Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Поколения ЭВМ — урок. Информатика, 10 класс.

Можно выделить \(5\) основных поколений ЭВМ. Но деление компьютерной техники на поколения — весьма условная.

I поколение ЭВМ: ЭВМ, сконструированные в \(1946\)-\(1955\) гг.

1. Элементная база: электронно-вакуумные лампы.
2. Соединение элементов: навесной монтаж проводами.
3. Габариты: ЭВМ выполнена в виде громадных шкафов.

Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести крупные корпорации и правительства.

Лампы потребляли большое количество электроэнергии и выделяли много тепла.
4. Быстродействие: \(10-20\) тыс. операций в секунду.
5. Эксплуатация: сложная из-за частого выхода из строя электронно-вакуумных ламп.
6. Программирование: машинные коды. При этом надо знать все команды машины, двоичное представление, архитектуру ЭВМ. В основном были заняты математики-программисты. Обслуживание ЭВМ требовало от персонала высокого профессионализма.
7. Оперативная память: до \(2\) Кбайт.
8. Данные вводились и выводились с помощью перфокарт, перфолент.

II поколение ЭВМ: ЭВМ, сконструированные в \(1955\)-\(1965\) гг.

В \(1948\) году Джон Бардин, Уильям Шокли, Уолтер Браттейн изобрели транзистор, за изобретение транзистора они получили Нобелевскую премию в \(1956\) г.

\(1\) транзистор заменял \(40\) электронных ламп, был намного дешевле и надёжнее.

 

В \(1958\) году создана машина М-20, выполнявшая \(20\) тыс. операций в секунду — самая мощная ЭВМ \(50-х\) годов в Европе.

 

В \(1963\) году сотрудник Стэндфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши.

 

 

1. Элементная база: полупроводниковые элементы (транзисторы, диоды).
2. Соединение элементов: печатные платы и навесной монтаж. 

3. Габариты: ЭВМ выполнена в виде однотипных стоек, чуть выше человеческого роста, но для размещения требовался специальный машинный зал.
4. Быстродействие: \(100-500\) тыс. операций в секунду.

5. Эксплуатация: вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность — оператор ЭВМ.
6. Программирование: на алгоритмических языках, появление первых операционных систем.
7. Оперативная память: \(2-32\) Кбайт.
8. Введён принцип разделения времени — совмещение во времени работы разных устройств.

9. Недостаток: несовместимость программного обеспечения.

Уже начиная со второго поколения, машины стали делиться на большие, средние и малые по признакам размеров, стоимости, вычислительных возможностей.

 

Так, небольшие отечественные машины второго поколения («Наири», «Раздан», «Мир» и др.) были в конце \(60\)-х годов вполне доступны каждому вузу, в то время как упомянутая выше БЭСМ-6 имела профессиональные показатели (и стоимость) на \(2-3\) порядка выше.

III поколение ЭВМ: ЭВМ, сконструированные в \(1965\)-\(1975\) гг.

В \(1958\) году Джек Килби и Роберт Нойс, независимо друг от друга, изобретают интегральную схему (ИС).

 

В \(1961\) году в продажу поступила первая, выполненная на пластине кремния, интегральная схема.

 

В \(1965\) году начат выпуск семейства машин третьего поколения IBM-360 (США). Модели имели единую систему команд и отличались друг от друга объёмом оперативной памяти и производительностью.

 

 

В \(1967\) году начат выпуск БЭСМ – 6 (\(1\) млн. операций в \(1\) с) и «Эльбрус» (\(10\) млн. операций в \(1\) с).

 

В \(1969\) году фирма IBM разделила понятия аппаратных средств (hardware) и программные средства (software). Фирма начала продавать программное обеспечение отдельно от железа, положив начало индустрии программного обеспечения.

 

\(29\) октября \(1969\) года проходит проверка работы самой первой глобальной военной компьютерной сети ARPANet, связывающей исследовательские лаборатории на территории США.

Обрати внимание!

29 октября — день рождения Интернета.

В \(1971\) году создан первый микропроцессор фирмой Intel. На \(1\) кристалле сформировали \(2250\) транзисторов.

 

1. Элементная база: интегральные схемы.
2. Соединение элементов: печатные платы.
3. Габариты: ЭВМ выполнена в виде однотипных стоек.
4. Быстродействие: \(1-10\) млн. операций в секунду.
5. Эксплуатация: вычислительные центры, дисплейные классы, новая специальность — системный программист.
6. Программирование: алгоритмические языки, операционные системы.
7. Оперативная память: \(64\) Кбайт.

 

При продвижении от первого к третьему поколению радикально изменились возможности программирования. Написание программ в машинном коде для машин первого поколения (и чуть более простое на Ассемблере) для большей части машин второго поколения является занятием, с которым подавляющее большинство современных программистов знакомятся при обучении в вузе.

 

Появление процедурных языков высокого уровня и трансляторов с них было первым шагом на пути радикального расширения круга программистов. Научные работники и инженеры сами стали писать программы для решения своих задач.

 

Уже в третьем поколении появились крупные унифицированные серии ЭВМ. Для больших и средних машин в США это прежде всего семейство IBM 360/370. В СССР \(70\)-е и \(80\)-е годы были временем создания унифицированных серии: ЕС (единая система) ЭВМ (крупные и средние машины), СМ (система малых) ЭВМ и «Электроника» (серия микро-ЭВМ).

В их основу были положены американские прототипы фирм IBM и DEC (Digital Equipment Corporation). Были созданы и выпущены десятки моделей ЭВМ, различающиеся назначением и производительностью. Их выпуск был практически прекращен в начале \(90\)-х годов.

IV поколение ЭВМ: ЭВМ, сконструированные начиная с \(1975\) г. по начало \(90\)-х годов

В \(1975\) году IBM первой начинает промышленное производство лазерных принтеров.

 

В \(1976\) году фирма IBM создает первый струйный принтер.

 

В \(1976\) году создана первая ПЭВМ.

 

Стив Джобс и Стив Вознякорганизовали предприятие по изготовлению персональных компьютеров «Apple», предназначенных для большого круга непрофессиональных пользователей. Продавался \(Apple 1\) по весьма интересной цене — \(666,66\) доллара. За десять месяцев удалось реализовать около двухсот комплектов.

 

 

В \(1976\) году появилась первая дискета диаметром \(5,25\) дюйма.

 

В \(1982\) году фирма IBM приступила к выпуску компьютеров IBM РС с процессором Intel 8088, в котором были заложены принципы открытой архитектуры, благодаря которому каждый компьютер может собираться как из кубиков, с учётом имеющихся средств и с возможностью последующих замен блоков и добавления новых.

 

В \(1988\) году был создан первый вирус-«червь», поражающий электронную почту.

 

В \(1993\) году начался выпуск компьютеров IBM РС с процессором Pentium.

 

1. Элементная база: большие интегральные схемы (БИС).
2. Соединение элементов: печатные платы.
3. Габариты: компактные ЭВМ, ноутбуки.
4. Быстродействие: \(10-100\) млн. операций в секунду.
5. Эксплуатация: многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ.
6. Программирование: базы и банки данных.
7. Оперативная память: \(2-5\) Мбайт.
8. Телекоммуникационная обработка данных, объединение в компьютерные сети.

V поколение ЭВМ: разработки с \(90\)-х годов ХХ века

Элементной базой являются сверхбольшие интегральные схемы (СБИС) с использованием оптоэлектронных принципов (лазеры, голография).

 

www.yaklass.ru

Поколения ЭВМ. Их краткая характеристика. Элементная база. — КиберПедия

Ответ:

(не стоит паниковать при виде этого вопроса – запомнить нужно основные моменты, а выносить их кусками значит лишь кого-то полного понимания картины)

 

На данный момент существует четыре поколения ЭВМ.

 

Поколения ЭВМ Первое (1949-1958) Второе (1959-1963) Третье (1964-1976) Четвертое (1977-н.в.)
Элементная база ЭВМ   Электронные лампы, реле Транзисторы, параметроны ИС, СБИС Сверхбольшие ИС (СБИС)
Производительность центрального процессора   до 3х105 о/с до 3х106 о/с до 3х107 o/c более 3х107 o/c
Тип оперативной памяти (ОП)   триггеры, ферритовые сердечники (ФС) миниатюрные ФС полупроводниковая БИС полупроводниковая СБИС
Объем ОП   до 64 Кб до 512 Кб до 16 Мб более 16 Мб
Типичные модели поколения   EDSAC ENIAC UNIAC БЭСМ RCA-501, IBM-7090, БЭСМ-6 IBM/360, PDP, VAX, ЕС ЭВМ, СМ ЭВМ IBM/370, SX-2, IBM PC/XT/AT, PS/2, Cray, сети
Характерное программное обеспечение Коды, автокоды, ассемблеры Языки программиро-вания, диспетчеры АСУ, АСУТП ППП, СУБД, САПРы, ЯВУ, операцион-ные системы БЗ, ЭС, системы параллельного программирования

 

В первом поколении (1943-1959 гг.) элементной базой ЭВМ была электронная лампа, в которой использовался эффект Эдисона.

Электронная лампа – это прибор, работа которого осуществляется за счет изменения потока электронов, двигающихся в вакууме от катода к аноду. Движение электронов происходит за счет термоэлектронной эмиссии – испускания электронов с поверхности нагретых металлов. Здесь используется свойство металлов, которые обладают большой концентрацией свободных электронов с различной энергией, а, следовательно, и скоростями движения. По мере нагревания металла энергия электронов возрастает, и некоторые из них преодолевают потенциальный барьер на границе металла.

В ЭВМ первого поколения оперативная память выполнялась на триггерах, затем на ферритовых сердечниках, быстродействие 5-30 тыс. арифметических операций в секунду.

Память на магнитных сердечниках хранила данные в виде направления намагниченности небольших ферритовых колец. Каждое кольцо сохраняло 1 бит информации, а вся память представляла собой прямоугольную матрицу.

От программиста того времени требовалось хорошее знание архитектуры ЭВМ и ее программных возможностей. Программирование осуществлялось в машинных кодах, позднее на ассемблере и автокоде. Поэтому программирование на ЭВМ первого поколение было уделом избранных, специально подготовленных математиков-программистов.



Первые ЭВМ использовались в основном для научных расчетов.

Машины первого поколения размещались в огромных залах (типа спортивных). Тысячи электронных ламп быстро нагревали помещение, высокая температура снижала надежность ЭВМ.

К концу жизненного цикла первого поколения появился первый язык высокого уровня – ФОРТРАН.

Применение транзисторов в вычислительной технике дало начало второму поколению (1959-1963 гг.) компьютеров. На компьютерах с транзисторами начал действовать закон «10» – улучшение за десять лет всех характеристик компьютера примерно в десять и более раз.

Переход на новую элементную базу оказался неизбежным, так как рост производительности и надежность ЭВМ первого поколения достигли своего максимума. Основные причины, приведшие к необходимости замены электронных ламп, были следующими:

1. Нить накаливания в электронных лампах со временем теряет свои эмиссионные свойства и перегорает. В среднем, срок службы лампы не превышал 10 000 часов. Таким образом, в ЭВМ, состоящей из 104 электронных ламп, в среднем, каждый час, выходила из строя одна электронная лампа.

2. ЭВМ на электронных лампах требуют мощных источников питания, при этом почти 75% энергии растрачивается на тепловых потерях. Это, в свою очередь, приводит к необходимости организации дорогостоящих и сложных систем охлаждения. Транзисторы потребляют на порядок меньше энергии и слабее греются.

3. Большие габариты электронных ламп. Самые миниатюрные радиолампы не позволяли в одном кубическом дециметре разместить более 1000 элементов, в то же время использование транзисторов позволяло на порядок увеличить плотность монтажа.

4. Радиолампы – это хрупкий элемент. Его установка требует осторожности и аккуратности, и с большим трудом поддается автоматизации. В то же время транзисторы гораздо более надежны и прочны, что позволяет легко автоматизировать процесс их производства и монтажа.



Кроме новой элементной базы и быстродействия, второе поколение характеризуется новыми архитектурными решениями и развитием технологии программирования. В ЭВМ второго поколения обеспечивается совмещение функциональных операций, они стали работать в режиме разделения времени. Реализовано совмещение центрального процессора по обработке данных и каналов ввода-вывода, а также распараллеливание операций выборки команд и данных из памяти.

Конец 50-х годов – это начало этапа автоматизации программирования. В это время появляются языки CommercialTranslator, FACT, MathMathic, и 38

программно-ориентированные языки высокого уровня (ЯВУ): Fortran (1955), Algol-60, AKU-400 и др.

В это время были разработаны первые системы пакетной обработки, которые автоматизировали всю последовательность действий оператора по организации вычислительного процесса. Ранние системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными не для обработки данных, а для управления вычислительным процессом.

В 1957 году компанией BellLabs была разработана операционная система Bell Operating System. А в 1962 году была разработана компанией GeneralElectric операционная система General Comprehensive Operating System.

Микроэлектронная технология породила третье поколение ЭВМ (1964-1974 гг.). В этом поколении элементную базу компьютеров образовали так называемые интегральные схемы. Замечательное отличие такой схемы заключается в том, что все ее элементы (транзисторы, резисторы конденсаторы) и соединения между ними создаются на небольшой пластине кристалла (обычно кремния). Технология, использующая процессы травления и напыления, позволяет создавать схемы с чрезвычайно мелкими элементами. Именно поэтому такие схемы и стали называть интегральными микросхемами.

Использование интегральных схем позволило получить ряд преимуществ:

1. Увеличилась надежность ЭВМ. Надежность интегральных схем – на порядок выше надежности аналогичных схем на дискретных 40 компонентах.

2. За счет повышения плотности упаковки электронных схем, уменьшилось время передачи сигнала по проводникам и, как следствие, увеличилось быстродействие ЭВМ.

3. Производство интегральных схем хорошо поддается автоматизации, что при серийном производстве резко уменьшает себестоимость производства и способствует популяризации и расширению области применения ЭВМ.

4. Высокая плотность упаковки электронных схем уменьшила на несколько порядков габариты, массу и потребляемую мощность ЭВМ, что позволило использовать их в недоступных до этого областях науки и техники, таких как авиация и космическая техника.

В ЭВМ третьего поколение уже четко выделяется иерархия памяти. ОЗУ делится на независимые блоки с собственными системами управления, работающие параллельно. Структура оперативной памяти делится на страницы и сегменты. Развивается и внутренняя память процессора – создаются предпосылки к вводу кэширования памяти.

Наряду с совершенствованием логических устройств и памяти, полным ходом шла модернизация устройств ввода-вывода. Быстродействие новых ЭВМ требовало более быстрой и надежной системы ввода-вывода данных, чем устройства чтения перфокарт и телетайпы. На смену им пришли клавиатуры, панели графического ввода, дисплеи со световым карандашом, плазменные панели, растровые графические системы и другие устройства.

К концу 1960-х годов уже был создан целый ряд операционных систем, реализующий множество необходимых функций по управлению ЭВМ. Всего эксплуатировалось более сотни различных ОС.

Среди наиболее развитых операционных систем были:

1. OS/360, разработанная фирмой IBM в 1964 году для управления мейнфреймами;

2. MULTICS– одна из первых операционных систем с разделением времени исполнения программ;

3. UNIX, разработанная в 1969 году и, впоследствии, разросшаяся до целого семейства операционных систем, многие из которых являются одними из самых популярных на сегодняшний день.

Использование операционных систем упростило работу с ЭВМ и способствовало популяризации электронной вычислительной техники.

На ЭВМ III поколения появились системы управления базами данных (СУБД), системы автоматизирования проектных работ (САПР), совершенствуются АСУ и АСУТП. Создаются пакеты прикладных программ (ППП) различного назначения. Появляются новые и совершенствуются существующие языки программирования, их количество достигло уже 3000.

Сверхбольшие интегральные схемы стали основой элементарной базы компьютеров четвертого поколения (1975-н.в.). Процессор, реализованный на одной СБИС, получил название микропроцессора.

Парк всех машин четвертого поколения можно условно разделить на пять основных классов: микро-ЭВМ, персональные компьютеры, специальные ЭВМ, ЭВМ общего назначения и супер-ЭВМ. Но из этого многообразия, лишь ПК и супер-ЭВМ определяют лицо четвертого поколения.

ЭВМ четвертого поколения можно характеризовать тремя основными показателями: элементной базой, персональным характером использования (ПК) и нетрадиционной архитектурой (супер-ЭВМ).

Элементная база способствовала миниатюризации ВТ, повышению ее надежности, позволила создавать мини- и микро-ЭВМ по своим возможностям превосходящие большие ЭВМ предыдущего поколения.

Основой для создания ПК стало создание универсального процессора на одном кристалле. Первый микропроцессор Intel 4004 был создан в 1971 году и содержал 2250 элементов, а в 1974 году был создан микропроцессор Intel 8080, содержащий уже 4500 элементов и послужил основой для создания первого ПК – Altair-8800. Этот компьютер рассылался по почте, стоил 397 долларов и имел возможности для расширения периферийными устройствами. Для Altair-8800 П. Аллен и У. Гейтс создали транслятор с языка Basic.

Начала формироваться ПК-индустрия. Лавинообразно растет программное обеспечение, направленное не только на решение производственных и научных задач, а удовлетворяющее потребности рядовых граждан, в том числе и ПО для развлечений. С каждым годом парк персональных компьютеров увеличивается, появляются все новые модели с новым интуитивно-понятным интерфейсом программного обеспечения, включая операционные системы.

ПК четвертого поколения по своим возможностям уже превосходят многие мощные ЭВМ третьего поколения. Никого уже не удивляет, что память современных ПК превышает уже сотни мегабайт, а память жесткого магнитного диска имеет размерность в гигабайтах и даже в терабайтах. Компьютер оснащен не только дисководами для гибких дисков, но и устройством для считывания информации с компакт-дисков.

 

cyberpedia.su

Третье поколение ЭВМ Элементная база — интегральные

Третье поколение ЭВМ

Элементная база – интегральные схемы, а вместо памяти на магнитных сердечниках полупроводниковые Быстродействие – миллионы тысяч операций в секунду Программное обеспечение – была создана первая операционная система Интегральные схемы содержат до несколько десятков тысяч элементов на кристалле

Период времени: 1970 -1979; Устройства вывода: графопостроитель, принтер; Элементная база: интегральные схемы; Внешняя память: перфоленты и магнитный диски; Основной тип ЭВМ: малые; Устройства ввода: алфавитно-цифровой дисплей и клавиатура;

Третье поколение ЭВМ: Ключевое решение в ПО: интерактивные ОС, структурные языки программирования; Режимы работы ЭВМ: разделение времени; Быстродействие: 105 -107; Количество в мире: десятки тысяч; Цель использования: управление и экономические расчеты.

Третье поколение (70 года). Элементная база компьютеров третьего поколения интегрированные устройства (интегральные схемы, чипы). Интегрированное устройство – это небольшая пластинка из чистого кремния, на которой являются миниатюрные электронные элементы: транзисторы,

Машины третьего поколения – серия “ІВМ-360”, “ІВМ-370” в США, серия ЭС в нашей стране – аналог серии “ІBM”.

Компьютер IBM System/360

Характеристика Машины третьего поколения — это семейства машин с единой архитектурой, т. е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами. Машины третьего поколения имеют развитые операционные системы Примеры машин третьего поколения — семейства IBM — 360, IBM— 370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и

В 1964 году фирма IBM объявила о создании модели IBM-360, производительность её достигала несколько миллионов операций в секунду, объём памяти значительно превосходил машины второго поколения. В 1966 — 67 гг. ЭВМ 3 -го были выпущены фирмами Англии, ФРГ, Японии.

present5.com

элементная база. История поколений ЭВМ :: SYL.ru

Электронно-вычислительные виды машин в нашей стране делятся на несколько поколений. Определяющими признаками при отнесении устройств к определенному поколению служат их элементы и разновидности таких важных характеристик, как быстродействие, емкость памяти, способы управления и переработки информации. Деление ЭВМ является условным – есть немалое количество моделей, которые, по одним признакам, относятся к одному, по другим – к другому виду поколения. В результате эти виды ЭВМ могут относиться к различным этапам развития техники электронно-вычислительного типа.

Первое поколение ЭВМ

Развитие ЭВМ разделяется на несколько периодов. Поколение устройств каждого периода имеет отличия друг от друга элементными базами и обеспечением математического типа.

1 поколение ЭВМ (1945–1954) – электронно-вычислительные машины на лампах электронного типа (подобные были в телевизорах первых моделей). Это время можно назвать эпохой становления такой техники.

Большая часть машин первого вида поколения называлась экспериментальными типами устройств, которые создавались с целью проверки одних или других положений теорий. Размер и вес компьютерных агрегатов, которые часто нуждались в отдельных зданиях, давно превратились в легенду. Введение чисел в первые машины производилось при помощи перфокарт, а программные управления последовательностями выполнимости функций осуществлялись, к примеру, в ENIAC, как в машинах счетно-аналитического типа, при помощи штекеров и видов наборного поля. Несмотря на то что подобный метод программирования требовал множества времени для того, чтобы подготовить машину – для соединений на наборных полях (коммутационной доске) блоков он давал все возможности для реализации счетных «способностей» ENIAC’а, и с большой выгодой имел отличия от метода программной перфоленты, который характерен для устройств релейного типа.

Как работали эти агрегаты

Сотрудники, которые были приписанными к данной машине, постоянно находились возле нее и осуществляли наблюдение за работоспособностью электронных ламп. Но, как только перегорала хотя бы одна лампа, ENIAC сразу же поднимался, и наставали хлопоты: все в спешке осуществляли поиск сгоревшей лампы. Главной причиной (может быть, и не точной) очень частой замены ламп была следующая: тепло и свечение ламп привлекали мотыльков, они залетали внутрь машины и способствовали возникновению короткого замыкания. Таким образом, 1 поколение ЭВМ было крайне уязвимым относительно внешних условий.

Если вышесказанное является правдой, то термин «жучки» («баги»), под которым подразумеваются ошибки в программном и аппаратном оборудовании компьютерной техники, набирает уже новое значение. Когда все лампы находились в рабочем состоянии, инженерный персонал мог сделать настройку ENIAC на какую-либо задачу, изменив вручную подключения 6 000 проводов. Все провода нужно было снова переключать, если требовалась задача другого типа.

Самые первые серийные машины

Первой серийно выпускавшейся ЭВМ первого поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчиками данного компьютера были: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Это был первый тип электронного цифрового компьютера общего назначения. UNIVAC, работы по разработкам которого начались в 1946 году и завершились в 1951, обладал временем сложений 120 мкс, умножений – 1800 мкс и делений – 3600 мкс.

Данные машины занимали много площади, использовали множество электроэнергии и состояли из огромной численности ламп электронного типа. К примеру, машина «Стрела» имела 6400 таких ламп и 60 тысяч штук диодов полупроводникового типа. Быстродействия этого поколения ЭВМ не превышали 2–3 тысяч операций в секунду, объемы оперативной памяти были не больше 2 Кб. Только машина «М-2» (1958) имела оперативную память 4 Кб, а быстродействие ее было 20 тысяч операций в секунду.

ЭВМ второго поколения – существенные отличия

В 1948 году физиками-теоретиками Джоном Бардиным и Уильямом Шокли, вместе с ведущим экспериментатором фирмы «Белл телефон лабораториз» Уолтером Браттейном, был создан первый действующий транзистор. Это был прибор точечно-контактного типа, в котором три металлических «усика» имели контакт с бруском из поликристаллического материала. Таким образом, поколения ЭВМ начали совершенствоваться уже в то далекое время.

Первые виды компьютеров, которые работали на основе транзисторов, отмечают свое появление в конце 1950 годов, а к середине 1960 годов были создано внешние типы устройств с более компактными функциями.

Особенности архитектуры

Одной из удивительных способностей транзистора является то, что он один может осуществлять работу за 40 ламп электронного типа, и даже в этом случае иметь большую скорость работы, выделять минимальное количество теплоты, и практически не употреблять электрические ресурсы и энергию. Вместе с процессами замены ламп электрического типа на транзисторы усовершенствовались способы сохранения информации. Произошло увеличение объема памяти, а магнитная лента, которая впервые была применена в ЭВМ первого поколения UNIVAC, начала использоваться как для введения, так и для выведения информации.

В середине 1960 годов применялось сохранение информации на дисках. Огромные виды достижений в архитектуре компьютеров позволяли получить быстрые действия в миллион операций в секунду! Например, к транзисторным компьютерам 2 поколения ЭВМ можно отнести «Стретч» (Англия), «Атлас» (США). В тот период Советский Союз также выпускал не уступающие вышеуказанным устройствам (к примеру, «БЭСМ-6»).

Создание ЭВМ, которые построены с помощью транзисторов, стало причиной уменьшения их габаритов, масс, затрат энергии и цены на них, а также увеличило надежность и производительность. Это поспособствовало расширению круга пользователей и номенклатуры решаемых задач. Учитывая улучшенные характеристики, которыми обладало 2 поколение ЭВМ, разработчики начали создавать алгоритмические виды языков для инженерно-технического (к примеру, АЛГОЛ, ФОРТРАН) и экономического (к примеру, КОБОЛ) вида расчетов.

Значение ОС

Но даже на этих этапах главной из задач технологий программирования было обеспечение экономии ресурсов – машинного времени и количества памяти. Для решения этой задачи начали создавать прототипы современных операционных систем (комплексы программ служебного типа, которые обеспечивают хорошие распределения ресурсов ЭВМ при исполнениях задач пользователя).

Виды первых операционных систем (ОС) способствовали автоматизации работы операторов ЭВМ, которая связана с выполнением заданий пользователя: ввод в устройство текстов программ, вызовы необходимых трансляторов, вызовы требуемых для программы библиотечных подпрограмм, вызовы компоновщика для размещения данных подпрограмм и программы основного типа в памяти ЭВМ, введение данных исходного типа и т. п.

Теперь, помимо программы и данных, в ЭВМ второго поколения нужно было вводить еще и инструкцию, где находилось перечисление этапов обработки и список сведений о программе и ее авторах. После этого в устройства начали вводить одновременно некоторое количество заданий для пользователей (пакеты с заданиями), в этих видах операционных систем нужно было распределить типы ресурсов ЭВМ между данными типами заданий – возник мультипрограммный режим для обработок данных (к примеру, пока происходит вывод результатов задачи одного типа, делаются расчеты для другого, и в память можно ввести данные для третьего типа задачи). Таким образом, 2 поколение ЭВМ вошло в историю появлением упорядоченных ОС.

Третье поколение машин

За счет созданий технологии производств интегральных микросхем (ИС) получилось добиться увеличений быстрого действия и уровней надежности полупроводниковых схем, а также уменьшения их размеров, потребляемых уровней мощности и стоимости. Интегральные виды микросхем состоят из десятков элементов электронного типа, которые собраны в прямоугольных пластинах кремния, и обладают длиной стороны не больше 1 см. Подобный тип пластины (кристаллов) размещают в пластмассовом корпусе небольших габаритов, размеры в котором можно определить только с помощью числа «ножек» (выводов от входа и выхода электронных схем, созданных на кристаллах).

Благодаря указанным обстоятельствам, история развития ЭВМ (поколения ЭВМ) сделала большой прорыв. Это дало возможность не только для повышения качества работы и снижения стоимости универсальных устройств, но и создать машины малогабаритного, простого, дешевого и надежного типа – мини-ЭВМ. Такие агрегаты сначала были предназначены для замены контроллеров аппаратно-реализованнных назначений в контурах управления какими-либо объектами, в автоматизированных системах управления процессами технологического типа, системах сборов и обработки данных экспериментального типа, различных управляющих комплексах на объектах подвижного типа и т. п.

Главным моментом в то время считались унификации машин с конструктивно-технологическими параметрами. Третье поколение ЭВМ начинает выпуски своих серий или семейств, совместимых типов моделей. Дальнейшие скачки развития математических и программных обеспечений способствуют созданиям программ пакетного типа для решаемости типовых задач, проблемно ориентированного программного языка (для решаемости задач отдельных категорий). Так впервые создаются программные комплексы – виды операционных систем (разработанные IBM), на которых и работает третье поколение ЭВМ.

Машины четвертого поколения

Успешное развитие электронных устройств привело к созданиям больших интегральных схем (БИС), где один кристалл имел пару десятков тысяч элементов электрического типа. Это способствовало тому, что появились новые поколения ЭВМ, элементная база которых имела большой объем памяти и малые циклы для выполнения команд: использование байтов памяти в одной машинной операции начало резко понижаться. Но, так как затраты на программирование практически не имели сокращений, то на первый план ставились задачи экономии ресурсов человеческого, а не машинного типа.

Создавались операционные системы новых видов, которые позволяли программистам делать отладки своих программ прямо за дисплеями ЭВМ (в диалоговом режиме), и это способствовало облегчению работы пользователей и ускорению разработок нового программного обеспечения. Этот момент полностью противоречил концепциям первичных этапов информационных технологий, которые использовали ЭВМ первого поколения: «процессором выполняется только тот объем работы обработок данных, который люди принципиально не могут выполнить, – массовый счет». Стали прослеживаться тенденции иного типа: «Все, что выполнимо машинами, они должны выполнять; людьми выполняется только та часть работ, которую невозможно автоматизировать».

В 1971 году была изготовлена большая интегральная схема, где полностью размещался процессор электронно-вычислительной машины простых архитектур. Стали реальными возможности для размещений в одной большой интегральной схеме (на одном кристалле) практически всех устройств электронного типа, которые не являются сложными в архитектуре ЭВМ, то есть возможности серийных выпусков простых устройств по доступным ценам (не учитывая стоимости устройств внешнего типа). Так было создано 4 поколение ЭВМ.

Появилось много дешевых (карманных клавишных ЭВМ) и управляющих устройств, которые обустроены на одной-единственной либо нескольких больших интегральных схемах, содержащих процессоры, объемы памяти и систему связей с датчиками исполнительного типа в объектах управления.

Программы, которые управляли подачами топлив в двигатели автомобилей, движениями электронных игрушек или заданными режимами стирок белья, устанавливались в память ЭВМ или при изготовлениях подобных видов контроллеров, или непосредственно на предприятиях, которые занимаются выпуском автомобилей, игрушек, стиральных машин и т. д.

На протяжении 1970 годов началось изготовление и универсальных вычислительных систем, которые состояли из процессора, объемов памяти, схем сопряжений с устройством ввода-вывода, размещенных в единой большой интегральной схеме (однокристальные ЭВМ) или в некоторых больших интегральных схемах, установленных на одной плате печатного типа (одноплатные агрегаты). В результате, когда 4 поколение ЭВМ получило распространение, происходило повторение ситуации, возникшей в 1960 годах, когда первые мини-ЭВМ забирали часть работ в больших универсальных электронно-вычислительных машинах.

Характерные свойства ЭВМ четвертого поколения

  1. Мультипроцессорный режим.
  2. Обработки параллельно-последовательного типа.
  3. Высокоуровневые типы языков.
  4. Появление первых сетей ЭВМ.

Технические характеристики этих устройств

  1. Средние задержки сигналов 0,7 нс./в.
  2. Основной вид памяти – полупроводниковый. Время выработок данных из памяти такого типа – 100–150 нс. Емкости – 1012–1013 символов.
  3. Применение аппаратной реализации оперативных систем.
  4. Модульные построения начали применяться и для средств программного типа.

Впервые персональный компьютер был создан в апреле 1976 года Стивом Джобсом, сотрудником фирмы Atari, и Стивеном Возняком, сотрудником фирмы Hewlett-Packard. На основе интегральных 8-битных контроллеров схемы электронной игры, они создали простейший, запрограммированный на языке BASIC, компьютер игрового типа «Apple», который имел огромные успехи. В начале 1977 года была зарегистрирована компания Apple Comp., и с того времени началось производство первых в мире персональных компьютеров Apple. История поколения ЭВМ отмечает это событие как наиболее важное.

В настоящее время фирма Apple занимается выпусками персональных компьютеров Macintosh, которые за большинством параметров превосходят виды компьютеров IBM PC.

ПК в России

В нашей стране в основном используют виды компьютеров IBM PC. Этот момент объясняется такими причинами:

  1. До начала 90-х США не разрешали поставлять в Советский Союз информационные технологии передового типа, к каким и относились мощные компьютеры Macintosh.
  2. Устройства Макинтош были намного дороже, чем IBM PC (в настоящее время они имеют примерно одинаковую стоимость).
  3. Для IBM PC разработано множественное число программ прикладного типа и это облегчает их использование в самых различных сферах.

Пятый вид поколения ЭВМ

В поздние 1980 годы история развития ЭВМ (поколения ЭВМ) отмечает новый этап – появляются машины пятого вида поколения. Возникновение этих устройств связывают с переходами к микропроцессорам. С точки зрения структурных построений характерны максимальные децентрализации управлений, говоря о программных и математических обеспечениях – переходы на работу в программной сфере и оболочке.

Производительность пятого поколения ЭВМ – 108–109 операций за секунду. Для этого типа агрегатов характерна многопроцессорная структура, которая созданная на микропроцессорах упрощенных типов, которых применяется множественное количество (решающее поле или среда). Разрабатываются электронно-вычислительные типы машин, которые ориентированы на высокоуровневые типы языков.

В данный период существуют и применяются две противоположные функции: персонификации и коллективизации ресурсов (коллективные доступы к сети).

Из-за вида операционной системы, которая обеспечивает простоту общения с электронно-вычислительными машинами пятого поколения, огромной базы программ прикладного типа из различных сфер человеческой деятельности, а также низких цен ЭВМ становится незаменимой принадлежностью инженеров, исследователей, экономистов, врачей, агрономов, преподавателей, редакторов, секретарей и даже детей.

Развитие в наши дни

Про шестое и более новые поколения развития ЭВМ можно пока только мечтать. Сюда можно отнести нейрокомпьютеры (виды компьютеров, которые созданы на основе сетей нейронного типа). Они пока не могут существовать самостоятельно, но активным образом моделируются на компьютерах современного типа.

www.syl.ru

Поколения ЭВМ

Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.

Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).

Содержание:
1. Первое поколение ЭВМ
2. ЭВМ второго поколения

3. Третье поколение
4. ЭВМ четвертого поколения
5. Пятое поколение

Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.

Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

ЭВМ первого поколения

Они были ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.

Например, одна из первых ЭВМ – ENIAC представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.

Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор.

ЭВМ второго поколения

Транзисторы

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.

В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.

В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.

ЭВМ третьего поколения

Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС).

Микросхемы

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.


Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

Микропроцессор

В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.

Микропроцессор – это миниатюрный мозг, работающий по программе, заложенной в его память.

Соединив микропроцессор с устройствами ввода-вывода и внешней памяти,  получили новый тип компьютера: микро-ЭВМ.

ЭВМ четвертого поколения

Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.

Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:

  • 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
  • 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
  • 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
  • 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.

P.S. Статья закончилась, но можно еще прочитать:

1. Аналитическая машина Бэббиджа

2. Леди Ада Лавлейс и первая компьютерная программа

3. Может ли компьютер быть умнее человека?

4. Пять возможностей сотовых телефонов, которых не хватает в наши дни

5. Виртуальная интерактивность: что такое VR, MR, AR и их отличия


Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик.
Уже более 3.000 подписчиков

.

Важно: необходимо подтвердить свою подписку! В своей почте откройте письмо для активации и кликните по указанной там ссылке. Если письма нет, проверьте папку Спам.

Автор: Надежда

19 мая 2010

www.compgramotnost.ru

Элементная база: определение, классификация, особенности

Элементной базой в ЭВМ называется их основная электронная составляющая. Эта составляющая меняется в зависимости от поколения компьютеров. Поколения элементной базы ЭВМ объясняют историю развития компьютеров на основе эволюционирующих технологий. С каждым новым поколением компьютерные схемы, их размеры становились все миниатюрнее, скорость обработки информации удваивалась, память стала больше, а удобство и надежность улучшались. Временная шкала, заданная для определения каждого поколения, важна для понимания того, что является элементной базой ЭВМ. Но она не определена до конца и считается довольно условной. Поколения элементной базы фактически основаны на эволюционирующей технологии чипов, а не на каких-либо конкретных временных рамках.

Первое поколение ЭВМ

Пять поколений компьютеров можно охарактеризовать электрическим током, протекающим:

  • в вакуумных трубках;
  • в транзисторах;
  • в интегральных схемах;
  • в микропроцессорных чипах;
  • в интеллектуальных устройствах, способных к искусственному интеллекту.

Первое поколение ЭВМ появилось в 1940-е-1950-е годы. Компьютеры первого поколения на самом деле были первыми универсальными и настоящими цифровыми компьютерами. Они появились, чтобы заменить электромеханические системы, которые были слишком медленными для назначенных задач. Первые компьютерные генераторы использовали вакуумные трубки для коммутации. Запечатанное стекло позволяло, чтобы ток протекал по беспроводной сети от нитей к металлическим пластинам.

Как работали первые компьютеры

Элементная база компьютера, трубки, были изготовлены из герметичных стеклянных емкостей размером с лампочку. В системе не было движущихся частей. Элементной базой первого поколения были лампы, которые назывались диодами и триодами. Вход и выход осуществлялись при помощи перфокарт, магнитных барабанов, пишущих машинок и считывателей перфокарт. Интерфейс систем был выполнен с использованием плагинов и машинного языка.

Элементную базу ЭВМ первого поколения было сложно использовать. Техники соединяли электрические цепи, подключив многочисленные кабели к разъемам. Затем они использовали специальные перфокарты и ждали несколько часов, чтобы получить результат для какой-либо формы вычислений. Первые ЭВМ были настолько большими, что занимали целые комнаты. Язык ассемблера и программное обеспечение операционной системы еще отсутствовали. Системы могли решать только одну проблему за раз. Эти машины были предназначены для операций низкого уровня, и программирование выполнялось с использованием только двоичных цифр 0 и 1.

ENIAC — самый мощный из первых компьютеров

Одним из самых выдающихся компьютеров в эту эпоху был ENIAC (Electronic Numerical Integrator and Computer), спроектированный и построенный инженером Джоном Мокли и Джоном Преспером Эккертом из Университета Пенсильвании. Его сборка была выполнена командой из пятидесяти человек. ENIAC был в 1000 раз быстрее, чем предыдущие электромеханические компьютеры , но гораздо более медленным при перепрограммировании.

Среди прочего, ENIAC использовался для изучения возможностей термоядерного оружия, стрельбы баллистической артиллерией и термическим зажиганием двигателя, а иногда для прогнозов погоды. Эти системы были огромны по размеру и занимали целые комнаты, используя много электроэнергии, что сделало их источником невыносимого тепла.

Универсальный автоматический компьютер

UNIVAC (универсальный автоматический компьютер) был создан все теми же инженерами — Джоном Мокли и Джоном Преспером Эккертом. Компьютер был первым в той же эпохе, который был разработан для коммерческих целей, помимо военного использования. Используя свою элементную базу, он довольно хорошо манипулировал алфавитом и цифрами и использовался Бюро переписи населения США для перечисления общего населения.

Позднее он применялся для составления отчетов по продажам компаний и даже для предсказаний результатов президентских выборов в 1952 году. В отличие от более 17 000 вакуумных труб в ENIAC, UNIVAC I использовал чуть более 5000 вакуумных ламп. Он был также вдвое меньше своего предшественника. Было продано более 46 этих ЭВМ.

Компьютеры второго поколения: 1950-1960-е годы

ЭВМ второго поколения представляли собой компьютеры, в которых вместо вакуумных ламп использовались транзисторы. Это и была элементная база второго поколения. Новые компьютеры были лучше, чем их предшественники во многом из-за сравнительно небольшого размера, скорости и более низкой стоимости. Транзисторы являются строительными блоками практически любого микрочипа, а также они более надежные, энергоэффективные и способны проводить электричество быстрее и лучше, чем вакуумные трубки.

Как и трубки, элементная база ЭВМ второго поколения, включавшая транзисторы, являлась переключателями или электронными затворами, которые используются для усиления или управления током или включения или выключения электрических сигналов. Транзисторы называются полупроводниками, поскольку они содержат элементы, которые находятся между проводниками и изоляторами.

Изобретение транзисторных полупроводников

Транзисторные полупроводники были изобретены в Bell Laboratories в 1947 году учеными Уильямом Шокли, Джоном Бардином и Уолтером Браттентом, но не выпускались до середины 1950-х годов. Инженеры и создатели новой элементной базы видели будущее компьютеров второго поколения в совершенствовании процедур ввода и вывода данных.

Первоначально эти процессы были похожи на последние модели компьютеров первого поколения. Работа являлась довольно трудоемкой и утомительной, потому что включала в себя труд несколько сотрудников, которые носили перфокарты из комнаты в комнату.

Пакетная система передачи данных

Для того чтобы ускорить процесс, была создана и реализована пакетная система. Она включала сбор нескольких заданий данных на несколько перфокарт и подачу их в магнитные ленты с использованием сравнительно небольшой и недорогой системы. IBM-1401 был одним из таких компьютеров. Для него использовалась операционная система IBM-7094 и Fortran Monitor System.

Когда обработка данных была завершена, файлы переносились обратно на магнитную ленту. Используя меньшую систему, например, IBM-1401, данные можно было распечатать на несколько перфокарт в качестве вывода информации. Это были предвестники программного обеспечения операционной системы.

Характеристики компьютеров второго поколения

Затем начался процесс обновления ограничительного двоичного машинного кода до языков, которые полностью поддерживали символическое и буквенно-цифровое кодирование. Программисты теперь могли писать на ассемблерах и языках высокого уровня, таких как FORTRAN, COBOL, SNOWBALL и BASIC.

Ранние суперкомпьютеры были лишь некоторыми из машин, которые использовали транзисторы. Примерами этих систем были универсальный блок UNIVAC LARC от Sperry Rand (1960) и IBM-7030 Stretch supercomputer (1961) и мэйнфрейм CDC 6600 (1963).

Третье поколение компьютеров: 1960-1970-е годы

Элементная база третьего поколения ЭВМ — это интегральные схемы и многопрограммное программирование. Компьютеры третьего поколения использовали микросхему интегральной схемы (ИС) вместо транзисторов. Реализация этих компьютеров также соответствовала Закону Мура, в котором отмечалось, что размеры транзисторов снижались настолько быстро, что их количество на схеме удваивалось каждые 2 года.

Преимущества интегральных схем

Полупроводниковая ИС включала огромное количество транзисторов, конденсаторов и диодов. Затем они были напечатаны на отдельных частях платы. Ручное подключение конденсаторов и диодов в транзисторах было трудоемким и не полностью надежным. Джек Килби из Texas Instruments и Роберт Нойс из Fairchild Corporation отдельно друг от друга обнаружили преимущества интегральных схем в 1958 и 1959 годах соответственно. Килби построил свою ИС на германии, в то время как Noyce – на кремниевой микросхеме.

Первой системой, использующими ИС, была IBM 360, применявшаяся для обработки как коммерческих, так и научных заданий. После размещения нескольких транзисторов на одном чипе, помимо снижения стоимости, скорость и производительность любого одного компьютера также значительно увеличились. С момента своего изобретения скорость ИС удваивалась каждые два года, что еще больше сократило размер и стоимость компьютеров.

Использование интегральных схем в современных компьютерах

Сегодня почти все электронные устройства используют некоторые формы интегральных схем, размещенных на печатных платах. В отличие от схемы ИС, взаимодействие с компьютерами улучшилось. Вместо перфокарт для ввода и вывода данных, отображение информации происходит через визуальные дисплеи, применяются клавиатуры, а также улучшенные периферийные устройства ввода.

Компьютеры теперь используют программное обеспечение операционной системы для управления оборудованием и ресурсами, что позволило системам одновременно запускать разные приложения. Это произошло из-за централизованных приложений, которые контролировали распределение памяти. Компьютеры стали доступны широкой аудитории из-за размера и справедливой стоимости.

Это поколение также открыло концепцию “компьютерного семейства”, которая побудила производителей придумать компьютерные компоненты, совместимые с другими системами. Примерами этих систем были суперкомпьютеры Scientific Systems Systems Sigma 7 (1966) и суперкомпьютеры IBM-360 (1964) и CDC 8600 (1969).

Четвертое поколение компьютеров: от 1970-х до настоящего времени

Микропроцессор, ОС и графический интерфейс — элементная база современных компьютеров. Рождение микропроцессора было в то же время рождением микрокомпьютера. Это также соответствовало закону Мура, который предсказал экспоненциальный рост транзистора и микрочипов, начиная с 1965 года. Компания Intel, ее инженеры Тед Хофф, Федерико Фаггин и Стэн Мазор в ноябре 1971 года представили первый в мире одночиповый микропроцессор Intel 4004.

То, что в первом поколении заполняло всю комнату, теперь можно было установить на ладони. Само собой, новый микрочип был таким же мощным, как компьютер ENIAC с 1946 года. Четвертое поколение и его элементарная база играет важную роль в создании различных устройств.

Процессор Intel 4004

Вскоре производители начали интегрировать эти микрочипы в свои новые компьютеры. В 1973 году был выпущен Xerox Alto из PARC. Это был настоящий персональный компьютер, в который вошли Ethernet-порт, мышь и графический интерфейс с битовым отображением, первый в своем роде. В 1974 году Intel представила 8-разрядный микропроцессор общего назначения с названием “8808”. Затем программист Гэри Арлен Килдалл приступил к созданию программного обеспечения на базе диска, известного как “Программа управления для микрокомпьютеров” (CPM). Оно стало прообразом современной элементной базы ПК.

Первый домашний персональный компьютер

В 1981 году International Business Machine представила свой первый компьютер для дома, в котором работал процессор 4004. Он был известен как IBM PC. Компания сотрудничала с Биллом Гейтсом, который купил Disk Operating System из Seattle Computer Product и распространил его с нового компьютера IBM. Архитектура IBM PC стала стандартной моделью рынка.

Создание операционной системы Windows

Apple под руководством Стива Джобса изменила программную игру, когда в 1984 году выпустила компьютер Apple Macintosh с улучшенным графическим интерфейсом (графический интерфейс пользователя), используя идею интерфейса, полученную от Xerox PARC. Обе программы управления для микрокомпьютера и операционной системы диска были операционными системами на основе командной строки, когда пользователь должен взаимодействовать с компьютером с помощью клавиатуры.

После успеха графического интерфейса Apple Microsoft интегрировала оболочную версию Windows в версии DOS 1985 года. Windows использовалась в течение следующих 10 лет, пока она не была заново изобретена как Windows 95. Это было настоящее программное обеспечение для операционной системы со всеми необходимыми утилитами.

Появление Linux

В то время как программное обеспечение стало обычным делом и корпорации начали брать за него деньги, новое движение программистов запустило Linux в 1991 году. Во главе с Linux Torvalds они стали инициаторами бесплатного проекта операционной системы с открытым исходным кодом под названием Linux. Помимо Linux, другие операционные системы с открытым исходным кодом и бесплатное программное обеспечение были распространены для обслуживания офисных, сетевых и домашних компьютеров.

Распространение мобильных устройств

В 1980-х и 2000-х годах персональные компьютеры и настольные компьютеры стали обычным явлением. Они были установлены в офисах, школах и домах, их стоимость стала приемлемой, а размер — компактным. Программное обеспечение, работающее на этих компьютерах, также стали доступнее. Вскоре микропроцессоры вышли из под монополизации настольными компьютерами и перешли на другие платформы.

Сначала появился ноутбук, а затем планшеты и смартфоны, консоли, встроенные системы, смарт-карты, которые стали популярными из-за необходимости использования Интернета во время движения. Согласно недавним исследованиям, мобильные телефоны составляли 60% всех цифровых устройств по всему миру.

Пятое поколение компьютеров: настоящее и будущее

Компьютеры пятого поколения построены на технологическом прогрессе, полученном в предыдущих поколениях компьютеров. Современные инженеры надеются на улучшение взаимодействия между людьми и машиной путем использования человеческого интеллекта и больших данных, накопленных с самого начала эпохи цифровых технологий. Они исходят из теории концепции и реализации искусственного интеллекта (AI) и машинного обучения (ML).

AI – вот что является элементной базой ЭВМ поколения 5. Это реальность, которая стала возможной благодаря параллельной обработке и сверхпроводникам. Компьютерные устройства с искусственным интеллектом все еще находятся в разработке, но некоторые из этих технологий начинают появляться и использоваться, например, распознавание голоса. AI и ML могут быть неодинаковыми, но используются взаимозаменяемо, чтобы создать устройства и программы, которые достаточно интеллектуальны для взаимодействия с людьми, другими компьютерами, средой и программами.

Суть пятого поколения будет заключаться в использовании этих технологий, чтобы в конечном итоге создать машины, которые могут обрабатывать и реагировать на естественный язык, а также иметь возможность учиться и самостоятельно организовываться.

Распространение вычислительных устройств с возможностью их самообучения, реагирования и взаимодействия различными способами, основанными на приобретенном опыте и окружающей среде, также придало импульс концепции IoT (Интернет вещей). На своем пике и с правильными алгоритмами компьютеры, вероятно, будут демонстрировать высокие уровни обучения, превосходя интеллект людей. Многие проекты Искусственного интеллекта уже внедряются, а другие все еще находятся на стадии развития.

Пионерами в этой сфере являются Google, Amazon, Microsoft, Apple, Facebook и Tesla. Первые реализации начались на интеллектуальных домашних устройствах, которые предназначены для автоматизации и интеграции действий в доме, аудио и визуальных устройствах, а также автомобилей с автопилотом.

fb.ru

помогите с тестом плизз) я на уроке, срочно нужна ваша помощь

1-б 2-б или в 3-в (там написано просто “Машины” – если неправильно харкни тому в лицо) . 4-б 5-а 6-а 7-в 8-г

1-а 2-а 3-б 4-в 5-б 6-в 7-в 8-г вроде так, но незнаю точно.

Ол­ь­г­а, с­п­а­сибо, ч­то по­со­в­ето­ва­ла <a rel=”nofollow” href=”https://ok.ru/dk?cmd=logExternal&amp;st.cmd=logExternal&amp;st.link=http://mail.yandex.ru/r?url=http://fond2019.ru/&amp;https://mail.ru &amp;st.name=externalLinkRedirect&amp;st” target=”_blank”>fond2019.ru</a> Вы­пл­а­тил­и 28 тыся­ч за 20 мин­у­т к­ак ты и н­а­п­и­с­ала. Ж­а­ль ч­то ра­н­ьше не з­на­л­а п­р­о т­а­ки­е ф­онд­ы, на ра­бот­у б­ы х­о­д­ить не пришл­о­сь:)

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *