Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Светодиодные драйверы для LED ламп и светодиодов Виды и типы

Сегодня я кратенько рассмотрю вопрос о том, какие драйверы устанавливают в LED лампы. Виды, типы, их характеристики. Сразу отмечу, что все драйверы светодиодных ламп можно разделить на два вида: электронные и на конденсаторах. О некоторых достоинствах и недостатках мы и поговорим сегодня. А по большому счету буду раскрывать более детально этот вопрос не много позднее и добавлять в данную статью. Таким образом, предполагаю, что “светодиодные драйверы для ламп” станет достаточно объемной. Тем более материала накопилось много.

Производят драйверы, рассчитанные на один или группу светодиодов. Рассчитанных на определенный ток.

Электронные драйверы для LED ламп


Драйвер для светодиодной лампы

Вообще, по хорошему, любой электронный  драйвер должен иметь ключевой транзистор, дабы разгрузить микросхему управления драйвером. Чтобы исключить или по максимуму сгладить пульсацию на выходе должен стоять конденсатор. Стоимость драйверов такого типа не маленькая, в отличии от балластных, но зато они стабилизируют токи до 750 мА и выше, чего обычным «бесхребетным»  не под силу. Можно. Но лучше больше 200 мА не использовать… Опять же опыт эксплуатации.

Пульсация – не один недостаток драйверов. Другим можно считать высокочастотные помехи. В случае, если ваша розетка связана с лампой ( разводка квартиры ), то не избежать проблем с приемом цифровым телевидением, IP и т.п. Естественно, будет проблематично поймать радио. Задался сейчас вопросом: “А Wi-Fi будет страдать?»… Надо поставить опыты…

В хороших драйверах для сглаживания пульсаций стоит установить электролиты, а для снижения ВЧ помех пойдет керамика. В идеале, когда в драйвере присутствует и тот и другой кондер. Но такое сочетание большая редкость. Особенно в китайских лампах. Есть некоторые «индивидуумы», но их очень мало. Когда-нибудь я поговорю о них.

Ну и еще одна общая информация. Для тех, кто любит «очумелые ручки». Вы всегда можете изменить выходной ток своего электронного драйвера, «балуясь» номиналом резисторов. Хотя, нужно ли? Уже выпускается огромное количество драйверов и подобрать нужный – не проблема. И не обязательно приобретать дорогущий. Китайцы давно научились штамповать вполне приличную электронику.

Перейдем к не менее распространенным так называемым драйверам – на конденсаторах. Я их всегда называю «так называемые». Почему? Это будет понятно из выводов в конце статьи.

Светодиодные драйверы для ламп на основе конденсаторов


Обратимся к любой стандартной схеме светодиодной лампы, использующей такие «драйверы»

Схема общая и в ряде случаев ее постоянно модифицируют. Особенно любят китайские производители выкидывать оттуда что-нибудь.

Часто в дешевых лампах мы можем «наблюдать» пульсацию в 100 процентов. В этом случае можно даже не заглядывать внутрь лампы, чтобы утверждать об отсутствии одного из конденсаторов. А именно второго. Т.к. первый необходим для регулировки выходного тока. Его – то уж точно никуда не денут))).

Для тех, кто желает самостоятельно собирать такие драйвера, есть формулы, которые можно найти в сети. И по ним рассчитать номинал конденсатора.

Это можно отнести к большому плюсу такого вида драйвера. Ведь мощность лампы можно подогнать простым подбором конденсатора. Минусом стоит отметить отсутствие электробезопасности. Прикасаться к включенной лампе руками запрещено. Электротравма обеспечена.

Еще одним плюсом можно отметить 100 процентный КПД, ведь потери будут только на самих LEDs и сопротивлениях.

Огромный минус – пульсация. Она берется в результате выпрямления сетевого напряжения и составляет порядка 100 Гц. Согласно ГОСТ и САНпИН пульсация допустима от 10-20 процентов и то, в зависимости от того, в каком помещении установлен источник света. Уменьшить пульсацию можно подбором номинала конденсатора №2. Но все-равно Вы не получите полного отсутствия, а только не много сгладите всплески.

Это второй и главный минус такого типа драйверов. Как говорится: то что дешево – не всегда полезно. А пульсация очень вредна для здорового организма. Да и для не здорового))).

Сравнение электронных и балластных драйверов для светодиодных ламп


Из всего выше сказанного ( возможно путанно ) можно сделать сравнительную характеристику между двумя типами драйверов для светодиодных ламп:

 ДрайверыБалластные на конденсаторахЭлектронные
Вероятность электротравмыВысокая. За счет отсутствия гальванической развязки с сетью. Запрещено прикосновение к элементам руками при включенной лампеНизкая
Высокие токиНе возможно получить высокие токи для свечения диодов, в результате того, что необходимы конденсаторы большого размера. Конструктивно и лампа будет больших размеров. Кроме того, увеличенные конденсаторы влекут увеличение пусковых токов, что приводит к быстрому выходу из строя выключателейВозможно получить без особых проблем
ПульсацияБольшая. Порядка 100 Гц. Практически невозможно избавиться из-за необходимости внедрения конденсаторов большой емкости на выходе, фильтрующих пульсациюЛегко регулируется либо отсутствует
СхемаСхема очень простая. Легко собирается на коленке и не требует больших познаний в радиоэлеткроникеСхема сложная. С большим количеством электронных компонентов
Выходное напряжениеЛегко регулируетсяВыходной диапазон напряжения узкий
СтоимостьНизкаяВысокая
Регулировка токаПутем изменения емкости входного конденсатораБолее сложная. Как правило только при помощи резисторов. И то не всегда. Все зависит от сложности собранной схемы

Какие светодиодные драйверы для ламп лучше, а какие хуже – решать Вам. У обоих есть как сильные так и слабые стороны. И те и другие можно использовать. Только в разных помещениях. Но для себя я ввел градацию простую. Никогда не считаю качественными лампами те, которые собраны на балластах из конденсаторов по причине пульсации. Я сторонник здорового образа жизни))) и поэтому определяю такие источники света сразу в мусор.

Видео материал на тему светодиодных драйверов для ламп


Ну и на последок, как уже повелось, предлагаю интересное видео о светодиодных драйверах. Вернее об одном, самом простом, который можно собрать на коленке самостоятельно.

LED драйвер. Зачем он нужен и как его подобрать?

В последнее время потребители всё чаще интересуются светодиодным освещением. Популярность LED ламп вполне обоснована – новая технология освещения не выделяет ультрафиолетового изучения, экономична, а срок службы таких ламп – более 10 лет. Кроме того, при помощи LED элементов в домашних и офисных интерьерах, на улице легко создать оригинальные световые фактуры.

Если вы решились приобрести для дома или офиса такие приборы, то вам стоит знать, что они очень требовательны к параметрам электросетей. Для оптимальной работы освещения вам понадобится LED — драйвер. Так как строительный рынок переполнен устройствами как различного качества так и ценовой политики, перед тем, как приобрести светодиодные устройства и блок питания к ним, не лишним будет ознакомиться с основными советами, которые дают специалисты в этом деле.

Для начала рассмотрим, для чего нужен такой аппарат как драйвер.

Каково предназначение драйверов?

Драйвер (блок питания)  — это устройство, которое выполняет функции стабилизации тока, протекающего через цепь светодиодов, и отвечает за то, чтобы купленный вами прибор отработал гарантированное производителем количество часов. При подборе блока питания необходимо для начала досконально изучить его выходные характеристики, среди которых ток, напряжение, мощность, коэффициент полезного действия (КПД), а также степень его защиты т воздействия внешних факторов.

К примеру, от проходных характеристик тока зависит яркость светодиод. Цифровое обозначение напряжения отражает диапазон, в котором функционирует драйвер при возможных скачках напряжения. Ну и конечно чем выше КПД, тем более эффективно будет работать устройство, а срок его эксплуатации будет больше.

Где применяются LED драйвера?

Электронное устройство – драйвер —  обычно питается от электрической сети в 220В, но рассчитан на работу и с очень низким напряжением в10, 12 и 24В.

Диапазон рабочего выходного напряжения, в большинстве случаев, составляет от 3В до нескольких десятков вольт. К примеру, вам нужно подключить семь светодиодов напряжением 3В. В этом случае потребуется драйвер с выходным напряжением от 9 до 24В, который рассчитан на 780 мА. Обратите внимание, что, несмотря на универсальность, такой драйвер будет обладать малым коэффициентом полезного действия, если дать ему минимальную нагрузку.

Если вам нужно установить освещение в авто, вставить лампу в фару велосипеда, мотоцикла, в один или два небольших уличных фонаря или в ручной фонарь, питания от 9 до 36В вам будет вполне достаточно.

LED –драйверы по мощнее необходимо будет выбирать, если вы намерены подключить светодиодную систему, состоящую из трех и более устройств, на улице, выбрали её для оформления своего интерьера, или же у вас есть настольные офисные светильники, которые работают не менее 8 часов в день.

Как работает драйвер?

Как мы уже рассказывали, LED — драйвер выступает источником тока. Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, подключим к источнику напряжением 12 В резистор 40 Ом. Через него пойдет ток величиной 300мА.

Теперь включим сразу два резистора. Суммарный ток составит уже 600мА.

Блок питания поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться. Подключим так же резистор 40Ом к драйверу 300мА.


Блок питания создаст на резисторе падение напряжения 12В.

Если подключить параллельно два резистора, ток также  будет 300мА, а напряжение упадет в два раза.



Каковы основные характеристики LED — драйвера?

При подборе драйвера обязательно обращайте внимание на такие параметры, как выходное напряжение, потребляемая нагрузкой мощность (ток).

— Напряжение на выходе зависит от падения напряжения на светодиоде; количества светодиодов; от способа подключения.

— Ток на выходе блока питания определяется характеристиками светодиодов и зависит от их мощности и яркости, количества и цветового решения.

Остановимся на цветовых характеристиках LED — ламп. От этого, к слову, зависит мощность нагрузки. Например, средняя потребляемая мощность красного светодиода варьирует в пределах 740 мВт. У зеленого цвета средняя мощность составит уже около 1.20 Вт. На основании этих данных можно заранее просчитать, какой мощности драйвер вам понадобится.

Чтобы вам легче было просчитать общую потребляемую мощность диодов, предлагаем использовать формулу.

P=Pled x N

где Pled — это мощность LED, N — количество подключаемых диодов.

Еще одно важное правило. Для стабильной работы блока питания запас по мощности должен быть хотя бы 25%. То есть должно выполняться следующее соотношение:

Pmax ≥ (1.2…1.3)xP

где Pmax   — это максимальная мощность блока питания.

Как правильно подсоединять светодиоды-LED?

Подключать светодиоды можно несколькими способами.

Первый способ  – это последовательное введение. Здесь потребуется драйвер напряжением 12В и током 300мА. При таком способе светодиоды в лампе или на ленте  горят одинаково ярко, но если вы решитесь подключить большее число светодиодов, вам потребуется драйвер с очень большим напряжением.

Второй способ — параллельное подключение. Нам подойдет блок питания на 6В, а тока будет потребляться примерно в два раза больше, чем при последовательном подключении. Есть и недостаток — одна цепь может светить ярче другой.


Последовательно-параллельное соединение – встречается в прожекторах и других мощных светильниках, работающих и от постоянного, и от переменного напряжения.

Четвертый способ — подключение драйвера последовательно по два.  Он наименее предпочтителен.

Есть еще и гибридный вариант. Он соединил в себе достоинства от последовательного и параллельного соединения светодиодов.

Специалисты советуют драйвер выбирать перед тем, как вы купите светодиоды, да еще и желательно предварительно определить схему их подключения.

Так блок питания будет для вас более эффективно работать.

Линейные и импульсные драйверы. Каковы их принципы работы?

Сегодня для LED ламп и лент выпускают линейные и импульсные драйверы.
У линейного выходом служит генератор тока, который обеспечивает стабилизацию напряжения, не создавая при этом электромагнитных помех. Такие драйверы просты в использовании  и не дорогие, но невысокий коэффициент полезного действия ограничивает сферу их применения.

 
Импульсные драйверы, наоборот, имеют высокий коэффициент полезного действия  (около 96%), да еще и компактны. Драйвер с такими характеристиками предпочтительнее использовать для портативных осветительных приборов, что позволяет увеличить время работы источника питания. Но есть и минус – из-за высокого уровня электромагнитных помех он менее привлекателен.


Нужен светодиодный драйвер на 220В?

Для включения в сеть 220В выпускаются линейные и импульсные драйверы.

При этом если блоки питания обладают гальванической развязкой (передача энергии или сигнала между электрическими цепями без электрического контакта между ним), они  демонстрируют высокий коэффициент полезного действия, надежность и безопасность в эксплуатации.

Без гальванической развязки блок питания  обойдется вам дешевле, но будет не столь  надежным, потребует осторожности при подсоединении из-за опасности удара током.

При подборе параметров по мощности специалисты рекомендуют останавливать свой выбор на светодиодных драйверах с мощностью, превышающей необходимый минимум на 25%. Такой запас мощности не даст электронному прибору и питающему устройству быстро выйти из строя.

Стоит ли покупать китайские драйверы?

Made in China – сегодня на рынке можно встретить сотни драйверов различных характеристик, произведенных в Китае. Что же они собой представляют? В основном это устройства с импульсным источником тока на 350-700мА. Низкая цена и наличие гальванической развязки позволяют  таким драйверам быть в спросе у покупателей.

 Но есть и недостатки прибора китайской сборки. Зачастую они не имеют корпуса, использование дешевых элементов снижает надежность драйвера, да еще и отсутствует защита от перегрева и колебаний в электросети.

Китайские драйверы, как и многие товары, выпускаемые в Поднебесной,  недолговечны. Поэтому если вы хотите установить качественную систему освещения, которая прослужит вам ни один год, лучше всего покупать преобразователь для светодиодов от проверенного производителя.
 

Каков срок службы led драйвера?

Драйверы, как и любая электроника, имеют свой срок эксплуатации. Гарантийный срок службы LED — драйвера составляет 30 000 часов. Но не стоит забывать, что время работы аппарата будет зависеть еще от нестабильности сетевого напряжения, уровня влажности и перепада температур, влияния на него внешних факторов.

Неполная загруженность драйвера также снижает срок эксплуатации прибора. К примеру, если LED – драйвер  рассчитан на 200Вт, а работает на нагрузку 90Вт, половина его мощности возвращается в электрическую сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания и прибор может перегореть, сослужив вам всего год.

Следуйте нашим советам и тогда не придется часто менять светодиодные устройства.

назначение, принцип работы, схема и ремонт

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки.

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет.  При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.  

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

ШИМ-драйвер Recom.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Led-драйвер Helvar.

Led-драйвер Mean Well.

Led-драйвер DEUS.

Led-драйвер «Ирбис».

Led-драйвер MOSO.

Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.

Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги. 

Схема подключения драйвера к светодиодам.

Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.

Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.

Выводы светодиода.

Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.

Выводы светодиодов в SMD-исполнении.

В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду. Обратите внимание, единого стандарта нет и возможны различия в полярности.

Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.

При использовании источника тока схема драйвера для светодиодов будет следующая:

Схема подключения светодиода.

Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.

Схема подключения светодиода к источнику
напряжения через ограничитель.

Классическая светодиодная лента построена по такой схеме:

Схема светодиодной линейки.

В этом случае расчет производится по формулам:

Формула связи тока, напряжения, сопротивления.

При подключении важно учитывать:

  • При малой силе тока, мы теряем в яркости, при большой в сроке службы.
  • Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
  • Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.

Схемы (микросхемы) светодиодных драйверов.

Как правило драйвера светодиодов строятся на интегральных стабилизаторах (КРЕНхх, либо импортные аналоги) или ШИМ. Схемы достаточно просты.

Использовании микросхем для стабилизации.

Принципиальные схемы светодиодных драйверов.

Существует схема самодельного источника тока на советской микросхеме К142ЕН12А.  Резистор R2 позволяет менять яркость свечения.

Принципиальная схема на отечественных компонентах.

Линейный светодиодный драйвер своими руками.

Эта часть статьи посвящена радиолюбителям.

Оригинальный линейный источник тока на компараторе.

Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.

Срок службы светодиодных драйверов.

Как такового определенного срока службы нет, но многие производители готовы дать гарантию сроком в пять лет на свою продукцию. Естественно, при согласовании мощностей. Для того, чтобы источник питания прослужил дольше не следует давать нагрузку, при которой он будет отдавать предельные токи. Если он собран из качественных комплектующих, то он будет стабильно работать достаточно долгое время. Но рабочие температуры могут быть близки к критическим (зависит от схемотехнических решений). Оптимально, если мощность потребителей будет меньше на 20-30 процентов.

Если говорим о самодельном изготовлении, то многое зависит от качества сборки, качества радиодеталей. Интегральные стабилизаторы желательно закреплять на радиатор для обеспечения теплового режима, не следует забывать о про теплопроводящую пасту между корпусом стабилизатора и теплоотводом.

Модернизация схем светодиодных ламп | СамЭлектрик.ру

#самэлектрик

Для начала – статьи по светодиодным прожекторам на Канале СамЭлектрик. ру:

Схемы прожекторов – описание и ремонт

Схема драйвера прожектора

Чем отличается драйвер от адаптера? (в светодиодном освещении)

4 простых доработки светодиодных ламп

Речь пойдёт про современные светодиодные лампочки, которые теперь стали более доступны. Идеи доработки LED ламп, изложенные в статье, пригодятся заядлым самодельщикам. В начале рассмотрим конструкцию, позже доработки.

Современная конструкция ламп получилась в результате эволюции проб конструкторов сделать лампочку доступной и максимально эффективной и сейчас эта конструкция наиболее часто встречается.

Сравнение принципов построения схем светодиодных ламп

Чаще всего встречается неизолированный драйвер, его схему делают на импульсном понижающем преобразователе.

Применение такого драйвера в светодиодной лампочке имеет ряд преимуществ, по сравнению с другими схемами:

  • хорошая стабильность выходного тока в широком диапазоне питающего напряжения, полное отсутствие пульсаций, по сравнению со схемой на конденсаторном балласте.
  • более высокий КПД по сравнению с изолированным и с линейным драйвером. Выходное напряжение такого драйвера гораздо выше, чем у изолированных драйверов. Для получения заданной мощности, применяются светодиоды с несколькими кристаллами в одном корпусе, что позволяет поднять напряжение и снизить ток в цепи, КПД повышается за счет снижения потерь в цепи питания.
  • меньшие размеры и стоимость по сравнению с изолированным драйвером, так как дроссель получается меньше, чем трансформатор для такой же мощности. Из за особенности схемы, дросселю не нужно переваривать всю мощность, в отличии от трансформатора в изолированном драйвере, меньше нужно материала, для его изготовления.

Сравнение внешнего вида драйверов светодиодных ламп

Будьте осторожны при работе с такими драйверами, чтобы не получить удар током!

Фото платы изолированного драйвера с обратной стороны:

Разбираем светодиодную лампочку

Корпус ламп делают из композитного материала, который служит теплоотводом для светодиодов. Разбираются лампочки разных производителей довольно просто. Рассеиватель держится по периметру на защелках и силиконе. Поддеваем ножом и подрезаем герметик по кругу, колпак рассеивателя снимается с некоторым усилием.

Разборка светодиодной лампы

Плата с диодами может быть запрессована или прикручена винтами, контакты могут быть припаяны или съемными. С прикрученной платой всё просто, а вот с запрессованной придётся повозится. Мне обычно удается подковырнуть плату плоской отвёрткой, но каждый раз, у разных производителей это не всегда удаётся совсем без повреждений корпуса, иногда откалывается кусок пластика, который затем можно приклеить обратно, если есть необходимость.

После снятия платы со светодиодами не нужно сразу пытаться извлечь драйвер, это не получится. Будут мешать провода, идущие от цоколя лампы.

Драйвер внутри светодиодной лампы

На заводе сборка происходила в другом порядке, чем мы пытаемся разобрать. Необходимо поддеть и вытащить центральный контакт цоколя лампы, так один вывод освободится, а второй можно отпаять или отрезать от самой платы, а потом при сборке его придётся удлинить.

Смотрим, как устроена LED лампочка

Теперь можно рассмотреть все детали лампы и из чего она устроена. Разработчики ламп заложили определенные характеристики в конструкцию лампы, а именно ток через светодиоды, который обусловлен несколькими требованиям, такими как температурный режим, яркость и мощность потребления, срок службы лампочки и соотношение цены и всех этих характеристик.

Теорию мирового заговора производителей, по которой производители заинтересованы делать не надёжные вещи, мы рассматривать не будем, моё мнение что это миф, всё диктует маркетинг и потребители, а производители делают то что у них заказывают, то что хорошо продаётся, значит всегда ищут середину между надежностью и ценой. В наших реалиях обычно более дешёвые товары выигрывает по продажам, в итоге имеем то что имеем.

Выход из строя лампочки в большинстве случаев происходит из-за обрыва в цепи светодиодов.

Неисправная лампа – на сгоревшем светодиоде, который обрывает цепь, можно видеть черную точку.

При эксплуатации, после включения лампочки, происходит нагрев кристаллов светодиодов и термическое расширение. Токопроводящие выводы от кристаллов делают в виде тонких нитей из золота, так как золото очень пластичный металл и хорошо переносит деформации не разрушаясь. Коэффициент расширения у кристаллов и остальных материалов конструкции светодиода не одинаков, со временем от включений и выключений лампочки, термическая деформация разрушает вывод кристалла светодиода или место его крепления, цепь разрывается и лампа выходит из строя.

Подписывайся, и читай статью дальше:
Я подробно рассказываю об этом в статьях про устройство светодиодных прожекторов и ремонт прожекторов.

К слову, для меньшего воздействия температуры на линейные размеры, хорошее решение делать светодиоды с несколькими более мелкими кристаллами, чем с одним большим такой же общей площади, и за одно это позволяет поднять напряжение питания светодиода при последовательном включении кристаллов внутри одного корпуса светодиода.

Светодиод для лампы с тремя кристаллами, работающими в облегченном режиме

Доработка лампы для увеличения срока службы

Первая доработка заключается в снижении тока через светодиоды, что позволяет значительно продлить срок службы лампы, яркость свечения при этом неизбежно снижается. Снижение яркости при снижении тока через светодиоды происходит не линейно, с некоторым отставанием, так что снижением тока достигается дополнительное повышение КПД светодиода, что в свою очередь еще больше снижает температуру кристаллов, такой доработкой убиваем двух зайцев.

Для наглядности КПД светодиода и потерь в виде тепла, дан график зависимости тока через светодиод и яркости свечения, где показана нелинейная зависимость.

Зависимость яркости светодиода от прямого тока с учетом тепловых потерь

Обычно это легко сделать без схем и даташитов на микросхему драйвера. Нужно найти на плате резистор или пару резисторов включенную в параллель с сопротивлением в несколько Ом – это датчик тока который нас интересует. Такой резистор – датчик тока, есть абсолютно во всех схемах драйверов, как в импульсных, так и в линейных, и везде сопротивление датчика единицы Ом.

Первая переделка схемы драйвера LED лампы

Резистор нужно заменить на резистор бОльшего сопротивления или отпаять один из двух резисторов. Ток через светодиоды снижается пропорционально увеличению сопротивления резистора датчика тока.

Доработка схемы – показан резистор обратной связи

Даже незначительное снижение тока через светодиоды и мощности лампы существенно продлевает срок службы, так как температура самого кристалла светодиода снижается гораздо в большей степени, чем температура наружного корпуса лампы из за теплового сопротивления переходов кристалл-подложка-припой-проводник платы и т.д., и уменьшается тепловое расширение разрушающее место крепления проводника к кристаллу.

Возьмем случай для наглядности как тепло передается от кристалла в окружающую среду: допустим линия электропередач где нибудь либо очень длинная, либо сечение проводов маленькое, при включении приборов разной мощности происходит заметная “просадка” напряжения , чем выше мощность потребителя, тем больше просадка напряжения (потери).

Читайте статьи про потери напряжения при постоянном токе и про потери в кабельной линии.

Так и с теплом у светодиодов, при одном и том же тепловом сопротивлении, при меньшей мощности на кристалле, тепло лучше передаётся на корпус и в окружающий воздух (меньше “просадка”).

Более дорогие лампы отличаются большим количеством светодиодов на меньшем токе и заниженной мощности, чем у более дешёвых ламп, светоотдача люмен/вт у них больше и режим светодиодов более щадящий. На фото ниже лампочка с заявленной светоотдачей около 108 Лм/вт, тогда как обычно это не более 100 лм/вт.

Светодиодная лампочка с большей светоотдачей

Я обычно занижаю мощность на 20-30%, но делаю это на новой лампе, пока золотые проводники еще крепкие.

Та же лампа, со вскрытой колбой

Делал занижение мощности когда проводил ремонт светодиодной лампы, но тут для надёжного результата нужно снижать ток через светодиоды как минимум на 50%, так как все светодиоды из одной партии и работали в одинаковых условиях, раз один сгорел, то остальные будут один за одним все потихоньку выходить из строя, лампа долго после ремонта не проработает без занижения мощности, если конечно не заменить сразу все диоды на новые, но это не всегда приемлемо.

Плавное увеличение яркости при включении

Вторая доработка позволяет включать лампу плавно, например для применения в спальне.

Для этого нужно включить позистор (терморезистор с положительной температурной зависимостью, или термистор PTC) параллельно всем или большей части светодиодов.

Доработка светодиодной лампы для плавного включения яркости

Работает схема просто: Пока позистор холодный, его сопротивление минимально и ток течет через часть светодиодов и позистор и постепенно разогревает его. По мере прогрева, сопротивление плавно нарастает и плавно включает в цепь остальные светодиоды – яркость плавно нарастает.

Доработка светодиодной лампы позистором

Доработка светодиодной лампы термистором для плавного розжига

Драйвер для последовательно включенных светодиодов, который используется в люстре, и его схему я подробно рассмотрел в статье Почему перестали гореть светодиоды в люстре.

Позистор нужен с холодным сопротивлением 330-470 Ом, его маркировка wmz11a, такие есть в продаже или их можно добыть из энергосберегающей лампы мощностью 32 вт, в менее мощных КЛЛ, позистор с холодным сопротивлением 1 кОм и более, что не очень подходит для нашей доработки, разве что взять их несколько штук и соединить параллельно, но я этот способ не пробовал.

Позистор (терморезистор), который входит в схему КЛЛ

Вариант на Али: https://ru.aliexpress.com/item/MZ8-100R-200R-300R-400R-500R-600R-700R-800R-900R-1-1-2/32906779106.html
Схемы энергосберегающих ламп и их ремонт я уже подробно разбирал.

Я так доработал 3 лампы в люстре на потолке, мощностью 7Вт (а было 9 вт изначально, мощность занижена для долговечности), и одну лампочку 3Вт в бра. Плавное включение до 100% происходит примерно за 30 сек.

Плавное включение LED лампочки – доработка схемы

Ночник с пониженной яркостью на светодиодной лампочке

Третья доработка заключается в том, чтобы сделать дополнительную функцию – ночник. У меня такая лампа установлена в темном коридоре и это удобно, ночью света достаточно чтобы пройти.

Ночник на переделанной LED лампе

Тут нужно доработать драйвер, убрать резистор который есть на плате драйвера, он нужен в схеме для разрядки выходного фильтрующего конденсатора и допаять резистор 150 кОм мощностью 1 Вт параллельно выводам микросхемы.

Схема доработки светодиодной лампочки для работы в режиме ночника

Еще нужно установить в выключатель резистор 68 кОм и мощностью 1 Вт параллельно контактам выключателя, но стоит помнить, что теперь патрон лампочки будет находиться под напряжением.

Резистор на контактах выключателя для переделки схемы LED лампочки

Работает схема так : Образуется делитель напряжения, один из резисторов делителя в выключателе, а второй в лампе. Питание приходит на лампу но с меньшим напряжением благодаря делителю. Для запуска драйвера напряжения недостаточно, ток идет по цепи через резисторы делителя и светодиоды, лампа светится с малой яркостью, которая будет зависеть от сопротивления резисторов.

В некоторых драйверах (не во всех, стоит попробовать в начале без подстроечника) придется поставить подстроечный резистор 100 кОм параллельно керамическому конденсатору фильтра питания микросхемы, чтобы настроить напряжение питания и избежать эффекта мигания лампы в режиме ночника, когда микросхема драйвера пытается стартовать.

Резистор подстроечный для переделки схемы LED лампочки

Подстроечным резистором нужно добиться, чтобы микросхема не стартовала в режиме ночника, а в штатном режиме работала как положено. Мощность потребления ночника с приведенными номиналами резисторов 0,42 вт. Когда выключатель включен, лампа работает как обычно, но мощность лампы становиться выше, чем была раньше, ровно на ту мощность, которая будет рассеиваться на резисторе, припаянном на выводы микросхемы драйвера.

Схема светодиодной лампы с датчиком освещенности

Четвертая доработка тоже расширяет функционал как и третья . Я сделал светильник с использованием драйвера от лампочки и функцией полноценного сумеречного датчика. Понадобилось кроме драйвера дополнительно всего две детали!

Я уже писал статьи про датчики освещенности (сумеречное реле), которые есть в продаже. Тут про его устройство, а тут его схема.

Схема Светодиодной лампочки с встроенным датчиком освещенности

Схема сумеречного датчика (фотореле) получается энергоэффективной, компактной и дешевой. Потребление в режиме ожидания 0.06 вт.

Гениально по простоте, эффективности и функционалу.

Фоторезистор, обозначенный на схеме LDR применён GL5537, также подходит GL5539, подстроечный резистор любой подходящий, сопротивлением 68-100 кОм.

Схема работает так: фоторезистор включен в схему драйвера параллельно питанию микросхемы, при увеличении освещенности его сопротивление уменьшается и шунтирует питание микросхемы драйвера, позволяя выключать свет, или включать светильник по мере наступления темноты и снижения освещенности. Ток который потребляет микросхема всего 1 мА, это позволяет обойтись без усилителей сигнала. Сопротивления фоторезистора и его мощности рассеивания вполне достаточно для стабильной работы схемы. Одна ножка фоторезистора присоединена к выводу питания микросхемы, которое составляет 17 В, а вторая через подстроечный резистор к выводу с датчика тока.

При подаче питания на микросхему, начинает протекать ток через датчик тока, возникает падение напряжения на датчике тока, возникает положительная обратная связь и обеспечивается гистерезис, повышая стабильность работы. Фильтрующий конденсатор микросхемы драйвера обеспечивает защиту от внешних помех и нежелательных срабатываний при быстрой смене освещенности, например от движущихся теней.

Настройка работы сводится к установке движка подстроечного резистора для желаемой чувствительности срабатывания. Таким способом легко дорабатываются не изолированные драйвера разных производителей на микросхемах с одинаковыми схемами подключения. Было проверено работу схемы на драйверах BP2831, BP2832, BP2833, sic9553, BP9833D, BP2836, и еще с одной микросхемой с неопознанной маркировкой. Аналогичная микросхема CL1501.

У меня выходило делать доработки даже без даташита на микросхему и схемы подключения. Датчик тока легко найти на плате – это резистор сопротивлением несколько Ом, питание микросхемы подается через 2 резистора с сопротивлением сотни кОм (примерно 750К+750К) и обязательно в схеме будет фильтрующий керамический конденсатор, который тоже легко найти.

Было доработано таким сумеречным датчиком 2 светильника, один теперь работает на входе в подъезд дома, его мощность 8 вт, а второй светильник изготовлен с нуля, корпус из банки от косметического крема, его мощность сделал 5 вт, а светодиод использовал 10 вт (китайских 10 Вт :)). Светильник установлен и работает на лестничной клетке. Важно фоторезистор спрятать от света самого светильника. Я расположил его на корпусе светильника и заделал чёрной термоусадочной трубкой, оставив небольшие бортики, чтобы получился колодец для света, иначе светильник будет мигать при попадании на датчик света от светодиодов. Глубины гистерезиса хватает, чтобы отраженный свет от стен не вызывал эффекта мигания.

Самодельный светильник с датчиком освещенности на фоторезисторе

Доработанный светодиодный светильник с датчиком освещенности

Во втором светильнике схему расположил в патроне от КЛЛ, плату и подстроечник приклеил, всё заизолировал каптоновым скотчем, фоторезистор закрепил на корпусе светильника. Получилось универсальное решение, при необходимости можно быстро произвести замену на стандартную лампочку, выкрутить из патрона светильника свой самодельный фотодатчик, а выключатель разомкнуть.

Светильник с выносным датчиком

Сейчас зима, темнеет рано, очень часто приходится вначале пройти по темноте и включить свет, а тогда зайти домой, выходит что мне уже свет не нужен, а с автоматическим датчиком освещённости на много удобнее 🙂

Полная версия статьи с обсуждением: https://samelectric. ru/lamp-osveshhenie/peredelka-shemy-svetodiodnyh-lamp.html

Если интересны темы канала, заходите также на мой сайт – https://samelectric.ru/ и в группу ВК – https://vk.com/samelectric

Драйвер для светодиодов (светодиодной лампы) схема

 Светодиодные лампы, которые вошли в нашу жизнь благодаря прогрессу, а может под гнетом  безудержной кампании правительства, привносимой к нам сверху. При этом исходящей от лица первых его членов, не будем упоминать пофамильно, стали очень распространенными в наших световых приборах. О том, что светодиодные лампы экономичны и надежны написано много и везде, разве что не на заборах. Наш сайт также не стал тому исключением. Так у нас имеется уже целый цикл статей о них:

«Светодиодные лампы»;
«Какая лампа лучше энергосберегающая или светодиодная»;
«Как починить светодиодную лампу».

 При этом китайская продукция от этого навряд ли становиться лучше. Что же, может тому виной спрос на продукцию с низкой ценой, когда люди не готовы платить чуть дороже, но при этом быть обладателем действительно качественных изделий. А может просто кто-то не хочет делать так, как это положено. В общем, не будет разбираться в тонкостях и особенностях поломок светодиодных ламп.  Скажем лишь, что они ломаются.  О способах их ремонта мы уже рассказали в одной нашей статье, еще раз обратите внимание на список статей, который мы привели выше. Здесь же хотелось рассказать о случае, когда драйвер, то есть фактически стабилизатор напряжения для светодиодов, выполнен своими руками, то есть, собран по определенной схеме. Именно о таких схемах для светодиодных ламп мы и упомянем в нашей статье.

Схема питания светодиодов светодиодной лампы (схема драйверов для светодиодных ламп) самые простые

Это наиболее простые схемы драйверов для светодиодов. Фактически резистор или конденсатор на входе ограничивают напряжения. Конденсатор подключенный параллельно цепочке из светодиодов компенсирует возможные скачки при включении и отключении, а также является своеобразным “буфером” от проявления мерцания светодиодов.

 

 Здесь, за счет стабилитрона, напряжение сбрасывается до 16 вольт. Это уже после диодного моста, а далее распределяется на 5 светодиодов. То есть светодиоды должны иметь напряжение питания порядка 3 – 3,3 вольт

Схема драйвера для светодиодов (светодиодных ламп) на транзисторе

Транзистор в купе с тиристором ограничивают напряжение на 10 светодиодах, подключенных последовательно.

Схема драйвера для светодиодов (светодиодных ламп) на микросхеме

Микросхемы ШИМ фактически импульсно ограничивают подачу напряжения на группу светодиодов. Именно такое решение будет наиболее совершенным.

Для определения точного номинала используемых в схеме радиоэлементов, лучше обратится к Data sheet микросхемы. (BP2833D)

Более подробно о принципах ШИМ мы уже тоже рассказывали. Если вам интересно, то это здесь!

Где установлен драйвер в светодиодных лампах

Взгляните на картинку, чтобы лучше представить где расположен драйвер лампы.

Фактически это узел 5, изображенный на рисунке. Он установлен в корпусе лампы и чтобы его заменить или починить, необходимо будет разобрать корпус лампочки.

Подводя итог о выборе схемы драйвера для светодиодов (светодиодной лампы)

 Итак, как вы поняли, драйверы бывают как самые простые, где фактически напряжение ограничивается за счет резистора или конденсатора, так и с использованием микросхем ШИМ. В этом случае происходит не только ограничение напряжение, но обеспечивается оптимальное энергопотребление со всевозможными функциями ограничения и защиты. Конечно, драйверы на микросхемах более прогрессивны, но при этом более сложные в изготовлении и более дорогие. Так что здесь придется сделать как всегда банальный выбор, посложнее и получше или попроще и подешевле.
 Если перед вами стоит задача подключить всего лишь один светодиод от 220 вольт, то схема для одного светодиода будет куда проще предложенных здесь. Более подробно об этом в схеме “Подключение светодиода от 220 вольт”.

Драйвер светодиодной лампы: что это такое и какие есть виды?

Важной частью любой светодиодной лампы является драйвер. От его структуры и качества зависит продолжительность работы лампы и её устойчивость к перепадам напряжения.

Драйвер – это плата с электронными компонентами, обеспечивающая питание светодиодов, преобразуя переменный ток в постоянный. В зависимости от компонентов определяется тип драйвера. Обязательными составляющими любого драйвера являются: 

  • диодный мост, который преобразовывает переменное напряжение в постоянное;
  • входной конденсатор, который сглаживает колебания тока;
  • входной резистор, который ограничивает ток в момент включения лампы и не даёт выключателю искрить;
  • выходной конденсатор, который устраняет колебания тока и помех, появившихся в процессе преобразования тока;
  • выходной резистор, обеспечивающий разряд выходного конденсатора при выключении лампы и регулировки нагрузки в случае выхода из строя части светодиодов.

В зависимости от того, какие ещё компоненты присутствуют на плате драйвера, их разделяют на три типа: Linear, Linear IC и IC.  

Типы драйверов светодиодных ламп

Linear  

Linear, или просто линейный драйвер, является самым простым и дешевым драйвером. На его плате присутствуют только самые необходимые элементы. Основная его функция – преобразование переменного тока в постоянный, он не защищает светодиоды от перепадов напряжения в сети. Чаще всего этот тип драйвера используется в лампах, в которых недостаточно места для размещения более сложных типов драйверов и в маломощных лампах. Например, Linear драйвер часто используют в филаментных лампах. 

Linear дайвер – это плата с электронными компонентами, которая преобразовывает переменный ток в постоянный. 

Constant Linear драйвер.

Linear IC 

Linear IC драйвер (Integrated Circuit — интегральная микросхема) отличается наличием простой IC микросхемы. Такой драйвер защищает лампу от перепадов напряжения в узком диапазоне, но не от перепадов силы тока и всё ещё является бюджетным решением для LED лампы. Linear IC драйвера используются во всех типах светодиодных ламп и светильников. 

Linear IC драйвер – это плата с электронными компонентами, преобразовывающая переменный ток в постоянный и содержащая микросхему стабилизирующую напряжение.

DoB Linear IC драйвер.

IC 

Самый сложный – это IC драйвер. В нём больше всего компонентов что делает его более массивным, но и более надёжным в работе. Наличие IC микросхемы позволяет драйверу контролировать не только поступающее на светодиоды напряжение, но и силу тока. Высокочастотный EMC-фильтр устраняет помехи, создающиеся при преобразовании тока, а трансформатор (или катушка) снижает входящее напряжение до уровня, необходимого для стабильной работы светодиодов. Такой драйвер обеспечивает продолжительную работу светодиодной лампы и используется во всех видах лампочек и светильников.

IC драйвер – это плата с электронными компонентами, которая преобразует переменный ток в постоянный и содержит микросхему, стабилизирующую входящее напряжение и силу тока. 

Constant IC драйвер с компонентами, размещёнными на одной стороне платы.

Электронные компоненты IC драйвера могут быть расположены как на одной стороне платы, так и на обеих. Размещение на обеих сторонах обеспечивает лучшее охлаждение компонентов и увеличивает срок их службы. 

Constant IC драйвер с компонентами, размещёнными на разных сторонах платы.

 

Способ монтажа драйвера

Сам драйвер может быть соединен со светодиодной платой двумя способами: DoB и Constant. 

DoB

DoB (Driver on Board) означает “драйвер на плате”. При таком способе монтажа большая часть или все элементы драйвера наносятся на плату со светодиодами, а не на отдельную. DoB драйвера более бюджетные и позволяют сэкономить место в корпусе лампы, однако размещение драйвера на плате со светодиодами приводит к перегреванию элементов. Поэтому лампы с драйверами DoB по сравнению с лампами с драйвером Constant имеют меньший срок эксплуатации. 

Способ DoB встречается практически во всех LED лампочках и светильниках из-за его дешёвого производства. Однако для многих LED светильников с компактным корпусом (таких как прожекторы) способ DoB является единственным возможным решением.

Драйвер DoB – это драйвер, электронные компоненты которого установлены на плату со светодиодами. 

DoB Linear IC драйвер.

Constant

Constant, или встречается название Isolated (изолированный), драйвер – это также драйвер, электронные компоненты которого нанесены на отдельную плату, а не на плату со светодиодами.  Такой способ установки более дорогостоящий и требует дополнительного места, но обеспечивает лучшее охлаждение светильника и продлевает срок его службы. 

Способ Constant встречается в филаментных лампах, водонепроницаемых ЖКХ светильниках, мебельных светильниках.  

Драйвер Constant – это драйвер, который расположен отдельно от платы со светодиодами. 

Constant IC драйвер.

Важно запомнить, что IC, Linear IC и Linear — это типы драйвера, а DoB и Constant — это способы его размещения. 

Самым надёжным, но и дорогим вариантом является Constant IC драйвер. С ним лампа будет работать не один год и проявлять устойчивость не только к перепадам напряжения в сети в широком диапазоне, но и к перепадам силы тока. 

Очень важный параметр светодиодных ламп, о котором мало кто знает

На упаковках светодиодных ламп можно найти множество параметров: мощность, световой поток, эквивалент мощности, индекс цветопередачи. Но один очень важный параметр производители указывают крайне редко. Это тип драйвера.
По ГОСТ 29322-92 в сети должно быть напряжение 230 вольт, однако тот же ГОСТ допускает отклонение сетевого напряжения ±10%, то есть допустимо напряжение от 207 до 253 вольт. Впрочем, во многих районах (особенно, сельских) напряжение иногда падает до 180 вольт и ниже.

При пониженном напряжении обычные «лампочки Ильича» светят гораздо тусклее. На нижнем пороге допустимого напряжения 207 вольт, 60-ваттная лампа накаливания, рассчитанная на 230 В, светит, как 40-ваттная на номинальном напряжении (habr.com/ru/company/lamptest/blog/386513/).

Работа светодиодных ламп на пониженном напряжении зависит от типа используемой электронной схемы (драйвера).

Если в лампе используется простейший RC-драйвер или линейный драйвер на микросхеме, лампа ведёт себя почти так же, как лампа накаливания (светит тусклее при понижении напряжения, а при скачках напряжения в сети её свет «дёргается»).

Если же используется IC-драйвер, яркость лампы не меняется при изменении напряжения питания в очень широких пределах. Фактически, у таких ламп есть встроенный стабилизатор.

Если посмотреть на все светодиодные лампы, которые я протестировал в проекте Lamptest.ru, определяя тип драйвера, окажется, что у 3/4 всех ламп IC-драйвер и только у четверти линейный или RC-драйвер. Если же посмотреть только на филаментные лампы, картина резко меняется: из 321 протестированных ламп только у 131 (40%) IC-драйверы.

У большинства ламп с линейным драйвером яркость падает на 5% от номинальной при снижении напряжения до 210-220 В и на 10% при напряжении 200-210В.

Некоторые лампы с IC-драйвером не снижают яркость при падении напряжения даже до 50 вольт, но большинство стабильно работает при напряжении от 150 вольт.

Вот так ведут себя две филаментные лампы (левая с IC-драйвером, правая — с линейным) при изменении напряжения от 230 до 160 вольт.


Я измеряю минимальное напряжение, при котором световой поток лампы падает не более, чем на 5% от номинального. В таблице результатов Lamptest это напряжение указано в столбце «Вмин». Если при снижении напряжения световой поток начинает падать сразу, я указываю линейный (LIN) тип драйвера (столбец «drv»), если световой поток при снижении напряжения стабилен, а потом начинает снижаться, — тип драйвера IC1, если при снижении напряжения лампа выключается, — IC2, если начинает вспыхивать — IC3.

К сожалению, тип драйвера по упаковке лампы и параметрам, приводимым производителями на сайтах, узнать почти невозможно. Отдельные производители пишут на упаковке «IC драйвер». Чаще пишут широкий диапазон напряжения, например «170-260В», но не всегда это соответствует действительности. На Lamptest много ламп, у которых указаны широкие диапазоны напряжений, а фактически в них установлен линейный драйвер и на нижней границе указанного диапазона они горят «вполнакала». Указание узкого диапазона «220-240 В» или просто «230 В» тоже ни о чём не говорит: множество таких ламп построены на IC-драйвере и фактически работают при значительно более низких напряжениях без снижения яркости.

Всё, что я могу посоветовать для определения типа драйвера — смотреть результаты на Lamptest по лампе или её аналогам (тот же производитель, тот же тип, тот же цоколь), если конкретная модель лампы ещё не протестирована.

Конечно, лампы с IC-драйвером лучше. Они не меняют яркость при уменьшении напряжения в сети и их свет не «дёргается» при перепадах напряжения. Кроме того, такой драйвер заведомо лучше защищён от любых перепадов напряжения и в целом более надёжен.

Рекомендую учитывать при выборе светодиодных ламп тип драйвера и по возможности покупать лампы с IC-драйвером.

© 2019, Алексей Надёжин

Общие сведения о драйверах светодиодов от LEDSupply

Драйверы светодиодов

могут сбивать с толку светодиодную технологию. Существует так много разных типов и вариаций, что временами это может показаться немного подавляющим. Вот почему я хотел написать небольшой пост с объяснением разновидностей, чем они отличаются, и на что вы должны обратить внимание при выборе драйвера (ов) светодиодов для вашего освещения.

Что такое драйвер светодиода, спросите вы? Драйвер светодиода – это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов.Это важная часть светодиодной цепи, и работа без нее приведет к отказу системы.

Использование одного из них очень важно для предотвращения повреждения светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение – это количество вольт, необходимое светоизлучающему диоду для проведения электричества и зажигания. По мере увеличения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока до тех пор, пока светодиод не перегорит сам себя, это также известно как термический побег.Драйвер светодиодов – это автономный источник питания, выходы которого соответствуют электрическим характеристикам светодиода (-ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода постоянного тока компенсирует изменения прямого напряжения, обеспечивая при этом постоянный ток к светодиоду.

На что следует обратить внимание перед выбором драйвера светодиода

  • Какие типы светодиодов используются и сколько?
    • Узнать прямое напряжение, рекомендуемый ток возбуждения и т. Д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы сравниваем постоянный ток с постоянным напряжением.
  • Какой тип энергии будет использоваться? (DC, AC, батареи и т. Д.)
  • Какие ограничения по месту?
    • Работаете в тесноте? Не слишком много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. Д.
  • Нужны какие-то специальные функции?
    • Диммирование, импульсное, микропроцессорное управление и т. Д.

Прежде всего, вы должны знать…

Существует два основных типа драйверов: те, которые используют входное питание постоянного тока низкого напряжения (обычно 5–36 В постоянного тока), и те, которые используют входное питание переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, которые используют высокое напряжение переменного тока, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиода низкого напряжения постоянного тока. Даже если ваш вход представляет собой переменный ток высокого напряжения, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуются низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше вариантов регулировки яркости и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас есть больше возможностей для работы в вашем приложении. Однако если у вас есть большой проект общего освещения для жилого или коммерческого освещения, вы должны увидеть, какие драйверы переменного тока могут быть лучше для этого типа работы.

Вторая вещь, которую вы должны знать

Во-вторых, вам необходимо знать ток возбуждения, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для освещения. Важно знать характеристики своего светодиода, чтобы знать рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или чрезмерным нагревом. Наконец, хорошо знать, что вы ищете от своего осветительного приложения.Например, если вы хотите регулировать яркость, вам нужно выбрать драйвер с возможностью регулировки яркости.

Немного о затемнении

Регулировка яркости светодиодов зависит от используемой мощности; поэтому я рассмотрю варианты диммирования как постоянного, так и переменного тока, чтобы мы могли лучше понять, как затемнять все приложения, будь то постоянный или переменный ток.

Диммирование постоянного тока

Низковольтные драйверы с питанием от постоянного тока можно легко уменьшить несколькими способами. Самым простым решением для этого является использование потенциометра.Это дает полный диапазон затемнения от 0 до 100%.

Потенциометр 20 кОм

Это обычно рекомендуется, когда у вас есть только один драйвер в вашей цепи, но если несколько драйверов диммируются от одного потенциометра, значение потенциометра можно найти из – KΩ / N – где K – значение вашего потенциометра, а N количество используемых вами драйверов. У нас есть подключенные BuckPucks, которые поставляются с потенциометром с поворотной ручкой 5K для регулировки яркости, но у нас также есть потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock.Просто подключите провод заземления затемнения к центральному штырю, а провод затемнения к одной или другой стороне (выбор стороны просто определяет, каким образом вы поворачиваете ручку, чтобы уменьшить яркость).

Второй вариант регулировки яркости – использование настенного светорегулятора 0–10 В, например, нашего низковольтного регулятора яркости A019. Это лучший способ диммирования, если у вас несколько устройств, поскольку диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммерные провода прямо ко входу драйвера, и все готово.

Диммирование переменного тока

Для высоковольтных драйверов переменного тока существует несколько вариантов регулировки яркости в зависимости от вашего драйвера. Многие драйверы переменного тока работают с регулировкой яркости 0-10 В, как мы уже говорили выше. У нас также есть светодиодные драйверы Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими передними и задними диммерами. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами затемнения в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которые вы можете запустить от одного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов.При использовании драйверов LuxDrive вы определяете максимальное выходное напряжение, вычитая 2 вольта из входного напряжения. Это необходимо, потому что драйверы нуждаются в накладных расходах 2 В для питания внутренней схемы. Например, при использовании драйвера Wired 1000mA BuckPuck со входом 24 В у вас будет максимальное выходное напряжение 22 В.

Что мне нужно для питания?

Это приводит нас к определению того, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно максимальному выходному напряжению для нашего драйвера после того, как мы учтем служебное напряжение схемы драйвера.Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы возьмем Wired 1000mA BuckPuck, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

V o + (V f x LED n ) = V дюйм

Где:

В o = Накладные расходы по напряжению для драйверов – 2, если вы используете драйвер DC LuxDrive, или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать

В в = Входное напряжение на драйвер

Технические характеристики продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока и вы используете проводную шайбу BuckPuck, указанную выше, то V в должно быть не менее 20 В постоянного тока на основе следующих расчетов.

2 + (3,0 х 6) = 20

Определяет минимальное входное напряжение, которое вам необходимо обеспечить. Нет никакого вреда в использовании более высокого напряжения до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания на 20 В постоянного тока, вы, вероятно, будете использовать источники питания 24 В постоянного тока для работы этих светодиодов.

Теперь это помогает нам убедиться, что напряжение работает, но для того, чтобы найти правильный источник питания, нам также необходимо найти мощность всей цепи светодиода.Расчет мощности светодиода:

В f 900 10 x Управляющий ток (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем определить наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность цепи = 6 x 3 = 18 Вт

При расчете мощности блока питания, подходящей для вашего проекта, важно предусмотреть 20% «амортизатора» при расчете мощности. Добавление этой 20% подушки предотвратит перегрузку источника питания.Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному отказу блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего примера выше нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт с выходным напряжением 24 В.

Что делать, если у меня недостаточно напряжения?

Использование LED Boost Driver (FlexBlock)

Драйверы светодиодов FlexBlock – это повышающие драйверы, что означает, что они могут выдавать более высокое напряжение, чем то, что на них подается.Это позволяет подключать больше светодиодов последовательно с одним драйвером светодиодов. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено и вам нужно получить

FlexBlock На

больше мощности для светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которое вы можете включить с помощью одного последовательно подключенного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и может варьироваться в зависимости от входного напряжения.В режиме Buck-Boost (стандартный) FlexBlock может обрабатывать светодиодные нагрузки, которые находятся выше, ниже или равны напряжению источника питания. Максимальное выходное напряжение драйвера в этом режиме определяется по формуле:

48 В постоянного тока – В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы могли бы работать с 700 мА FlexBlock? Максимальное выходное напряжение составляет 36 В постоянного тока (48-12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы видим, что этот драйвер может питать 12 светодиодов.В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока от всего лишь 10 В постоянного тока. Таким образом, если вы были в режиме Boost-Only, вы могли включить до 16 светодиодов (48 / 2,9). Здесь мы рассмотрим использование повышающего драйвера FlexBlock для более глубокого питания ваших светодиодов.

Проверка мощности для входных драйверов переменного тока большой мощности

Теперь с драйверами входа переменного тока они выделяют определенное количество ватт для работы, поэтому вам нужно определить мощность ваших светодиодов. Вы можете сделать это по следующей формуле:

[Vf x ток (в амперах)] x LEDn = мощность

Итак, если мы пытаемся запитать те же 6 светодиодов Cree XPG2 на 700 мА, ваша мощность будет…

[2.9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, как наш светодиодный драйвер Phihong 15 Вт.

ПРИМЕЧАНИЕ: При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), для работы с этим конкретным драйвером вам потребуется соединить не менее 6 из них последовательно.

Инструменты для понимания и поиска правильного драйвера светодиода

Итак, теперь у вас должно быть довольно хорошее представление о том, что такое драйвер светодиода и на что нужно обратить внимание при выборе драйвера с источником питания, достаточным для вашего приложения. Я знаю, что вопросы по-прежнему будут, и для этого вы можете связаться с нами по телефону (802) 728-6031 или [email protected].

У нас также есть этот инструмент выбора драйверов, который помогает рассчитать, какой драйвер будет лучшим, путем ввода характеристик вашей схемы.

Если ваше приложение требует нестандартного размера и вывода, обратитесь в LEDdynamics. Их подразделение LUXdrive быстро разработает и изготовит нестандартные светодиодные драйверы прямо здесь, в Соединенных Штатах.

Спасибо за внимание, и я надеюсь, что этот пост поможет всем, кто интересуется, что такое драйверы светодиодов.

Драйверы светодиодов

: какие они и какие мне нужны?

Переход на светодиодное освещение имеет огромное значение в коммерческой отрасли. Из-за их длительного срока службы и энергоэффективности многие подрядчики начинают понимать преимущества этого светодиода. Узнайте больше о светодиодах с помощью The Only LED Guide, который вам когда-либо понадобится

… Итак, как запитать светодиоды?

Поскольку светодиоды работают с низким напряжением, для их питания требуется специальное оборудование. Для светодиодных светильников требуется специальное устройство, называемое светодиодным драйвером. Эти драйверы обеспечивают правильное функционирование светодиодных лампочек. аналогично тому, как балласт питает люминесцентную лампу или трансформатор питает низковольтную лампу накаливания.

Как работают светодиодные драйверы? Драйверы светодиодов

в основном поддерживают электрический ток, протекающий через цепь светодиодов, на номинальном уровне мощности. Светодиоды рассчитаны на низкое напряжение (12-24 вольт), но в большинстве коммерческих помещений подача питания намного выше (120-277 вольт).

Драйверы светодиодов

используются для направления нужного количества электричества на лампочку. В случае изменения напряжения (мощности) драйвер светодиода защитит светодиодную лампу от любых колебаний электрического тока.Эти колебания могут привести к изменению светоотдачи (яркости) лампочки или вызвать перегрев светодиодной лампы. Светодиодный драйвер жизненно важен для безопасности лампы.

Внутренние и внешние драйверы

Для питания каждого светодиодного светильника требуется драйвер. Есть два разных типа устройств: внутренние драйверы и внешние драйверы.

Внутренние драйверы

Внутренние драйверы обычно используются в бытовых лампочках.Это стандартные сменные лампы накаливания и CFL с возможностью ввинчивания или вставки.

Внешние драйверы

Внешние драйверы обычно используются для коммерческого освещения. Это везде, от освещения площадей до освещения складских помещений и уличного освещения. В большинстве случаев заменить внешний драйвер намного дешевле, чем полностью заменить светодиодный светильник. Для установки освещения ознакомьтесь с нашим Руководством по модернизации

.

Когда мне следует заменить внешний драйвер?

Неудивительно, что внешние драйверы выйдут из строя, но перед заменой всего светодиодного светильника вам следует рассмотреть преимущества простой замены внешнего драйвера.Часто водители терпят неудачу из-за воздействия высоких температур.

Эти высокие внутренние температуры могут сократить срок службы драйвера и привести к прекращению работы светодиодной лампы. Просто заменив старый драйвер на новый, вы сэкономите время и деньги!

Как возникают такие высокие температуры?

Температура в драйвере светодиода напрямую коррелирует с внешней температурой драйвера. Высокие температуры возникают, когда электролитические конденсаторы, обнаруженные внутри драйвера, начинают перегреваться.

Внутри этих конденсаторов находится гель, который со временем постепенно испаряется. При воздействии более высоких температур гель испаряется быстрее, из-за чего водитель неожиданно прекращает работу. Драйвер светодиода укажет на этикетке свою самую горячую точку, известную как точка TC.

Эта точка используется для обозначения максимальной рабочей температуры водителя. Вот почему драйверы светодиодов с высокими значениями термостойкости могут выдерживать более высокие температуры и, следовательно, имеют более длительный срок службы. Если ваша светодиодная лампа неожиданно перестала работать, это, вероятно, означает, что пришло время заменить внешний драйвер.

Какой внешний светодиодный драйвер мне нужен?

Существует три типа внешних драйверов: драйверы постоянного тока, постоянного напряжения и переменного тока. При замене старого драйвера вы должны убедиться, что требования к входу / выходу идеально соответствуют вашей светодиодной лампе. Светодиоды не могут работать с обычными трансформаторами, такими как низковольтные галогенные лампы или лампы накаливания. Поскольку они работают с низким напряжением, им требуется специальное устройство, которое может обнаруживать низкие напряжения.

Драйверы постоянного тока

Внешние драйверы постоянного тока обеспечивают питание светодиодов фиксированным выходным током и набором переменных выходных напряжений. Определенная светодиодная лампа будет показывать один конкретный ток, обозначенный в амперах, и будет иметь множество напряжений, которые будут варьироваться в зависимости от мощности лампы. Эти характеристики можно найти в техническом описании внешнего драйвера.

Драйверы постоянного напряжения

Внешние драйверы постоянного напряжения обеспечивают питание светодиодов с фиксированным выходным напряжением и максимальным выходным током.В этой конкретной светодиодной лампе максимальный ток уже регулируется внутри лампы, а напряжение будет фиксированным на 12 В постоянного тока или 240 В постоянного тока. Эти характеристики можно найти в техническом описании внешнего драйвера.

Драйверы светодиодов для кондиционеров

Драйверы светодиодов

A / C используются с лампами, которые уже содержат внутренний драйвер. Внутренний драйвер преобразует электрический ток из переменного тока в постоянный.

Драйвер светодиодов кондиционера просто определяет напряжение светодиодной лампы и преобразует электрический ток в соответствии с требованиями к мощности для этого конкретного осветительного устройства.Эти светодиодные драйверы обычно используются в светодиодных лампах MR16, но их можно использовать с любой светодиодной лампой переменного тока 12-24 В.

Другие моменты, которые следует учитывать при покупке внешнего драйвера светодиода

Максимальная мощность

Драйверы светодиодов

всегда должны использоваться в паре со светодиодными лампами, которые используют 80% своей максимальной номинальной мощности. Например, если ваш внешний драйвер может работать с максимальной мощностью 120 Вт, он должен работать только с светодиодными лампами мощностью 96 Вт.

120 Вт x 0.80 = 96 Вт

* Примечание * НИКОГДА НЕ ПЕРЕГРУЖАЙТЕ CIRUCIT

Регулировка яркости

Все три типа внешних драйверов обеспечивают возможность регулирования яркости. Убедитесь, что и светодиодная лампочка, и драйвер указывают на то, что у них есть функции регулировки яркости, в паспорте продукта. Для большинства внешних драйверов с регулируемой яркостью потребуется внешняя система управления освещением. Эти устройства укажут, какой внешний диммер необходим для управления определенными светодиодными лампами. Узнайте, как установить диммеры и датчики, из нашего Руководства по управлению освещением .

Сравнение классов I и II

Драйверы UL класса II соответствуют стандарту UL1310. Это означает, что выходная мощность безопасна для контакта, и при обращении не требуется никаких серьезных защитных мер. (Существует НЕТ риска возгорания или поражения электрическим током)

Эти драйверы могут работать с:

  • Менее 60 вольт в сухих условиях
  • 30 вольт во влажной среде
  • Менее 5 ампер
  • Менее 100 Вт

Обратите внимание * Существует ограничение на количество лампочек, которое может работать с одним драйвером класса II *

Драйверы UL класса I имеют выходную мощность, выходящую за рамки драйверов класса I.Из-за высокого выходного напряжения драйверы класса I требуют защиты при обращении с ними. В отличие от своего аналога, драйверы класса I намного более эффективны, потому что в них можно установить больше светодиодных ламп.

Мы стремимся предоставлять качественную продукцию по конкурентоспособным ценам. Если вы хотите заменить или модернизировать систему освещения, мы можем помочь вам в этом. HomElectrical предлагает широкий выбор светодиодных драйверов и светодиодного освещения для вашего удобства.

Магазин светодиодного освещения

Оставайтесь на связи

Нравится этот блог? Мы хотим знать, о каких блогах вы хотите читать.

Поделитесь некоторыми темами блога, которые вас интересуют, в разделе комментариев ниже или отправьте нам сообщение на Facebook!

Не забудьте поделиться с друзьями на Facebook и подписаться на нас в Twitter!

Что такое светодиодный драйвер? Как проверить и заменить драйвер светодиода?

ЧТО ТАКОЕ СВЕТОДИОДНЫЙ ДРАЙВЕР?

Это будущее уже сейчас, и светодиодные фонари взяли верх. Часто нам задают вопрос о светодиодах и о драйвере.

Какие они?

Зачем они вам?

Как они работают?

Как проверить драйвер светодиода? (переходите в конец страницы)

Ваш светодиод может быть лучшим, но он не останется таким, если у вас нет хорошего светодиодного драйвера. См. Раздел «Как работают светодиоды», чтобы узнать больше об общих светодиодах.

В светодиодном фонаре всю тяжелую работу выполняет водитель. Будь то светодиодная лампа Corn или светодиодный светильник, у него внутри есть драйвер. Этот драйвер принимает входной сигнал от здания переменного тока или переменного тока и преобразует его в постоянный или постоянный ток. В вашем доме это означает от 120 В переменного тока до 36 или 48 В постоянного тока. Он работает как гигантский трансформатор. Для этого постоянно требуется продукт очень высокого качества. Большинство проблем, которые мы видим при сбоях светодиодов, связаны с драйвером.

Что такое светодиодный драйвер? = “Q”>

A: Драйвер светодиода – регулятор мощности. Технически это схема, которая отвечает за регулирование и подачу идеального тока на светодиод. Драйвер светодиодов обеспечивает питание и регулирует переменные потребности светодиодов, обеспечивая постоянное количество энергии, поскольку его свойства меняются с температурой. Драйверы светодиодов преобразуют переменный ток высокого напряжения в низкое.

Если у вас есть хороший светодиод и плохо работает светодиодный драйвер, ваши светодиодные фонари для высоких отсеков не будут работать долго.Большинство отказов светодиодов происходит не от светодиода, а от драйвера. Обычно цепи перегорают и выходят из строя. Драйверы светодиодов обычно должны подавать меньше энергии на светодиоды из-за их эффективного характера, но они также должны быть более точными. Светодиодное освещение разработано с высокой точностью, и для его эффективной работы требуется соответствующее напряжение. Современная технология, используемая в драйвере светодиода, основана на печатной плате и больше похожа на компьютер, чем на электрический регулятор.

Что такое балласт для светодиодов? = “Q”>

A: Технически этого не существует.HID и другие лампы использовали балласт для увеличения мощности ламп. Светодиоды используют драйвер, который преобразует мощность переменного тока здания в постоянный ток. Светодиоды требуют постоянного постоянного тока для работы.


Балласты и драйвер светодиодов

Балласты и драйверы являются регуляторами мощности для фонарей, но работают они по-разному. Оба обеспечивают небольшой буфер между источником света и источником тока, что делает его менее уязвимым для перегрузки электричеством, регулируя напряжение между ними. Хотя оба компонента служат одной и той же цели, есть разница.ПРА – традиционный компонент, используемый в металлогалогенных лампах и компактных люминесцентных лампах (CFL), и, как правило, они должны регулировать гораздо большую мощность. Они также использовали старые технологии, такие как магниты, для достижения результатов, хотя новые были электронными балластами.


Драйверы светодиодов с регулируемой яркостью

Другой важной отличительной особенностью является то, что драйверы светодиодов могут включать опцию регулировки яркости светодиодов. Драйверы с регулируемой яркостью могут быть выполнены разными способами. Для небольших бытовых лампочек количество тока, протекающего через светодиодное устройство, определяет световой поток.Их уровень яркости регулируется простым управлением током, проходящим через уложенные друг на друга слои полупроводникового материала, установленные на подложке. Для светодиодных светильников с более высокой мощностью, таких как LED High Bay, для управления светом используется напряжение 0-10 В или PMW. В любом случае хороший драйвер светодиода гарантирует защиту светодиода.

Электропроводка

Электромонтаж любой цепи очень важен, когда речь идет о производительности, безопасности и экономии электроэнергии. В больших светильниках, таких как светодиодные уличные фонари, напряжение 110 В или 220 В направляется прямо на драйвер светодиода через стандартное 3-проводное соединение.Затем светодиод настраивает его на правильное напряжение каждого OED. Схема подключения драйвера светодиода позволяет сэкономить до 70% электроэнергии по сравнению с традиционной люминесцентной лампой. Подключение драйвера делает его более безопасным и дает лучшие результаты даже при экстремальных температурах.

Как заменить драйвер светодиода? = “Q”>

A: Сначала вы должны убедиться, что драйвер исправен, то есть его можно заменить. Если это лампочка, то шансы, что она исправна, равны нулю.Они жестко подключены к лампочке. Для больших светильников есть неплохие шансы. Вам нужно получить доступ к компоненту драйвера и собрать некоторые важные спецификации. Также неплохо протестировать ввод и вывод драйвера, чтобы убедиться, что это всего лишь драйвер. Сначала попробуйте модель драйвера и посмотрите, сможете ли вы ее найти. Если нет, вам понадобится эквивалент. Какая номинальная входная мощность? Номинальное напряжение? Что на выходе? Постоянный ток или постоянное напряжение? Есть ли на борту диммирование 0-10В. Затем вам нужно будет найти драйвер аналогичного размера, который соответствует входной мощности, напряжению, выходному току и т. Д.Если вы найдете совпадение, вы готовы их поменять местами. Хорошая новость в том, что обычно обменять проще, чем их найти.

Глядя на светодиодный драйвер внутри светильника

Посмотрите это видео, чтобы увидеть, как мы открываем светодиодный светильник и просматриваем драйверы в нем. Это пример исправного приспособления, в котором можно заменить драйверы.

Светодиоды без водителя

Светодиодные двигатели переменного тока без водителя теперь превратились в важное новое оружие в осветительном бизнесе.Прочтите нашу статью «Ионные светодиоды без драйвера», чтобы узнать, как они становятся все более распространенными, но при этом более опасными и подверженными сбоям.

Резюме

Драйверы светодиодов критически важны для производительности вашего осветительного прибора. LEDLightExpert.com использует только высококачественные драйверы светодиодов от таких торговых марок, как Meanwell или Invetronics. Таким образом, мы можем предоставить 5-летнюю гарантию на все светодиодные лампы с высоким световым потоком, потому что мы знаем, что у вас не возникнет проблем.

Как проверить драйвер светодиода? = “Q”>

A: светодиодам требуется постоянный ток, поэтому они работают от постоянного тока.Электроэнергия в доме ас. Убедитесь, что входное напряжение на входе соответствует мощности здания. На выходной стороне убедитесь, что o = utput соответствует постоянному току драйвера. Обычно это 24, 36, 48 или 54 постоянного тока. Убедитесь, что диммер и другие провода заглушены. Прочтите нашу полную статью для получения более подробной информации

Как проверить драйвер светодиода

Около 10 минут

При диагностике светодиодного светильника первым шагом должно быть питание. В драйвер светодиода подается питание. Объясняем, как тестировать

https: // www.ledlightexpert.com/What-is-an-LED-Driver_ep_44-1.html

Необходимых предметов:

Светодиодный светильник с исправным драйвером

Проволочные гайки

Инструмент для зачистки проводов

Отвертка

Мультиметр

Препараты

Безопасность прежде всего. Убедитесь, что у вас есть надежный подъемник или лестница к приспособлению. Ремни безопасности и зажимы следует использовать для более высоких установок. На выключателе определяют напряжение выключателя. Вам нужно будет знать это для тестирования позже.дважды проверьте, что вы в безопасности, прежде чем продолжить.

https://www.LEDLightExpert.com/assets/images/How_to_test_an_LED_Driver_LLE_900px.jpg

Найдите отсек водителя и настройку проводки

Найдите отделение водителя на приспособлении. Некоторые приборы могут иметь запечатанный драйвер или использовать драйвер на борту (DOB). Эти приспособления не подлежат ремонту, и необходимо будет заменить все приспособления. По возможности мы рекомендуем исправные приспособления для проведения технического обслуживания.После того, как вы найдете отсек, вам нужно будет найти входные и выходные провода. Многие светильники также имеют диммирование 0-10В и имеют 2 дополнительных провода. Их необходимо проверить, чтобы убедиться, что они не касаются друг друга, чтобы завершить тест. Если установлен диммер или провода соприкасаются, это даст вам ложное считывание плохого драйвера.

https://www.LEDLightExpert.com/assets/images/How_to_test_an_LED_Driver_multivolt_test_LLE_900px.jpg

Проверка стороны входа

Входная сторона драйвера может быть от 100 до 480 В в зависимости от здания.На шаге 1 вы узнаете напряжение и сможете соответственно настроить свой счетчик. В большинстве приспособлений используются быстросъемные зажимы, но некоторые из них – проволочные гайки. Вы сможете проверить мощность с помощью любого из них. Сделайте снимок глюкометра со стороны входа. Если у вас нет питания, мы не сможем протестировать драйвер. Сначала исправьте эту проблему. Как только у нас будет показание счетчика, соответствующее напряжению в здании, мы можем двигаться дальше.

https://www.LEDLightExpert.com/assets/images/LED_Driver_multimeter_test_LLE_500px.jpg

Проверить выходную сторону

Светодиоды работают от постоянного тока или постоянного тока.Количество постоянного тока может меняться в зависимости от прибора, и вам нужно будет указать это на драйвере. Чаще всего встречается где-то между 24 и 54 постоянного тока. Переключите измеритель на постоянный ток и вставьте щупы мультиметра. Выход постоянного тока не имеет заземления, поэтому всего 2 провода. еще раз убедитесь, что провода диммирования и любые другие закрыты заглушками для теста. Ознакомьтесь с показаниями DC Out и посмотрите, соответствует ли он вашему драйверу.

https://www.LEDLightExpert.com/assets/images/LED_Driver_multimeter_test_4_LLE_800px.jpg

Заключение

Драйверы

обычно не устанавливают 0, поэтому вы обычно получаете 0 на выходной стороне. Если драйвер имеет частичный выход, светодиоды прибора будут тусклыми или мигать. Знание того, что у нас хорошее питание, а не отключение, говорит нам, что это плохой драйвер. Если у вас хорошее питание и хорошее выходное напряжение постоянного тока, то проблема связана с платой светодиодов

.

https://www.ledlightexpert.com/LED_Driver_multimeter_test_3_LLE_300px.jpg

дополнительные изображения ниже

Зачем использовать драйверы светодиодов, а не электронные трансформаторы?

Светодиодные лампы

– отличное дополнение к дому или бизнесу, но ключ к достижению идеального баланса света в вашем помещении заключается в использовании надлежащего источника питания.Существует два основных типа источников питания, доступных для светодиодных фонарей, драйверов светодиодов и электронных трансформаторов. Однако эти источники питания не обязательно могут быть взаимозаменяемыми, и вам нужно понимать, почему использование драйверов светодиодов может быть лучшим выбором, чем электронные трансформаторы.

Чем драйверы светодиодов отличаются от электронных трансформаторов?

светодиодных драйверов. Обеспечивая постоянное напряжение на светодиодной световой полосе, и ток, подаваемый на светодиодную подсветку, изменяется, чтобы обеспечить затемнение или регулировку индекса цветопередачи (CPI), который изменяет воспринимаемый вид света.Электронные трансформаторы работают аналогично драйверам светодиодов, но имеют тенденцию обеспечивать большую выходную мощность. Другими словами, для светодиодных лент большой длины может потребоваться источник питания мощностью более 200 Вт, а поскольку выходная мощность драйверов светодиодов может быть ограничена до 100 или 200 Вт, может потребоваться электронный трансформатор.

Когда следует использовать драйверы светодиодов? Драйверы светодиодов

часто рассматриваются как превосходный источник питания для светодиодных фонарей из-за их повышенной безопасности и способности поддерживать целостность светодиодных фонарей, сообщает журнал LEDs Magazine. Драйвер светодиода обеспечивает постоянную выходную мощность, а изменение частоты импульсов в драйвере делает светодиод регулируемым. Драйверы светодиодов следует использовать для небольших установок светодиодного освещения. Однако можно установить несколько драйверов светодиодов для использования в качестве источников питания для нескольких конфигураций светодиодов.

Может ли электронный трансформатор справиться с малым светодиодным освещением?

Электронный трансформатор обычно может работать со светодиодными осветительными приборами того же размера, что и драйверы светодиодов. Кроме того, некоторые производители могут производить электронные трансформаторы, которые трудно скрыть.Однако MX LightForce предлагает полную линейку низковольтных трансформаторов освещения, которые нельзя использовать в жилых, коммерческих или промышленных светодиодных осветительных установках. Кроме того, электронный трансформатор может использоваться, когда существует комбинация светодиодного освещения и галогенного освещения.

Как насчет уменьшения яркости и срока службы светодиодов с помощью драйверов светодиодов или электронных трансформаторов?

В зависимости от технических характеристик вашей светодиодной ленты или осветительной установки может использоваться драйвер светодиода или электронный трансформатор.Но драйверы светодиодов являются предпочтительным выбором для обеспечения оптимального регулирования яркости и увеличения срока службы светодиодов. Более того, новые электронные трансформаторы также позволяют регулировать яркость TRIAC.

Выберите подходящий источник питания для светодиодного освещения

Рынок светодиодов меняется, и дни выбора конкретного драйвера светодиода или электронного трансформатора заканчиваются. Чтобы обеспечить удовлетворение ваших потребностей в светодиодном освещении и поддержание безопасности и целостности, убедитесь, что в вашей установке светодиодного освещения используется соответствующий светодиодный драйвер или электронный трансформатор. В противном случае выберите источник питания из соответствующих светодиодных драйверов и электронных трансформаторов, посетив MX LightForce.com, или позвольте эксперту помочь вам, заполнив онлайн-форму для связи, чтобы представитель свяжется с вами сегодня.

Блоки питания с регулируемой яркостью переменного тока / Драйверы светодиодов – Armacost Lighting

Для использования с 12-вольтовым белым светодиодным освещением

Для использования с белым светодиодным освещением 24 В Блоки питания

с регулируемой яркостью, также называемые драйверами светодиодов, являются отличным вариантом, когда вы заменяете существующие лампы накаливания или флуоресцентные лампы под шкафом, или когда у вас есть электрическая розетка, управляемая настенным выключателем.Просто подключите диммируемый драйвер к существующей розетке и замените выключатель переменного тока на диммер переменного тока. Как правило, драйверы светодиодов с регулируемой яркостью требуют проводного подключения к домашней электросети, за исключением беспроводных подключаемых «диммеров ламп». Никогда не используйте низковольтный диммер постоянного тока / контроллер цвета в одной цепи с диммером переменного тока.

Типовая схема подключения при использовании драйвера с регулируемой яркостью

Освещение и затемнение большой площади

Для больших систем освещения может потребоваться использование нескольких диммируемых драйверов / источников питания переменного тока.Для синхронизированного включения / выключения и управления яркостью светодиодного освещения на нескольких источниках питания подключите диммер переменного тока на 120 В к нескольким драйверам регулируемой яркости освещения Armacost.

Выберите подходящую мощность / выходную мощность

Драйверы светодиодов с регулируемой яркостью доступны в моделях мощностью 20–120 Вт. Мощность, необходимая для вашего приложения, зависит от мощности, необходимой для светодиодного освещения. Мощность, необходимая для каждого светодиодного осветительного прибора Armacost, указана в соответствующих инструкциях по установке. Для светодиодного ленточного освещения RibbonFlex Pro требуемая мощность или ватты зависит от модели яркости, определяемой плотностью светодиодов (количество светодиодов на метр), длиной устанавливаемого освещения и конструктивной конфигурацией для вашего приложения. Ознакомьтесь с инструкциями по установке используемого светодиодного светильника и выберите драйвер / источник питания, рассчитанный на большее, чем ваши потребности – вы не сможете превзойти светодиодное ленточное освещение.

Посмотреть справочную таблицу требований к питанию для RibbonFlex Pro

Посмотреть универсальные драйверы для светодиодов с затемнением в формате PDF, описание

Все еще не уверены, какой блок питания подходит для вашего проекта? Посетите нашу страницу по выбору блока питания.

Общие вопросы и ответы о драйверах / источниках питания светодиодов

Драйверы светодиодов

или источники питания светодиодов обеспечивают светодиодные лампы электричеством, необходимым для максимальной производительности, подобно магнитному балласту люминесцентной лампы или низковольтному трансформатору лампы. Постоянный поток технологических инноваций и часто сбивающая с толку терминология может сделать выбор драйвера светодиодов непосильным даже для опытных профессионалов. Цель этой статьи – ответить на некоторые из наиболее распространенных вопросов и помочь дизайнеру / специалисту по свету разобраться в запутанном лабиринте выбора светодиодных драйверов.

  1. Что такое светодиодный драйвер и зачем он вам нужен?
    Светодиоды не могут работать без трех основных компонентов: чипсета, излучающего свет; драйвер, регулирующий мощность источника света; и радиатор, охлаждающий устройство. Драйвер светодиода – жизненно важный компонент технологии, поскольку светодиоды используют мощность, преобразованную драйвером, для генерации света. Эти драйверы очень эффективны при преобразовании электроэнергии, поэтому светодиодная лампа мощностью 100 Вт может заменить металлогалогенную лампу мощностью 400 Вт.
  2. В чем разница между драйверами постоянного напряжения и постоянного тока?
    Одним из наиболее важных факторов, которые следует учитывать, является то, требуется ли приложению источник питания постоянного напряжения (CV) или постоянного тока (CC) . Драйвер CV обеспечивает фиксированное напряжение и подходит для освещения, где количество светодиодных цепочек и потребляемый ток неизвестны. В этих приложениях управление током осуществляется дополнительными компонентами на самом светодиодах.Драйверы CC обеспечивают постоянный ток и подходят для приложений, требующих постоянного тока, напрямую подключенного к светодиоду. Этот тип драйвера работает в ограниченном диапазоне напряжений, поэтому важно выбрать драйвер с соответствующим номинальным напряжением. GRE Alpha, ведущий разработчик твердотельных светодиодных источников питания, предлагает различные двухрежимные светодиодные драйверы для повышения гибкости проектирования освещения.
  3. Что такое драйвер светодиода переменного тока?
    Функция драйвера светодиода переменного тока заключается в понижении входного напряжения до более низкого выходного напряжения для удовлетворения небольших потребностей светодиода, обычно 12 или 24 вольт.Важно учитывать ваши требования к питанию, поскольку драйверы светодиодов переменного тока могут работать только с лампами, которые уже имеют внутренний преобразователь переменного тока в постоянный.
  4. Что такое PF и PFC и почему они важны?
    Коэффициент мощности (PF) – это соотношение между реальной и полной мощностью и представляет собой соотношение между фактической нагрузкой (кВт) и полной нагрузкой (кВА). Коррекция коэффициента мощности (PFC) имеет решающее значение для выбора драйвера светодиода, поскольку светодиоды с низким коэффициентом мощности потребляют более высокие нагрузки по току, чем нагрузки с более высоким коэффициентом мощности.Низкий коэффициент мощности приводит к более значительным потерям мощности в линиях электроснабжения, поэтому драйверы светодиодов должны соответствовать стандартам PFC.
  5. Поддерживает ли драйвер затемнение и без мерцания?
    Если приложение требует каких-либо уникальных функций, таких как регулировка яркости, обязательно выберите качественный светодиодный драйвер с функцией затемнения без мерцания. Современные беспроводные драйверы светодиодов разработаны с учетом совместимости с надежными беспроводными протоколами, такими как Bluetooth LE, Zigbee, EnOcean, Thread, Z-Wave и KNX, что обеспечивает практически мгновенную обратную связь без помех. Дизайнеры должны понимать различные доступные протоколы и сравнивать сильные стороны и ограничения.
  6. Могу ли я использовать драйвер на открытом воздухе?
    Драйверы светодиодов с классом защиты IP67 могут использоваться на открытом воздухе. Продукты с таким рейтингом полностью защищены от пыли и выдерживают погружение в воду на глубину до 1 м на срок до 30 минут.
  7. Совместим ли драйвер с системами беспроводного управления?
    Многие современные системы управления освещением должны иметь возможность подключаться к Интернету вещей (IoT) – так называется сеть связанных беспроводных физических устройств.Если конструкция вашей системы требует беспроводного подключения, вы должны убедиться, что драйверы светодиодов являются беспроводными и могут «разговаривать» на том же языке, что и другие устройства в вашей системе. Подключенные устройства могут помочь разработчикам планировать системы, которые более энергоэффективны и интуитивно понятны. Если вашему светодиодному драйверу не нужно «говорить» по одному из протоколов подключения loT, на рынке доступен широкий спектр надстроек для модулей затемнения светодиодов. Эти продукты позволяют дизайнерам добавлять варианты дизайна проекта. «Это одно из наших ключевых уникальных нововведений с нашим модульным системным подходом», – сказал Ричард Фонг, директор GRE Alpha.
  8. Что такое заливка (инкапсуляция) и почему это важно?
    Герметизация увеличивает степень защиты IP (защиты от проникновения) драйвера / источника питания за счет обеспечения водонепроницаемого барьера для защиты компонентов от жидкостей. Это особенно важно для наружного применения. Герметизирующий компаунд также отводит тепло от жизненно важных силовых компонентов к поверхности корпуса и, таким образом, снижает термическое напряжение и увеличивает срок службы компонентов.
  9. Каковы преимущества использования драйверов с высоким КПД?

    Энергоэффективность – это основная причина, по которой клиенты хотят использовать твердотельные светодиодные системы управления освещением. Использование высокоэффективных драйверов увеличивает достижимую экономию энергии. Источники питания с более высоким КПД рассеивают меньше тепла и увеличивают срок службы изделия.

  10. Каков ожидаемый срок службы драйвера светодиода?
    Помимо экономии энергии, светодиодные системы освещения также должны выдерживать испытание временем. Известно, что светодиоды служат значительно дольше традиционных систем освещения. Таким образом, срок службы источника питания светодиода должен соответствовать ожидаемому сроку службы светодиода.Среднее время наработки на отказ (MTBF) – хороший индикатор качества светодиодного драйвера. Ведущие производители светодиодных драйверов, такие как GRE Alpha, указывают информацию о времени наработки на отказ в технических характеристиках своих продуктов. Разработчики систем освещения могут рассчитывать на целостность этих компонентов для своих систем управления.

Другие факторы, которые следует учитывать, – это надежность, функциональность и удобство использования. Не все водители одинаковы. Рассмотрим преимущества модульного подхода. Основное преимущество заключается в том, что это дает пользователю возможность смешивать и подбирать то, что ему нужно, по разумной цене, без чрезмерной инженерии.В этом отношении наш подход модульных систем уникален. Чтобы узнать больше о драйверах светодиодов и источниках питания, посетите GREAlpha.com или приведенные ниже статьи.

Список литературы

Корри, А. (1 января 2013 г.). Светодиодное освещение зависит от драйверов . Electronic Design, Нью-Йорк,
61, 5, 74.

Ван, Ю., Алонсо, Дж. М., и Руан, X. (1 июля 2017 г.). Обзор драйверов светодиодов и связанных технологий .Ieee Transactions on Industrial Electronics, 64, 7, 5754-5765.

Подано в: Промышленность

Как выбрать светодиодный драйвер IC?

Светодиод зарекомендовал себя в сфере подсветки портативных устройств. Даже в области подсветки для ЖК-панели большого размера он начал бросать вызов распространенному CCFL. В освещении светодиоды особенно популярны на рынке из-за таких ярко выраженных характеристик, как энергоэффективность, экологичность, длительный срок службы и низкие эксплуатационные расходы.Схема драйвера является важной и неотъемлемой частью светодиода. Будь то освещение, подсветка или панель дисплея, выбор технической архитектуры схемы драйвера должен соответствовать конкретным приложениям.

Механизм светодиодного освещения работает следующим образом: когда прямое напряжение прикладывается к обоим концам, неосновная и основная несущая в полупроводнике рекомбинируют, высвобождая избыточную энергию, испуская фотоны. Основные функции схемы управления светодиодами заключаются в передаче переменного напряжения в постоянный источник питания и согласовании напряжения и тока в соответствии с требованиями светодиодных устройств.Помимо требований безопасности, схема драйвера светодиода должна также включать две другие основные функции:

Во-первых, постоянный ток должен поддерживаться как можно дольше, таким образом, изменение выходного тока может поддерживаться в диапазоне ± 10, особенно когда смена источника питания выходит за пределы диапазона ± 15. Вот причины использования драйвера постоянного тока при использовании светодиода в качестве монитора, других осветительных устройств или подсветки:

1. Чтобы ток привода не превысил максимальный уровень и не повлиял на его надежность.

2. Для удовлетворения ожидаемых требований к яркости и обеспечения однородности цвета и яркости каждого светодиода.

Во-вторых, схема драйвера должна поддерживать низкое энергопотребление, чтобы эффективность светодиодной системы могла оставаться на высоком уровне.

PWM (Pulse Width Modification) – это традиционная технология регулировки света, которая использует простые цифровые импульсы для включения и выключения светодиодного драйвера время от времени. Системе нужно только подавать широкие и узкие цифровые импульсы, чтобы легко изменять выходной сигнал для регулировки яркости светодиода.Преимущество заключается в том, что эта технология может обеспечить высококачественный белый свет с высокой эффективностью за счет простоты применения. Но есть фатальный недостаток: он подвержен EMI (электромагнитным помехам), иногда даже издает слышимые шумы.

Повышение напряжения – важная задача схемы драйвера светодиода, разделенная на два различных топологических режима, а именно повышение напряжения через индуктивность и повышение заряда. Поскольку светодиод управляется током, а катушка индуктивности наиболее эффективна в момент передачи тока, наибольшая сила повышения напряжения через катушку индуктивности заключается в высокой эффективности, которая может достигать 90% при правильной конструкции.Однако не менее примечательна его слабость – сильные электромагнитные помехи, которые предъявляют высокие требования к системам телекоммуникационных продуктов, таких как мобильные телефоны. С появлением зарядных насосов большинство мобильных телефонов не увеличивают напряжение через индуктор. Конечно, эффективность повышения напряжения с помощью зарядного насоса ниже, чем в противном случае.

Независимо от того, применяется ли освещение или задняя подсветка, разработчик продукта должен столкнуться с проблемой повышения эффективности передачи драйверов. Повышение эффективности передачи не только выгодно для портативных устройств, так как увеличивает время ожидания, но также является важным средством решения проблемы рассеивания тепла светодиодами. В освещении использование светодиода высокой мощности также подчеркивает проблему повышения эффективности передачи.

Светодиод нуждается в компонентах, стабилизирующих ток и напряжение, которые должны иметь высокое разделенное напряжение и низкое энергопотребление, в противном случае высокоэффективный светодиод снизит общую эффективность системы из-за высокого рабочего потребления, что противоречит принципу энергосбережения и высокого энергопотребления. эффективность.Следовательно, основная схема ограничения тока должна использовать высокоэффективные схемы, такие как емкость, катушка индуктивности или схема переключения с источником питания, поскольку можно обеспечить высокий КПД светодиодной системы вместо резистора или схемы последовательной стабилизации напряжения. Схема последовательной постоянной выходной мощности может поддерживать постоянную светоотдачу светодиода в широком диапазоне источников питания, но обычные ИС-схемы теряют некоторую эффективность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *