующем входе (вывод 9) LM3886:

.

Установка слишком высокого усиления может вызвать искажения.Установка слишком низкого уровня может сделать ваш усилитель слишком тихим. Хорошая настройка усиления, не слишком высокая, чтобы вызывать искажения, но не слишком низкая, чтобы дать вам хороший диапазон громкости, составляет от 27 до 30 дБ.

Прирост рассчитывается по следующей формуле:

Это дает вам коэффициент усиления по напряжению (V o / V i ) или коэффициент усиления. Чтобы преобразовать усиление по напряжению в усиление в децибелах (дБ), используйте эту формулу:

Резисторы более высокого номинала создают больше шума Джонсона-Найквиста, поэтому лучше всего выбрать соотношение R f1 / R i , которое обеспечивает желаемое усиление при низких значениях резисторов.

Я выбрал для своего усилителя коэффициент усиления около 27 дБ (22,4 В o / V и ). Чтобы сохранить низкое сопротивление, я начал с установки R и на 1 кОм. Затем я изменил формулу усиления, чтобы найти R f1 с усилением 22,4 В o / V i :

Я собираюсь использовать в своем усилителе металлопленочные резисторы серии PTF Vishay-Dale, но наиболее близкое значение, которое я смог найти, было 20 кОм. Но использование резистора 20 кОм для R f1 даст выигрыш:

Что достаточно близко к 27 дБ и выше 15.1 V o / V i минимальное усиление, необходимое для моей желаемой выходной мощности, входного напряжения и импеданса динамика.

Если вы создаете стереоусилитель, вам нужно, чтобы R i и R f1 имели жесткие допуски по сопротивлению. Если эти резисторы сильно различаются между двумя каналами, коэффициенты усиления будут разными, и один канал будет громче, чем другой. Идеально подходят металлопленочные резисторы с допуском 0,1% или меньше.

Балансировка входного тока смещения

После установки усиления следующим шагом является балансировка входных токов смещения путем выбора значений для R в и R b :

Если токи на неинвертирующем входе (вывод 9) и инвертирующем входе (вывод 10) различны, между ними будет возникать напряжение.Эта разница в напряжении будет усиливаться как шум.

Инвертирующий вход видит сопротивление R f1 , а неинвертирующий вход видит сопротивление R в и R b последовательно. Вы уже нашли значение для R f1 , когда устанавливали коэффициент усиления усилителя. Значения R в и R b выбраны таким образом, чтобы вместе они равнялись значению R f1 . Это сделает ток на неинвертирующем входе равным току на инвертирующем входе.Чтобы найти значения R в и R b для конкретного R f1 , используйте эту формулу:

Я использовал значение, указанное в таблице данных для R b (1 кОм). Итак, с R f1 при 20 кОм значение R в , которое уравновешивает входной ток смещения для моего усилителя, составляет:

Вы, вероятно, сможете найти резистор 19 кОм, доступный с типом резисторов, которые вы используете, но 20 кОм - это самое близкое значение, которое я смог найти для резисторов Vishay-Dale PTF, поэтому мне придется с этим согласиться.

Установка среза низких частот на входе усилителя

C в последовательно с неинвертирующим входом. Его основная функция - блокировать любой постоянный ток, присутствующий в аудиоисточнике, позволяя при этом проходить переменному току (аудиосигналу). Необходимо заблокировать постоянный ток в источнике звука, иначе он будет усиливаться вместе со звуковым сигналом и создавать высокое смещение постоянного тока в динамиках. Это искажает звук, чего мы не хотим по очевидным причинам.

В дополнение к функции блокировки постоянного тока, C в и входной резистор (R в ) образуют RC-фильтр верхних частот, который устанавливает нижний предел полосы пропускания усилителя на неинвертирующем входе:

Частота среза этого фильтра (также известная как точка -3 дБ или частота среза ) - это частота, на которой фильтр начинает работать.В фильтре высоких частот частоты ниже частоты среза будут ослаблены (приглушены). В фильтре нижних частот все частоты выше частоты среза будут приглушены. Мы будем использовать комбинации фильтров низких и высоких частот, чтобы установить полосу пропускания усилителя и улучшить стабильность.

Частота среза (F c ) этого фильтра может быть найдена с помощью уравнения:

Уравнение можно изменить, чтобы найти значение C в для конкретного F c :

Вы нашли значение для R в при балансировке входных токов смещения, поэтому теперь все, что вам нужно, это выбрать частоту среза.Нижний предел человеческого слуха составляет 20 Гц, поэтому F c должен быть намного ниже этого значения, чтобы предотвратить ослабление низких частот. Идеально ниже 2–4 Гц.

Я предпочитаю слушать музыку с большим количеством басов, поэтому я выбрал для своего усилителя довольно низкий F c . Я начал с 1,5 Гц, но вы можете использовать более высокие или более низкие значения, если хотите. Просто убедитесь, что частота ниже 20 Гц, иначе низкие частоты будут слабыми.

С F c 1,5 Гц значение моего C в должно быть:

А 5.Конденсатор на 3 мкФ будет трудно найти, но довольно часто встречается близкое значение 4,7 мкФ. F c с конденсатором 4,7 мкФ будет:

F c 1,69 Гц довольно близко к моим желаемым 1,5 Гц, поэтому конденсатор 4,7 мкФ должен быть хорошим.

Поскольку C в находится непосредственно на пути входного аудиосигнала, тип используемого конденсатора будет влиять на качество звука. Следует избегать электролитических, керамических и танталовых конденсаторов.Лучше всего здесь будет звучать металлическая полипропиленовая пленка хорошего качества, а еще лучше - металлическая полипропиленовая пленка в масляном конденсаторе.

Установка низкочастотного отсечки в контуре обратной связи

Второй фильтр верхних частот присутствует в контуре обратной связи с R i и C i :

Частота среза этого фильтра должна быть в 3–5 раз на ниже , чем у F c у C в \ R в фильтре верхних частот на входе.Если F c этого фильтра на выше, чем на входного фильтра, усилитель будет передавать низкие частоты в контур обратной связи, с которыми он не может справиться. Это создаст напряжение на C и и вызовет появление постоянного напряжения на инвертирующем входе, которое будет усиливаться и вызывать искажения. Следовательно, входной фильтр (C в и R в ) должен определять нижнюю полосу пропускания усилителя, а не фильтр контура обратной связи (C i и R i ).

Входной фильтр определяет нижнюю часть полосы пропускания, но C i все еще влияет на низкие частоты. При меньших значениях C i басы будут мягче и менее мощными, но при больших значениях C i басы будут более плотными и более сильными.

Формула ниже даст вам отправную точку для значения C i :

Я уже нашел значения для R в , C в , R b и R i , поэтому значение моего C i должно быть больше, чем:

Округление до следующего общего значения емкости дает 220 мкФ.Давайте посмотрим, какая будет частота среза при этом. Мы можем использовать уравнение F c с R i и C i :

Теперь я проверю, не является ли 0,72 Гц в 3-5 раз ниже, чем 1,69 Гц F c моего входного фильтра:

Это в 2,3 раза меньше. Давайте попробуем несколько больших значений для C i , чтобы увидеть, не можем ли мы сделать лучше, чем это. Повторение расчета F c для конденсатора 330 мкФ дает 0,48 Гц.

3.В 5 раз меньше - это нормально, но я мог бы сделать даже лучше с конденсатором 470 мкФ. Повторение вычислений снова с конденсатором 470 мкФ дает F c 0,34 Гц.

Конденсатор емкостью 470 мкФ установит значение F c моего фильтра контура обратной связи в 4,9 раза ниже, чем значение F c моего входного фильтра. Это здорово, поэтому я буду использовать конденсатор емкостью 470 мкФ для C i .

C i также находится в тракте аудиосигнала, поэтому следует использовать конденсатор хорошего качества.Емкость, вероятно, будет слишком высокой для использования полипропилена, поэтому вам, вероятно, придется использовать электролит. Тем не менее, существуют электролитические компоненты хорошего качества, такие как серия Elna Silmic II или Nichicon KZ, которые не должны отрицательно влиять на качество звука.

Установите обрезку высоких частот на входе усилителя

R b и C c образуют RC-фильтр нижних частот, который устанавливает верхний предел полосы пропускания усилителя на неинвертирующем входе:

В таблице данных C c показаны подключенными между неинвертирующим входом и инвертирующим входом.В этой конфигурации C c фильтрует радиочастоты и электромагнитные помехи, принимаемые входными проводами. К сожалению, это также увеличивает вероятность колебаний. Лучше всего подключить C c от неинвертирующего входа к земле, как показано на изображении выше. Таким образом, C c по-прежнему фильтрует радиочастоты, но он также действует как фильтр нижних частот, который устанавливает верхний предел полосы пропускания усилителя.

F c этого фильтра должен быть установлен значительно ниже самой низкой частоты радиовещания в вашем районе и намного выше верхнего предела 20 кГц для человеческого слуха.Радиочастоты вещания в США:

  • FM: от 87,5 до 108 МГц
  • AM: от 535 до 1605 кГц

Я решил начать с F c около 250 кГц. Она намного ниже самой низкой частоты AM-вещания (535 кГц), поэтому радиочастоты и большинство электромагнитных помех должны быть отфильтрованы. Кроме того, она намного выше верхней 20 кГц частоты человеческого слуха, поэтому более высокие звуковые частоты не будут ослабляться.

Чтобы найти значение для C c , которое дает F c 250 кГц, я просто изменим формулу частоты среза:

Поскольку 636 пФ не является обычным значением, я округлю до 680 пФ.С конденсатором 680 пФ F c становится:

Таким образом, конденсатор 680 пФ установит верхнюю частоту среза на 234 кГц, что достаточно близко к моему желаемому F c , равному 250 кГц. C c также находится в пути прохождения сигнала, поэтому следует использовать конденсатор хорошего качества. Лучшими типами диэлектрика для аудиоконденсаторов в диапазоне пикофарадов являются серебряная слюда или полистирол.

Компоненты устойчивости R f2 и C f

R f2 и C f подавляют резонанс в контуре обратной связи и повышают стабильность:

R f1 , R f2 и C f образуют фильтр нижних частот в контуре обратной связи, но, как вы можете видеть из формулы в таблице данных, вычисление F c этого фильтра довольно сложно :

Лучший способ определить значения для R f2 и C f - использовать программное обеспечение для моделирования схем, такое как LTSpice.Однако это выходит за рамки данной статьи, поэтому я просто буду использовать значения, указанные в таблице.

Но если вы хотите поэкспериментировать, уменьшение значения C f повысит верхний F c полосы пропускания, а увеличение значения снизит его.

Сеть Zobel

C sn и R sn образуют сеть Zobel на выходе усилителя:

Сеть Zobel используется для предотвращения колебаний, вызванных индуктивными нагрузками.Это также предотвращает попадание радиочастот, улавливаемых проводами динамиков, обратно на инвертирующий вход усилителя через контур обратной связи.

На высоких частотах сопротивление C sn очень низкое, поэтому ток высокой частоты замыкается на массу. R sn ограничивает ток высокой частоты, поэтому нет прямого замыкания на землю, которое может превысить ограничение тока LM3886. Следовательно, меньшие значения R sn делают сеть Zobel более эффективной при фильтрации радиочастот, но также увеличивает частоту среза, что, в свою очередь, снижает ее эффективность.

В таблице данных указано значение 2,7 Ом для R sn и значение 100 нФ для C sn . Это делает F c :

589 кГц - это довольно много, тем более что самая низкая частота радиовещания AM составляет 535 кГц. Чтобы снизить его до более разумного уровня, я решил использовать 4,7 Ом для R sn и 220 нФ для C sn , что снижает F c до 154 кГц:

154 кГц намного выше предела 20 кГц человеческого слуха и намного ниже любых радиочастот, которые могут улавливать провода громкоговорителей.

Поскольку R sn должен шунтировать большие токи на землю, если усилитель колеблется, номинальная мощность должна быть не менее 1 Вт. C sn должен иметь низкий ESR и низкий ESL, с номинальным напряжением, превышающим размах выходного напряжения между направляющими. Чтобы свести к минимуму индуктивность, расположите сеть Zobel рядом с выходным контактом (контакт 4) и сделайте дорожки короткими.

Сеть Тиле

В то время как сеть Zobel уменьшает колебания, вызванные индуктивными нагрузками, сеть Thiele снижает колебания, вызванные емкостными нагрузками, обычно из-за длинных акустических кабелей.Это также предотвращает попадание радиочастот, улавливаемых проводами динамиков, обратно на инвертирующий вход усилителя через контур обратной связи.

Катушки индуктивности

имеют низкое сопротивление току низкой частоты и высокое сопротивление току высокой частоты. Звуковые сигналы имеют относительно низкую частоту, поэтому они беспрепятственно проходят через катушку индуктивности. Катушка индуктивности препятствует высокочастотному колебательному току, который заставляет протекать через резистор, который гасит его.

В техническом описании рекомендуется использовать резистор 10 Ом, 5 Вт параллельно с резистором 0.Индуктор 7 мкГн. В стереоусилителе будет одна сеть Тиле на канал. Они должны быть расположены вдали от входной схемы усилителя, чтобы предотвратить помехи от магнитных полей, создаваемых индуктором. Хорошее расположение - рядом с выходными клеммами динамика, немного разнесенными или под углом 90 ° друг к другу, чтобы предотвратить взаимодействие магнитного поля между ними.

Изготовление индукторов

Индукторы для сети Тиле представляют собой проволочные сердечники с воздушным сердечником, изготовленные путем наматывания эмалированной проволоки (магнитной проволоки) вокруг цилиндрического объекта.Поскольку катушка индуктивности будет пропускать полный выходной ток усилителя, провод должен быть толстого сечения. От 12 до 18 AWG было бы хорошо. Используйте этот калькулятор однослойной воздушной катушки, чтобы узнать, сколько витков вам нужно для определенного диаметра проволоки и диаметра катушки.

Или вы можете рассчитать индуктивность самостоятельно по этой формуле:

В своей сборке я использовал магнитный провод 14 AWG, так как он толстый и его легко найти. Диаметр 14 AWG составляет 1,62814 мм. Я планировал использовать стержень отвертки диаметром 11 мм для формирования катушки.Введя эту информацию в калькулятор индуктивности, я обнаружил, что мне нужно около 12 витков, чтобы получить индуктор 0,7 мкГн.

Конденсаторы развязки источника питания

LM3886 имеет один отрицательный контакт источника питания (контакт 4) и два положительных контакта источника питания (контакты 1 и 5). Для отрицательного вывода питания необходим собственный набор развязывающих конденсаторов, а для положительных выводов питания используется отдельный набор развязывающих конденсаторов.

Большие развязывающие конденсаторы обеспечивают длительный источник резервного тока при высоком низкочастотном выходе усилителя.Более высокие значения улучшат характеристики низких частот. Типичные значения находятся в диапазоне от 470 мкФ до 2200 мкФ.

Разделительные конденсаторы средней мощности обеспечивают дополнительный ток для среднечастотного выхода. Они должны быть где-то между 10 мкФ и 220 мкФ.

Небольшие развязывающие конденсаторы очень быстро вырабатывают ток, помогая усилителю выводить более высокие звуковые частоты. Они также фильтруют шум и радиопомехи в блоке питания.

Разделительные конденсаторы также компенсируют паразитную индуктивность и сопротивление проводов питания и дорожек, ведущих к выводам питания микросхемы.Индуктивность и сопротивление препятствуют протеканию тока, который увеличивается с увеличением длины проводов и проводов. Поскольку источник питания находится относительно далеко от микросхемы, индуктивность и сопротивление являются проблемой. Чтобы максимизировать ток, протекающий к микросхеме, развязывающие конденсаторы следует размещать как можно ближе к выводам питания микросхемы.

Конденсаторы с более низким эквивалентным последовательным сопротивлением (ESR) и более низкой эквивалентной последовательной индуктивностью (ESL) являются лучшими типами для использования здесь.

Исследование Тома Кристиансена показывает, что керамический конденсатор X7R емкостью 4,7 мкФ, подключенный параллельно с электролитическим конденсатором 22 мкФ и электролитом 1000 мкФ, имеет значительно лучшие характеристики, чем подключенные параллельно конденсаторы на 100 нФ, 10 мкФ и 470 мкФ, рекомендованные в техническом описании. Это то, что я буду использовать в своем усилителе.

Цепь отключения звука

R м , C м и D1 образуют цепь отключения звука:

Когда ток, вытекающий из вывода отключения звука (вывод 8), меньше 0.5 мА, выходной сигнал усилителя отключен, а когда ток превышает 0,5 мА, выходной сигнал отключен.

Чтобы включить усилитель, нам нужно найти такое значение для R m , чтобы ток, протекающий через контакт 8, был больше 0,5 мА. Это можно найти с помощью этой формулы:

Для моего усилителя, работающего от напряжения питания ± 29,6 В,

Итак, мой R m должен быть меньше 54 кОм, чтобы ток на выводе 8 был больше 0.5 мА.

R m и C m создают постоянную времени, которая медленно уменьшает ток на выводе отключения звука при отключении питания усилителя и медленно увеличивает ток при включении усилителя. Стабилитрон 16 В (D1) блокирует ток, протекающий через контакт 8, до тех пор, пока не будет достигнуто напряжение пробоя диода (16 В). Это создает эффект плавного пуска / остановки, который постепенно увеличивает или уменьшает громкость вместо ее резкого уменьшения.

Время, необходимое для нарастания и спада тока, можно отрегулировать, изменив значения R m или C m в соответствии с формулой для постоянной времени RC:

Например, если мне нужен плавный пуск длительностью в одну секунду, я могу произвольно установить R m на 10 кОм, а затем найти значение для C m :

Таким образом, установка R m на 10 кОм и C m на 100 мкФ даст мне плавный старт длительностью в одну секунду.

Окончательная схема

Теперь, когда мы увидели, как рассчитать значения компонентов, мы можем приступить к проектированию компоновки печатной платы и схемы подключения. Если вы не хотите выполнять все вычисления, которые мы сделали выше, вы можете использовать значения, которые я использовал. Вот окончательная схема:

Примечание: метки компонентов соответствуют меткам на компоновке печатной платы, представленной ниже. Щелкните изображение, чтобы отредактировать схему или изменить значения компонентов.

Проектирование плана местности

Схема заземления вашего усилителя оказывает большое влияние на качество звука.При правильно спроектированной схеме заземления выход усилителя будет полностью бесшумным, когда источник подключен и музыка не воспроизводится. При плохо спроектированной схеме заземления усилитель может издавать очень заметный гул или жужжащий звук.

Ключом к правильной схеме заземления является отделение слаботочных заземлений от сильноточных. Слаботочные заземления - это заземление для входных цепей и контура обратной связи. Сильноточные заземления - это заземление, подводимое к разделительным конденсаторам источника питания, сети Zobel и динамикам.Сильные токи, протекающие через слаботочные заземляющие проводники, создают постоянное напряжение, которое может появляться на входе усилителя и усиливаться в виде шума.

Чтобы отделить слаботочные заземления от сильноточных, мы создадим несколько сетей заземления:

  • Заземление аудиовхода : Заземление кабеля аудиовхода
  • Заземление сигнала : Заземление входной цепи - R в , C c и R i / C i
  • Заземление динамиков : Заземление динамиков
  • Заземление источника питания : Заземление для развязывающих конденсаторов источника питания, сети Zobel, конденсатора отключения звука и вывода заземления LM3886

Эти заземления должны подключаться только один раз к набору клемм, называемому основным системным заземлением .Основное системное заземление расположено как можно ближе к накопительным конденсаторам источника питания. Заземление основной системы будет подключаться к проводу заземления сети через цепь защиты контура заземления (поясняется позже) и шасси усилителя.

Отдельные сети заземления подключаются к основной системе заземления, так что заземления с более высоким током находятся ближе к емкостным конденсаторам. На схеме ниже показано, как заказать заземление:

Заземление динамика и заземления аудиовхода проложено непосредственно от своих клемм на шасси к основному системному заземлению.

Проектирование макета печатной платы Дизайн печатной платы

также оказывает большое влияние на характеристики вашего усилителя. Ниже я расскажу о рекомендациях, которые я использовал при разработке этой топологии печатной платы. Печатная плата предназначена для одного канала, поэтому для стереоусилителя вам нужно будет собрать две платы:

Примечание. Компоненты на схеме печатной платы соответствуют приведенной выше схеме. Вы можете нажать на изображение выше, чтобы отредактировать компоновку печатной платы, изменить посадочные места компонентов и заказать печатную плату.

Печатная плата была разработана с помощью программного обеспечения для онлайн-дизайна EasyEDA. EasyEDA - это бесплатное программное обеспечение / услуга по изготовлению схем и плат для проектирования печатных плат, которая предлагает отличные цены на изготовление печатных плат по индивидуальному заказу.

Печатные платы для заказа

Если вы нажмете кнопку «Fabrication Output» в редакторе плат EasyEDA, вы попадете на страницу, где можно заказать печатную плату. Вы сможете выбрать толщину меди, толщину печатной платы, цвет и количество заказа:

Заказал 5 плат за 17 долларов.10 долларов, и они были доставлены примерно за 10 дней. Готовые доски отлично смотрятся. Все следы и печать получились очень чистыми и точными, ни на одной из плат не было дефектов. Вот одна из печатных плат:

Рекомендации по проектированию печатных плат

Сильные токи, протекающие через источник питания и выходные дорожки, будут создавать магнитные поля, которые могут генерировать токи в контуре обратной связи и входных дорожках, если они проложены параллельно друг другу. Это может исказить входной сигнал, поэтому лучше держать их подальше друг от друга или направлять под углом 90 °.Размещение их клемм для печатных плат на противоположных сторонах платы упростит их разделение при прокладке трасс.

Любое пространство между дорожками одной и той же цепи создаст петлю, которая может передавать или принимать электромагнитные поля. Следы для подачи питания и заземления должны быть проложены близко друг к другу, чтобы уменьшить площадь контура. Точно так же аудиовход и дорожки сигнала должны быть проложены близко друг к другу. Простой способ минимизировать площадь петли - использовать заземляющие поверхности на нижнем слое печатной платы, что я и сделал на этом макете.

Заземление питания и заземление сигнала - единственные цепи заземления на печатной плате. Каждый из них имеет свою электрически изолированную заземляющую пластину на нижнем слое. Поскольку заземление питания несет большие токи, а сигнальное заземление - низкие токи, они хранятся отдельно до тех пор, пока не подключатся к основному заземлению системы. На верхнем слое печатной платы трассы источника питания, выхода и сети Zobel проходят через заземляющий слой питания. Трассы входа и обратной связи проходят по плоскости заземления сигнала.Следы для подачи питания были сделаны очень широкими, чтобы минимизировать сопротивление и индуктивность.

Контур обратной связи должен быть как можно короче, чтобы уменьшить площадь контура. Я обрезал выводы резистора обратной связи (R f1 ) и припаял его непосредственно к контактам 9 и 3, чтобы площадь контура была как можно меньше:

Индуктивность препятствует прохождению тока и создает резонанс с конденсатором, включенным последовательно. Поскольку индуктивность увеличивается с увеличением длины дорожки, лучше делать все дорожки как можно короче.Это особенно важно для разделительных конденсаторов источника питания, контура обратной связи, входных цепей и сети Zobel. Держите компоненты этих схем вплотную к контактам микросхемы, чтобы следы были короткими.

У нас есть больше советов и приемов по проектированию печатных плат в нашей статье «Как сделать пользовательскую печатную плату», так что ознакомьтесь с ней, если вам интересно.

Соединяем все вместе

LM3886 - это усилитель на микросхеме Hi-Fi, поэтому для моего усилителя я использовал высококачественные компоненты аудиосистемы:

Общая стоимость обоих каналов составила около 118 долларов, не включая шасси, источник питания и детали проводки.Вы можете построить его намного дешевле с более дешевыми компонентами, если у вас ограниченный бюджет, просто не забудьте изменить посадочные места компонентов в топологии печатной платы.

Пайка и пайка

Перед тем, как припаять компоненты к печатной плате, используйте кусок наждачной бумаги с мелким зерном, чтобы удалить любые окисления с выводов компонентов. Это обеспечит более прочное паяное соединение и лучшую электропроводность.

Чтобы удерживать отдельные компоненты на месте во время пайки, используйте замазку, такую ​​как Sticky-Tac, на верхней стороне печатной платы.Начните пайку с самых маленьких компонентов и постепенно переходите к более крупным компонентам.

Старайтесь избегать стандартного оловянно-свинцового припоя 60/40 и используйте вместо него эвтектический припой 63/37. Припой 60/40 имеет широкий диапазон плавления, и когда он находится в нижней части диапазона, он становится пастообразным. Если компонент движется в пастообразной фазе, это может привести к образованию холодного паяного соединения. Меньший диапазон плавления эвтектического припоя ускоряет схватывание припоя и обеспечивает лучшее электрическое соединение.

Вот один канал моего усилителя после того, как я спаял компоненты:

Поиск шасси

Вам понадобится корпус, чтобы удерживать печатные платы и провода, а также для монтажа входных, выходных и силовых разъемов.Металлические корпуса - лучший тип, потому что они защищают усилитель от помех, вызываемых флуоресцентными лампами, радио и сотовыми телефонами. К сожалению, бывает сложно найти шасси, которое подошло бы ко всему и при этом красиво выглядело. После долгих поисков я нашел компанию под названием Hi-Fi 2000, которая производит действительно хорошие металлические корпуса. Их веб-сайт на итальянском языке, но его можно перевести на английский. Я заказал их модель Galaxy 330 × 280 мм с передней панелью из черного анодированного алюминия толщиной 10 мм, и она отлично выглядит:

Они также выполняют сверление и печать на заказ, поэтому я попросил их настроить заднюю панель:

Перед тем, как заказать шасси, сделайте тестовую компоновку трансформатора, источника питания, печатных плат усилителя и радиаторов.Затем измерьте габаритные размеры, чтобы убедиться, что корпус подойдет ко всему.

Схема соединений внутри корпуса

После того, как печатные платы собраны и у вас есть шасси, самое время соединить все вместе. Схема электропроводки так же важна, как и схема печатной платы и схема заземления. Используйте приведенную ниже схему в качестве руководства для подключения различных частей вместе:

Щелкните изображение, чтобы просмотреть его в увеличенном виде.

Целью проводки является уменьшение или устранение электромагнитных помех между сильноточными и слаботочными проводами.Провода аудиовхода и провода заземления сигнала наиболее чувствительны к помехам от окружающих магнитных полей.

Провода питания, выходные провода динамика, трансформатор, выпрямительные диоды и провода сети переменного тока являются основным источником магнитных полей. Чтобы уменьшить помехи, держите аудиовход и сигнальные провода заземления подальше от этих частей или проложите их под углом 90 °, если их разделение неизбежно. Если вы сориентируете входную сторону печатных плат усилителя рядом с входными клеммами на шасси, провода можно будет сделать короткими и вдали от источников помех.

Любое пространство между проводами одной и той же цепи создаст петлю, которая может передавать или принимать электромагнитные поля. Чтобы свести к минимуму площадь петли, следующие наборы проводов должны быть плотно скручены вместе:

  • Горячие и нейтральные провода сети переменного тока от входной клеммы до трансформатора
  • Провода нулевого и вторичного переменного напряжения от трансформатора к источнику питания
  • V +, V- и провода заземления от источника питания к плате каждого усилителя
  • Провода выхода динамика и заземления динамика от печатной платы усилителя / заземления основной системы к клеммам шасси
  • Аудиовход и входные провода заземления от входных клемм к платам усилителя

Три провода источника питания (V +, V- и заземление) соединяют выход постоянного тока источника питания с каждой печатной платой усилителя.Эти провода должны быть толстыми, как можно более короткими и плотно скрученными. Я использовал 14 AWG, но все, что больше 18 AWG, подойдет.

По входным проводам и сигнальным заземляющим проводам протекают только слабые токи, поэтому они не обязательно должны быть толстого сечения. Я использовал твердый сердечник 22 AWG, который хорошо работает, потому что его можно скрутить в тугую катушку.

Кабели аудиовхода, идущие от источника к шасси усилителя, могут улавливать помехи. Если это становится проблемой, вы можете установить конденсатор емкостью 1 нФ между землей каждой входной клеммы и шасси, чтобы отфильтровать его.

Заземляющий провод сети должен быть прикреплен непосредственно к шасси с помощью болта и кольцевой клеммы. Я бы также использовал стопорную гайку или стопорную шайбу, чтобы предотвратить ее ослабление. Все металлические части усилителя (например, радиаторы) должны быть электрически подключены к шасси, чтобы обеспечить заземление для любых сетевых напряжений, которые могут контактировать с ними в случае неисправности.

Основное заземление системы подключается к цепи защиты заземления (обсуждается ниже), которая затем подключается к шасси.Схема защиты от заземления может подключаться к шасси с помощью болта, где провод заземления сети подсоединяется к шасси, или в отдельном месте.

Две сети Тиле расположены рядом с выходными клеммами динамика. Чтобы предотвратить взаимное влияние катушек индуктивности, они должны быть расположены на расстоянии друг от друга или ориентированы под углом 90 ° друг к другу.

Вот как я установил все внутри своего корпуса. Печатная плата правого канала установлена ​​в перевернутом виде, так что сторона ввода платы находится близко к RCA и 3.Входные клеммы 5 мм. При таком расположении радиаторы обеспечивают некоторую защиту от сетей Тиле и проводов переменного тока, ведущих к трансформатору:

Щелкните изображение, чтобы просмотреть его в увеличенном виде.

Цепь защиты контура заземления

ЦЕПИ ЗАЩИТЫ КОНТУРА ЗАЗЕМЛЕНИЯ МОГУТ БЫТЬ НЕЗАКОННЫМИ В НЕКОТОРЫХ ЗОНАХ. ПОЖАЛУЙСТА, ПРОВЕРЬТЕ СВОЙ МЕСТНЫЙ ЭЛЕКТРИЧЕСКИЙ КОД ИЛИ ПРОКОНСУЛЬТИРУЙТЕСЬ С ЭЛЕКТРИКОМ ПЕРЕД УСТАНОВКОЙ…

Когда вы подключаете источник звука с питанием к усилителю, магнитные поля от трансформатора источника и проводов источника питания могут быть связаны с проводами заземления входных аудиокабелей.Это называется контуром заземления, и он может создавать гул на выходе вашего усилителя.

Схема защиты контура заземления отключит ток контура заземления:

В нормальных условиях эксплуатации низковольтные токи контура заземления протекают через резистор (R1) на землю (шасси). Резистор снижает этот ток и разрывает контур заземления. В случае сильноточного замыкания ток короткого замыкания может протекать через диодный мост на землю. Обратите внимание, что шасси ДОЛЖНО быть электрически подключено к заземляющему проводу сети, чтобы предотвратить попадание сетевого напряжения на металлическое шасси в случае неисправности.Конденсатор предназначен для фильтрации любых радиочастот, принимаемых шасси.

Если используется схема защиты контура заземления, все входные и выходные клеммы должны быть электрически изолированы от шасси. В противном случае схема защиты контура заземления будет полностью отключена проводами заземления входа / выхода, которые соединяются с заземлением основной системы.

Схема защиты контура заземления может быть жестко смонтирована, но немного удобнее монтировать компоненты на печатной плате. Клемма «PSU 0V» подключается к основному заземлению системы.Терминал «Шасси» подключается к шасси:

Щелкните изображение, чтобы отредактировать компоновку, изменить посадочные места компонентов и заказать печатную плату.

Как это звучит?

Усилитель, который я построил, звучит невероятно хорошо. Это лучший усилитель, который у меня когда-либо был. Бас очень глубокий и чистый. Вы действительно можете это почувствовать. Высокие частоты чистые, но совсем не резкие. Я слышу детали в песнях, о которых даже не подозревал. Поверьте, если вы создадите усилитель с LM3886, вы не будете разочарованы.Он определенно оправдывает свою репутацию усилителя Hi-Fi. Видео в начале поста даст вам представление о том, как это звучит.

Это примерно покрывает большую часть того, что вам понадобится для создания превосходно звучащего усилителя Hi-Fi с LM3886. Из-за длины этого поста я решил не описывать блок питания в деталях, но, возможно, сделаю это в будущем.

Если вы заинтересованы в создании других усилителей, у нас также есть руководство по созданию усилителя мощностью 25 Вт с TDA2050, а также по созданию 10 Вт стерео и мостовых усилителей с помощью TDA2003.

Спасибо, что прочитали ... Если у вас есть какие-либо вопросы по этой сборке, не забудьте оставить их в комментариях ниже, и мы постараемся на них ответить. И обязательно поставьте лайк, поделитесь и подпишитесь, если вы нашли это полезным! Поговорим с тобой в следующий раз…


Обзор усилителя «Сделай сам»: какие лучшие и доступные усилители «Сделай сам»

Обзор усилителя «Сделай сам»: какие лучшие и доступные усилители «Сделай сам» - oszilloskope.net

Обратите внимание: Мы получаем комиссию за покупки, сделанные по ссылкам в этом посте.Это сделано для поддержки нашего блога и не влияет на наши рекомендации. Подробности см. В раскрытии.

Усилитель - это электронное устройство, которое используется в беспроводной связи и радиовещании и используется для увеличения амплитуды сигнала, отсюда и название.

Получаем комиссии за покупки, сделанные по ссылкам в этом посте.

Это стабильное соединение, которое не меняет частоту и форму сигнала, есть два основных типа усилителей - мощные и слабосигнальные.Однако это не единственная категоризация усилителей. Существует 5 основных классов усилителей, каждый из которых существенно отличается от другого, поскольку они предназначены для использования по относительно определенным причинам. Когда дело касается усилителей, сделанных своими руками, необходимо знать разницу между этими классами и типами, чтобы определить, какой из них будет для них наиболее эффективным. Самый распространенный класс усилителей - это усилитель класса А. Благодаря своей простой конструкции и низкому уровню искажения сигнала это, безусловно, лучший класс усилителей качества.Однако они не являются хорошим выбором, когда речь идет о усилителях большой мощности из-за непрерывных потерь мощности, поскольку они пропускают ток, и количества тепла, которое они могут выделять. Степень эффективности, которую они могут достичь, составляет от 15% до 35% с индуктивной связью по выходу, однако она может упасть еще ниже при использовании источника с высокой динамикой.

Усилители класса B - это то, что нужно человеку, когда мы хотим избежать выделения тепла, и в целом они имеют более высокий КПД - от 50% до 78.5%. Его можно найти для использования в профессиональных целях, но, как бы хорошо это ни звучало, очень трудно найти чистый усилитель такого класса из-за кроссоверных искажений, которые иногда могут влиять на форму волны. Даже если он звучит лучше, чем класс A, у этого класса есть очень большой недостаток.

Усилители

класса A / B, как вы уже могли заметить, представляют собой комбинацию двух ранее упомянутых классов. Их эффективность может доходить до 70%, и в настоящее время они считаются самыми популярными. Самое лучшее в этом то, что он устраняет проблему искажения кроссовера, которая есть у класса B из-за того, что в цикле нет промежутка, и искажение кроссовера понижается, чтобы избежать таких проблем.

Усилители класса G&H представляют собой разновидность двух неофициально признанных классов. Его КПД может составлять около 70%, и у него действительно нет технических недостатков - качество, отсутствие прерываний или перекрестных искажений, он справляется с переходными процессами большой амплитуды. Единственный минус - собственно цена. Этот класс можно найти очень дорого.

На данный момент наилучшая возможная эффективность достигается за счет усилителей класса D. Он может достигать 95%, и это пока лучший выбор из-за его небольшого веса.Плохой стороной может быть различное качество звука в зависимости от динамика и риск влияния на воспроизведение высокочастотного звука при работе с низкими частотами. Конечно, в алфавите больше букв и намного больше классов усилителей, но по звуку это основные.

Многие люди, которые, возможно, уже провели некоторое исследование того, как сделать усилитель своими руками (см. Видео), вероятно, уже слышали или видели название Gainclone. Это тип аудиоусилителя, созданный любителями, также известный как чипамп.Этот продукт стал очень популярным в сообществе разработчиков, занимающихся самоделкой, и теперь в сети есть сотни руководств людей, которые создали его клоны с подробными инструкциями и списками с конкретными частями, которые они использовали.

Есть много вещей, о которых человек должен быть осторожен при покупке всех деталей, прежде чем начать создавать свои усилители своими руками. При покупке всех запчастей человек должен был сделать один очень важный выбор - цена или качество. Конечно, причина, по которой стоит построить что-то подобное самостоятельно, в основном в том, что это будет намного дешевле, чем пойти в магазин и дать довольно значительную сумму денег.В конце концов, детали для усилителя своими руками могут стоить менее 100 долларов.

Основными категориями компонентов являются источники питания, усилители, разъемы и корпус, и, конечно же, вы должны быть уверены, что первые три категории совместимы друг с другом. Есть люди, которые предпочитают покупать плату усилителя, а некоторые предпочитают изготавливать ее самостоятельно. Конечно, намного проще просто купить этот бит, даже в Интернете на Amazon. Существует множество плат с различным рабочим напряжением, выходной мощностью, выходным сопротивлением и многим другим.Цены варьируются от 10 долларов до более крупных, например, от 300 до 500 долларов. При покупке этой детали продавцы всегда кладут в комплект поставки пошаговое руководство своими руками, которое обязательно пригодится, когда вы начнете все строить. Практически каждый может сделать что-то подобное самостоятельно, если у него есть немного свободного времени.

Что касается источника питания, единственное, что может быть дороже, - это трансформатор. Значения выходных вольт - это самая важная вещь, которую нужно искать, однако человек должен быть очень осторожен с этим битом.Стремление к более высоким значениям - не лучший выбор, поскольку возможность достижения таких значений минимальна, и это может быть только излишним для самого усилителя, поскольку вы, в конце концов, создаете простой усилитель своими руками, а не что-то профессиональное.

Однако когда дело доходит до сборки собственной платы усилителя, это занимает гораздо больше времени. Вы должны начать с нуля, и сначала вы должны построить это теоретически, рассчитать ценности, которые вы планируете достичь, и это то, что только люди, уже имеющие опыт работы в этой области, могут выполнить без особых проблем.Если вы просто любознательный любитель и искренне хотите создать свой собственный усилитель, вам будет проще просто купить плату и спроектировать все остальное самостоятельно.

Ниже приведен список наиболее распространенных усилителей, изготовленных своими руками.

Артикулы:

Все схемы

Инструкции

Обзор лучших комплектов усилителей своими руками.

Получаем комиссии за покупки, сделанные по ссылкам в этом посте.

Страницы проектов ESP - DIY Audio and Electronics

В настоящее время есть два проекта, которые получат печатные платы (отмечены как ожидающие разработки) после того, как пандемия COVID-19 уляжется.В настоящее время заказов практически нет, и я не могу позволить себе делать платы, которые не будут продаваться в текущих условиях.

Реле

Хотя я рад оказать помощь потенциальным строителям, я не могу (и не буду) участвовать в продолжительных переписках по электронной почте, если проект не будет работать должным образом.Могу с полной уверенностью сказать, что все представленные проекты будут работать, если правильно построены по опубликованному проекту . Это не означает, что никакой помощи не будет - я всегда помогу, где смогу.

В некоторых случаях (например, из-за допусков компонентов) в проекте может потребоваться резистор другого номинала, конденсатор (или что-то еще) для корректировки неожиданного отклонения. Поскольку я не могу контролировать или прогнозировать качество компонентов, полученных от читателей, или стандарты качества сборки, невозможно учесть все непредвиденные обстоятельства.

Пожалуйста, не пытайтесь построить какой-либо проект, который вам не до конца понятен, или если вы не уверены, что сможете построить проект без дополнительной помощи. Не ожидайте, что я смогу удаленно диагностировать скрытую неисправность, особенно если проект каким-либо образом был изменен.

Страница создана в августе 2012 года для замены отдельных страниц.

Усилители мощности и аксессуары Описание Дата Флаги
03 Усилитель мощности 60 Вт / 8 Ом Мой старый верный дизайн усилителя мощности - последнюю (и гораздо лучшую версию) см. В проекте 3A 2007
10 20 Вт, класс A, усилитель мощности Усилитель мощности True Class-A для систем с низким энергопотреблением или с трехканальным усилением 2000
12 Простой ток F / B Amp Обновление очень старой конструкции 60 Вт / 8 Ом (ранее ошибочно называлось «El-Cheapo» 2012
12a El-Cheapo Это настоящий Эль-Чипо, представленный более или менее в том виде, в котором он был опубликован (1964 г.).Дизайн 30 Вт / 8 Ом 2012
19 Однокристальный усилитель мощности 50 Вт Использование микросхемы питания National Semiconductor LM3876.
23 Индикатор ограничения мощности усилителя Быстрый и точный индикатор, показывающий ограничение усилителя (Обновлено) 2005
33 Защита громкоговорителя и отключение звука Защитите громкоговорители от переходных процессов при включении и выключении, а также от неисправностей усилителя.(См. Важные обновления этого проекта) 2007
36 Смерть Дзен (DoZ) Ультра простой, высокопроизводительный усилитель мощности класса А. Многие люди построили этот усилитель, и все они очень довольны. Платы Revision-A теперь доступны. 2005
3A 60-100 Вт усилитель мощности Hi-Fi Обновленная версия Project 03. Этот усилитель, способный обеспечить мощность до 100 Вт на 4 или 8 Ом (с разными напряжениями питания), должен удовлетворить почти всех.Он обладает отличными характеристиками, прост в сборке и является очень прочным и надежным усилителем. Один из самых популярных проектов ESP. 2009
3B 25 Вт Hi-Fi усилитель мощности класса A Измененная / обновленная версия проекта 3А. Этот усилитель мощностью около 25 Вт на нагрузке 8 Ом должен удовлетворить тех, кто предпочитает подход к звуку класса А. 2004
53 Ограничитель выходной мощности Подходит для аренды оборудования или если вы хотите ограничить мощность усилителя, чтобы дети не взорвали ваши колонки.Простой ограничитель, который можно установить на требуемую мощность с помощью подстроечного регулятора, и никакая перегрузка не превысит установленный предел мощности. 2000
56 Переменное сопротивление Проект DoZ обещал возможность изменять выходное сопротивление усилителя, но это применимо к любому усилителю. Вот подробности. Это банально - НЕТ! Стоит ли прилагать усилия? АБСОЛЮТНО. Вы никогда не узнаете возможных преимуществ (или других), пока не попробуете. 2012
68 300 Вт 500 Вт Усилитель сабвуфера Безусловно, самый крупный (серьезный) усилитель мощности, который я опубликовал, этот усилитель разработан специально для сабвуферов и идеально подходит для систем с электронным эквалайзером. 2007
72 20 Вт / канал стерео усилитель IC Созданный на основе универсального LM1875 от National Semiconductor, этот усилитель идеально подходит для динамиков ПК, объемного звука или высокочастотных усилителей в триампированных системах. 2013
76 Усилитель мощности на базе операционных усилителей Это совместный проект, представляющий некоторую интересную ценность, особенно в качестве обучающего упражнения. Его просто построить, и он станет хорошим первым проектом. 2017
83 Усилитель мощности ведомого МОП-транзистора Еще один созданный проект, который будет интересен тем, кто ценит простоту и хорошую производительность.Как и Project 76, его просто построить, и он станет отличным первым проектом. 2016
101 MOSFET усилитель мощности Этот усилитель мощности на полевых МОП-транзисторах обладает лучшими характеристиками из всех протестированных мною аналогичных схем с исчезающе низким уровнем искажений и широкой полосой пропускания. Он также проще большинства, но в результате ничего не теряет. 2001
114 Усилитель класса D Подробные сведения о создании стерео (или даже многоканального) усилителя или усилителя сабвуфера с использованием новых усилительных модулей ColdAmp BP4078 Class-D. 2005
115 Усилитель GainClone Эта статья состоит из двух частей и описывает с фотографиями и рисунками, как построить очень красивое шасси GainClone. Используя платы P19 и (опционально) P88 + P05. 2006
116 Сабвуфер-усилитель класса D Здесь описывается полный "пластинчатый" усилитель для сабвуферов. Использование эквалайзера P84 и субконтроллера P48 или P71.Питание осуществляется от модуля усилителя ColdAmp BP4078 класса D. Эти модули (и все печатные платы) доступны в ESP. В статью включены все детали шасси. 2006
117 1,5 кВт усилитель мощности Безумие! Этот проект разработан специально для тех, кто считает, что власти никогда не бывает слишком много. Надеюсь, после прочтения этого постоянные просьбы о дополнительной мощности прекратятся. Он способен вывести из строя любой подключенный к нему громкоговоритель, независимо от заявленной мощности. 2006
120 Защита ломом Схема защиты громкоговорителя с помощью лома - это последнее средство, но если она спасет дорогой громкоговоритель, она окупится во много раз. 2007
127 TDA7293 Усилитель мощности Простой в сборке двухканальный усилитель мощности с использованием микросхем TDA7293 Power Opamp. Доска для этого очень мала, поэтому при необходимости ее можно легко разместить в ограниченном пространстве. 2009
137 Усилитель с усилителем Полный предусилитель, кроссовер и усилители мощности, разработанный для активных акустических систем PA. Может также использоваться для замены усилителя в кабинетах Leslie, системах для вечеринок и т. Д.
( Примечание: , 3-х компонентная статья)
2019
169 Усилитель с питанием от батареи Кажется, есть некоторая загадка в усилителях, которые не подключаются к сети и поэтому считаются (по крайней мере, некоторыми) более «чистыми».Однако вам не нужно раскошелиться на удача 2016
175 BTL Amp DC Protection Схема защиты динамика усилителя BTL (мостовая нагрузка) с однополярным питанием, используется, когда P33 не может использоваться из-за смещения постоянного тока усилителя. 2017
178 Низковольтный усилитель мощности Методы, которые можно использовать для создания маломощного усилителя мощности низкого напряжения. В идеале он должен иметь гораздо лучшую производительность, чем обычный LM386 и ему подобные 2018
180 Усилитель Power Meter Добавьте этот измеритель к своему усилителю мощности, чтобы получить немного шика, который (в отличие от большинства) не просто «конфетка для глаз», а на самом деле показывает, насколько вы близки к отсечению. 2018
186 Рабочий стол усилитель Однокристальный рабочий усилитель мощности 25 Вт / 8 Ом.Идеально подходит для тестирования динамиков, отслеживания сигналов, тестирования предусилителей и множества других целей. 2019
208 Блок динамика Защита от постоянного тока Автономная схема защиты от постоянного тока для корпусов динамиков . Не хотите, чтобы случайный сбой усилителя убил ваши дорогие колонки? Эта схема должна обеспечивать некоторое спокойствие. 2020
No. Усилители / адаптеры для наушников Описание Дата Флаги
24 Усилитель для наушников Hi-Fi Предоставлено читателем, это очень хорошая схема - наслаждайтесь лучшими характеристиками наушников
70 DoZ Усилитель для наушников DoZ - хороший маленький усилитель, и мне пришло в голову, что он идеально подходит для использования в наушниках.Благодаря использованию мощных транзисторов меньшего размера (и гораздо меньшего радиатора) характеристики наушников превосходны. Печатные платы Revision-A уже доступны. 2005
100 Адаптер для наушников Этот адаптер предназначен для подключения наушников к усилителям мощности, не оборудованным таким оборудованием. Он очень прост и легко адаптируется к усилителям практически любой мощности. 2003
109 Портативный усилитель для наушников Этот добавленный проект поддерживает перекрестную подачу и предназначен для портативного использования.Его, естественно, также можно использовать как устройство с питанием от сети, что должно удовлетворить большинство пользователей наушников. 2005
113 Усилитель для наушников Hi-Fi Хотя есть несколько других усилителей для наушников, этот очень красивый, очень гибкий, и доступны печатные платы. Он действительно работает очень хорошо. Он легко адаптируется для использования поперечной подачи (в качестве внешнего модуля) и работает от регулируемого источника для минимального шума 2005
No. Предусилители и аксессуары Описание Дата Флаги
02 Простой высококачественный предусилитель Hi-Fi Как говорится - простой качественный предусилитель. Имеет все стандартные возможности и легко модифицируется в соответствии с вашими требованиями. Примечание: Этот проект теперь заменен Project 88 (но его все еще стоит прочитать). 2000
06 Фонокорректор (RIAA) Предусилитель Очень качественный фонокорректор с подвижным магнитом - немногие схемы могут превзойти этот.Производительность отличная (также см. P187 ниже, если вы используете картридж с подвижной катушкой) 2013
25 Фонокорректоры для всех Схемы для датчиков с подвижной катушкой и подвижным магнитом, ряд различных схем выравнивания и полное описание выравнивания RIAA
32 Автомобильный аудиопредусилитель + искусственное заземление Специально для автомобильных аудиосистем. Включает некоторые основные идеи о том, как использовать искусственную землю на других обычных) аудиосхемах
37 Смерть предусилителя Zen «Минималистичный» предусилитель с превосходными характеристиками, разработанный для работы с усилителем мощности DoZ (или любым другим).(последнюю версию см. P37-A) 1999
37-A Смерть предусилителя Zen (Rev A) Обновленная версия «минималистичного» предусилителя, теперь использует двойные шины питания (используйте источник питания P05). 2007
51 Драйверы симметричной линии Используйте их, чтобы устранить гудение для длинных сигнальных проводов или когда вы не можете устранить этот & * & $$ # гул в своей системе 2000
80 Обратный эквалайзер RIAA У вас есть неиспользуемый вход для фонокорректора? С помощью этого небольшого проекта вы можете использовать его для любого другого источника сигнала или протестировать фонокорректоры на предмет правильной эквализации. 2001
87 Драйверы симметричной линии II Еще несколько примеров симметричных линейных передатчиков и приемников с более высокими характеристиками, чем в Project 51. Не забудьте проверить раздел «Эй! Это обман» - вы можете быть удивлены результатами, полученными с помощью этого метода. 2002
88 Высококачественный звуковой предусилитель - Mk II Срок годности проекта 02 практически истек, поэтому я решил, что пришло время для обновления.В этой новой версии доступны печатные платы, и ее производительность не хуже или лучше, чем у лучших коммерческих предложений. Очень гибкий дизайн, поэтому плату можно использовать везде, где требуется предусилитель. 2002
91 78 об / мин и фонокорректор RIAA Существует явная нехватка профессиональных фонокорректоров DIY, способных работать с огромным количеством различных стандартов, которые использовались для записи со скоростью 78 об / мин. Этот проект основан на предусилителе P06 (и может использовать ту же плату) и даст непревзойденные результаты 2002
97 Hi-Fi Preamp В отличие от большинства моих проектов, он был разработан с печатной платы наоборот.Он предназначен для использования с горшками, установленными на печатной плате, и обеспечивает регуляторы низких и высоких частот, баланса и громкости. Совершенно новый метод снижения чувствительности регуляторов тембра дает вам полный или очень ограниченный контроль для незначительных исправлений. 2008
99 Дозвуковой / шумовой фильтр - платы Rev-B Обычный, но очень эффективный фильтр для удаления посторонних дозвуковых шумов с виниловых дисков, как для прослушивания, так и для записи на CD.Очень крутой фильтр 36 дБ / октава удаляет частоты ниже 17 Гц. 2009
104 Цепь приглушения предусилителя / кроссовера Полезное дополнение к любому проекту кроссовера или предусилителя, который требует создания грубых шумов - обычно сразу после выключения питания. Может быть расширен до необходимого количества каналов и использует легкодоступные части. 2004
107 Переключатель фазы / полярности Простые схемы переключения для обеспечения нормальной или инвертированной полярности сигнала.Может использоваться для экспериментов с концепцией «абсолютной фазы» или где-либо еще, где может быть полезна переключаемая схема изменения полярности. 2004
110 ИК-пульт дистанционного управления Наконец-то появилось то, о чем просили читатели, - полный (простой, но функциональный) инфракрасный пульт дистанционного управления для предусилителей. Он предоставляет драйвер для моторизованного горшка для регулировки громкости и реле для отключения звука, а также доступны короткие комплекты 2004
141 Предусилитель на основе VCA Если вам нужен многоканальный предусилитель с единым регулятором громкости для всех, возможно, это именно то, что вы ищете.Идеально для домашнего кинотеатра! У вас может быть от 2 до 8 каналов, а при необходимости и больше. Использует чип THAT2180 VCA для отличной производительности 2013
163 Переключение входа предусилителя с помощью реле Как использовать реле для переключения входов, включая несколько вариантов логического управления, позволяющих выбирать вход нажатием кнопки 2016
167 MOSFET Последователь и защита цепи Многим людям нравятся их ламповые предусилители, но если они подключены к схемам операционных усилителей, скачок напряжения при включении может вызвать повреждение.Также предусмотрены ведомый полевой МОП-транзистор и схема подавления 2016
171 Инфразвуковой преобразователь Инфразвук (между 1 Гц и 20 Гц) обычно не слышен, но этот проект позволяет слышать звук с помощью генератора, управляемого напряжением, для перемещения низких частот в слышимый диапазон 2016
176 Полностью дифференциальный усилитель P87A и B существуют уже много лет, но иногда вам нужен наилучший возможный коэффициент подавления синфазного сигнала (CMRR).Эта схема делает именно это. 2018
187 Усилитель с подвижной катушкой Фонокорректор P06 был идеальной конструкцией для огромного количества людей с тех пор, как был опубликован, но предусилитель с подвижной катушкой не был тем, чем я хотел заниматься. Теперь это изменилось, и представленные конструкции будут превосходить большинство дискретных схем. Включает обсуждение шумовых и малошумящих схем. 2019
188 Декодер объемного звука (Mk.II) Хотя в Project 18 показан декодер объемного звука, этот гораздо более полный и использует готовые печатные платы, поставляемые ESP. Он работает, и действительно работает очень хорошо. Он включает в себя схему вычитания, цифровую задержку (Project 26A) и балансный выход, который обеспечивает несинфазные сигналы для динамиков объемного звучания. 2019
194 Отведено
Н / Д
199 ABC NYE EQ
ABC Новогодний концертный эквалайзер (только для Австралии, но...) Прекратите приглушенный звук, транслируемый ABC! 2020
202 Пьезо-предусилители Пьезогитара / скрипка / контрабас и т. Д. Звукосниматели широко распространены, и я подумал, что пришло время предложить несколько вариантов. Включает один из менее известных типов - усилитель заряда (включая керамические звукосниматели) 2020
No. Кроссоверы, фильтры и эффекты Описание Дата Флаги
08 2-полосный электронный кроссовер Обычный электронный кроссовер 3-го порядка 1999
09 24 дБ / октава 2/3-полосный Xover Выравнивание Линквица-Райли и фазовая когерентность !! Это необычайно красивый кроссовер, который подходит для топовых Hi-Fi или профессиональных инсталляций. 2007
18 Простой декодер объемного звука Линейные активные и пассивные версии декодера «матрицы Хафлера» 1999
21 Контроллеры ширины стерео Два на выбор.Расширение или сжатие стереофонической звуковой сцены 1999
26 Цифровой блок задержки Цифровая задержка и вся информация для создания полной системы объемного звучания (Примечание - IC задержки больше не доступен) 2012
26A Цифровой блок задержки Цифровая задержка на основе популярной микросхемы PT2399. Очень гибкий блок с множеством применений 2012
28 Параметрический / сабвуферный эквалайзер Упрощенная версия, которая на удивление хорошо работает и имеет больше возможностей, чем большинство более сложных схем 2006
48 Процессор сабвуфера Используя принцип ELF ™ «Extended Low Frequency», этот процессор предназначен для работы драйвера сабвуфера ниже его резонансной частоты.Это означает, что коробка небольшая, резонанс может быть (сравнительно) высоким, а нагрузка полностью предсказуема. 2004
48A Процессор сабвуфера, версия A Работает во многом так же, как и оригинальный P48 (см. Выше), эта новая версия процессора P48 предназначена для управления сабвуфером ниже его резонансной частоты. Последняя версия намного более гибкая, чем оригинальная. (Создано 12 января 2009 г.) 2009
63 Полосовой фильтр с множественной обратной связью Это основа расширяемого эквалайзера и анализатора, упомянутых ниже как перспективные проекты.Незначительно полезный сам по себе, он является идеальным строительным блоком для этих проектов, а также может использоваться для создания вокодера! 2000
67 Fast Audio Peak Limiter Этот ограничитель пиков прост и очень эффективен. Использование дискретного полевого транзистора в качестве элемента управления усилением дает низкие искажения и очень быстрое время отклика. 2000
71 Схема преобразования Линквица Схема Linkwitz Transform - это эквалайзер, обеспечивающий расширенный басовый отклик от любого громкоговорителя в герметичном корпусе.Эффект аналогичен эквалайзеру EAS, описанному в Project 48, но диапазон больше не только ниже резонанса, но охватывает нормальный частотный диапазон динамика. 2000
75 Графический эквалайзер с постоянной Q Это новая конструкция с постоянной добротностью, которая позволяет изменять максимальное усиление и срезание с помощью одного горшка. В этом проекте можно использовать столько разделов, сколько вам нужно. 2001
78 3-полосный кроссовер 12 дБ / октава Это дополнительный проект, в нем описывается простая высокопроизводительная кроссоверная сеть 12 дБ / октава 2001
81 12 дБ / октава 2-полосный Xover Выравнивание Линквица-Райли и фазовая когерентность - еще один очень хороший кроссовер, где 24 дБ / октава не требуется (здесь используется печатная плата P09, только с несколькими дополнительными проводными перемычками - нет дорожек, которые нужно обрезать) 2007
84 Графический эквалайзер сабвуфера Это конструкция с постоянной добротностью с восемью 1/3 октавными полосами от 20 Гц до 100 Гц.С усилением и отключением до 14 дБ даже самый непокорный сабвуфер будет согласован, обеспечивая наилучшую производительность. 2009
103 Контроллер фазы сабвуфера Стандартная схема управления фазой. Ничего особенного в этом проекте нет, но после множества просьб я наконец добавил его в список. 2012
123 Кроссовер 18 дБ / октава Небольшой сборник идей для построения активной кроссоверной сети 18 дБ / октава.Включает схему «быстрой и грязной» версии, которая дает хороший результат при минимальной стоимости 2009
125 4-полосный кроссовер 24 дБ / октава Полный 4-полосный кроссовер Linkwitz-Riley со сбалансированным входным каскадом, индивидуальными регуляторами уровня, встроенными регуляторами и выходными буферами. 15 октября 2009 г. 2009
148 State Variable Crossover Идеально подходит для разработки акустических систем или может использоваться как часть системы с двойным или триамперным усилителем.Плавно регулируемые фильтры 12 дБ / октава. 2014
155 Переменные фильтры высоких и низких частот Эти схемы распространены в микшерных консолях, но вы можете найти их полезными и в других местах. Частотные диапазоны можно настроить в соответствии с вашими потребностями. 2015
170 Активный кроссовер, 6 дБ / октава Некоторым нравится идея кроссоверных сетей 6 дБ. Хотя сети первого порядка мало способствуют изоляции драйверов, может быть несколько читателей, которые захотят поэкспериментировать 2016
No. Эквалайзеры Описание Дата Флаги
28 Параметрический / сабвуферный эквалайзер Упрощенная версия, которая на удивление хорошо работает и имеет больше возможностей, чем большинство более сложных схем 2006
48 Процессор сабвуфера Используя принцип ELF ™ «Extended Low Frequency», этот процессор предназначен для работы драйвера сабвуфера ниже его резонансной частоты.Это означает, что коробка небольшая, резонанс может быть (сравнительно) высоким, а нагрузка полностью предсказуема. 2004
63 Полосовой фильтр с множественной обратной связью Это основа расширяемого эквалайзера и анализатора, упомянутых ниже как перспективные проекты. Незначительно полезный сам по себе, он является идеальным строительным блоком для этих проектов, а также может использоваться для создания вокодера! 2000
64 Инструментальный графический эквалайзер Разработанный специально как гитарный / басовый эквалайзер, это устройство расширяемое и на самом деле представляет собой многосекционный (23, как показано) регулятор тембра.Предлагая широкий тональный диапазон и большую гибкость, он может быть адаптирован к любому музыкальному инструменту. 2000
75 Графический эквалайзер с постоянной Q Это новая конструкция с постоянной добротностью, которая позволяет изменять максимальное усиление и срезание с помощью одного горшка. В этом проекте можно использовать столько разделов, сколько вам нужно. 2001
84 Графический эквалайзер сабвуфера Это конструкция с постоянной добротностью с восемью 1/3 октавными полосами от 20 Гц до 100 Гц.С усилением и отключением до 14 дБ даже самый непокорный сабвуфер будет согласован, обеспечивая наилучшую производительность. 2009
149 Музыкальный инструмент Графический эквалайзер Эквалайзер для гитары, баса или клавиатуры. Существенно улучшенная версия проекта 64 2014
150 Параметрический эквалайзер на основе моста Вина Строительный блок, который можно использовать в микшерах, предусилителях, гитарных и басовых усилителях и т. Д. 2014
153 Частотный эквалайзер с изолятором Эквалайзер «Isolator» очень распространен среди ди-джеев, но может быть довольно дорогим. Теперь вы можете создать свой собственный продукт со всеми необходимыми функциями 2014
173 Выравнивание рупора с постоянной направленностью Рупоры постоянной направленности (CD) уникальны среди высокочастотных воспроизводящих устройств. Им необходимо усиление на 6 дБ / октаву для высоких частот, как предусмотрено в этом проекте 2017
197 Повышение низких частот и фильтр высоких частот Если вам нужно уравновесить вентилируемый корпус динамика, эта схема усиления низких частот и фильтра высоких частот может быть именно тем, что вам нужно 2019
199 ABC NYE EQ
ABC Новогодний концертный эквалайзер (только для Австралии, но...) Прекратите приглушенный звук, транслируемый ABC! 2020
No. Блоки питания Описание Дата Флаги
04 Двойной блок питания Блок питания, подходящий для большинства усилителей мощностью 60 Вт. Может быть адаптирован или модифицирован для других напряжений для большей или меньшей мощности
05 Блок питания предусилителя Использует внешний адаптер переменного тока.Безопасно и эффективно, без шума! (Печатная плата заменена на P05-Mini) 1999
05A Обновленный блок питания предусилителя Все функции оригинального P05, плюс более низкий уровень шума и гораздо более универсальный 2005
05C Обновленный блок питания предусилителя Все функции оригинального P05A плюс улучшенная схема отключения звука. 2007
05-Mini Бюджетный блок питания предусилителя Простой двойной источник питания с фиксированными регуляторами. 2018
15 Питание умножителя емкости Для усилителей класса A - источник питания с крайне низким уровнем пульсаций и гораздо меньшим рассеиванием мощности, чем у регулятора 2001
38 Блок автоматического включения питания с обнаружением сигнала Если у вас есть сабвуфер или другое оборудование, которое необходимо включить с помощью основного усилителя, это ответ. Обнаруживает сигнал и подает питание. 1999
39 Цепь плавного пуска Предназначен для усилителей мощности с (большими) тороидальными трансформаторами, он ограничивает пусковой ток до разумного значения.Печатная плата теперь доступна для этого проекта с использованием новой схемы (показанной на странице проекта). 2006
40 Автопереключатель с измерением нагрузки Как подать питание на всю аудиосистему, включив один элемент (обычно предусилитель). Обратите внимание, что эта версия заменена Project 79.
43 Ультра простой разделенный источник постоянного тока Если вам нужен источник питания +/- и у вас есть только адаптер постоянного тока, этот небольшой проект может быть именно тем, что вам нужно 1999
44 Двойное лабораторное питание +/- 25 В Идеально подходит для тестирования вашего последнего творения, так как напряжение можно увеличивать медленно, чтобы убедиться, что все работает должным образом, прежде чем будет подано «реальное» питание.Выходной ток до 800 мА (номинал).
69 Блок питания 12 В Идеально подходит для устройств с низким энергопотреблением (например, эквалайзеров или кроссоверов) в автомобилях, где требуется источник питания +/- 12 В. Этот проект является идеальной отправной точкой для всех, кто думает о создании импульсного источника питания высокой мощности, поскольку он учит основам без риска взрыва дорогостоящих вещей. 2002
77 13.Блок питания / зарядное устройство 8 В Блок питания для тестирования и работы с автомобильными усилителями, этот блок можно масштабировать примерно до 500 ампер! Легко собрать и идеально подходит для питания любого автомобильного усилителя для тестирования или обслуживания. 2003
79 Текущий датчик автоматического выключателя питания Переключатель измерения тока позволяет включать несколько устройств, просто включив одно главное устройство. Используйте его для активации всего Hi-Fi, включив предусилитель, или для включения всех периферийных устройств вашего ПК, когда вы включаете компьютер. 2001
89 Поставка переключения режимов автомобиля Небольшой запас (P69) здесь уже некоторое время, а вот и большой. Этот источник питания рассчитан примерно на 350 Вт, хотя я предполагаю, что по большей части более подходящей будет более скромная мощность около 250 Вт. Сильноточный и полностью настраиваемый, чтобы делать то, что вы хотите. Не пытайтесь построить это без соответствующего испытательного оборудования или опыта. 2002
95 Блок питания с низким энергопотреблением Этот небольшой источник питания предназначен только для подачи отрицательного напряжения, что позволяет использовать автомобильный источник питания для положительного источника питания.Сила тока составляет всего около 20 мА, но этого будет достаточно для правильного питания многих автомобильных аудиопроектов. 2002
98 Автоматическое зарядное устройство для аккумулятора Hi-Fi Довольно много людей любят использовать батарейный источник питания для предусилителей, особенно, поскольку постоянный ток полностью плавный, а батареи практически бесшумные. К сожалению, их тоже нужно заряжать, и этот проект предназначен для автоматического отключения зарядного устройства при включении предусилителя и его повторного подключения при выключении предусилителя. 2003
102 Простой предварительный регулятор Очень многие конструкторы хотели бы иметь возможность использовать P05 (источник питания предусилителя) от основного источника питания усилителя, но напряжение обычно слишком велико. Для понижения напряжения можно использовать резисторы, но они должны быть рассчитаны и не позволят использовать дополнительную нагрузку. Использование предварительного регулятора позволяет безопасно снизить напряжение, а также обеспечивает значительный уровень первоначального снижения шума. 2003
108 Защита блока питания Switchmode Блоки питания Switchmode широко распространены, но большинство из них не имеют какой-либо защиты - особенно самодельные типы или многие из более дешевых автомобильных усилителей. Этот внесенный вклад добавит защиту от перенапряжения, пониженного напряжения или высоких температур, он дешев и прост в сборке. 2004
118 Периферийный переключатель ПК В этом сверхпростом проекте используется только модифицированная плата питания и небольшой жгут проводов в ПК.Благодаря питанию от ПК с напряжением 12 В он сверхнадежен и не может ложного срабатывания. 2006
138 Защита от пониженного / повышенного напряжения сети Этот проект определяет, падает ли напряжение в сети ниже или выше установленного порога. Предназначен для защиты оборудования от резких колебаний сетевого напряжения. 2012
142 Простой сильноточный регулятор Бывают случаи, когда трехконтактные регуляторы просто не могут сделать то, что вам нужно.Это может быть связано с превышением допустимого входного напряжения или необходимостью большего тока, чем они могут обеспечить. Этот регулятор не имеет хороших технических характеристик, но будет более чем приемлемым для многих задач. 2013
144 Сетевой блок управления питанием Если вам нужно включить / выключить сетевое оборудование в заранее заданной последовательности, этот проект будет именно тем, что вы ищете. Подходит для больших акустических систем, студий звукозаписи, освещения и т. Д. 2013
151 Источник постоянного тока высокого напряжения Если вы хотите поэкспериментировать со схемами клапана («трубки»), вам понадобится источник питания для B + и постоянного тока для нагревателей. 2014
156 Триггерные переключатели 12 В Многие ресиверы домашнего кинотеатра (также известные как аудиовизуальные ресиверы или AVR) имеют триггерный выход 12 В, и показанные схемы могут использоваться для включения оборудования при наличии триггерного напряжения 2015
184 Отсечка литий-ионной батареи Литий-ионные батареи идеально подходят для многих проектов (особенно для испытательного оборудования), и этот проект позволяет вам гарантировать, что батарея не будет чрезмерно разряжена, если / когда вы забудете ее выключить 2019
192 Источник питания переключаемого режима с 12 В на ± 12 В Если вы используете один настенный блок питания 12 В постоянного тока, этого часто бывает недостаточно для выполнения многих проектов.Этот источник питания дает вам ± 12 В от однополярного питания от «настенной бородавки» 2019
193 Фантомное питание от 12 В до P48 Найти подходящий трансформатор для фантомного питания P48 не всегда просто, но этот импульсный импульсный импульсный регулятор может обеспечить + 48 В от одного источника постоянного тока 12-36 В 2019
196 Источник постоянного заряда 12 В Этот проект в основном представляет собой версию Project 98 на 12 В, а система резервного питания от аккумулятора на 12 В полезна для электронных часов или оборудования наблюдения. 2019
207 Сильноточный источник переменного тока Если вам нужно провести тесты на с очень низким сопротивлением, это идеальный вариант. С выходным током до 100 А (прерывистый) вы можете проверить то, что иначе невозможно. 2020
Музыкальный инструмент Описание Дата 650 Флаги
27 Гитарный усилитель 100 Вт (Mk II) Новая и улучшенная версия оригинального гитарного усилителя Project 27.Вам все еще нужен старый материал для деталей шкафа и тому подобного, но новое описание и схемы все здесь. Предусилитель (P27B) был переработан и теперь является Rev-A. 2013
27 (старый) Гитарный усилитель мощностью 100 Вт Оригинал блока выше. Сохранено для потомков и содержит детали корпуса динамика (может все еще понадобиться для новой версии). 2004
29 Блок тремоло Универсальный гитарный эффект.Это простая схема, которая дает очень хорошие результаты
34 Пружинный блок реверберации для гитары Пружинный ревербератор для гитарных усилителей
45 Простой компрессор для бас-гитары Ультра простой компрессор, идеально подходящий для бас-гитары. Очень просто, но работает очень хорошо, и у него действительно «коренастый» звук, который нравится многим басистам - один для экспериментатора, с которым действительно легко обмануть.Может использоваться и с "обычной" гитарой.
49 Гитарный вибрато Достаточно простая схема с результатами, аналогичными знаменитому гитарному усилителю Vox AC30. Также имеется уникальный элемент управления эффектами, позволяющий воспроизводить интересные звуки.
64 Инструментальный графический эквалайзер Разработанный специально как гитарный / басовый эквалайзер, это устройство расширяемое и на самом деле представляет собой многосекционный (23, как показано) регулятор тембра.Предлагая широкий тональный диапазон и большую гибкость, он может быть адаптирован к любому музыкальному инструменту. 2004
92 Устройство сустейна для гитары и баса Компрессор / лимитер для гитары, баса или записанной музыки. Использует светодиод и LDR для контроля уровня звука с низким уровнем искажений. См. Проект 145 для получения подробной информации о том, как построить линейный оптрон. 2007
145 Переключение эффектов тихой гитары Как использовать оптроны Vactrol® или DIY для переключения сигналов в гитарных усилителях.Никаких дребезгов и щелчков контактов, просто практически бесшумное переключение без каких-либо шумов. Включает подробную информацию о том, как вы можете создать свой собственный оптопару LED / LDR. 2013
152-1 Предусилитель бас-гитары - Часть 1 Часть 1 комплексного басового предусилителя с полностью настраиваемым эквалайзером и всеми прибамбасами! Есть даже возможность использовать входной каскад клапана для тех, кто действительно думает, что есть разница. Существуют также схемы обнаружения перегрузки, которые можно использовать по мере необходимости. 2015
152-2 Предусилитель бас-гитары - Часть 2 Часть 2 охватывает компрессию, отправку и возврат эффектов, выход тюнера и сети кроссовера для басового усилителя с двойным усилением, а также кроссовер «твитер» для тех, кто хочет добавить рупор, чтобы получить резкий верх. Также описаны схемы мягкого ограничения. 2015
162 Генератор, управляемый напряжением Генератор, управляемый напряжением (ГУН) - не то, что вам нужно каждый день, и вы, возможно, никогда не думали, что он вам нужен.Вы, наверное, были бы правы, но некоторые вещи слишком интересны, чтобы их игнорировать. 2016
195 Гитара Talk Box Гитарный «ток-бокс» существует уже давно, а в 1970-х годах он стал известен многими музыкантами. Он по-прежнему популярен, и вы можете создать свой собственный. 2019
202 Пьезо-предусилители Пьезогитара / скрипка / контрабас и т. Д. Звукосниматели широко распространены, и я подумал, что пришло время предложить несколько вариантов.Включает один из менее известных типов - усилитель заряда 2020
203 Блок реверберации для гитары / Studio Spring Полная подсистема пружинной реверберации для гитары, клавишных или студийного использования. Возможно, самая полная система реверберации, доступная в настоящее время 2020 PCB Ожидается
206 Гитарный вибрато Обновление оригинального устройства Project 49, но с использованием оптопар LED / LDR для обеспечения высокого уровня звука без искажений. 2020
211 Пружина реверберации гитары Этот блок пружинной реверберации, использующий печатную плату усилителя наушников P113, предназначен для гитарных усилителей или студийного использования. Очень высокая производительность, и печатная плата уже доступна. 2020
Смесители, измерители и т. Д. Описание Дата 50 9150 9150
30 Сценический и записывающий микшер Может быть построен в модульной форме, что позволяет использовать любое количество (или несколько) каналов.Включает посылы эффектов, канальные и мастер-вставки, а также 3-полосный эквалайзер с настраиваемой серединой. Это самый амбициозный проект с точки зрения общей сложности - не для слабонервных! 2000
35 Коробка прямого впрыска (DI) Незаменимый помощник для микшера на сцене или во время записи. Включает входы высокого и низкого уровня. Две разные версии на выбор - пассивная или активная 48 В фантом / батарея 2005
50 Тестер цепи микрофона Этот простой проект был вдохновлен читателем, которому понадобился небольшой генератор для проверки микрофонных цепей во время настройки звука.Это фиксированная частота (настроенная на A-440), обеспечивающая от 0 до 100 мВ на типичный микрофонный вход. 2000
55 PPM и измеритель объема Универсальная и полезная схема измерителя уровня громкости, которая также может работать как измеритель пиковой программы (PPM). Посмотрите средний и пиковый выходной уровень усилителя или предусилителя. Также может использоваться с любым миксером. 2006
60 Светодиодный индикатор VU В этом светодиодном измерителе уровня громкости нет ничего даже отдаленно особенного, но, тем не менее, это полезный проект.Включает в себя простую схему выпрямителя, позволяющую обнаруживать полную волну, и подходит для линейного уровня или уровня динамиков. 2008
94
Универсальный предусилитель / микшер
Небольшой предусилитель и микшер с возможностью расширения до 4 входных стереоканалов. К входу можно добавить микрофонный или фонокорректор, чтобы получился небольшой и универсальный домашний записывающий микшер. Включает регуляторы тембра. 2005
94A
Универсальный предусилитель / микшер
Альтернативная схема подключения для получения большего количества входов от одной платы.Включает регуляторы тембра.
2005
96
Источник фантомного питания
Целями проектирования были чрезвычайно низкие пульсации и шум, и этот источник питания чрезвычайно тихий. Использование простого дискретного регулятора означает отсутствие труднодоступных регуляторов высокого напряжения, а также использование легкодоступного силового трансформатора. Также имеется микрофонное питание с фантомным питанием и метод согласования с резисторами питания. 2005
128
Мост VU Meter Bridge
Создайте аналоговый стерео VU-метр для мониторинга уровней записи или микширования PA в реальном времени.Использует печатную плату P87A и совместим с симметричными и несимметричными системами. 2010 г.
129
Матричный микшер
Теперь вы можете создать матричный микшер, точно соответствующий вашим требованиям. Использует универсальную печатную плату предусилителя / микшера P94. 2010
135
Измеритель корреляции фаз
Более экспериментальная схема, чем что-либо еще, она должна помочь любому, кто пытается построить фазомер. 2011
136
Анализатор реального времени
Этот аппаратный анализатор звука в реальном времени является дополнительным проектом, основанным на полосовом фильтре с множественной обратной связью, описанном в Проекте 63 2011
146 Индикатор перегрузки / ограничения Индикатор перегрузки для микшеров, предусилителей или усилителей мощности. Простая схема компаратора операционных усилителей дает быстрый отклик. 2013
183 Устройство звукового приглушения с обнаружением сигнала Ducking - обычное приложение для систем громкой связи, видеопроизводства или любого другого места, где необходимо снизить уровень фонового сигнала при наличии речи 2019
205 4-канальный микшер 4-канальный микшер для микрофонов или инструментов.Он построен с использованием существующих плат ESP (кроме индикатора отсечения, который будет доступен позже) 2020
No. Digital Audio Описание Дата Флаги
85 Простой ЦАП S / PDIF Это, пожалуй, самый простой приемник S / PDIF и ЦАП, который вы когда-либо найдете.Включает переключение звука с помощью реле, а также для справки доступны схемы преобразователя TTL в COAX и COAX в TTL. [Внесенный проект] Детали устарели! 2002
Испытательное оборудование Описание Дата Флаги
11 Генератор розового шума Очень чистый генератор шума для тестирования громкоговорителей и акустики помещений 2011
16 Аудиомилливольтметр Для тестовых усилителей (и т. Д.) - Аналоговая конструкция, от 3 мВ до 30 В со шкалой в дБ 2006
17 A-взвешивающий фильтр Для измерения шума.Идеально подходит для использования с милливольтметром переменного тока выше 2002
22 Простой звуковой осциллятор Для использования с милливольтметром, для проверки усилителей и динамиков 2010
31 Полнофункциональный тестер транзисторов Просто вещь проверить транзисторы для любого проекта 2005
41 Конструкция операционного усилителя + тестовая плата Этот проект позволит вам быстро собрать схему операционного усилителя для тестирования.Это очень простой и интуитивно понятный инструмент, незаменимый инструмент для экспериментаторов (4 операционных усилителя) 1999
52 Анализатор искажений Простой измеритель искажений, который вы можете использовать с осциллографом или милливольтметром, этот проект позволит достаточно точные абсолютные измерения THD + шума (полного гармонического искажения), а также очень полезные сравнительные измерения. 2007
58 Набор для измерения динамиков Tone Burst Этот проект основан на работе Зигфрида Линквица (и воспроизводится с его любезного разрешения).Проект состоит из трех частей - генератора косинусных импульсов (не волнуйтесь, это будет объяснено), микрофона и откалиброванного пикового детектора. С помощью подходящего звукового генератора можно проводить сложные и точные измерения громкоговорителей. Это довольно сложный проект, в котором используется комбинация аналоговых и цифровых микросхем. Долгожданные обновления еще не материализовались 🙁 2008
59 Автоколебательный усилитель Простите ?? Нет, это не апрель! Основанный на идее читателя, этот проект позволяет заставить усилитель мощности генерировать колебания с определенной частотой, устраняя необходимость в генераторе с низким уровнем искажений для измерения искажений.Включает упрощенную схему анализатора искажений. 2000
74 Простой радиочастотный зонд Эта простая схема незаменима при любой работе с ВЧ. Используя всего 4 пассивных компонента, он использует ваш мультиметр в качестве дисплея для измерений. 2001
82 Тестовый бокс громкоговорителя Очень простой проект, который позволяет вам быстро и точно определить оптимальную схему коррекции импеданса через громкоговоритель, чтобы гарантировать, что кроссовер действительно работает так, как вы планировали.Он также позволяет измерять импеданс. 2001
86 Миниатюрный тестовый осциллятор MiniOsc - Высокопроизводительный тестовый генератор с выходами как синусоидальной, так и прямоугольной формы. Идеально подходит для настольного или портативного использования, имеет низкий уровень искажений (<0,2%) и расход заряда батареи менее 2 мА от одной батареи 9 В. 2010
106 h FE Тестер для транзисторов Тестер h FE с коммутируемыми токами коллектора для тестируемого устройства, охватывающий диапазон, подходящий для выбора и согласования выходных транзисторов для таких усилителей, как JLH Class-A, ESP DoZ и т. Д. (совместный проект) 2004
119 Анализатор сигнатур компонентов Тестируйте компоненты, пока они еще установлены в цепи - анализ сигнатур компонентов - простой способ найти неисправные детали, особенно если у вас есть работающая схема для сравнения. Имеет два диапазона напряжения и тока и подключается к осциллографу (в режиме X-Y) для отображения графической индикации узла схемы. 2006
121 Адаптер индуктивности Измерьте индуктивность кроссоверных катушек с помощью мультиметра или частотомера.Несколько вариантов, с которыми вы можете поэкспериментировать и в итоге получить полезный инструмент. 2008
124 Эквивалент высокой мощности Эквивалент нагрузки для тестирования усилителей (и, возможно, источников питания). В полной версии он предлагает импеданс от 1 Ом до 16 Ом с номинальной мощностью до 360 Вт. Это можно легко увеличить, используя охлаждение, как описано в статье. 2009
130 Обратное А-взвешивание Это странно - я убежден, что существует потребность в фильтре / усилителе, который переворачивает кривую A-Weighting, но я не могу понять, в чем может быть эта потребность.Тем не менее, если он вам нужен, вот он. 2010
139 Монитор сетевого тока Универсальный, безопасный и точный способ измерения (и просмотра с помощью осциллографа) сетевого тока, потребляемого оборудованием с питанием от сети. Этот проект может показаться уникальным - вы не можете купить устройство, которое делает это, но вы удивитесь, как вы выжили без него после его создания. 2012
140 Адаптер True RMS Единственный способ измерения несинусоидальных сигналов - истинное среднеквадратичное значение, иначе ошибки могут быть значительными.Используйте этот адаптер для получения истинных среднеквадратичных значений. 2012
143 Генератор тональных пакетов / гейт В сети не так много проектов генераторов тональных пакетов, и иногда никакое другое тестовое оборудование не позволит вам провести необходимые тесты. Проверьте восстановление после перегрузки усилителя, выполните неразрушающие испытания мощных динамиков и многое другое. 2013
154 Интерфейс осциллографа ПК Осциллографы звуковой карты ПК могут быть удобными, но вам нужна эта схема, чтобы убедиться, что она не взорвется, если вы подключите к ней более нескольких вольт 2015
158 Испытательный малошумящий предусилитель Время от времени вы обнаруживаете, что вам нужно слушать или измерять сигналы, которые намного ниже минимального уровня шума вашего настольного усилителя или осциллографа.Это то, что вам нужно с коэффициентом усиления 20, 40 и 60 дБ. 2015
164 Signal Tracer для поиска неисправностей Версия этого проекта была показана на страницах устранения неполадок, но теперь это самостоятельный проект. Представленный здесь блок простой, дешевый и работает от батареи 9 В, поэтому его можно использовать практически где угодно. 2016
165 Тестер клапанов для специалистов по обслуживанию Если вы обслуживаете ламповые усилители, вам необходимо иметь возможность тестировать клапаны в тех условиях, в которых они работают в фиксируемом усилителе.Этот тестер предназначен именно для этого, но это , а не универсальный тестер. 2016
168 Измеритель низкого сопротивления Большинству людей не нужно иметь возможность измерять до 10 миллиомов или около того, но иногда это действительно необходимо. Этот проект показывает, как это делается. 2017
171 Инфразвуковой преобразователь Инфразвук (между 1 Гц и 20 Гц) обычно не слышен, но этот проект позволяет слышать звук с помощью генератора, управляемого напряжением, для перемещения низких частот в слышимый диапазон 2017
172 Ваттметр для измерения мощности переменного тока Для всех работ по обслуживанию и развитию полезно знать ток, потребляемый системой, а также теперь легко измерить потребляемую мощность. 2017
174 Генератор со сверхнизкими искажениями Синусоидальный осциллятор со сверхнизкими искажениями, совместный проект с исключительно низкими искажениями и молниеносным временем установления 2017
177 Тестер транзисторов постоянного тока Проверить транзисторы, используя постоянный коллекторный (фактически эмиттерный) ток. Идеально подходит для согласования малосигнальных и силовых транзисторов (только биполярные типы) 2018
179 Синусоидальный осциллятор A Осциллятор моста Вина, стабилизированный лампой накаливания 2018
181 Акселерометр Аудио акселерометр для тестирования акустической системы (среди прочего) 2018
182 Генератор псевдослучайных шумов Генератор шума последовательности максимальной длины (MLS) с гораздо лучшим шумом, чем транзисторный переход с обратным смещением (включает фильтр розового шума) 2019
185 Тестер полярности Тестер полярности динамика, микрофона и цепи.Идеально подходит для проверки того, что все в системе правильно фазировано для предотвращения звуковых аномалий. Можно проверить микрофоны, динамики, а также микшеры, предусилители, усилители мощности и т. Д. 2019
186 Рабочий стол усилитель Однокристальный рабочий усилитель мощности 25 Вт / 8 Ом. Идеально подходит для тестирования динамиков, отслеживания сигналов, тестирования предусилителей и множества других целей. 2019
189 Аудио ваттметр Измерьте истинную мощность от усилителя до фиктивной нагрузки или от усилителя до динамика.Обрабатывает реактивные нагрузки громкоговорителей и показывает фактическую передаваемую мощность. 2019
191 Детектор пикового напряжения и тока Если вы не уверены, что ваш усилитель недостаточно или слишком силен для ваших громкоговорителей, этот простой проект можно использовать для отслеживания пикового напряжения и тока, требуемых во время прослушивания. 2019
207 Сильноточный источник переменного тока Если вам нужно провести тесты на с очень низким сопротивлением, это идеальный вариант.С выходным током до 100 А (прерывистый) вы можете проверить то, что иначе невозможно. 2020
209 Резисторы / конденсаторы Decade Box Декады сопротивления / емкости (или заменяющие) могут быть полезны. Существует три различных схемы, поэтому выберите те, которые вам нужны .. 2020
No. Микрофоны и микрофонные предусилители Описание Дата Флаги
13 Малошумящий предусилитель Простая несбалансированная конструкция, подходит для микрофонов - очень низкий уровень шума 1999
66 Малошумящий сбалансированный микрофонный предусилитель Дискретный входной каскад делает этот сбалансированный микрофонный предусилитель очень тихим и имеет отличное подавление шума.Поскольку выпуск SSM2017 был прекращен (печально, но факт), и если вы не можете получить INA217, это может быть идеальной заменой. 2008
93 Микрофоны для записи и измерения
Введение в микрофоны, а также различные методы питания электретных капсюлей. Микрофонные предусилители с фантомным питанием и многое другое.
2008
112 Головной записывающий микрофон с фиктивной головкой Подробная информация о том, как создать фиктивный головной записывающий микрофон.При использовании P93 или (что удивительно) P88 в качестве микрофонного предусилителя производительность вас удивит. Вы никогда не узнаете, насколько хорошей может быть запись фиктивной головы, пока не попробуете сами. 2006
122 Простой сбалансированный микрофонный предусилитель Это «утилитарный» предусилитель. Хотя он и не предназначен там, где требуется самый низкий уровень шума, он по-прежнему достаточно тихий для большинства приложений и почти наверняка будет всем, что нужно для добавления микрофонного входа к усилителю или активному динамику. 2008
134 Микрофон с токовой петлей, 4 мА Этот тип микрофона с питанием довольно часто используется для профессиональных измерительных микрофонов, но малоизвестен за пределами области измерения шума. Этот проект предоставляет всю информацию, необходимую для создания собственной микрофонной системы с токовой петлей 4 мА. 2004
183 Устройство звукового приглушения с обнаружением сигнала Ducking - обычное приложение для систем громкой связи, видеопроизводства или где угодно, где необходимо снизить уровень фонового сигнала при наличии речи. 2019
190 Цепь отключения микрофона Этот простой проект может использоваться для отключения любого микрофона исполнителем, включая микрофоны с фантомным питанием. 2019
204 Переключатель частоты Используется для уменьшения акустической обратной связи. Есть выбор из двух схем, одна из которых представляет собой обновленную версию первого опубликованного преобразователя частоты (Wireless World, 1973), а также дополнительную высокопроизводительную версию, которая будет иметь доступную печатную плату (по запросу и при наличии разрешения COVID-19). 2020 На рассмотрении
No. Разные проекты Описание Дата Флаги
01 Улучшенный регулятор громкости Регулятор громкости с использованием линейного горшка, который намного лучше, чем у большинства горшков для бревен. Также лучший контроль баланса. 1999
07 Дискретный операционный усилитель Выход класса A.Задумывался как экспериментальный прибор, но работает очень хорошо 1999
14 Мостовой адаптер усилителя мощности Обычный адаптер для мостового подключения усилителей мощности 2007
20 Самый простой мостовой адаптер Используйте этот простой метод и избегайте внешних цепей
42 Термовентилятор для охлаждения усилителя Используйте компьютерный вентилятор на 12 В, чтобы охладить усилитель.Используется простой, но очень эффективный датчик температуры на диоде (Обновлено) 2002
46 Тепловое отключение + тепловая защита усилителя Что произойдет, если ваш усилитель станет слишком горячим? Вероятно, это приведет к самоуничтожению или, по крайней мере, сократит срок службы устройств питания. Добавьте эту схему, чтобы либо выключить усилитель, либо активировать охлаждающий вентилятор. Это похоже на то, что я использую в своей собственной системе
54 FM-передатчик малой мощности Не совсем подходит для шпионской деятельности "Бонд, Джеймс Бонд", но будет полезно для ретрансляции с Hi-Fi на другой FM-приемник поблизости или использовать его в качестве беспроводного микрофона или гитарной связи.Не в той же лиге, что и коммерческие предложения, но намного, намного дешевле. 2002
57 SIM - простая версия А! Вы говорите, что простая SIM-карта - это компромисс. Что ж, на самом деле сложная версия - это компромисс - это настоящая вещь. Малейшие отклонения в характеристиках усилителя создадут сигнал, на который SIM (монитор ухудшения звука) может реагировать поразительно точной реакцией даже на самые незначительные отклонения в усилителе. 2000
73 Аудиосистема Hi-Fi для ПК Акустическая система Hi-Fi для ПК? Вы никогда не слышали, чтобы ваша коллекция MP3, компакт-диски или игры звучали так хорошо. Если бы вы могли купить его, система такого калибра, вероятно, стоила бы вам больше, чем сам ПК - звук очень и очень хороший! 2001
126 ШИМ-регулятор освещенности / скорости Эта схема представляет собой универсальный ШИМ-контроллер для низкого напряжения постоянного тока.Его можно использовать для управления светодиодным освещением 12 В, двигателями постоянного тока, нагревателями или чем-либо еще, что реагирует на управление током PWM. В схеме используются легкодоступные части, и ею можно даже управлять через C-BUS или другие системы автоматизации, поддерживающие управление 0-10 В. 2009
131 Включатель света Это имеет мало общего со звуком, но я полагаю, что вы могли бы использовать его для включения Hi-Fi (вместо света), когда становится темно.Универсальный и легко настраиваемый переключатель, активируемый светом (или температурой). 2010
132 Воздушный подшипник линейный тонарм Это представленный проект, и следует подчеркнуть, что он должен использоваться в качестве источника идей для людей с опытом обработки и оборудования. Требуется значительный объем работы и большие возможности для того, чтобы потратить впустую много кусочков алюминия и других материалов или создать свой собственный вариант.Если у вас есть машины - очень рекомендую. 2010
133 Звуковые интерфейсы PA-PC Если вам необходимо соединить выход ПК с системой PA или сделать запись с PA, когда единственное, что доступно, - это линия громкоговорителей, этот проект покажет вам, как соединить ПК и PA, не повредив ни того, ни другого. 2011
147 Переключатель отключения звука BJT Малоизвестная техника, которая, похоже, не может когда-либо работать - с использованием биполярных транзисторов. 2013
171 Инфразвуковой преобразователь Инфразвук (между 1 Гц и 20 Гц) обычно не слышен, но этот проект позволяет слышать звук с помощью генератора, управляемого напряжением, для перемещения низких частот в слышимый диапазон 2017
ABX
Компаратор ABX
Основываясь на базовой концепции Project X, в этом дополнительном проекте используются оригинальные методы настоящего тестера ABX.Его можно сделать как простой AB-тестер или собрать произвольный пульт для полного ABX-тестирования.
2002
X Блок переключателей A-B Да, ребята, проект «X» прибыл (мне просто нужно было его иметь!). Это способствовало статьи / проекта, и может быть сталкивается с некоторыми, которые стойко поддерживают они могут слышать мельчайшие различия между усилителями. Теперь у вас есть шанс доказать это 2000
198 MOSFET реле MOSFET с использованием микросхем драйвера Si8751 / 2 MOSFET.Подходит для переключения сети (с оговорками) или для защиты динамиков высокого напряжения, когда реле будет дугой 2019
200 DIY LDR Оптопара Создайте свой собственный «Vactrol » с помощью светодиода и LDR (светозависимого резистора). Это было «трансплантировано» из статьи, где оно было показано в рамках строительного проекта 2020
210 Электронные предохранители переменного и постоянного тока Электронные предохранители для переменного или постоянного тока с фиксацией при обнаружении неисправности.Очень быстро действует, но при необходимости его можно замедлить. Надежная защита хрупкой электроники. 2020
Осветительное оборудование Описание Дата Флаги
62 Контроллер освещения LX-800 Свет всегда нужен для театра и живой музыки, и это только билет.Это амбициозный проект, требующий значительного подключения к электросети - будьте предельно осторожны. (Примечание - открывается в новом окне) Major Update! 2005
65 Стробоскоп Разработан как дополнение к контроллеру освещения, но также может использоваться сам по себе (или с любым другим контроллером освещения). 2006
90 Изменение напряжения управления диммером Некоторые старые диммеры Strand использовали управляющий сигнал от нуля до -10 В, а стандартное аналоговое управление - от нуля до + 10 В.Этот проект позволяет легко переходить с одного стандарта на другой 2002
157 3-проводный Задняя кромка Диммер Их нелегко купить, поэтому единственный вариант - собрать их самостоятельно. Это первый (и единственный) полностью протестированный и работающий дизайн, который вы найдете где угодно. 2015
159 3-проводный Leading-Edge Диммер Их тоже нелегко купить, поэтому, опять же, единственный вариант - собрать их самостоятельно.Это также первый (и единственный) полностью протестированный и работающий дизайн, который вы найдете где угодно. 2015
201 Многоканальный диммер задней кромки Этот проект возник на основе реле MOSFET (P198) и подходит для использования в диммере Project 62 'LX-800' или в качестве автономной системы 2020
Эквалайзер громкоговорителя Описание Дата Флаги
48 P48 EAS Сабвуфер и контроллер Хотя этот проект рассматривается в другом месте, для удобства стоит добавить его здесь.Этот проект оказался очень популярным с тех пор, как он был впервые представлен, и этот интерес не ослабевает. Используя принцип ELF ™ «Extended Low Frequency», этот процессор предназначен для работы динамика сабвуфера ниже его резонансной частоты. Это означает, что коробка небольшая, резонанс может быть (сравнительно) высоким, а нагрузка полностью предсказуема. 2000
71 Схема преобразования Линквица Схема Linkwitz Transform - это эквалайзер, обеспечивающий расширенный басовый отклик от любого громкоговорителя в герметичном корпусе.Эффект аналогичен эквалайзеру EAS, описанному в Project 48, но диапазон больше не только ниже резонанса, но охватывает нормальный частотный диапазон динамика. Обновлено 2006
173 Выравнивание рупора с постоянной направленностью Рупоры постоянной направленности (CD) уникальны среди высокочастотных воспроизводящих устройств. Им необходимо усиление на 6 дБ / октаву для высоких частот, как предусмотрено в этом проекте 2017
197 Повышение низких частот и фильтр высоких частот Если вам нужно уравновесить вентилируемый корпус динамика, эта схема усиления низких частот и фильтра высоких частот может быть именно тем, что вам нужно 2019

Плата усилителя | Усилители мощности | Цифровой усилитель звука | Усилитель DIY

Описание продукта:

Примечание: если вы хотите 100 Вт, используйте большой динамик!

Цвет платы PCB этого продукта изменится на зеленый, но другие части и функции останутся такими же.Спасибо!

Наименование продукта: Плата цифрового усилителя звука

Тип продукта: XH-M542

Чип усилителя: TPA3116D2 * 1

Напряжение питания: 12-28 В постоянного тока (рекомендуется 24 В постоянного тока)

Входной ток: 3 А или более

Выходная мощность: макс.100 Вт

Выход динамика: 2-8 Ом

Входное сопротивление: 10 кОм

Соотношение сигнал / шум: 100 дБ

Канал: Моно

Размер: 79 * 54 * 17 мм

В пакет включено:

1 шт. Плата усилителя

Обработка всех товаров в магазине может занять от 2 до 5 рабочих дней. Пожалуйста, добавьте время обработки к смете доставки ниже.

Вот примерное время доставки. Из-за факторов, которые часто влияют на международные перевозки, таких как праздники, таможня и погодные задержки, мы можем предложить только приблизительное время доставки.

Расположение

Расчетное время доставки

США

10-30 рабочих дней

Канада, Европа

15-40 рабочих дней

Австралия, Новая Зеландия

15-45 рабочих дней

Мексика, Центральная Америка, Южная Америка

20-60 рабочих дней

Ближний Восток (ОАЭ, Саудовская Аравия)

20-40 рабочих дней

ПОЛИТИКА ДОСТАВКИ
ВАЖНО: Мы не несем ответственности, если посылка не может быть доставлена ​​из-за отсутствия, неполной или неправильной информации о пункте назначения.Пожалуйста, введите правильные данные доставки при оформлении заказа. Если вы обнаружите, что допустили ошибку, просто напишите нам по адресу [email protected] как можно скорее. Однако существует 72-часовой список ожидания для электронной почты, поэтому, если ваш заказ покинул наш склад в течение 72 часов, он находится вне нашего контроля.
Aiyima не несет ответственности за налоги страны назначения и / или любые пошлины, которые могут возникнуть. Клиенты будут нести ответственность за любые ограничения, пошлины, налоги и любые другие сборы, взимаемые в стране назначения.
Aiyima не несет ответственности за какие-либо пошлины, налоги или таможенные сборы ни при каких обстоятельствах.
Если заказ прибывает в вашу страну и ...
• Клиент отказывается принять посылку
• Количество попыток доставки посылки в стране назначения.
Aiyima оставляет за собой право отказаться от посылки (-ов) и не будет нести ответственности за любые возмещения.

Как создать схему высокоэффективного усилителя звука класса D с использованием полевых МОП-транзисторов

Аудиоконтент прошел долгий путь за последние десятилетия, от классического лампового усилителя до современных медиаплееров, технологические достижения изменили представление о цифровых медиа потребляется.Среди всех этих нововведений портативные медиаплееры стали одними из первых, выбранных потребителями, благодаря их яркому качеству звука и длительному времени автономной работы. Итак, как это работает и как это хорошо звучит. Мне, как энтузиасту электроники, всегда приходит этот вопрос. Несмотря на достижения в технологии громкоговорителей, усовершенствования методологии усиления сыграли большую роль, и очевидным ответом на этот вопрос является усилитель класса D. Итак, в этом проекте мы воспользуемся возможностью обсудить усилитель класса D и узнать его плюсы и минусы.Наконец, мы создадим аппаратный прототип усилителя и протестируем его работоспособность. Звучит интересно! Итак, приступим к делу.

Если вас интересуют схемы аудиоусилителей, вы можете ознакомиться с нашими статьями по теме, где мы построили схемы с использованием операционных усилителей, полевых МОП-транзисторов и микросхем, таких как TDA2030, TDA2040 и TDA2050.

Основы усилителя класса D

Что такое аудиоусилитель класса D? Самый простой ответ - это коммутирующий усилитель .Но чтобы понять его работу, нам нужно узнать, как он функционирует и как вырабатывается сигнал переключения, для этого вы можете следовать блок-схеме, приведенной ниже.

Так почему же коммутирующий усилитель? Очевидный ответ на этот вопрос - эффективность. По сравнению с усилителями класса A, класса B и класса AB, аудиоусилитель класса D может достигать эффективности до 90-95%. Если максимальный КПД усилителя класса AB составляет 60-65%, потому что они работают в активной области и демонстрируют низкие потери мощности, вы можете это выяснить, если умножить напряжение коллектор-эмиттер на ток.Чтобы узнать больше по этой теме, ознакомьтесь с нашей статьей о классах усилителей мощности, в которой мы обсудили все связанные факторы потерь.

Теперь вернемся к нашей упрощенной блок-схеме аудиоусилителя класса D , как вы можете видеть на неинвертирующем терминале, у нас есть аудиовход, а на инвертирующем терминале - высокочастотный треугольный сигнал. В этот момент, когда напряжение входного аудиосигнала больше, чем напряжение треугольной волны, выход компаратора становится высоким, а когда сигнал низкий, выходным.В этой настройке мы просто модулировали входной аудиосигнал высокочастотным несущим сигналом, который затем подключается к ИС управления затвором полевого МОП-транзистора, и, как следует из названия, драйвер используется для управления затвором двух полевых МОП-транзисторов для обоих полевых МОП-транзисторов. сторона и низкая сторона один раз. На выходе мы получаем мощную высокочастотную прямоугольную волну на выходе, которую мы пропускаем через каскад фильтра нижних частот, чтобы получить наш окончательный аудиосигнал.

Компоненты, необходимые для построения схемы усилителя звука класса D

Теперь мы разобрались с основами аудиоусилителя класса D и можем перейти к поиску компонентов для создания усилителя DIY класса D r.Поскольку это простой тестовый проект, требования к компонентам очень общие, и вы можете найти большинство из них в местном магазине для хобби. Список компонентов с изображением приведен ниже.

Список деталей для создания усилителя мощности класса D:

  1. IR2110 IC - 1
  2. Lm358 Операционный усилитель - 1
  3. NE555 Таймер IC - 1
  4. LM7812 IC - 1
  5. LM7805 микросхема - 1
  6. Конденсатор 102 пФ - 1
  7. Конденсатор 103 пФ - 1
  8. Конденсатор 104 пФ - 2
  9. Конденсатор 105 пФ - 1
  10. Конденсатор 224 пФ - 1
  11. Конденсатор 22 мкФ - 1
  12. Конденсатор 470 мкФ - 1
  13. Конденсатор 220 мкФ - 1
  14. Конденсатор 100 мкФ - 2
  15. 2.Резистор 2К - 1
  16. Резистор 10 кОм - 2
  17. Резистор 10R - 2
  18. Аудиоразъем 3,5 мм - 1
  19. Винтовой зажим 5,08 мм - 2
  20. UF4007 Диод - 3
  21. МОП-транзисторы IRF640 - 2
  22. Обрезной горшок 10K - 1
  23. Катушка индуктивности 26uH ​​- 1
  24. Разъем для наушников 3,5 мм - 1

Усилитель звука класса D - принципиальная схема

Принципиальная схема нашей схемы усилителя класса D показана ниже:

Построение схемы на PerfBoard

Как вы можете видеть на основном изображении, мы сделали схему на куске монтажной платы.Потому что, во-первых, схема очень проста, а во-вторых, если что-то пойдет не так, мы можем быстро и легко ее изменить. Мы сделали большую часть соединений с помощью медного провода, но на некоторых заключительных этапах нам пришлось использовать несколько соединительных проводов для завершения сборки. Завершенная схема перфокарта показана ниже.

Работа усилителя звука класса D

В этом разделе мы рассмотрим все основные блоки схемы и объясним каждый блок. Этот аудиоусилитель класса D на базе операционного усилителя состоит из очень общих компонентов, которые вы можете найти в своем местном магазине для хобби.

Регуляторы входного напряжения:

Начнем с регулирования входного напряжения с помощью регулятора напряжения LM7805 на 5 В и регулятора напряжения LM7812 на 12 В. Это важно, потому что мы собираемся запитать схему с помощью адаптера постоянного тока 13,5 В, а для питания микросхем NE555 и IR2110 необходим источник питания 5 В и 12 В.

Генератор треугольных волн с нестабильным мультивибратором 555:

Как вы можете видеть на изображении выше, мы использовали таймер 555 с 2.Резистор 2K для генерации треугольного сигнала 260 кГц, если вы хотите узнать больше о Astable Multivibrator, вы можете проверить наш предыдущий пост о схеме нестабильного мультивибратора на основе таймера 555, где мы описали все необходимые вычисления.

Цепь модуляции:

Как вы можете видеть на изображении выше, мы использовали простой операционный усилитель LM358 для модуляции входного аудиосигнала. Говоря о входящих аудиосигналах, мы использовали два входных резистора 10 кОм, чтобы получить аудиосигнал, и, поскольку мы используем один источник, мы прикрепили потенциометр для смещения нулевого сигнала, присутствующего во входном аудиосигнале.Выход этого компаратора будет высоким, когда значение входного аудиосигнала больше, чем входная треугольная волна, а на выходе мы получим модулированную прямоугольную волну, которую мы затем подадим на ИС драйвера затвора MOSFET.

Микросхема драйвера затвора полевого МОП-транзистора IR2110:

Поскольку мы работаем с некоторыми умеренно высокими частотами, мы использовали ИС драйвера затвора MOSFET для правильного управления MOSFET. Вся необходимая схема размещена в соответствии с рекомендациями спецификации IR2110 IC.Для правильной работы этой ИС требуется инвертированный сигнал входного сигнала, поэтому мы использовали BF200, высокочастотный транзистор для генерации инвертированной прямоугольной волны входного сигнала.

Выходной каскад полевого МОП-транзистора:

Как вы можете видеть на изображении выше, у нас есть выходной каскад MOSFET, который также является основным выходным драйвером, поскольку мы имеем дело с высокой частотой и индукторами, всегда присутствуют переходные процессы, поэтому мы использовали некоторые UF4007 в качестве обратные диоды, которые предотвращают повреждение полевых МОП-транзисторов.

LC фильтр нижних частот:

Выходной сигнал каскада драйвера MOSFET представляет собой высокочастотную прямоугольную волну, этот сигнал абсолютно не подходит для управления нагрузками, такими как громкоговоритель. Чтобы предотвратить это, мы использовали катушку индуктивности 26 мкГн с неполяризованным конденсатором 1 мкФ, чтобы сделать фильтр нижних частот , который обозначен как C11. Так работает простая схема.

Тестирование цепи усилителя класса D

Как вы можете видеть на изображении выше, я использовал адаптер питания 12 В для питания схемы.Поскольку я использую доступный китайский, он выдает немного больше, чем 12 В, а точнее 13,5 В, что идеально подходит для нашего встроенного стабилизатора напряжения LM7812. В качестве нагрузки я использую динамик 4 Ом, 5 Вт. В качестве аудиовхода я использую свой ноутбук с длинным аудиоразъемом 3,5 мм.

Когда схема включена, нет заметного гудящего звука, который вы можете получить от других типов усилителей, но, как вы можете видеть на видео, эта схема не идеальна и имеет проблему с ограничением на более высоких уровнях входного сигнала, поэтому в этой схеме есть много возможностей для улучшений.Поскольку я управлял умеренно низкими нагрузками, полевые МОП-транзисторы вообще не нагревались, и, следовательно, для этих тестов не требовался радиатор.

Дополнительные улучшения

Эта схема усилителя мощности Class D представляет собой простой прототип и имеет много возможностей для улучшений. Моя основная проблема с этой схемой заключалась в методе выборки, которую необходимо улучшить. Чтобы уменьшить ограничение усилителя, необходимо рассчитать правильные значения индуктивности и емкости, чтобы получить идеальный каскад фильтра нижних частот.Как всегда, схема может быть выполнена на печатной плате для лучшей производительности. Можно добавить схему защиты, которая защитит схему от перегрева или короткого замыкания.

Надеюсь, вам понравилась эта статья и вы узнали из нее что-то новое. Если у вас есть какие-либо сомнения, вы можете задать вопрос в комментариях ниже или воспользоваться нашим форумом для подробного обсуждения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *