Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Явление самоиндукции — определение, формулы, примеры

Магнитный поток

Прежде чем говорить об электромагнитной индукции и самоиндукции, нам нужно определить сущность магнитного потока.

Представьте, что вы взяли в руки обруч и вышли на улицу в ливень. Потоки воды будут проходить через обруч.


Если держать обруч горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.


Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).


Магнитный поток очень похож на поток воды, проходящей через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению:

  • модуля вектора магнитной индукции ​B​,
  • площади поверхности ​S​, которую пронизывает поток,
  • и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности).


Магнитный поток


Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно, меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции открыл Майкл Фарадей в ходе серии опытов.

Опыт раз. На одну непроводящую основу намотали две катушки таким образом, что витки одной катушки были расположены между витками второй. Витки первой катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушку замкнули на гальванометр, а магнит передвигали относительно катушки.


Вот что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.

  2. Направление тока различается при увеличении числа линий и при их уменьшении.

  3. Сила индукционного тока зависит от скорости изменения магнитного потока. При этом как само поле может изменяться, так и контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна электродвижущей силе (ЭДС).

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Самоиндукция

Представим себе любую электрическую цепь, параметры которой можно менять. Если мы изменим силу тока в этой цепи — например, подкрутим реостат или подключим другой источник тока — произойдет изменение магнитного поля. В результате этого изменения в цепи возникнет дополнительный индукционный ток за счет электромагнитной индукции, о которой мы говорили выше. Такое явление называется самоиндукцией, а возникающий при этом ток — током самоиндукции.

Формула магнитного потока для самоиндукции

Ф = LI

Ф — собственный магнитный поток [Вб]

L — индуктивность контура [Гн]

I — сила тока в контуре [А]

Самоиндукция — это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.

Самоиндукция чем-то напоминает инерцию: как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет самоиндукции.

Представим цепь, состоящую из двух одинаковых ламп, параллельно подключенных к источнику тока. Если мы последовательно со второй лампой включим в эту цепь катушку, то при замыкании цепи произойдет следующее:

  • первая лампа загорится практически сразу,
  • вторая лампа загорится с заметным запаздыванием.


При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки так часто перегорают при отключении света.

ЭДС самоиндукции


ξis — ЭДС самоиндукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

ΔI/Δt — скорость изменения силы тока в контуре [А/с]

L — индуктивность [Гн]

Знак минуса в формуле закона электромагнитной индукции указывает на то, что ЭДС индукции препятствует изменению магнитного потока, который вызывает ЭДС. При решении расчетных задач знак минуса не учитывается.

Индуктивность

Индуктивность — это способность накапливать магнитное поле. Она характеризует способность проводника сопротивляться электрическому току. Проще всего это делать с помощью катушки, потому что катушка состоит из витков, которые представляют собой контуры. Вспомните про магнитный поток и обруч под дождем — в контуре создается магнитный поток. Где поток, там и электромагнитная индукция.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

Можно ли увеличивать индуктивность катушки?

Конечно! Можно увеличить число витков, например. Или поместить в центр катушки железный сердечник.

Как работает катушка

Вокруг каждого проводника, по которому протекает ток, образуется магнитное поле. Если поместить проводник в переменное поле — в нем возникнет ток.

Магнитные поля каждого витка катушки складываются. Поэтому вокруг катушки, по которой протекает ток, возникает сильное магнитное поле. При изменении силы тока в катушке будет изменяться и магнитный поток вокруг нее.

Задачка раз

На рисунке приведен график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 мГн. Определите модуль ЭДС самоиндукции в интервале времени от 15 до 20 с. Ответ выразите в мкВ.


Решение

За время от 15 до 20 с сила тока изменилась от 20 до 0 мА. Модуль ЭДС самоиндукции равен:


Ответ: модуль ЭДС самоиндукции с 15 до 20 секунд равен 4 мкВ.

Задачка два

По проволочной катушке протекает постоянный электрический ток силой 2 А. При этом поток вектора магнитной индукции через контур, ограниченный витками катушки, равен 4 мВб.

Электрический ток какой силы должен протекать по катушке для того, чтобы поток вектора магнитной индукции через указанный контур был равен 6 мВб?

Решение

При протекании тока через катушку индуктивности возникает магнитный поток, численно равный Ф = LI.

Отсюда индуктивность катушки равна:


Тогда для достижения значений потока вектора магнитной индукции в 6 мВб ток будет равен:


Ответ: для достижения значений потока вектора магнитной индукции в 6 мВб необходим ток в 3 А.

42 — магнитный поток в катушке с током • 31415.ru

Магнитный поток катушки индуктивности L с током I.

Ф — магнитный поток, Вб (Вебер)
L — индуктивность катушки, Гн (Генри)
I — сила тока, А (Ампер)


Катушка индуктивности состоит из витков изолированного проводника. Обычно это витки медного провода, покрытого краской или любой не проводящей оболочкой.

Основная особенность катушки в том, что при пропускании электрического тока, она становится электромагнитом. То есть начинает создавать магнитное поле. При постоянном токе свойства катушки ничем не примечательны — это кусок провода, который можно заменить перемычкой.

При подключении к катушке переменного напряжения начинаются удивительные вещи. Ток меняется, а значит меняется сила магнитного поля, которое создает катушка. Меняется магнитная индукция создаваемая витками и следовательно меняется магнитный поток. А согласно закону электромагнитной индукции — изменение магнитного потока приводит к появлению ЭДС.

Проще говоря, переменный ток превращает катушку в электрогенератор. Причем генерируемый ток направлен противоположно внешнему току. Но стоит отметить, что так можно говорить только с математической точки зрения, с точки зрения формул. На практике, изменение тока в катушке похоже на удар рукой по водной глади: чем медленнее движется рука, тем меньше сопротивление со стороны воды, но чем быстрее движется рука, тем большее сопротивление она испытывает при ударе об жидкость. Это явление в физике называется самоиндукцией. Индуктивность катушки называют также коэффициентом самоиндукции.

Что такое индуктивность, как она зависит от числа витков и других параметров — лучше всего разбирать на практике.
В этом видео, на практических примерах показаны все основные свойства катушки индуктивности.

 

В обычной жизни люди практически не встречаются с измерением индуктивностей и магнитных потоков, поэтому эти термины запоминаются не очень хорошо.
Простой способ усвоить эти термины — это разобраться с принципом работы металлоискателей и металлодетекторов. Стойки металлодетекторов можно наблюдать на вокзалах и в торговых центрах. Если вы поймете как они работают, станет понятна важность таких терминов как индуктивность и магнитный поток.

 

Задача 42.
При силе тока 10 А, в катушке возникает магнитный поток 50 мВб. Чему равна индуктивность катушки.
Показать ответОтвет: L=0,005 Гн
 

 

 

Катушка индуктивности

Катушка индуктивности, как показано на рис. 4.11, представляет собой простомоток провода. Условное обозначение катушки индуктивности показано на рис. 4.12. В отличие от конденсатора, который препятствует изменению приложенного к нему напряжения, катушка индуктивности препятствует изменению протекающего через нее тока. Иными словами,

Рис. 4.12. Условное обозначение катушки индуктивности.                         Рис. 4.13           

если ток, подаваемый в схему, которая содержит катушку, резко увеличить, то ток в схеме будет нарастать плавно до достижения своего мак­симального значения.

Способность катушки индуктивности препятствовать изменению силы тока, протекающего через нее, носит название индуктивности этой катушки. Индуктивность обозначается буквой L, единицей ее измерения является генри (Гн).

Постоянная времени -цепи

На рис. 4.13 последовательная цепочка из конденсатора и резистора соединяется через ключ с источником питания. Когда ключ находится в положении 1, конденсатор постепенно заряжается через сопротивление, пока напряжение на нем не достигнет уровня Е т. е. ЭДС или напряжения источника питания.

Процесс заряда конденсатора показан на рис. 4.14(а) экспоненциальной кривой. Время, за которое напряжение на конденсаторе достигает значения 0,63 от максимума, т. е. в данном случае 0,63Е, называется постоянной времени контура или цепи.

 

Вернемся к рис. 4.13. Если ключ установить в положение 2, конденсатор будет сохранять запасенную энергию. При переведении ключа в положение3 конденсатор начинает разряжаться на землю через резистор R, и напряжение на нем постепенно падает до нуля. Процесс разряда конденсаторапоказан на рис. 4.14(б). В этом случае постоянной времени цепи называется время, за которое напряжение на конденсаторе уменьшается 0,63 от своего максимального значения.

 

Рис. 4.14. Кривые заряда (а) и разряда (б) конденсатора, где t — постоянная времени.

Как для случая заряда, так и для случая разряда конденсатора через резистор R постоянная времени цепи выражается формулой

где t — постоянная времени в секундах, С — емкость в фарадах, R — сопротивление, выраженное в омах.

Например, для случая С = 10мкФ и R= 10 кОм постоянная времени цепи равна

На рис. 4.15 изображены графики процессов заряда для цепей с малой и с большой постоянной времени.

 

Рис. 4.15. Процессы заряда для цепей с малой и с большой постоянной времени.

 

Постоянная времени RL-цепи

Рассмотрим схему, изображенную на рис. 4.16. Катушка индуктивности L соединена последовательно с резистором R, имеющим сопротивление 1 кОм. В момент замыкания ключа S ток в цепи равен нулю, хотя под действиемЭДС источника он, казалось бы, должен резко увеличиться. Однако катушка индуктивности, как известно, препятствует всякому изменению силы тока, протекающего через нее, поэтому ток в цепи будет возрастать по экспоненциальному закону, как показано на рис. 4.17. Ток будет возрастать до тех пор, пока не достигнет своего максимального значения. После этого увеличение тока прекратится, а падение напряжения на резисторе R станет равным приложенному напряжению Е. Установившееся значение тока равно

E/R = 20 В/1 кОм = 20 мА.

Скорость изменения тока в цепи зависит от конкретных значений R и L. Время, необходимое для того, чтобы сила тока достигла значения, равного 0,63 от его максимальной величины, носит название постоянной времени цепи. Постоянная времени вычисляется по формуле L/R где L выражается в генри, а R — в омах. В этом случае постоянная времени получается в секундах. Используя значения L и R, указанные на рисунке, получаем

Следует заметить, что, чем больше R, тем меньше L/R и тем быстрее изменяется ток в цепи.

Рис. 4.16.

 

Рис. 4.17. Экспоненциальное увеличение тока, протекающего через катушку индуктивности.

 

Сопротивление по постоянному току

Катушка индуктивности, включенная в цепь, не препятствует протеканию постоянного тока, если, конечно, но принимать во внимание очень малое сопротивление провода, из которого она сделана. Следовательно, катушка индуктивности имеет нулевое или очень малое сопротивление и может рассматриваться в цепи постоянного тока как цепь короткого замыкания. Конденсатор же в связи с наличием в нем изолирующего ди­электрика имеет бесконечное или очень большое сопротивление и может рассматриваться в цепи постоянного тока как разрыв.

 
Векторное представление

Сигнал синусоидальной формы может быть представлен в виде век­тора ОА, вращающегося против часовой стрелки с угловой скоростью ω= 2πf, где f – частота сигнала (рис. 4.18). По мере того как поворачивается вектор, ордината его конца характеризует показанный на рисунке синусоидальный сигнал. Один полный оборот вектора (360°, или 2π) со­ответствует одному полному периоду. Половина оборота (180°, или π) со­ответствует половине периода, и так далее. Таким образом, ось времени, как показано на рисунке, может использоваться для нанесения значений угла, на который повернулся вектор. Максимум сигнала достигается при 90° (1/4 периода), а минимум — при 270° (3/4 периода).

Теперь рассмотрим два синусоидальных сигнала, представленных на рис. 4.19(а) векторами ОА и ОВ соответственно. Если оба сигнала имеют одинаковые частоты, то векторы ОА и ОВ будут вращаться с одинаковой угловой скоростью ω= 2πf. Это означает, что угол между этими векторами

 

Рис. 4.18. Векторное представление синусоидального сигнала.

Рис. 4.19. Разность фаз. Вектор ОА опережает вектор ОВ

 (или вектор ОВ отстает от вектора ОА) на угол θ.

изменяться не будет. Говорят, что вектор ОА опережает вектор ОВ на угол θ, а вектор ОВ отстает от вектора ОА на угол в. На рис. 4.19(б) эти сигналы развернуты во времени.

Если оба этих синусоидальных сигнала сложить, то в результате получим другой синусоидальный сигнал, имеющий ту же частоту f, но другую амплитуду. Результирующий сигнал может быть представлен вектором ОТ, который, как показано на рис. 4.19(в), является векторной суммой векторов ОА и ОВ. Вектор ОТ опережает вектор ОВ на угол α и отстает от вектора ОА на угол γ. Дальше вы увидите, что векторное представление является весьма удобным приемом при анализе и расчете цепей переменного тока.

В этом видео рассказывается о катушке индуктивности:

 

Добавить комментарий

Лекция 25

Лекция 25 Резюме
  • Закон Фарадея
  • Закон Ленца
  • Индуцированные электрические поля
    Сегодняшний анекдот


  • Самоиндукция
  • Катушки индуктивности

  • Энергия и индуктивность
  • Плотность магнитной энергии

  • , пример # 4
  • Практика:
    Попробуйте эти дополнительные примеры
  • Пример # 5

    Пример # 6
  • Подготовить:
    Прочитать разделы с 32-1 по 32-3 учебника перед следующей лекцией

POP4 23. 30
Каков магнитный поток через каждый виток 500-витковой катушки, когда ЭДС 24 мВ индуцируется ток 4,0 А, который изменяется со скоростью 10 А / с?
A. 96,0 нТл · м 2
В. 19,2 µ Т · м 2
С. 500 µ Т · м 2
D. 47,5 мТл · м 2
Ответ

POP5 23.37a
Аккумулятор 12,0 В включен в последовательную цепь, содержащую резистор 10,0 Ом. и 2.00-H индуктор. В каком временном интервале ток достигнет 50,0% от своего окончательного значение после включения переключателя?
A. 3.47 µ с
B. 288 µ с
C. 9,85 мс
D. 0.139 с
Ответ

PSE6 32.20
На рисунке ε = 12,0 В, постоянная времени составляет 500 µ с, а I max = 200 мА. Что такое L ?
A. 500 µ H
Б.2,75 мГн
C. 30,0 мГн
D. 1.20 H

Ответ

POP5 23,48
Сколько энергии хранится в сверхпроводящем соленоиде диаметром 6,20 см и длиной 26,0 см, когда он производит магнитное поле 4,50 Тл?
A. 8.06 MJ
Б. 522 кДж
C. 6,32 кДж
D. 1.77 J
Ответ

Knight2 stt 34,6
Потенциал в точке (a) выше, чем потенциал в точке (b). Какое из следующих утверждений о токе индуктора I может быть верным?
А. I – от (а) до (б) и устойчивый.
B. I находится от (а) до (b) и увеличивается.
C. I находится от (а) до (b) и убывает.
D. I – от (b) до (a) и устойчивый.
E. I находится от (b) до (a) и увеличивается.
F. I находится от (б) до (а) и убывает.
Ответ

Walker5e EYU 23,8
Рассмотрим схему, показанную ниже. Ток, подаваемый батареей сразу после замыкания переключателя, равен _____ току, который он обеспечивает долгое время после замыкания переключателя.
А. более
B. менее
C. равно
Ответ

B. 19,2 µ T · м 2

D. 0,139 с

C. 30,0 мГн

C. 6,32 кДж


C. I находится от (а) до (b) и убывает.
В этом случае наведенная ЭДС пытается поддерживать ток вправо (от a до b), потому что ток уменьшается.Обратная ЭДС всегда противодействует изменению магнитного потока через катушку индуктивности, что означает, что она всегда противодействует изменению тока через катушку индуктивности.
E. I находится от (b) до (a) и увеличивается.
В этом случае наведенная ЭДС пытается бороться с нарастающим током влево (от b до a). Обратная ЭДС всегда противодействует изменению магнитного потока через катушку индуктивности, что означает, что она всегда противодействует изменению тока через катушку индуктивности.


Б.меньше, чем
Из-за противо-ЭДС сначала через индуктор не течет ток. Следовательно, катушка индуктивности действует как разомкнутая цепь, и ток, подаваемый батареей, равен I 0 = & Escr; / R (весь ток течет через левый резистор). По прошествии длительного времени ток больше не меняется, и обратная ЭДС в катушке индуктивности равна нулю. Катушка индуктивности тогда действует как провод, ток равномерно распределяется между двумя резисторами, эквивалентное сопротивление цепи составляет R /2, а ток, подаваемый батареей, составляет I = 2 & Escr; / R .


Ответ


Индуктивность – College Physics

Катушки индуктивности

Индукция – это процесс, при котором ЭДС индуцируется изменением магнитного потока. До сих пор обсуждалось множество примеров, некоторые из которых более эффективны, чем другие. Трансформаторы, например, спроектированы так, чтобы быть особенно эффективными при наведении желаемого напряжения и тока с очень небольшими потерями энергии в другие формы.Есть ли полезная физическая величина, связанная с тем, насколько «эффективно» данное устройство? Ответ – да, и эта физическая величина называется индуктивностью.

Взаимная индуктивность – это влияние закона индукции Фарадея для одного устройства на другое, например, первичная катушка, при передаче энергии вторичной обмотке в трансформаторе. См. (Рисунок), где простые катушки индуцируют ЭДС друг в друге.

Эти катушки могут вызывать ЭДС друг в друге, как неэффективный трансформатор. Их взаимная индуктивность M указывает на эффективность связи между ними.Здесь видно, что изменение тока в катушке 1 вызывает ЭДС в катушке 2. (Обратите внимание, что «индуцированная» представляет собой наведенную ЭДС в катушке 2.)

Во многих случаях, когда геометрия устройств фиксирована, магнитный поток изменяется за счет изменения тока. Поэтому мы концентрируемся на скорости изменения тока как на причине индукции. Изменение тока в одном устройстве, катушка 1 на рисунке, вызывает в другом. Мы выражаем это в форме уравнения как

, где определяется как взаимная индуктивность между двумя устройствами.Знак минус является выражением закона Ленца. Чем больше взаимная индуктивность, тем эффективнее связь. Например, катушки на (Рисунок) имеют меньшие размеры по сравнению с катушками трансформатора на (Рисунок). Единицы измерения are, который назван генри (H) в честь Джозефа Генри. То есть, .

Природа здесь симметрична. Если мы изменим ток в катушке 2, мы индуцируем в катушке 1 ток, равный

.

где то же, что и для обратного процесса. Трансформаторы работают в обратном направлении с такой же эффективностью или взаимной индуктивностью .

Большая взаимная индуктивность может быть желательной, а может и нежелательной. Мы хотим, чтобы трансформатор имел большую взаимную индуктивность. Но такой прибор, как электрическая сушилка для одежды, может вызвать опасную ЭДС на корпусе, если взаимная индуктивность между его катушками и корпусом велика. Один из способов уменьшить взаимную индуктивность состоит в том, чтобы намотать катушки противотоком для подавления создаваемого магнитного поля. (См. (Рисунок).)

Нагревательные катушки электрической сушилки для белья могут быть намотаны в противоположную сторону, так что их магнитные поля нейтрализуют друг друга, что значительно снижает взаимную индуктивность по отношению к корпусу сушилки.

Самоиндуктивность, действие закона индукции Фарадея устройства на самого себя, также существует. Когда, например, увеличивается ток через катушку, магнитное поле и магнитный поток также увеличиваются, вызывая противоэдс, как того требует закон Ленца. И наоборот, если ток уменьшается, индуцируется ЭДС, препятствующая уменьшению. Большинство устройств имеют фиксированную геометрию, поэтому изменение магнитного потока полностью связано с изменением тока через устройство. Индуцированная ЭДС связана с физической геометрией устройства и скоростью изменения тока.Выдается

, где – самоиндукция устройства. Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором и обозначено символом на (Рисунок).

Знак минус является выражением закона Ленца, означающего, что ЭДС препятствует изменению тока. Единицами самоиндукции является генри (Гн), как и для взаимной индуктивности. Чем больше самоиндукция устройства, тем сильнее оно сопротивляется любому изменению тока через него. Например, большая катушка с множеством витков и железным сердечником имеет большой размер и не позволит току быстро меняться.Чтобы избежать этого эффекта, необходимо добиться небольшого сопротивления, например, за счет встречной намотки катушек, как показано на (Рисунок).

Катушка индуктивности 1 Гн – это большая катушка индуктивности. Чтобы проиллюстрировать это, рассмотрим устройство, через которое протекает ток 10 А. Что произойдет, если мы попытаемся быстро отключить ток, возможно, всего за 1,0 мс? ЭДС, заданная параметром, будет противодействовать изменению. Таким образом, будет индуцирована ЭДС, заданная параметром . Положительный знак означает, что это большое напряжение направлено в том же направлении, что и ток, но противодействует его уменьшению. Такие большие ЭДС могут вызвать дуги, повредить коммутационное оборудование, и поэтому может потребоваться более медленное изменение тока.

Есть применение для такого большого наведенного напряжения. Во вспышках камеры используются батарея, два индуктора, которые работают как трансформатор, и система переключения или генератор для создания больших напряжений. (Помните, что нам нужно изменяющееся магнитное поле, вызванное изменяющимся током, чтобы вызвать напряжение в другой катушке.) Система генератора будет делать это много раз, когда напряжение батареи повышается до более чем тысячи вольт.(Вы можете услышать пронзительный вой от трансформатора, когда конденсатор заряжается.) Конденсатор сохраняет высокое напряжение для последующего использования для питания вспышки. (См. (Рисунок).)

Благодаря быстрому переключению катушки индуктивности можно использовать батареи 1,5 В для индукции ЭДС в несколько тысяч вольт. Это напряжение можно использовать для хранения заряда в конденсаторе для последующего использования, например, в насадке для вспышки камеры.

Можно произвести расчеты для индуктора, учитывая его геометрию (размер и форму) и зная магнитное поле, которое он создает.В большинстве случаев это сложно из-за сложности создаваемого поля. Итак, в этом тексте индуктивность – это обычно заданная величина. Единственным исключением является соленоид, потому что он имеет очень однородное поле внутри, почти нулевое поле снаружи и простую форму. Поучительно вывести уравнение для его индуктивности. Начнем с того, что наведенная ЭДС определяется законом индукции Фарадея как и, согласно определению самоиндукции, как . Приравнивая эти доходности

Решение для дает

Это уравнение для самоиндукции устройства всегда верно.Это означает, что самоиндукция зависит от того, насколько эффективен ток для создания магнитного потока; чем эффективнее, тем больше /.

Давайте воспользуемся этим последним уравнением, чтобы найти выражение для индуктивности соленоида. Поскольку площадь соленоида фиксирована, изменение магнитного потока составляет. Чтобы найти, отметим, что магнитное поле соленоида равно. (Здесь, где – количество катушек, а – длина соленоида.) Меняется только ток, так что. Подстановка в дает

Это упрощается до

Это самоиндукция соленоида, имеющего площадь поперечного сечения и длину.Обратите внимание, что индуктивность зависит только от физических характеристик соленоида, в соответствии с его определением.

Расчет самоиндукции соленоида среднего размера

Рассчитайте самоиндукцию соленоида длиной 10,0 см и диаметром 4,00 см, который имеет 200 катушек.

Стратегия

Это прямое приложение, поскольку все величины в уравнении, кроме.

Решение

Используйте следующее выражение для самоиндукции соленоида:

Площадь поперечного сечения в этом примере равна 200, а длина равна 0.100 м. Мы знаем проницаемость свободного пространства. Подставляя их в выражение для дает

Обсуждение

Этот соленоид среднего размера. Его индуктивность около миллигенри также считается умеренной.

Одно из распространенных применений индуктивности используется в светофорах, которые могут определить, когда автомобили ждут на перекрестке. Электрическая цепь с индуктором размещается на дороге под местом остановки ожидающей машины. Кузов автомобиля увеличивает индуктивность, и схема изменяется, посылая сигнал на светофор, чтобы изменить цвет.Точно так же металлоискатели, используемые для безопасности аэропортов, используют ту же технику. Катушка или индуктор в корпусе металлоискателя действует как передатчик и как приемник. Импульсный сигнал в катушке передатчика вызывает сигнал в приемнике. На самоиндукцию цепи влияет любой металлический предмет на пути. Такие детекторы могут быть настроены на чувствительность, а также могут указывать приблизительное местонахождение обнаруженного на человеке металла. (Но они не смогут обнаружить пластиковую взрывчатку, подобную той, которая была обнаружена на «бомбардировщике в нижнем белье. ») См. (Рисунок).

Знакомые ворота безопасности в аэропорту могут не только обнаруживать металлы, но и указывать их приблизительную высоту над полом. (Источник: Alexbuirds, Wikimedia Commons)

где – самоиндукция катушки индуктивности, а – скорость изменения тока через нее. Знак минус указывает на то, что ЭДС противодействует изменению тока, как того требует закон Ленца. Единицей самоиндукции и взаимной индуктивности является генри (H), где. Самоиндукция индуктора пропорциональна тому, насколько поток изменяется с Текущий.Для поворотной катушки индуктивности

, где – количество витков в соленоиде, – площадь его поперечного сечения, – длина и – проницаемость свободного пространства. Энергия, запасенная в катушке индуктивности, составляет

Самоиндуктивность и Индукторы – Университетская физика Том 2

Цели обучения

К концу этого раздела вы сможете:

  • Сопоставить скорость изменения тока с наведенной ЭДС, создаваемой этим током в той же цепи
  • Вывести самоиндукцию цилиндрического соленоида
  • Вывести самоиндукцию прямоугольного тороида

Взаимная индуктивность возникает, когда ток в одной цепи создает изменяющееся магнитное поле, которое индуцирует ЭДС в другой цепи. Но может ли магнитное поле повлиять на ток в исходной цепи, создавшей поле? Ответ положительный, и это явление называется самоиндуктивностью .

Катушки индуктивности

(рисунок) показывает некоторые силовые линии магнитного поля, возникающие из-за тока в кольцевой проволочной петле. Если ток постоянный, магнитный поток через контур также постоянен. Однако, если ток I будет изменяться со временем – скажем, сразу после замыкания переключателя S, – тогда соответственно изменится магнитный поток.Тогда закон Фарадея говорит нам, что в цепи будет индуцирована ЭДС, где

Поскольку магнитное поле, создаваемое токоведущим проводом, прямо пропорционально току, поток, создаваемый этим полем, также пропорционален току; то есть

Магнитное поле создается током I в контуре. Если бы I изменялись со временем, магнитный поток через петлю также изменился бы, и в петле была бы индуцирована ЭДС.

Это также можно записать как

, где коэффициент пропорциональности L известен как самоиндукция проволочной петли.Если петля имеет N витков, это уравнение принимает вид

По соглашению, положительное значение нормали к петле связано с током по правилу правой руки, поэтому на (Рисунок) нормаль направлена ​​вниз. Согласно этому соглашению, положительное значение на (Рисунок), поэтому L всегда имеет положительное значение .

Для контура с Н витков, поэтому наведенная ЭДС может быть записана в терминах самоиндукции как

При использовании этого уравнения для определения L проще всего игнорировать знаки и вычислить L как

Поскольку самоиндукция связана с магнитным полем, создаваемым током, любая конфигурация проводников обладает самоиндукцией. Например, помимо проволочной петли, длинный прямой провод имеет самоиндукцию, как и коаксиальный кабель. Коаксиальный кабель чаще всего используется в индустрии кабельного телевидения, и его также можно найти для подключения к кабельному модему. Коаксиальные кабели используются из-за их способности передавать электрические сигналы с минимальными искажениями. Коаксиальные кабели имеют два длинных цилиндрических проводника, которые обладают током и самоиндукцией, что может иметь нежелательные эффекты.

Элемент схемы, используемый для обеспечения самоиндукции, известен как индуктор.Он представлен символом, показанным на (Рисунок), который напоминает катушку с проводом, основную форму индуктора. (Рисунок) показывает несколько типов индукторов, обычно используемых в схемах.

Символ, обозначающий катушку индуктивности в цепи.

Катушки индуктивности разнообразные. Независимо от того, заключены ли они в капсулу, как показанные три верхних, или намотаны в катушку, как самая нижняя, каждая из них представляет собой просто относительно длинную катушку с проволокой. (Источник: Windell Oskay)

В соответствии с законом Ленца отрицательный знак на (рисунке) указывает, что наведенная ЭДС на катушке индуктивности всегда имеет полярность, противодействующей изменению тока.Например, если бы ток, протекающий от A к B на (Рисунок) (a), увеличивался, наведенная ЭДС (представленная воображаемой батареей) имела бы указанную полярность, чтобы противодействовать увеличению. Если бы ток от A до B уменьшался, то наведенная ЭДС имела бы противоположную полярность, опять же, чтобы противодействовать изменению тока ((Рисунок) (b)). Наконец, если бы ток через катушку индуктивности был постоянным, в катушке не было бы индуцированной ЭДС.

Индуцированная ЭДС на катушке индуктивности всегда противодействует изменению тока. Это можно представить себе как воображаемую батарею, заставляющую течь ток, чтобы противодействовать изменению в (а) и усиливать изменение в (б).

Одно из распространенных применений индуктивности – это возможность светофора определять, когда автомобили ждут на перекрестке. Электрическая цепь с индуктором размещается на дороге под местом остановки ожидающего автомобиля.Кузов автомобиля увеличивает индуктивность, и схема изменяется, посылая сигнал на светофор, чтобы изменить цвет. Точно так же металлоискатели, используемые для безопасности аэропортов, используют ту же технику. Катушка или индуктор в корпусе металлоискателя действует как передатчик и как приемник. Импульсный сигнал от катушки передатчика вызывает сигнал в приемнике. На самоиндукцию цепи влияет любой металлический объект на пути ((Рисунок)). Металлоискатели можно настроить на чувствительность, а также они могут определять присутствие металла на человеке.

Знакомые ворота безопасности в аэропорту не только обнаруживают металлы, но также могут указывать их приблизительную высоту над полом. (кредит: «Alexbuirds» / Wikimedia Commons)

При вспышках фотокамер обнаруживаются большие наведенные напряжения. Во вспышках камеры используются аккумулятор, два индуктора, которые работают как трансформатор, и система переключения или генератор для создания больших напряжений. Вспомните из статьи «Колебания при колебаниях», что «колебание» определяется как колебание величины или повторяющиеся регулярные колебания величины между двумя крайними значениями вокруг среднего значения.Также вспомните (из «Электромагнитная индукция об электромагнитной индукции»), что нам нужно изменяющееся магнитное поле, вызванное изменяющимся током, чтобы вызвать напряжение в другой катушке. Система генератора делает это много раз, когда напряжение батареи повышается до более чем 1000 вольт. (Вы можете услышать пронзительный свист трансформатора, когда конденсатор заряжается.) Конденсатор сохраняет высокое напряжение для последующего использования для питания вспышки.

Самоиндуктивность катушки Индуцированная ЭДС 2.0 В измеряется на катушке из 50 плотно намотанных витков, в то время как ток через нее равномерно увеличивается от 0,0 до 5,0 А за 0,10 с. а) Какова собственная индуктивность катушки? (б) Каков поток через каждый виток катушки при токе 5,0 А?

Стратегия

Обе части этой проблемы предоставляют всю информацию, необходимую для решения самоиндукции в части (a) или потока через каждый виток катушки в части (b). Необходимые уравнения (рисунок) для части (a) и (рисунок) для части (b).

Решение

  1. Игнорируя отрицательный знак и используя величины, мы имеем, из (Рисунок),
  2. Из (рисунок), поток выражается в единицах тока по так

Значение Самоиндукция и магнитный поток, вычисленные в частях (a) и (b), являются типичными значениями для катушек, используемых в современных устройствах. Если ток не меняется во времени, поток не меняется во времени, поэтому ЭДС не индуцируется.

Проверьте свое понимание Ток течет через катушку индуктивности на (Рисунок) от B до A вместо A к B , как показано. Увеличивается или уменьшается ток, чтобы создать ЭДС, показанную на диаграмме (а)? На диаграмме (б)?

а. уменьшение; б. увеличение; Поскольку ток течет в противоположном направлении диаграммы, чтобы получить положительную ЭДС в левой части диаграммы (а), нам нужно уменьшить ток влево, что создает усиленную ЭДС, где положительный конец находится слева. Чтобы получить положительную ЭДС в правой части диаграммы (b), нам нужно увеличить ток слева, что создает усиленную ЭДС там, где положительный конец находится справа.

Проверьте свое понимание Изменяющийся ток индуцирует ЭДС 10 В на катушке индуктивности 0,25 Гн. С какой скоростью меняется ток?

Хороший подход к расчету самоиндукции катушки индуктивности состоит из следующих шагов:

Стратегия решения проблем: самоиндуктивность

  1. Предположим, что через катушку индуктивности протекает ток I .
  2. Определите магнитное поле, создаваемое током. Если есть соответствующая симметрия, вы можете сделать это с помощью закона Ампера.
  3. Получить магнитный поток,
  4. При известном магнитном потоке самоиндуктивность может быть определена по формуле (Рисунок),.

Чтобы продемонстрировать эту процедуру, мы теперь вычисляем самоиндуктивности двух катушек индуктивности.

Соленоид цилиндрический

Рассмотрим длинный цилиндрический соленоид длиной l , площадью поперечного сечения A, и N, витков провода.Мы предполагаем, что длина соленоида настолько больше, чем его диаметр, что мы можем считать, что магнитное поле распространяется по внутренней части соленоида, то есть мы игнорируем концевые эффекты в соленоиде. При токе I , протекающем через катушки, магнитное поле, создаваемое внутри соленоида, составляет

.

, поэтому магнитный поток на один виток равен

Используя (рисунок), находим для самоиндукции соленоида

Если – количество витков на единицу длины соленоида, то мы можем записать (рисунок) как

где – объем соленоида. Обратите внимание, что самоиндукция длинного соленоида зависит только от его физических свойств (таких как количество витков провода на единицу длины и объема), а не от магнитного поля или тока. Это верно для индукторов в целом.

Катушки индуктивности и резисторы в цепях постоянного тока

  • Изучив этот раздел, вы сможете описать:
  • • Переходные события в цепях постоянного тока.
  • • Отношения переходного напряжения и тока в простой цепи LR.

Рис. 4.4.1 Контур LR

В цепи, которая содержит индуктивность (L), а также сопротивление (R), например, показанную на рис. 4.4.1, когда переключатель замкнут, ток не сразу повышается до значения в установившемся состоянии, а увеличивается в ЭКСПОНЕНЦИАЛЬНАЯ мода. Это связано с тем, что ОБРАТНАЯ ЭДС создается изменением тока, протекающего через катушку индуктивности. Эта обратная ЭДС имеет амплитуду, пропорциональную СКОРОСТИ ИЗМЕНЕНИЯ тока (чем выше скорость изменения, тем больше обратная ЭДС), и полярность, которая противодействует изменению тока в катушке индуктивности, которое вызвало ее изначально.

Обратная ЭДС возникает из-за того, что изменяющийся ток в катушке индуктивности вызывает изменение магнитного поля вокруг нее, а изменяющееся магнитное поле, в свою очередь, вызывает индукцию ЭДС обратно в катушку индуктивности. Этот процесс называется САМОИНДУКЦИЕЙ.

Ток через индуктор

Рис.4.4.2 Ток через индуктор

Поскольку обратная ЭДС препятствует быстрому изменению тока, происходящему в катушке индуктивности, скорость изменения тока снижается, и то, что было бы вертикальной линией на графике (рис. 4.4.2), становится наклоном. Скорость изменения тока через катушку индуктивности теперь меньше, поэтому образуется меньшая обратная ЭДС. Это позволяет току увеличиваться дальше. Взаимосвязь между изменяющимся током и противо-ЭДС дает кривую, которая всегда следует математическому закону, чтобы получить конкретную форму кривой i. е. экспоненциальная кривая. Когда переключатель разомкнут, ток спадает экспоненциально до нуля.

Напряжение на индукторе

Рис. 4.4.3 Напряжение на индукторе

Глядя на Рис. 4.4.3, на котором показано напряжение (V L ) на катушке индуктивности (L), мы видим, что при включении напряжение сразу же возрастает до максимального значения. Это связано с тем, что к цепи прикладывается напряжение, и ток мало или отсутствует, потому что L эффективно (в течение очень короткого времени) очень высокое сопротивление из-за эффекта обратной ЭДС, вызванного быстро изменяющимся (расширяющимся) магнитным полем вокруг индуктор индуцирует напряжение (обратную ЭДС) обратно в катушку индуктивности, полярность которой противоположна приложенному напряжению от источника питания, и поэтому первоначально препятствует увеличению тока через индуктор.Из-за этого противодействия, вызванного обратной ЭДС, сначала кажется, что индуктор имеет очень высокое сопротивление. и поэтому полное напряжение питания создается на катушке индуктивности. Однако по мере того, как ток через L начинает нарастать, скорость изменения магнитного поля уменьшается, противодействие из-за обратной ЭДС уменьшается, и кажущееся “ сопротивление ” индуктора падает до низкого значения (реальное сопротивление проволочной катушки). и напряжение V L уменьшается до тех пор, пока не будет достигнута точка, в которой все напряжение батареи вырабатывается на резисторе R; напряжение или разность потенциалов (pd) на L практически равна нулю, и теперь энергия накапливается в магнитном поле вокруг индуктора.

При отключении тока магнитное поле теперь коллапсирует, а не растет, как при включении. Это коллапсирующее магнитное поле теперь возвращает свою энергию в катушку индуктора и индуцирует напряжение (обратную ЭДС) в катушке индуктивности, но поскольку изменение силы магнитного поля происходит в направлении, противоположном расширяющемуся полю при включении, индуцированное напряжение составляет теперь с противоположной полярностью, как показано на рис. 4.4.3. Индуцированная обратная ЭДС теперь противодействует уменьшению причины тока за счет выключения, замедляя спад тока, как это видно на рис.4.4.2.

Быстрый коллапс магнитного поля при размыкании переключателя может вызвать очень большие всплески напряжения, поскольку величина индуцированного напряжения зависит от скорости изменения магнитного поля. Возникающее высокое напряжение может привести к возникновению дуги на контактах переключателя, поскольку напряжение перепрыгивает через промежуток между контактами. Эти большие всплески напряжения могут также повредить другие компоненты в цепи, особенно полупроводники, поэтому необходимо соблюдать осторожность при проектировании цепей, содержащих индукторы или управляющих индуктивными нагрузками, чтобы предотвратить эти всплески.Однако в некоторых схемах, где требуются высокие напряжения, этот эффект также можно использовать с пользой, подав прямоугольную волну на катушку индуктивности. Возникающие очень большие всплески напряжения можно затем выпрямить с помощью специальных высоковольтных диодов для получения постоянного напряжения в тысячи вольт.

энергии в индукторе

энергии в индукторе
Далее: Схема Up: индуктивность Предыдущий: Самоиндуктивность


Энергия, накопленная в индукторе Предположим, что индуктор индуктивности подключен к источник переменного постоянного напряжения.Электропитание регулируется таким образом, чтобы увеличить ток, протекающий через индуктор от нуля до некоторого конечного значения. Поскольку ток через индуктор нарастает, ЭДС генерируется, что препятствует увеличению тока. Ясно, что работа должна быть сделано против этой ЭДС источником напряжения, чтобы установить ток в катушке индуктивности. Работа, выполняемая источником напряжения во время временной интервал
(247)

Здесь, – мгновенная скорость, с которой источник напряжения выполняет работу. Чтобы найти общую работу, проделанную для установления конечного тока в индуктора, мы должны интегрировать приведенное выше выражение. Таким образом,
(248)

давая
(249)

Эта энергия фактически хранится в магнитном поле, создаваемом током протекает через индуктор. В чистом индукторе энергия накапливается без потери, и возвращается в остальную часть цепи, когда ток через катушка индуктивности снижается, и связанное с ней магнитное поле разрушается.

Рассмотрим простой соленоид. Уравнения (244), (246) и (249) можно объединить, чтобы получить

(250)

что сводится к
(251)

Это представляет собой энергию, запасенную в магнитном поле соленоида. Однако объем заполненного полем сердечника соленоида составляет, поэтому магнитная плотность энергии ( у.е.е. , энергия единицы объема) внутри соленоид есть, или
(252)

Оказывается, это довольно общий результат. Таким образом, мы можем вычислить энергосодержание любого магнитного поля путем разделения пространства на маленькие кубики (в каждом из которых магнитное поле приблизительно однородно), применяя приведенная выше формула, чтобы найти содержание энергии каждого куба, и суммируя полученные таким образом энергии, чтобы найти полную энергию.

Когда электрическое и магнитное поля существуют вместе в пространстве, уравнения. (122) и (252) можно объединить, чтобы получить выражение для общая энергия, накопленная в комбинированном полей на единицу объема:

(253)



Далее: Схема Up: индуктивность Предыдущий: Самоиндуктивность
Ричард Фицпатрик 2007-07-14

курсов PDH онлайн.

PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов. “

Russell Bailey, P.E.

Нью-Йорк

“Это укрепило мои текущие знания и научило меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации.”

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. “

Blair Hayward, P.E.

Альберта, Канада

“Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе “

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, а курс был очень информативным, особенно с учетом того, что я думал, что уже знаком с ними.

с деталями Канзас

Городская авария Хаятт.”

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе “

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

– лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

“Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал “

Jesus Sierra, P. E.

Калифорния

“Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент для ознакомления с курсом

материала до оплаты и

получает викторину “

Arvin Swanger, P.E.

Вирджиния

“Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие “.

Mehdi Rahimi, P.E.

Нью-Йорк

“Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курса.”

Уильям Валериоти, P.E.

Техас

“Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемые темы »

Майкл Райан, P.E.

Пенсильвания

“Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.”

Джеральд Нотт, П.Е.

Нью-Джерси

“Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то непонятной секции

законов, которые не применяются

до «нормальная» практика.”

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация “

Иван Харлан, П.Е.

Теннесси

«Материалы курса содержали хорошее, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

“Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн формат был очень

доступный и простой для

использовать. Большое спасибо. “

Патрисия Адамс, P.E.

Канзас

“Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.”

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

фактических случая “

Жаклин Брукс, П.Е.

Флорида

“Документ” Общие ошибки ADA при проектировании объектов “очень полезен.Модель

Тест потребовал исследования в

документ но ответы были

в наличии.

Гарольд Катлер, П.Е.

Массачусетс

“Я эффективно использовал свое время. Спасибо за широкий выбор вариантов

в транспортной инженерии, которая мне нужна

для выполнения требований

Сертификат ВОМ.”

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роадс, P.E.

Мэриленд

“Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курса со скидкой.”

Кристина Николас, П.Е.

Нью-Йорк

“Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный

курса. Процесс прост, и

намного эффективнее, чем

приходится путешествовать. “

Деннис Мейер, P.E.

Айдахо

“Услуги, предоставляемые CEDengineering, очень полезны для Professional

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от. “

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории »

Виктор Окампо, P. Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.”

Клиффорд Гринблатт, П.Е.

Мэриленд

“Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. “

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.”

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес который

сниженная цена

на 40%.

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

“Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

коды и Нью-Мексико

правила. “

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

“Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительных

Сертификация . “

Томас Каппеллин, П.E.

Иллинойс

“У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил – много

оценено! “

Джефф Ханслик, P. E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

“Курс был по разумной цене, а материал был кратким, а

хорошо организовано. “

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока –

.

хороший справочный материал

для деревянного дизайна. “

Брайан Адамс, П.E.

Миннесота

“Отлично, я смог получить полезные рекомендации по простому телефонному звонку.”

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве – проектирование

Building курс и

очень рекомендую .”

Денис Солано, P.E.

Флорида

“Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. “

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор везде и

всякий раз, когда.”

Тим Чиддикс, P.E.

Колорадо

«Отлично! Поддерживаю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

“Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и комплексное ».

Майкл Тобин, P.E.

Аризона

“Это мой второй курс, и мне понравилось то, что мне предложили этот курс

поможет по телефону

работ.”

Рики Хефлин, П.Е.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

“Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Luan Mane, P.E.

Conneticut

“Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

вернуться, чтобы пройти викторину “

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использовать в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

“Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.”

Ира Бродский, П.Е.

Нью-Джерси

“Веб-сайт прост в использовании, вы можете скачать материал для изучения, а потом вернуться

и пройдите викторину. Очень

удобный а на моем

собственный график. “

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.”

Деннис Фундзак, П.Е.

Огайо

“Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат

. Спасибо за изготовление

процесс простой. »

Fred Schaejbe, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

часовой PDH в

один час. “

Стив Торкильдсон, P.E.

Южная Каролина

“Мне понравилось загружать документы для просмотра содержания

и пригодность, до

имея для оплаты

материал .”

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.”

Thomas Stalcup, P.E.

Арканзас

“Мне очень нравится удобство участия в онлайн-викторине и получение сразу

сертификат. “

Марлен Делани, П.Е.

Иллинойс

“Учебные модули CEDengineering – это очень удобный способ доступа к информации по номеру

.

многие различные технические зоны за пределами

своя специализация без

надо путешествовать.”

Гектор Герреро, П.Е.

Грузия

Индуктивность

Индуктивность – это свойство электрического проводника, при котором изменение тока, протекающего по нему, вызывает электромагнитное поле – ЭДС (ЭДС) – и электродвижущую силу в самом проводе и в соседних проводниках за счет взаимной индуктивности.

Единица индуктивности – Генри Гн.

Цепь имеет индуктивность Генри , когда эл.м.ф. из один вольт индуцируется изменением тока со скоростью один ампер в секунду .

Индуцированное электромагнитное поле – ЭДС – в катушке можно выразить как

ЭДС = -n dΦ / dt (1)

, где

ЭДС = электромагнитное поле – ЭДС (вольт)

n = витков

dΦ = изменение потока (Webers, Wb)

dt = время (с)

В качестве альтернативы индуцированное электромагнитное поле – EMF – в катушке индуктивность L может быть выражена как

ЭДС = -L dI / dt (2)

, где

L = индуктивность (генри, Гн)

dI = изменение тока (амперы )

dt = время (с)

Пример – индуктивность

ЭДС , индуцированная в катушке с 500 витками с изменением магнитного потока 30 мВт дюйм 30 мс можно рассчитать как

ЭДС = -500 (30 10 -3 Вт) / (30 10 -3 с)

= -500 Вольт

Индуктивность катушки

Для цилиндрической проволочной катушки, заполненной воздухом, индуктивность может быть рассчитана по эмпирической формуле

L = μ o n 2 A / (l + 0.

Добавить комментарий

Ваш адрес email не будет опубликован.