Электромагнитная индукция – это… Что такое Электромагнитная индукция?
Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
Электромагнитная индукция была открыта Майклом Фарадеем 29 августа[источник не указан 100 дней] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.
Закон Фарадея
Согласно закону электромагнитной индукции Фарадея (в СИ):
где
- — электродвижущая сила, действующая вдоль произвольно выбранного контура,
- — магнитный поток через поверхность, натянутую на этот контур.
Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:
- Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:
где
- — электродвижущая сила,
- — число витков,
- — магнитный поток через один виток,
- — потокосцепление катушки.
Векторная форма
В дифференциальной форме закон Фарадея можно записать в следующем виде:
- (в системе СИ)
или
- (в системе СГС).
В интегральной форме (эквивалентной):
- (СИ)
или
- (СГС)
Здесь — напряжённость электрического поля, — магнитная индукция, — произвольная поверхность, — её граница. Контур интегрирования подразумевается фиксированным (неподвижным).
Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).
- В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно)[1].
Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство продолжает соблюдаться, но ЭДС в левой части теперь не сводится к (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).
- Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год[2] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п. к формуле в случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, термин правило потока)[3]. В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие закон Фарадея в точности совпадает с содержанием соответствующего уравнения Максвелла.
- Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной. Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности. А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда.
Потенциальная форма
При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:
- (в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).
В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:
История
В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа 1831 г.
наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 15 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.
М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.
См. также
Примечания
- ↑ Это уравнение Максвелла может быть переписано в эквивалентном виде
- ↑ М. Лившиц Закон электромагнитной индукции или «правило потока»? // Квант. — 1998. — № 3. — С. 37—38.
- ↑ Такой отказ объясняется тем, что, в отличие от закона для циркуляции электрического поля, выполняющегося всегда, «правило» корректно работает лишь для случаев, когда контур, в котором вычисляется ЭДС, совпадает физически с проводником (то есть совпадает их движение; в противном же случае правило может не работать (самый известный пример — униполярная машина Фарадея; контур, который в этом случае трудно определить, но кажется довольно очевидным, что он не меняется; во всяком случае, довольно затруднительно указать разумное определение для контура, который бы в этом случае менялся), то есть проявляется парадокс, что для «закона природы» недопустимо.
Ссылки
Электромагнитная индукция – это… Что такое Электромагнитная индукция?
Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
Электромагнитная индукция была открыта Майклом Фарадеем 29 августа[источник не указан 100 дней] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.
Закон Фарадея
Согласно закону электромагнитной индукции Фарадея (в СИ):
где
- — электродвижущая сила, действующая вдоль произвольно выбранного контура,
- — магнитный поток через поверхность, натянутую на этот контур.
Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:
- Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:
где
- — электродвижущая сила,
- — число витков,
- — магнитный поток через один виток,
- — потокосцепление катушки.
Векторная форма
В дифференциальной форме закон Фарадея можно записать в следующем виде:
- (в системе СИ)
или
- (в системе СГС).
В интегральной форме (эквивалентной):
- (СИ)
или
- (СГС)
Здесь — напряжённость электрического поля, — магнитная индукция, — произвольная поверхность, — её граница. Контур интегрирования подразумевается фиксированным (неподвижным).
Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).
- В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно)[1].
Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство продолжает соблюдаться, но ЭДС в левой части теперь не сводится к (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).
- Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год[2] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п. к формуле в случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, термин правило потока)[3]. В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие закон Фарадея в точности совпадает с содержанием соответствующего уравнения Максвелла.
- Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной. Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности. А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда. Однако та и другая ЭДС обязаны совпадать, поскольку вольтметр показывает одну и ту же величину, независимо от того, для какой системы отсчета мы ее рассчитали.
Потенциальная форма
При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:
- (в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).
В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:
История
В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа 1831 г. наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 15 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.
В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.
М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.
См. также
Примечания
- ↑ Это уравнение Максвелла может быть переписано в эквивалентном виде
- ↑ М. Лившиц Закон электромагнитной индукции или «правило потока»? // Квант. — 1998. — № 3. — С. 37—38.
- ↑ Такой отказ объясняется тем, что, в отличие от закона для циркуляции электрического поля, выполняющегося всегда, «правило» корректно работает лишь для случаев, когда контур, в котором вычисляется ЭДС, совпадает физически с проводником (то есть совпадает их движение; в противном же случае правило может не работать (самый известный пример — униполярная машина Фарадея; контур, который в этом случае трудно определить, но кажется довольно очевидным, что он не меняется; во всяком случае, довольно затруднительно указать разумное определение для контура, который бы в этом случае менялся), то есть проявляется парадокс, что для «закона природы» недопустимо.
Ссылки
Электромагнитная индукция – это… Что такое Электромагнитная индукция?
Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
Электромагнитная индукция была открыта Майклом Фарадеем 29 августа[источник не указан 100 дней] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.
Закон Фарадея
Согласно закону электромагнитной индукции Фарадея (в СИ):
где
- — электродвижущая сила, действующая вдоль произвольно выбранного контура,
- — магнитный поток через поверхность, натянутую на этот контур.
Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:
- Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:
где
- — электродвижущая сила,
- — число витков,
- — магнитный поток через один виток,
- — потокосцепление катушки.
Векторная форма
В дифференциальной форме закон Фарадея можно записать в следующем виде:
- (в системе СИ)
или
- (в системе СГС).
В интегральной форме (эквивалентной):
- (СИ)
или
- (СГС)
Здесь — напряжённость электрического поля, — магнитная индукция, — произвольная поверхность, — её граница. Контур интегрирования подразумевается фиксированным (неподвижным).
Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).
- В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно)[1].
Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство продолжает соблюдаться, но ЭДС в левой части теперь не сводится к (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).
- Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год[2] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п. к формуле в случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, термин правило потока)[3]. В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие закон Фарадея в точности совпадает с содержанием соответствующего уравнения Максвелла.
- Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной. Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности. А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда. Однако та и другая ЭДС обязаны совпадать, поскольку вольтметр показывает одну и ту же величину, независимо от того, для какой системы отсчета мы ее рассчитали.
Потенциальная форма
При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:
- (в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).
В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:
История
В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа 1831 г. наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 15 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.
В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.
М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.
См. также
Примечания
- ↑ Это уравнение Максвелла может быть переписано в эквивалентном виде
- ↑ М. Лившиц Закон электромагнитной индукции или «правило потока»? // Квант. — 1998. — № 3. — С. 37—38.
- ↑ Такой отказ объясняется тем, что, в отличие от закона для циркуляции электрического поля, выполняющегося всегда, «правило» корректно работает лишь для случаев, когда контур, в котором вычисляется ЭДС, совпадает физически с проводником (то есть совпадает их движение; в противном же случае правило может не работать (самый известный пример — униполярная машина Фарадея; контур, который в этом случае трудно определить, но кажется довольно очевидным, что он не меняется; во всяком случае, довольно затруднительно указать разумное определение для контура, который бы в этом случае менялся), то есть проявляется парадокс, что для «закона природы» недопустимо.
Ссылки
Электромагнитная индукция – это… Что такое Электромагнитная индукция?
Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
Электромагнитная индукция была открыта Майклом Фарадеем 29 августа[источник не указан 100 дней] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.
Закон Фарадея
Согласно закону электромагнитной индукции Фарадея (в СИ):
где
- — электродвижущая сила, действующая вдоль произвольно выбранного контура,
- — магнитный поток через поверхность, натянутую на этот контур.
Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:
- Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:
где
- — электродвижущая сила,
- — число витков,
- — магнитный поток через один виток,
- — потокосцепление катушки.
Векторная форма
В дифференциальной форме закон Фарадея можно записать в следующем виде:
- (в системе СИ)
или
- (в системе СГС).
В интегральной форме (эквивалентной):
- (СИ)
или
- (СГС)
Здесь — напряжённость электрического поля, — магнитная индукция, — произвольная поверхность, — её граница. Контур интегрирования подразумевается фиксированным (неподвижным).
Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).
- В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно)[1].
Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство продолжает соблюдаться, но ЭДС в левой части теперь не сводится к (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).
- Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год[2] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п. к формуле в случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, термин правило потока)[3]. В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие закон Фарадея в точности совпадает с содержанием соответствующего уравнения Максвелла.
- Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной. Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности. А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда. Однако та и другая ЭДС обязаны совпадать, поскольку вольтметр показывает одну и ту же величину, независимо от того, для какой системы отсчета мы ее рассчитали.
Потенциальная форма
При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:
- (в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).
В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:
История
В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа 1831 г. наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 15 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.
В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.
М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.
См. также
Примечания
- ↑ Это уравнение Максвелла может быть переписано в эквивалентном виде
- ↑ М. Лившиц Закон электромагнитной индукции или «правило потока»? // Квант. — 1998. — № 3. — С. 37—38.
- ↑ Такой отказ объясняется тем, что, в отличие от закона для циркуляции электрического поля, выполняющегося всегда, «правило» корректно работает лишь для случаев, когда контур, в котором вычисляется ЭДС, совпадает физически с проводником (то есть совпадает их движение; в противном же случае правило может не работать (самый известный пример — униполярная машина Фарадея; контур, который в этом случае трудно определить, но кажется довольно очевидным, что он не меняется; во всяком случае, довольно затруднительно указать разумное определение для контура, который бы в этом случае менялся), то есть проявляется парадокс, что для «закона природы» недопустимо.
Ссылки
Электромагнитная индукция – это… Что такое Электромагнитная индукция?
Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
Электромагнитная индукция была открыта Майклом Фарадеем 29 августа[источник не указан 100 дней] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.
Закон Фарадея
Согласно закону электромагнитной индукции Фарадея (в СИ):
где
- — электродвижущая сила, действующая вдоль произвольно выбранного контура,
- — магнитный поток через поверхность, натянутую на этот контур.
Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:
- Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:
где
- — электродвижущая сила,
- — число витков,
- — магнитный поток через один виток,
- — потокосцепление катушки.
Векторная форма
В дифференциальной форме закон Фарадея можно записать в следующем виде:
- (в системе СИ)
или
- (в системе СГС).
В интегральной форме (эквивалентной):
- (СИ)
или
- (СГС)
Здесь — напряжённость электрического поля, — магнитная индукция, — произвольная поверхность, — её граница. Контур интегрирования подразумевается фиксированным (неподвижным).
Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).
- В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно)[1].
Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство продолжает соблюдаться, но ЭДС в левой части теперь не сводится к (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).
- Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год[2] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п. к формуле в случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, термин правило потока)[3]. В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие закон Фарадея в точности совпадает с содержанием соответствующего уравнения Максвелла.
- Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной. Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности. А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда. Однако та и другая ЭДС обязаны совпадать, поскольку вольтметр показывает одну и ту же величину, независимо от того, для какой системы отсчета мы ее рассчитали.
Потенциальная форма
При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:
- (в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).
В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:
История
В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа 1831 г. наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 15 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.
В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.
М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.
См. также
Примечания
- ↑ Это уравнение Максвелла может быть переписано в эквивалентном виде
- ↑ М. Лившиц Закон электромагнитной индукции или «правило потока»? // Квант. — 1998. — № 3. — С. 37—38.
- ↑ Такой отказ объясняется тем, что, в отличие от закона для циркуляции электрического поля, выполняющегося всегда, «правило» корректно работает лишь для случаев, когда контур, в котором вычисляется ЭДС, совпадает физически с проводником (то есть совпадает их движение; в противном же случае правило может не работать (самый известный пример — униполярная машина Фарадея; контур, который в этом случае трудно определить, но кажется довольно очевидным, что он не меняется; во всяком случае, довольно затруднительно указать разумное определение для контура, который бы в этом случае менялся), то есть проявляется парадокс, что для «закона природы» недопустимо.
Ссылки
Электромагнитная индукция — урок. Физика, 9 класс.
Индукционный ток
Великому английскому физику Майклу Фарадею потребовалось почти \(10\) лет, чтобы ответить в \(1831\) году на вопрос: как превратить магнетизм в электричество?
Эксперименты привели исследователя к однозначному ответу на данный вопрос.
Электрический ток в замкнутом контуре, возникающий при изменении магнитного поля, называется индукционным.
Индукционный ток, так же как и ток от гальванического элемента или аккумулятора, представляет собой упорядоченное движение электронов.
Причины электромагнитной индукции
Явление возникновения индукционного тока в контуре называют электромагнитной индукцией.
Многочисленные опыты М. Фарадея привели к выводу, что индукционный ток в контуре, замкнутом на гальванометр, возникает при изменении:
- магнитного поля;
Рис. \(1\). Возникновение индукционного тока при изменении магнитного поля
- площади контура;
Рис. \(2\). Возникновение индукционного тока при изменении площади контура
- ориентации контура в магнитном поле.
Рис. \(3\). Возникновение индукционного тока при ориентации контура в магнитном поле
Во всех случаях изменяется число линий магнитной индукции, то есть меняется магнитный поток.
На рисунке \(4\) представлен пример отсутствия появления индукционного тока при вращении магнита вокруг вертикальной оси.
Рис. \(4\). Отсутствие появления индукционного тока при вращении магнита вокруг вертикальной оси
Развитие электротехники в России
В России электротехника развивалась интенсивно с поддержки Николая I. Развитие электротехники в Европе отозвалось открытиями и изобретениями в России.
В \(1833\) году русский учёный Эмилий Христианович Ленц доказал, что электрическая машина может работать как электродвигатель и как генератор электричества. Такое свойство назвали обратимостью электрических машин.
В \(1834\) году Борис Семёнович Якоби построил действующий “магнитный аппарат” вращательного движения — классический электродвигатель; послал описание в Парижскую академию наук.
В \(1888\) году Михаил Осипович Доливо-Добровольский изобрёл трёхфазный генератор переменного тока, в \(1889\) году — электродвигатель переменного тока, в \(1890\) году — трансформатор трёхфазного тока. На Всемирной электротехнической выставке во Франкфурте-на-Майне (\(1891\)) представил изобретённую систему передачи трёхфазного тока на расстояние \(170\) км (рис. \(5\)).
Рис. \(5\). Система передачи трёхфазного тока на расстояние
Применение электромагнитной индукции
Принцип работы индукционной плиты основан на явлении электромагнитной индукции. Индукционные токи при изменении магнитного поля возникают не только в проволочных контурах, но и в массивных образцах металла. Эти токи называют вихревыми токами, или токами Фуко. В массивных проводниках вследствие малости электрического сопротивления токи могут быть очень большими и вызывать значительное нагревание. Принцип работы индукционной плиты показан на рисунке. Под стеклокерамической поверхностью плиты находится катушка индуктивности, по которой протекает переменный электрический ток, создающий переменное магнитное поле. Частота тока составляет \(20\)–\(60\) кГц. В дне посуды наводятся токи индукции, которые нагревают его, а заодно и помещённые в посуду продукты. Нет никакой теплопередачи снизу вверх, от конфорки через стекло к посуде, а значит, нет и тепловых потерь. С точки зрения эффективности использования потребляемой электроэнергии индукционная плита выгодно отличается от всех других типов кухонных плит.
Рис. \(6\). Индукционная плита
1 — посуда из ферромагнитного материала;
2 — стеклокерамическая поверхность;
3 — слой изоляции;
4 — катушка индуктивности.Источники:
Рис. 1. Возникновение индукционного тока при изменении магнитного поля.
Рис. 2. Возникновение индукционного тока при изменении площади контура.
Рис. 3. Возникновение индукционного тока при ориентации контура в магнитном поле.
Рис. 4. Отсутствие появления индукционного тока при вращении магнита вокруг вертикальной оси.
Рис. 5. Система передачи трёхфазного тока на расстояние.
Рис. 6. Индукционная плита. https://www.shutterstock.com/ru/image-vector/induction-vector-illustration-labeled-household-cooking-1252362460. 2021-09-12.
Электромагнитная индукция – Основы электроники
Мы знаем, что проводник с током, помещенный в магнитное поле, приходит в движение. Это обусловлено явлением магнитной индукции. Существует и другое очень важное явление, в известном смысле обратное явлению магнитной индукции: при движении замкнутого проводника в магнитном поле в нем появляется электрический ток. Это явление называется электромагнитной индукцией.
Возьмем проводник, концы которого замкнуты на гальванометр (прибор для обнаружения малых электрических токов, можно использовать микроамперметр), и быстро пересечем этим проводником поле магнита (рисунок 1). При этом мы заметим, что стрелка гальванометра отклонится в тот момент, когда проводник пересечет магнитное поле. Следовательно, по проводнику в этот момент пройдет электрический ток.
Рисунок 1. Электромагнитная индукция. При быстром пересечении проводником магнитных силовых линий в проводнике возникает электрический ток.
Пересечем теперь магнитное поле проводником в обратном направлении. Стрелка гальванометра снова отклонится, но уже в противоположную сторону. Это говорит о том, что по проводнику снова прошел электрический ток, но уже в обратном направлении.
Отсюда можно сделать вывод, что при пересечении проводником магнитного поля в проводнике возникает ЭДС, направление которой зависит от направления движения проводника. Эта ЭДС называется индуктированной ЭДС или ЭДС индукции, то есть наведение ЭДС в проводнике и есть не что иное, как явление электромагнитной индукции (не следует смешивать с магнитной индукцией!).
Наведение ЭДС индукции при движении проводника в магнитном поле объясняется следующим образом. При движении проводника вместе с ним движутся и свободные электроны, находящиеся в нем. При изучении магнитной индукции мы узнали, что на электрические заряды, движущиеся в магнитном поле, действует сила в направлении, перпендикулярном направлению магнитного потока. Поэтому при движении электронов вместе с проводником, пересекающим магнитные силовые линии, на электроны будут действовать силы, заставляющие их перемещаться вдоль проводника, что и приводит к возникновению электрического тока в нем.
Явление электромагнитной индукции имеет большое значение в электро- и радиотехнике, поэтому мы остановимся на нем несколько подробнее.
Попробуем производить перемещение проводника в магнитном поле с различной скоростью. При этом мы заметим, что стрелка гальванометра будет отклоняться тем больше, чем быстрее наш проводник пересекает магнитное поле. При очень медленном перемещении проводника в нем совершенно не возникает тока или, говоря точнее, ток будет настолько мал, что наш гальванометр не в состоянии его обнаружить.
Далее обратим внимание на то обстоятельство, что, вдвигая проводник в пространство между полюсами магнита, мы тем самым увеличиваем число магнитных силовых линий, охватываемых замкнутым контуром проводника, а при обратном перемещении проводника уменьшаем число этих линий, или, другими словами, в первом случае магнитный поток, охватываемый нашим замкнутым контуром, увеличивается, а во втором случае уменьшается. С этой точки зрения возникновение индукционного тока в замкнутом проводящем контуре мы можем объяснить как результат изменения величины магнитного потока внутри контура; большие или меньшие отклонения стрелки при разных скоростях движения проводника свидетельствуют о том, что ЭДС индукции зависит от скорости изменения магнитного потока внутри контура.
При быстром возрастании (или убывании) магнитного потока внутри контура в нем наводится большая ЭДС индукции, а при медленном возрастании (или убывании) — малая.
На принципе электромагнитной индукции основано устройство электродинамических микрофонов, звукоснимателей , трансформаторов, электроизмерительных приборов, генераторов электрического тока и т. д.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Электромагнитная индукция | HowStuffWorks
В магнетизме есть что-то почти волшебное. В детстве мы были очарованы способностью магнита воздействовать на такие металлы, как железо, никель и кобальт, не касаясь их. Мы узнаем о притяжении и отталкивании между магнитными полюсами и становимся свидетелями формы магнитного поля, сформированного в железных опилках, окружающих стержневой магнит. Физики говорят нам, что электромагнетизм, сила, управляющая электричеством и магнетизмом, во много раз сильнее гравитации.Подвешивание поезда на магнитной подвеске над его путями – яркий пример этой силы.
Как следует из названия «электромагнетизм», электричество и магнетизм очень тесно связаны. Эта взаимосвязь позволяет им влиять друг на друга бесконтактно, как в примере с поездом на магнитной подвеске, или посредством электромагнитной индукции. Электромагнитная индукция возникает, когда цепь с протекающим через нее переменным током генерирует ток в другой цепи, просто будучи размещенной поблизости.Переменный ток – это электричество, протекающее по линиям электропередач и домашней электропроводке, в отличие от постоянного тока, который мы получаем от батарей.
Как одна цепь вызывает ток в другой, не касаясь ее, и какое отношение все это имеет к магнетизму? Прежде чем мы перейдем к этому, нам нужно рассмотреть несколько принципов, связывающих магнетизм и электричество:
- Каждый электрический ток имеет окружающее магнитное поле.
- Переменные токи имеют переменные магнитные поля.
- Колеблющиеся магнитные поля заставляют токи течь в проводниках, помещенных в них, что также известно как закон Фарадея.
Сложение этих трех свойств вместе означает, что изменяющийся электрический ток окружен соответствующим изменяющимся магнитным полем, которое, в свою очередь, генерирует изменяющийся электрический ток в проводнике, помещенном внутри него, который имеет собственное магнитное поле… и так далее. Это электромагнитный эквивалент матрешки-матрешки. Таким образом, в случае электромагнитной индукции размещение проводника в магнитном поле, окружающем первый ток, генерирует второй ток.
Индукция – это принцип, который делает возможными электродвигатели, генераторы и трансформаторы, а также предметы, расположенные ближе к дому, такие как перезаряжаемые электрические зубные щетки и устройства беспроводной связи. Если у вас есть рисоварка, скорее всего, вы уже готовите на индукции. Теперь давайте посмотрим, как наведенный ток используется для нагрева индукционных варочных панелей.
Что такое электромагнитная индукция? – Вселенная сегодня
Трудно представить мир без электричества.Когда-то электричество было скромным подарком, обеспечивающим человечество неестественным светом, который не зависел от газовых ламп или керосиновых фонарей. Сегодня он превратился в основу нашего комфорта, обеспечивая наше отопление, освещение и климат-контроль, а также питая всю нашу бытовую технику, будь то приготовление пищи, уборка или развлечения. И под большинством машин, которые делают это возможным, находится простой закон, известный как электромагнитная индукция, закон, который описывает работу генераторов, электродвигателей, трансформаторов, асинхронных двигателей, синхронных двигателей, соленоидов и большинства других электрических машин.С научной точки зрения это относится к созданию напряжения через проводник (провод или аналогичный кусок проводящего материала), который движется через магнитное поле.
Хотя считается, что многие люди внесли свой вклад в открытие этого явления, именно Майклу Фарадею приписывают первое открытие в 1831 году. Известный как закон Фарадея, он гласит, что «индуцированная электродвижущая сила (ЭДС) в любом замкнутый контур равен скорости изменения магнитного потока через контур ».На практике это означает, что электрический ток будет индуцироваться в любой замкнутой цепи, когда магнитный поток (то есть величина магнитного поля), проходящий через поверхность, ограниченную проводником, изменяется. Это применимо независимо от того, изменяется ли само поле по силе или проводник перемещается через него.
Тогда как уже было известно, что электрический ток создает магнитное поле, Фарадей показал, что верно и обратное. Короче говоря, он доказал, что можно генерировать электрический ток, пропуская провод через магнитное поле.Чтобы проверить эту гипотезу, Фарадей обернул кусок металлической проволоки вокруг бумажного цилиндра, а затем подключил катушку к гальванометру (устройству, используемому для измерения электрического тока). Затем он перемещал магнит взад и вперед внутри цилиндра и регистрировал с помощью гальванометра, что в проводе индуцировался электрический ток. На основании этого он подтвердил, что движущееся магнитное поле необходимо для индукции электрического поля, потому что, когда магнит прекращает движение, прекращается и ток.
Сегодня электромагнитная индукция используется для питания многих электрических устройств.Одно из наиболее широко известных применений – в электрических генераторах (таких как плотины гидроэлектростанций), где механическая энергия используется для перемещения магнитного поля мимо катушек с проволокой для генерации напряжения.
В математической форме закон Фарадея гласит:? = – d? B / dt, где? – электродвижущая сила, ΔB – магнитный поток, а d и t – расстояние и время.
Мы написали много статей об электромагнитной индукции для Universe Today. Вот статья об электромагнитах, а вот статья о генераторах.
Если вам нужна дополнительная информация об электромагнитной индукции, прочтите эти статьи в All About Circuits and Physics 24/7.
Мы также записали целый эпизод Astronomy Cast, посвященный электромагнетизму. Послушайте, Эпизод 103: Электромагнетизм.
Источники:
http://en.wikipedia.org/wiki/Electromagnetic_induction
http://en.wikipedia.org/wiki/Faraday%27s_law_of_induction
http://en.wikipedia.org/wiki/Mintage_flux
http: //микромагнит.fsu.edu/electromag/java/faraday2/
http://www.scienceclarified.com/El-Ex/Electromagnetic-Induction.html
http://en.wikipedia.org/wiki/Galvanometer
Нравится:
Нравится Загрузка …
13: Электромагнитная индукция – Физика LibreTexts
- Последнее обновление
- Сохранить как PDF
В этой и нескольких следующих главах вы увидите удивительную симметрию в поведении, которое демонстрируют изменяющиеся во времени электрические и магнитные поля.Математически эта симметрия выражается дополнительным членом в законе Ампера и другим ключевым уравнением электромагнетизма, называемым законом Фарадея. Мы также обсуждаем, как движение провода через магнитное поле создает ЭДС или напряжение.
- 13.1: Введение в электромагнитную индукцию
- Мы рассматривали электрические поля, создаваемые фиксированным распределением заряда, и магнитные поля, создаваемые постоянными токами, но электромагнитные явления не ограничиваются этими стационарными ситуациями.Фактически, большинство интересных приложений электромагнетизма зависят от времени. Чтобы исследовать некоторые из этих приложений, мы удалим сделанное нами не зависящее от времени предположение и позволим полям изменяться со временем.
- 13.2: Закон Фарадея
- ЭДС индуцируется, когда магнитное поле в катушке изменяется путем проталкивания стержневого магнита внутрь или из катушки. ЭДС противоположных знаков создаются движением в противоположных направлениях, а направления ЭДС также меняются на противоположные за счет изменения полюсов.Те же результаты будут получены, если перемещать катушку, а не магнит – важно относительное движение. Чем быстрее движение, тем больше ЭДС, и когда магнит неподвижен относительно катушки, ЭДС отсутствует.
- 13.3: Закон Ленца
- Направление индуцированной ЭДС движет ток по проволочной петле, чтобы всегда противодействовать изменению магнитного потока, вызывающему ЭДС. Закон Ленца также можно рассматривать с точки зрения сохранения энергии.Если толкание магнита в катушку вызывает ток, энергия в этом токе должна исходить откуда-то. Если индуцированный ток вызывает магнитное поле, противодействующее увеличению поля магнита, который мы втолкнули, тогда ситуация ясна.
- 13.4: ЭДС движения
- Магнитный поток зависит от трех факторов: силы магнитного поля, площади, через которую проходят силовые линии, и ориентации поля с площадью поверхности. Если какая-либо из этих величин изменяется, происходит соответствующее изменение магнитного потока.До сих пор мы рассматривали только изменения потока из-за изменяющегося поля. Теперь мы рассмотрим другую возможность: изменение области, через которую проходят силовые линии, включая изменение ориентации области.
- 13.5: Индуцированные электрические поля
- Тот факт, что ЭДС индуцируются в цепях, означает, что работа выполняется с электронами проводимости в проводах. Что может быть источником этой работы? Мы знаем, что это не батарея и не магнитное поле, поскольку батарея не обязательно должна присутствовать в цепи, в которой индуцируется ток, а магнитные поля никогда не действуют на движущиеся заряды.Ответ заключается в том, что источником работы является электрическое поле, индуцируемое в проводах.
- 13.6: Вихревые токи
- ЭДС движения индуцируется, когда проводник движется в магнитном поле или когда магнитное поле движется относительно проводника. Если двигательная ЭДС может вызвать ток в проводнике, мы называем этот ток вихревым током.
- 13.7: Электрогенераторы и обратная ЭДС
- С помощью закона Фарадея можно понять множество важных явлений и устройств.В этом разделе мы рассмотрим два из них: электрические генераторы и электродвигатели.
- 13.8: Применение электромагнитной индукции
- В современном обществе существует множество приложений закона индукции Фарадея, что мы исследуем в этой и других главах. В этот момент позвольте нам упомянуть несколько, которые включают запись информации с использованием магнитных полей.
- 13.A: Электромагнитная индукция (ответы)
- 13.E: Электромагнитная индукция (упражнения)
- 13.S: Электромагнитная индукция (сводка)
Электромагнитная индукция | Примеры и поле – Видео и стенограмма урока
Как возникает электромагнитная индукция?
Эксперимент 1
В этом эксперименте катушка подключена к гальванометру. Когда северный полюс стержневого магнита приближается к катушке, гальванометр отклоняется.Это указывает на наличие электрического тока в катушке. Если магнит движется, отклонение продолжается.
Реверс электрического тока происходит, когда магнит опускается, поскольку отклонение гальванометра происходит в противоположном направлении.
Аналогично, когда южный полюс перемещается к катушке, отклонения происходят в противоположном направлении.
Этот эксперимент показывает, как возникает электромагнитная индукция, т.е. что электрический ток индуцируется из-за относительного движения между катушкой и магнитом.
Эксперимент 2
Во втором эксперименте Фарадей взял другую катушку вместо стержневого магнита. Электрический ток индуцируется там, когда ток проходит через первичную катушку и перемещается во вторичную катушку. Точно так же, если первая катушка перемещается в противоположном направлении, отклонение гальванометра будет в противоположном направлении.
Этот эксперимент показывает, как электрический ток индуцируется из-за относительного движения между двумя катушками.
Эксперимент 3
В этом эксперименте две электронные катушки повторно взяты; один подключается к гальванометру, а другой подключается к батарее через ключ. При нажатии на резку гальванометр показывает временный прогиб. Если быстро нажимать кнопку, отклонения нет. Когда ключ отпускается, происходит отклонение в обратном направлении.
Этот эксперимент показывает, что относительное движение не обязательно для индукции электрического тока.
Что такое магнитный поток?
Эксперименты Фарадея помогли вывести простую математическую формулу для магнитного потока. Магнитный поток можно определить как полное магнитное поле, проходящее через данную область.
Φ = BA cosθ
Если мы выберем простую плоскую поверхность с площадью A в качестве нашей тестовой области, тогда:
θ – угол
Величина B – вектор магнитного поля
Закон Фарадея
Закон индукции Фарадея гласит, что величина индуцированной электромагнитной силы (ЭДС) в цепи равна скорости изменения магнитного потока в цепи во времени.Соотношение:
ЭДС = – ΔΦ / Δt
Где Φ – BA – магнитный поток
B – внешнее магнитное поле
A – площадь катушки
T – время
(-) – знак минус указывает направление тока в замкнутом контуре.
Когда эта тесно намотанная катушка поворачивает N витков, изменение магнитного потока с каждым витком также одинаково.
ЭДС = – NΔΦ / Δt
Где N – Число витков
Закон Ленца
Согласно закону Ленца, индуцированная электродвижущая сила создает ток в контуре, который противодействует изменению магнитного потока, которое его производит.Закон Ленца основан на принципе сохранения энергии.
ЭДС = -NΔΦ / Δt
Примеры и приложения электромагнитной индукции
В современном обществе закон индукции Фарадея находит несколько применений.
- Одним из примеров является хранение данных, которое осуществляется путем записи с помощью магнитных полей.В некоторых компьютерах данные жестких дисков записываются на вращающийся диск с покрытием.
- Таблетки, которые используют многие художники-графики, используют тот же принцип. Перо на батарейках используется на экране, который соединен несколькими проводами. Магнетизм, исходящий от наконечника, вызывает на экране ЭДС, которая преобразуется в графические изображения, которые рисует художник.
- Гибридные или электромобили также работают по принципу электромагнитной индукции. Он также находит применение в лечении пациентов с психическими расстройствами, такими как галлюцинации и депрессия, с помощью транскраниальной магнитной стимуляции (ТМС).Здесь магнитная стимуляция применяется к определенным областям мозга пациента, чтобы принести облегчение.
- Электромагнитная индукция также используется для генерации и передачи энергии.
Электрический генератор
Электрический генератор меняет положительную полярность на отрицательную, чтобы произвести электрический ток.
Электрический генератор состоит из катушки, расположенной под прямым углом к магнитному полю.
Эта катушка механически вращается с помощью внешних средств. Контактные кольца соединяют концы катушки.
Электричество вырабатывается катушками, вращающимися в магнитном поле, создаваемом магнитами.
- В первой половине оборота, когда катушка разрезается около северного полюса магнита, образовавшиеся электроны перемещаются вверх по проводу, заряжая нижнее контактное кольцо положительно.
- Опять же, когда катушка разрезает около южного полюса, контактное кольцо получает отрицательный заряд, потому что электроны движутся по проводу.
В промышленных генераторах вращение якоря может производиться гидроэлектрическими генераторами, тепловыми генераторами или ядерными генераторами энергии, которые заставляют катушку вращаться быстрее, чтобы быстрее производить электричество.
Трансформатор
Электрический трансформатор работает по принципу, согласно которому переменный ток создает переменный поток.
Трансформатор – это статическая машина, состоящая из первичной и вторичной обмоток, соединенных металлическим сердечником, который токами могут намагничивать.Эти катушки ведут себя как индукторы.
Первичная катушка подключена к источнику питания, который вырабатывает электрические токи, которые индуцируют магнитный поток в сердечнике. Поскольку провода вторичной катушки прорезают магнитное поле катушки, оно создает напряжение, которое, в свою очередь, создает электрический ток во вторичной катушке.
Формула для его расчета:
(Напряжение на первичной катушке) / (Число витков первичной обмотки) = (Напряжение на вторичной обмотке) / (Число витков вторичной обмотки)
Поток прямо пропорционален току.Следовательно, с большим количеством катушек напряжение будет увеличиваться, чтобы произвести больший ток.
Индукционная варочная панель
Индукционная варочная панель оснащена медным проводом, через который проходит переменный ток, который помогает готовить пищу. Под стеклянной поверхностью установлены электромагниты, используется ферромагнитная посуда. Когда через провод проходит ток, магнитное поле начинает колебаться, и в сосуде индуцируется электрический ток. В емкости возникает резистивный нагрев из-за больших вихревых токов.
Индукционная готовка лучше традиционных методов непрямого нагрева, таких как газовая плита, электрическая варка и конвекция, следующими способами:
- Более эффективно
- Меньше тепловых потерь
- Нет загрязнения воздуха
- Простота использования и очистки
- Больше безопасности
Вихревые токи
При изменении магнитного потока в проводниках возникают индуцированные токи. Картина течения этих индуцированных токов напоминает вихри в воде; поэтому они называются вихревыми токами.
Вихревые токи могут быть нежелательными, поскольку возникают потери электроэнергии из-за ненужного нагрева металлического сердечника. Тепло выделяется, когда электроны теряют кинетическую энергию при столкновениях. В результате катушки могут быть повреждены, и даже металл может расплавиться из-за вихревых токов. Ламинирование изоляционными материалами, такими как лак, может помочь минимизировать потери из-за вихревых токов.
Краткое содержание урока
Из этого урока мы узнали следующее об электромагнитной индукции:
- При электромагнитной индукции в проводе возникает ток из-за изменения магнитного поля.
- Согласно закону Фарадея, величина наведенной ЭДС в катушке равна скорости изменения магнитного потока, проходящего через катушку, во времени.
- Согласно закону Ленца, индуцированная электродвижущая сила создает ток в контуре, который противодействует изменению магнитного потока, которое его производит.
- Электрический генератор меняет положительную полярность на отрицательную, чтобы произвести электрический ток.
- Электрический трансформатор работает по принципу, согласно которому переменный ток создает переменный поток.
- Изменяющийся магнитный поток в проводниках вызывает в них индуцированные токи. Картина течения этих индуцированных токов напоминает вихри в воде; поэтому они называются вихревыми токами.
Электромагнитная индукция | Энциклопедия.com
Основы
Приложения
Электромагнитная индукция – это создание электродвижущей силы в замкнутой электрической цепи изменяющимся магнитным полем, которое проходит через цепь. (Чтобы понять, что означает «прохождение» магнитного поля через цепь, представьте себе пучок сырых спагетти, удерживаемых в круге, состоящем из большого и указательного пальцев: пряди спагетти соответствуют линиям магнитного поля, а большой и указательный пальцы соответствуют к проводящей петле или цепи.) Некоторые из самых основных компонентов систем электроснабжения, такие как генераторы и трансформаторы, используют электромагнитную индукцию.
Явление электромагнитной индукции было открыто британским физиком Майклом Фарадеем в 1831 году и вскоре независимо наблюдалось американским физиком Джозефом Генри. До этого было известно, что наличие электрического заряда заставит другие заряды на соседних проводниках перераспределяться. Кроме того, в 1820 году датский физик Ганс Кристиан Эрстед продемонстрировал, что электрический ток создает магнитное поле.Тогда казалось разумным спросить, может ли магнитное поле вызывать какой-то электрический эффект, например ток.
Электрический заряд, который неподвижен в магнитном поле, никак не взаимодействует с полем. Также движущийся заряд не будет взаимодействовать с полем, если он движется параллельно
в направлении поля. Однако движущийся заряд, пересекающий поле, будет испытывать силу, перпендикулярную как полю, так и направлению движения заряда (рис. 1).Теперь вместо одного заряда рассмотрим прямоугольную петлю из проволоки, движущуюся через поле. На две стороны петли будут действовать силы, перпендикулярные самой проволоке, так что никакие заряды не будут перемещаться. По двум другим сторонам будет течь заряд, но поскольку силы равны, заряды просто сгруппируются на одной стороне, создавая внутреннее электрическое поле для противодействия приложенной силе, и результирующий ток не будет (рисунок 2).
Как магнитное поле может вызвать прохождение тока через петлю? Фарадей обнаружил, что наличия магнитного поля недостаточно. Чтобы генерировать ток, магнитный поток через петлю – количество заключенных в нее силовых линий магнитного поля – должен изменяться со временем.Термин поток относится к потоку силовых линий магнитного поля через область, ограниченную петлей. Поток силовых линий магнитного поля подобен потоку воды по трубе и может увеличиваться или уменьшаться со временем.
Чтобы понять, как изменение магнитного потока генерирует ток, рассмотрим схему, состоящую из множества прямоугольных петель, соединенных с лампочкой. При каких условиях будет течь ток и лампочка будет гореть? Если цепь протянута через однородное магнитное поле, тока не будет, потому что поток будет постоянным.Но если поле неоднородно, заряды на одной стороне петли будут постоянно испытывать силу, большую, чем на другой стороне. Эта разница в силах заставит заряды циркулировать по петле в токе, который зажигает лампочку. Работа, совершаемая при перемещении каждого заряда по цепи, называется электродвижущей силой (ЭДС). Единицами электродвижущей силы являются вольты, как и напряжение батареи, которое также вызывает протекание тока через цепь. Для схемы не имеет значения, вызван ли изменяющийся поток собственным движением контура или движением магнитного поля, поэтому случай стационарного контура и движущегося неоднородного поля эквивалентен предыдущей ситуации, и снова лампочка будет свет (рисунок 3).
Тем не менее, ток может быть индуцирован в цепи без перемещения ни петли, ни поля. В то время как стационарный контур в постоянном магнитном поле не вызывает зажигания лампы, тот же самый стационарный контур в поле, которое изменяется во времени (например, когда поле включается или выключается), будет испытывать электродвижущую силу. Это происходит потому, что изменяющееся магнитное поле генерирует электрическое поле, направление которого задается правилом правой руки: большой палец правой руки указывает в направлении изменения магнитного потока, и ваши пальцы могут быть обернуты вокруг него. направление индуцированного электрического поля.Когда ЭДС направлена вокруг цепи, будет течь ток, и лампочка загорится (рис. 3).
Различные условия, при которых магнитное поле может вызвать протекание тока через цепь, резюмируются законом индукции Фарадея. Изменение во времени потока магнитного поля через поверхность, ограниченную электрической цепью, создает в этой цепи электродвижущую силу.
Какое направление индуцированного тока? Магнитное поле будет создаваться индуцированным током.Если бы поток этого поля добавлялся к начальному магнитному потоку через цепь, тогда было бы больше тока, который создал бы больший поток, который создал бы больше тока, и так далее
без ограничений. Такая ситуация нарушила бы закон сохранения энергии и тенденцию физических систем сопротивляться изменениям. Таким образом, индуцированный ток будет генерироваться в направлении, которое создаст магнитный поток, который противодействует изменению индуцирующего потока. Этот факт известен как закон Ленца.
Связь между изменением тока в цепи и электродвижущей силой, которую оно вызывает в себе, называется самоиндукцией цепи. Если ток указан в амперах, а ЭДС – в вольтах, единицей самоиндукции является генри. Изменяющийся ток в одной цепи также может вызвать электродвижущую силу в соседней цепи. Отношение наведенной электродвижущей силы к скорости изменения тока в индукционной цепи называется взаимной индуктивностью и также измеряется в генри.
Электрический генератор – это устройство, преобразующее механическую энергию в электрическую. В этом случае магнитное поле стационарно и не меняется во времени. Это цепь, которая вращается в магнитном поле. Поскольку область, допускающая прохождение силовых линий магнитного поля, изменяется во время вращения цепи, поток через цепь будет изменяться, вызывая ток (рис. 4). Обычно для обеспечения вращения контура используется турбина. Энергия, необходимая для движения турбины, может поступать от пара, вырабатываемого ядерным или ископаемым топливом, или от потока воды через плотину.В результате механическая энергия вращения превращается в электрический ток.
Трансформаторы – это устройства, используемые для передачи электроэнергии между цепями. Они используются в линиях электропередач для преобразования электричества высокого напряжения в электрический ток. В обычных устройствах, таких как радио, телевизоры и блоки питания цифровых устройств, также используются трансформаторы. За счет использования взаимной индуктивности трансформатор
КЛЮЧЕВЫЕ УСЛОВИЯ
Ампер – А стандартная единица измерения электрического тока.
Закон индукции Фарадея – Изменение во времени потока магнитного поля через поверхность, ограниченную электрической цепью, создает в этой цепи электродвижущую силу.
Flux— Расход количества через заданную область.
Генератор – Устройство для преобразования кинетической энергии (энергии движения) в электрическую.
Генри— Стандартная единица измерения индуктивности.
Закон Ленца – Направление тока, индуцируемого в цепи, будет таким, чтобы создавать магнитное поле, которое противодействует индуцирующему изменению потока.
Взаимная индуктивность – Отношение наведенной электродвижущей силы в одной цепи к скорости изменения тока в индукционной цепи.
Правило правой руки (для электрических полей, создаваемых изменяющимися магнитными полями) – Большим пальцем правой руки вдоль направления изменения магнитного потока пальцы сгибаются, чтобы указать направление индуцированного электрического поля.
S elf-индуктивность – Электродвижущая сила, индуцированная в цепи, которая возникает в результате изменения во времени тока этой же цепи.
Вольт – Стандартная единица электрического потенциала и электродвижущей силы.
первичная цепь наводит ток во вторичной цепи. Изменяя физические характеристики каждой цепи, выход трансформатора может быть спроектирован в соответствии с конкретными потребностями.
Джон Аппель
Электромагнитная индукция – тригонометрия и генерация однофазного переменного тока для электриков
Электромагнитная индукция – это когда напряжение создается путем пропускания проводника через магнитное поле.
Рисунок 45. Магнитные полюса и индукцияВеличину напряжения можно изменять тремя факторами:
- Размер магнитного поля. Чем больше линий магнитного потока, тем больше линий магнитного потока необходимо для разрезания проводника. Сила потока прямо пропорциональна наведенному напряжению.
- Активная длина проводника. Активная длина означает часть проводника, которая фактически проходит через поле. Активная длина прямо пропорциональна индуцированному напряжению.
- Скорость, с которой проводник проходит через поле. Чем быстрее проводник проходит через поле, тем больше индуцируемое напряжение. Скорость прямо пропорциональна наведенному напряжению.
Эти отношения к напряжению можно разбить на следующую формулу: e = βlv.
Где:
e = пиковое напряжение, индуцированное в катушке индуктивности (вольт)
B = напряженность поля между полюсами (тесла)
l = активная длина проводника (метры)
v = скорость проводника через поле (м / сек)
Вот пример.
Проводник с активной длиной 4 метра проходит через поле 5 тесла со скоростью 15 метров в секунду. Определите пиковое напряжение, наведенное на этом проводе.
(4 м) (5 Тл) (15 м / сек) = 300 В пиковое значение
Это безумие! Кто это открыл?
Открытие электромагнитной индукции приписывается Майклу Фарадею, который обнаружил, что когда он пропускает магнитное поле через проводник, течет ток.
Пока существует движение между полем и проводником, может индуцироваться напряжение.Это может означать, что проводник проходит через поле или поле проходит через проводник.
Далее: Генератор
20.3 Электромагнитная индукция – физика
Задачи обучения разделу
К концу этого раздела вы сможете делать следующее:
- Объясните, как изменяющееся магнитное поле создает ток в проводе.
- Расчет наведенной электродвижущей силы и тока
Поддержка учителей
Поддержка учителей
Цели обучения в этом разделе помогут вашим ученикам овладеть следующими стандартами:
- (5) Студент знает природу сил в физическом мире.Ожидается, что студент:
- (Г) исследовать и описывать взаимосвязь между электрическими и магнитными полями в таких приложениях, как генераторы, двигатели и трансформаторы.
Кроме того, лабораторное руководство OSX High School Physics Laboratory рассматривает содержание этого раздела в лаборатории под названием: Magnetism, а также следующие стандарты:
- (5) Научные концепции. Студент знает природу сил в физическом мире. Ожидается, что студент:
- (ГРАММ) исследовать и описывать взаимосвязь между электрическими и магнитными полями в таких приложениях, как генераторы, двигатели и трансформаторы.
Раздел Основные термины
ЭДС | индукционный | магнитный поток |
Изменение магнитного поля
В предыдущем разделе мы узнали, что ток создает магнитное поле. Если природа симметрична, то, возможно, магнитное поле может создать ток. В 1831 году, примерно через 12 лет после открытия, что электрический ток создает магнитное поле, английский ученый Майкл Фарадей (1791–1862) и американский ученый Джозеф Генри (1797–1878) независимо друг от друга продемонстрировали, что магнитные поля могут создавать токи.Основной процесс генерации токов с помощью магнитных полей называется индукцией; этот процесс также называют магнитной индукцией, чтобы отличить его от индукционной зарядки, в которой используется электростатическая кулоновская сила.
Когда Фарадей открыл то, что сейчас называется законом индукции Фарадея, королева Виктория спросила его, как можно использовать электричество. «Мадам, – ответил он, – что хорошего в ребенке?» Сегодня токи, индуцированные магнитными полями, необходимы нашему технологическому обществу. Электрический генератор, который можно найти во всем, от автомобилей до велосипедов и атомных электростанций, использует магнетизм для генерации электрического тока.Другие устройства, которые используют магнетизм для индукции токов, включают в себя звукосниматели в электрогитарах, трансформаторы любого размера, определенные микрофоны, ворота безопасности аэропорта и механизмы демпфирования на чувствительных химических весах.
Один из экспериментов Фарадея для демонстрации магнитной индукции заключался в том, чтобы переместить стержневой магнит через проволочную катушку и измерить результирующий электрический ток через проволоку. Схема этого эксперимента показана на рис. 20.33. Он обнаружил, что ток индуцируется только тогда, когда магнит движется относительно катушки.Когда магнит неподвижен по отношению к катушке, в катушке не индуцируется ток, как показано на рисунке 20.33. Кроме того, перемещение магнита в противоположном направлении (сравните рис. 20.33 с рис. 20.33) или изменение полярности магнита (сравните рис. 20.33 с рис. 20.33) приводит к возникновению тока в противоположном направлении.
Рис. 20.33 Движение магнита относительно катушки создает электрические токи, как показано. Такие же токи возникают, если катушку перемещать относительно магнита.Чем больше скорость, тем больше величина тока, и ток равен нулю, когда нет движения. Ток, возникающий при перемещении магнита вверх, имеет направление, противоположное направлению тока, возникающего при перемещении магнита вниз.
Виртуальная физика
Закон Фарадея
Попробуйте это моделирование, чтобы увидеть, как движение магнита создает ток в цепи. Лампочка загорается, чтобы показать, когда течет ток, а вольтметр показывает падение напряжения на лампочке.Попробуйте переместить магнит через четырехвитковую катушку и через двухвитковую катушку. Какая катушка производит более высокое напряжение при одинаковой скорости магнита?
Контроль захвата
Если северный полюс находится влево и магнит перемещается справа налево, при входе магнита в катушку создается положительное напряжение. Какое знаковое напряжение получится, если эксперимент повторить с южным полюсом слева?
- Знак напряжения изменится, потому что направление тока изменится при перемещении южного полюса магнита влево.
- Знак напряжения останется прежним, потому что направление тока не изменится при перемещении южного полюса магнита влево.
- Знак напряжения изменится, потому что величина протекающего тока изменится при перемещении южного полюса магнита влево.
- Знак напряжения останется прежним, потому что величина тока не изменится при перемещении южного полюса магнита влево.
Индуцированная электродвижущая сила
Если в катушке индуцируется ток, Фарадей рассуждал, что должно быть то, что он назвал электродвижущей силой , проталкивающей заряды через катушку. Эта интерпретация оказалась неверной; вместо этого внешний источник, выполняющий работу по перемещению магнита, добавляет энергию зарядам в катушке. Энергия, добавляемая на единицу заряда, измеряется в вольтах, поэтому электродвижущая сила на самом деле является потенциалом. К сожалению, название «электродвижущая сила» прижилось, а вместе с ним и возможность спутать его с реальной силой.По этой причине мы избегаем термина электродвижущая сила и просто используем сокращение ЭДС , которое имеет математический символ ε.ε. ЭДС может быть определена как скорость, с которой энергия отбирается от источника на единицу тока, протекающего по цепи. Таким образом, ЭДС – это энергия на единицу заряда , добавляемая источником, которая контрастирует с напряжением, которое представляет собой энергию на единицу заряда , высвобождаемую , когда заряды проходят через цепь.
Чтобы понять, почему в катушке возникает ЭДС из-за движущегося магнита, рассмотрим рисунок 20.34, на котором показан стержневой магнит, движущийся вниз относительно проволочной петли. Первоначально через петлю проходят семь силовых линий магнитного поля (см. Изображение слева). Поскольку магнит удаляется от катушки, только пять силовых линий магнитного поля проходят через петлю за короткое время ΔtΔt (см. Изображение справа). Таким образом, когда происходит изменение количества силовых линий магнитного поля, проходящих через область, ограниченную проволочной петлей, в проволочной петле индуцируется ЭДС. Подобные эксперименты показывают, что наведенная ЭДС пропорциональна скорости изменения магнитного поля.Математически мы выражаем это как
ε∝ΔBΔt, ε∝ΔBΔt,20,24
где ΔBΔB – изменение величины магнитного поля за время ΔtΔt, а A – площадь петли.
Рис. 20.34 Стержневой магнит перемещается вниз относительно проволочной петли, так что количество силовых линий магнитного поля, проходящих через петлю, со временем уменьшается. Это вызывает в контуре ЭДС, создающую электрический ток.
Обратите внимание, что силовые линии магнитного поля, лежащие в плоскости проволочной петли, на самом деле не проходят через петлю, как показано крайним левым витком на рисунке 20.35. На этом рисунке стрелка, выходящая из петли, представляет собой вектор, величина которого равна площади петли, а направление перпендикулярно плоскости петли. На рисунке 20.35 петля повернута от θ = 90 ° θ = 90 °. до θ = 0 °, θ = 0 ° вклад силовых линий магнитного поля в ЭДС увеличивается. Таким образом, для создания ЭДС в проволочной петле важна составляющая магнитного поля, которая находится на перпендикулярно плоскости петли, то есть Bcosθ.Bcosθ.
Это аналог паруса на ветру.Представьте, что проводящая петля – это парус, а магнитное поле – как ветер. Чтобы максимизировать силу ветра на парусе, парус ориентируют так, чтобы вектор его поверхности указывал в том же направлении, что и ветер, как в самой правой петле на рис. 20.35. Когда парус выровнен так, что вектор его поверхности перпендикулярен ветру, как в крайней левой петле на рис. 20.35, тогда ветер не оказывает силы на парус.
Таким образом, с учетом угла магнитного поля по отношению к площади, пропорциональность E∝ΔB / ΔtE∝ΔB / Δt становится равной
E∝ΔBcosθΔt.E∝ΔBcosθΔt.20,25
Рис. 20.35 Магнитное поле лежит в плоскости крайней левой петли, поэтому в этом случае оно не может генерировать ЭДС. Когда петля поворачивается так, что угол магнитного поля с вектором, перпендикулярным области петли, увеличивается до 90 ° 90 ° (см. Крайнюю правую петлю), магнитное поле вносит максимальный вклад в ЭДС в петле. Точки показывают, где силовые линии магнитного поля пересекают плоскость, определяемую петлей.Другой способ уменьшить количество силовых линий магнитного поля, проходящих через проводящую петлю на Рисунке 20.35 не для перемещения магнита, а для уменьшения размера петли. Эксперименты показывают, что изменение площади проводящей петли в стабильном магнитном поле вызывает в петле ЭДС. Таким образом, ЭДС, создаваемая в проводящей петле, пропорциональна скорости изменения произведения перпендикулярного магнитного поля и площади петли
. ε∝Δ [(Bcosθ) A] Δt, ε∝Δ [(Bcosθ) A] Δt,20,26
, где BcosθBcosθ – перпендикулярное магнитное поле, а A – площадь контура.Продукт BAcosθBAcosθ очень важен. Оно пропорционально количеству силовых линий магнитного поля, которые проходят перпендикулярно через поверхность площадью A . Возвращаясь к нашей аналогии с парусом, он будет пропорционален силе ветра на парусе. Он называется магнитным потоком и обозначается как ΦΦ.
Φ = BAcosθΦ = BAcosθ20,27
Единицей измерения магнитного потока является Вебер (Вб), то есть магнитное поле на единицу площади, или Тл / м 2 . Вебер – это также вольт-секунда (Vs).
Индуцированная ЭДС фактически пропорциональна скорости изменения магнитного потока через проводящую петлю.
ε∝ΔΦΔtε∝ΔΦΔt20,28
Наконец, для катушки, изготовленной из петель N , ЭДС в N раз сильнее, чем для одиночной петли. Таким образом, наведенная изменяющимся магнитным полем ЭДС в катушке из N петель составляет
ε∝NΔBcosθΔtA.ε∝NΔBcosθΔtA.Последний вопрос, на который нужно ответить, прежде чем мы сможем преобразовать пропорциональность в уравнение: «В каком направлении течет ток?» Русский ученый Генрих Ленц (1804–1865) объяснил, что ток течет в том направлении, которое создает магнитное поле, которое пытается сохранить постоянный поток в контуре.Например, снова рассмотрим рисунок 20.34. Движение стержневого магнита приводит к уменьшению количества направленных вверх силовых линий магнитного поля, которые проходят через петлю. Следовательно, в контуре генерируется ЭДС, которая направляет ток в направлении, которое создает больше направленных вверх линий магнитного поля. Используя правило правой руки, мы видим, что этот ток должен течь в направлении, показанном на рисунке. Чтобы выразить тот факт, что наведенная ЭДС действует, чтобы противодействовать изменению магнитного потока через проволочную петлю, в пропорциональность ε∝ΔΦ / Δt вводится знак минус.) внутри катушки, направленной влево. Это будет противодействовать увеличению магнитного потока, направленного вправо. Чтобы увидеть, в каком направлении должен течь ток, направьте большой палец правой руки в желаемом направлении магнитного поля B → катушка, B → катушка, и ток будет течь в направлении, указанном сгибанием ваших пальцев правой руки. Это показано изображением правой руки в верхнем ряду рисунка 20.36. Таким образом, ток должен течь в направлении, показанном на рисунке 4 (а).
На Рисунке 4 (b) направление, в котором движется магнит, изменено на обратное.В катушке направленное вправо магнитное поле B → magB → mag из-за движущегося магнита уменьшается. Закон Ленца гласит, что, чтобы противостоять этому уменьшению, ЭДС будет управлять током, который создает дополнительное направленное вправо магнитное поле B → катушка B → катушка в катушке. Опять же, направьте большой палец правой руки в желаемом направлении магнитного поля, и ток будет течь в направлении, указанном сгибанием ваших пальцев правой руки (Рисунок 4 (b)).
Наконец, на Рисунке 4 (c) магнит перевернут, так что южный полюс находится ближе всего к катушке.Теперь магнитное поле B → magB → mag направлено на магнит, а не на катушку. Когда магнит приближается к катушке, он вызывает увеличение направленного влево магнитного поля в катушке. Закон Ленца гласит, что ЭДС, индуцированная в катушке, будет управлять током в направлении, которое создает магнитное поле, указывающее вправо. Это будет противодействовать увеличению магнитного потока, направленного влево из-за магнита. Повторное использование правила правой руки, как показано на рисунке, показывает, что ток должен течь в направлении, показанном на рисунке 4 (c).
Рис. 20.36. Закон Ленца гласит, что ЭДС, индуцированная магнитным полем, будет управлять током, который сопротивляется изменению магнитного потока в цепи. Это показано на панелях (а) – (с) для различных ориентаций и скоростей магнита. Правые руки справа показывают, как применить правило правой руки, чтобы найти, в каком направлении наведенный ток течет вокруг катушки.
Виртуальная физика
Электромагнитная лаборатория Фарадея
Это моделирование предлагает несколько действий.А пока щелкните вкладку Pickup Coil, которая представляет собой стержневой магнит, который вы можете перемещать через катушку. Когда вы это сделаете, вы увидите, как электроны движутся в катушке, и загорится лампочка, или вольтметр покажет напряжение на резисторе. Обратите внимание, что вольтметр позволяет вам видеть знак напряжения при перемещении магнита. Вы также можете оставить стержневой магнит в покое и переместить катушку, хотя наблюдать за результатами сложнее.
Проверка захвата
Исследования PhET: Электромагнитная лаборатория Фарадея Поиграйте с стержневым магнитом и катушками, чтобы узнать о законе Фарадея.Поднесите стержневой магнит к одной или двум катушкам, чтобы лампочка загорелась. Просмотрите силовые линии магнитного поля. Измеритель показывает направление и величину тока. Просмотрите силовые линии магнитного поля или используйте измеритель, чтобы показать направление и величину тока. Вы также можете играть с электромагнитами, генераторами и трансформаторами! Сориентируйте стержневой магнит так, чтобы северный полюс был направлен вправо, и поместите приемную катушку справа от стержневого магнита. Теперь переместите стержневой магнит к катушке и посмотрите, в каком направлении движутся электроны.Это такая же ситуация, как показано ниже. Ток при моделировании течет в том же направлении, что и показано ниже? Объясните, почему да или почему нет.- Да, ток в моделировании течет, как показано, потому что направление тока противоположно направлению потока электронов.
- Нет, ток в моделировании течет в противоположном направлении, потому что направление тока совпадает с направлением потока электронов.
Watch Physics
Наведенный ток в проводе
В этом видео объясняется, как можно индуцировать ток в прямом проводе, перемещая его через магнитное поле.через однородное магнитное поле (0,30 Тл) ẑ ? Провод лежит в направлении ŷ . Кроме того, какой конец провода имеет более высокий потенциал – пусть нижний конец провода находится под углом y = 0, а верхний конец – под углом y = 0,5 м)?
- 0,15 В и нижний конец провода будет иметь более высокий потенциал
- 0,15 В и верхний конец провода будет иметь более высокий потенциал
- 0,075 В и нижний конец провода будет иметь более высокий потенциал
- 0.075 В и верхний конец провода будет иметь более высокий потенциал
Рабочий пример
ЭДС, индуцированная в проводящей катушке движущимся магнитом
Представьте, что магнитное поле проходит через катушку в направлении, указанном на рисунке 20.37. Диаметр катушки 2,0 см. Если магнитное поле изменится с 0,020 до 0,010 Тл за 34 с, каковы направление и величина индуцированного тока? Предположим, что катушка имеет сопротивление 0,1 Ом.
Рисунок 20.37 Катушка, через которую проходит магнитное поле B .
Стратегия
Используйте уравнение ε = −NΔΦ / Δtε = −NΔΦ / Δt, чтобы найти наведенную ЭДС в катушке, где Δt = 34sΔt = 34s. Подсчитав количество витков соленоида, мы находим, что у него 16 петель, поэтому N = 16.N = 16. Используйте уравнение Φ = BAcosθΦ = BAcosθ для расчета магнитного потока
Φ = BAcosθ = Bπ (d2) 2, Φ = BAcosθ = Bπ (d2) 2,20,30
, где d – диаметр соленоида, а мы использовали cos0 ° = 1. cos0 ° = 1. Поскольку площадь соленоида не меняется, изменение магнитного потока через соленоид составляет
ΔΦ = ΔBπ (d2) 2.ΔΦ = ΔBπ (d2) 2.20,31
Найдя ЭДС, мы можем использовать закон Ома, ε = IR, ε = IR, чтобы найти ток.
Наконец, закон Ленца гласит, что ток должен создавать магнитное поле, которое препятствует уменьшению приложенного магнитного поля. Таким образом, ток должен создавать магнитное поле справа.
Решение
Объединение уравнений ε = −NΔΦ / Δtε = −NΔΦ / Δt и Φ = BAcosθΦ = BAcosθ дает
ε = −NΔΦΔt = −NΔBπd24Δt.ε = −NΔΦΔt = −NΔBπd24Δt.20,32
Решая закон Ома для тока и используя этот результат, получаем
I = εR = −NΔBπd24RΔt = −16 (−0,010T) π (0,020 м) 24 (0,10 Ом) (34 с) = 15 мкА.I = εR = −NΔBπd24RΔt = −16 (−0,010T) π (0,020 м) 24 (0,10 Ом) (34 с) = 15 мкА.20.33
Закон Ленца гласит, что ток должен создавать магнитное поле справа. Таким образом, мы направляем большой палец правой руки вправо и сжимаем пальцы правой руки вокруг соленоида. Ток должен течь в том направлении, в котором указывают наши пальцы, поэтому он входит в левый конец соленоида и выходит из правого конца.
Обсуждение
Давайте посмотрим, имеет ли смысл знак минус в законе индукции Фарадея. Определите направление магнитного поля как положительное. Это означает, что изменение магнитного поля отрицательное, как мы обнаружили выше. Знак минус в законе индукции Фарадея отрицает отрицательное изменение магнитного поля, оставляя нам положительный ток. Следовательно, ток должен течь в направлении магнитного поля, что мы и обнаружили.
Теперь попробуйте определить положительное направление как направление, противоположное направлению магнитного поля, то есть положительное направление находится слева на рисунке 20.37. В этом случае вы обнаружите отрицательный ток. Но поскольку положительное направление находится влево, отрицательный ток должен течь вправо, что снова согласуется с тем, что мы обнаружили с помощью закона Ленца.
Рабочий пример
Магнитная индукция из-за изменения размера цепи
Схема, показанная на рисунке 20.38, состоит из U-образного провода с резистором, концы которого соединены скользящим токопроводящим стержнем. Магнитное поле, заполняющее область, ограниченную контуром, имеет постоянное значение 0.01 T. Если стержень тянут вправо со скоростью v = 0,50 м / с, v = 0,50 м / с, какой ток индуцируется в цепи и в каком направлении он течет?
Рисунок 20.38 Схема ползунка. Магнитное поле постоянно, и шток тянется вправо со скоростью v . Область изменения, заключенная в цепи, вызывает в цепи ЭДС.
Стратегия
Мы снова используем закон индукции Фарадея, E = −NΔΦΔt, E = −NΔΦΔt, хотя на этот раз магнитное поле остается постоянным и площадь, ограниченная контуром, изменяется.Схема состоит из одного контура, поэтому N = 1.N = 1. Скорость изменения площади ΔAΔt = vℓ.ΔAΔt = vℓ. Таким образом, скорость изменения магнитного потока составляет
ΔΦΔt = Δ (BAcosθ) Δt = BΔAΔt = Bvℓ, ΔΦΔt = Δ (BAcosθ) Δt = BΔAΔt = Bvℓ,20,34
, где мы использовали тот факт, что угол θθ между вектором площади и магнитным полем равен 0 °. Зная ЭДС, мы можем найти ток, используя закон Ома. Чтобы найти направление тока, мы применяем закон Ленца.
Решение
Закон индукции Фарадея дает
E = −NΔΦΔt = −Bvℓ.E = −NΔΦΔt = −Bvℓ.20,35
Решение закона Ома для тока и использование предыдущего результата для ЭДС дает
I = ER = −BvℓR = – (0,010T) (0,50 м / с) (0,10 м) 20Ω = 25 мкA I = ER = −BvℓR = – (0,010T) (0,50 м / с) (0,10 м) 20Ω = 25 мкА.20,36
По мере скольжения стержня вправо магнитный поток, проходящий через контур, увеличивается. Закон Ленца говорит нам, что индуцированный ток создаст магнитное поле, которое будет противодействовать этому увеличению. Таким образом, магнитное поле, создаваемое индуцированным током, должно быть на странице.Сгибание петли пальцами правой руки по часовой стрелке заставляет большой палец правой руки указывать на страницу, что является желаемым направлением магнитного поля. Таким образом, ток должен течь по цепи по часовой стрелке.
Обсуждение
Сохраняется ли энергия в этой цепи? Внешний агент должен тянуть стержень с достаточной силой, чтобы просто уравновесить силу на проводе с током в магнитном поле – вспомните, что F = IℓBsinθ.F = IℓBsinθ. Скорость, с которой эта сила действует на стержень, должна уравновешиваться скоростью, с которой цепь рассеивает мощность.Используя F = IℓBsinθ, F = IℓBsinθ, сила, необходимая для протягивания проволоки с постоянной скоростью v , равна
. Fpull = IℓBsinθ = IℓB, Fpull = IℓBsinθ = IℓB,20,37
, где мы использовали тот факт, что угол θθ между током и магнитным полем составляет 90 ° 0,90 °. Подставляя приведенное выше выражение для тока в это уравнение, получаем
Fpull = IℓB = −BvℓR (ℓB) = – B2vℓ2R. Fpull = IℓB = −BvℓR (ℓB) = – B2vℓ2R.20,38
Сила, создаваемая агентом, тянущим стержень, равна Fpullv, или Fpullv, или
Потяните = Fpullv = −B2v2ℓ2R.Потяните = Fpullv = −B2v2ℓ2R.20,39
Мощность, рассеиваемая схемой, составляет
Pdissipated = I2R = (- BvℓR) 2R = B2v2ℓ2R. Pdissipated = I2R = (- BvℓR) 2R = B2v2ℓ2R.20,40
Таким образом, мы видим, что Ppull + Pdissipated = 0, Ppull + Pdissipated = 0, что означает, что мощность сохраняется в системе, состоящей из цепи и агента, который тянет стержень. Таким образом, в этой системе сохраняется энергия.
Практические задачи
11.Магнитный поток через однопроволочную петлю изменяется с 3.От 5 до 1,5 Вт за 2,0 с. Какая ЭДС индуцируется в контуре?
- –2,0 В
- –1,0 В
- +1,0 В
- +2,0 В
Какова ЭДС у 10-витковой катушки, через которую поток изменяется со скоростью 10 Вт / с?
- –100 В
- –10 В
- +10 В
- +100 В
Проверьте свое понимание
13.При наличии стержневого магнита как можно навести электрический ток в проволочной петле?
- Электрический ток индуцируется, если стержневой магнит находится рядом с проволочной петлей.
- Электрический ток индуцируется, если проволочная петля наматывается на стержневой магнит.
- Электрический ток индуцируется, если стержневой магнит перемещается через проволочную петлю.
- Электрический ток индуцируется, если стержневой магнит находится в контакте с проволочной петлей.
Какие факторы могут вызвать индуцированный ток в проволочной петле, через которую проходит магнитное поле?
- Наведенный ток можно создать только путем изменения размера проволочной петли.
- Наведенный ток можно создать только путем изменения ориентации проволочной петли.
- Наведенный ток можно создать только путем изменения напряженности магнитного поля.
- Наведенный ток может быть создан путем изменения силы магнитного поля, изменения размера проволочной петли или изменения ориентации проволочной петли.