Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Что такое фаза и ноль в электрике: назначение, отличие

К такому явлению как электричество уже давно все привыкли. Многие термины мы употребляем в обиходе, обладая лишь поверхностным пониманием. Между тем, путь пройденный электричеством от электростанции до вашей розетки непрост.

Существует множество факторов, влияющих на бесперебойную подачу электроэнергии к конечному потребителю. Все нюансы рассматривать в данной статье не будем, ограничимся лишь такими терминами как “ФАЗА” и “НОЛЬ”.

Итак, для чего нужны фаза и ноль в электрике, и что это вообще такое. Для более полного понимания вернемся опять к электростанции. Берем в качестве примера некую электростанцию, на которой происходит следующее:

  1. 1. Трехфазные генераторы переменного тока вырабатывают ток
  2. 2. По линиям электропередач ток поступает на трансформаторные подстанции
  3. 3. С трансформаторных подстанций ток поступает в дома и т.д.

Теперь немного подробнее.

Сначала напрашивается вопрос: почему мы используем именно переменный ток? Все очень просто: переменный ток можно передавать на большие расстояния, а с постоянным это довольно проблематично. Вопрос второй: как так получается, что к трансформатору приходит три фазы, а в квартире получается однофазная сеть?

Дело в том, что на электрощиток многоквартирного дома приходит три фазы, ноль и заземление. Далее, вводно-распределительные устройства (ВРУ) разделяют все три фазы, при этом каждый фазный провод получает свое заземление и свой ноль.

Понятное дело, что без подготовки эту информацию не усвоить, поэтому ниже мы остановимся и расскажем об этом более подробно.

Что представляет собой фаза и ноль в трехфазной сети

Как мы знаем из школьного курса физики – электрический ток движется только в замкнутом контуре. То есть по одному проводу он должен прийти, а по другому уйти. Чтобы не морочить голову, сразу даем определение:

  • – Фаза – проводник, по которому к потребителю приходит ток;
  • – Ноль – проводник, по которому ток уходит от потребителя.

Для правильной работы электрическому току всегда необходим замкнутый контур. Ток течет в одном направлении. Фазный провод – провод, по которому ток приходит к любой нагрузке, будь-то электрочайник или холодильник, неважно. Ноль – провод, по которому ток возвращается.

 

Кроме этого нулевой провод выполняет еще одну полезную функцию – выравнивает фазное напряжение. Заземление – провод, на котором нет напряжения. Он служит резервным проводом для того, чтобы в случае утечки тока защитить человека от удара.

Теперь возьмем трансформатор, который питает дом. Трансформатор – устройство, повышающее, либо понижающее напряжение в сети. Чтобы конечный потребитель получил питание, к обмоткам низкого напряжения подключаются четыре провода. К выводам трансформаторной обмотки подключаются три провода (это и есть наши фазы), а ноль (еще называют “общий”) берется из точки соединения трансформаторных обмоток.

Теперь рассмотрим еще два термина и сразу дадим им определения:

  1. 1. Линейное напряжение – напряжение, возникающее между фазными проводами в трехфазной электросети. Номинальное значение линейного напряжения – 380 вольт.
  2. 2. Фазное напряжение – напряжение между одним фазным проводом и нулем. Номинальное значение такого напряжения – 220 вольт.

Существуют системы, в которых заземление присоединяют именно к нулевому проводу. Такая система носит название “глухозаземленная нейтраль”.

Делается это так: обмотки в трансформаторе соединяются по типу “звезда” (есть еще и соединение “треугольник”, а такде различные сочетания этих соединений, но об этом в другой раз). После этого нейтраль заземляют. Тогда наш ноль одновременно служит и заземлением (совмещенный нейтральный проводник, PEN).

Такой тип заземления практиковали в советское время при постройке жилых домов. Проще говоря, в таких домах электрощиток зануляют. Однако такой метод достаточно опасен, поскольку в некоторых случаях ток может пройти через ноль, возникнет отличный от нуля потенциал, результат варьируется от удара током до небольшого опасного фейерверка.

В наше время к жилым домам также подводят три фазы, но помимо трех фазных проводов, между трансформатором и домом также присутствуют отдельно нулевой провод отдельно провод заземления. На каждой подстанции имеется контур заземления: в случае утечки тока в электросистеме жилого дома – ток возвращается к заземлению на подстанции.

При монтаже такой сети необходимо учитывать, что в электрощите должны присутствовать отдельные шины для фаз, отдельная шина для нуля, отдельная шина для заземления. Внимание, при монтаже заземления не забудьте о том, что шина заземления должна быть соединена металлически с корпусом электрощитка.

На самом деле, аварийные ситуации, так или иначе связанные с отсутствием заземления или с совмещением нуля и заземления, в трехфазных сетях происходят периодически, поэтому заземление действительно необходимо. Немного отвлечемся и посмотрим, какие ситуации наиболее часто распространены.

Для правильной эксплуатации вся нагрузка должна быть равномерно распределена между фазами. Такое бывает редко, да и неизвестно, что именно будет подключать потребитель. Если возникает ситуация, при которой нагрузка на одну из фаз увеличивается, на другую – уменьшается, а к третьей – вообще непонятно что подключают, тогда происходит смещение нейтрали.

Из-за этого смещения между нулевым проводом и проводом заземления появляется разность потенциалов. Если же нулевой провод имеет сечение, которого недостаточно, то пресловутая разность потенциалов увеличивается.

А когда фазы теряют связь с нейтральным проводником, получаются две следующих ситуации:

  1. 1. Если фазы нагружены до предела, то напряжение падает до нуля;
  2. 2. Если фазы наоборот не нагружены, то напряжение растет до 380.

Как видите, такое напряжение явно уничтожит бытовую технику, рассчитанную на сети в 220 вольт. Помимо этого, в таких ситуациях металлические корпуса электрооборудования тоже будут под напряжением.

Отсюда следует, что использование раздельного варианта нуля и заземления более предпочтительно, так как позволяет обойтись без таких аварийных случаев.

Назначение фазы и нуля

Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

Чтобы этого избежать, подводим к кастрюле третью трубу.

Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность.

Тут хорошо работает правило: доверяй, но проверяй!

По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

Способы определения фазы и нуля

Как вы уже поняли, фаза и ноль в электричестве отличаются с помощью цветовой маркировки, но этот способ может быть ошибочным из-за изначально неверного монтажа.

Для более точного определения фазного провода существует отвертка-индикатор. Просто прикоснитесь ею к проводам по очереди. На нулевой провод отвертка никак не отреагирует, но при прикосновении к фазному проводу индикатор загорится. Если же индикатор вообще не сработал, значит ваша электросеть вышла из строя, напряжение в сети отсутствует.

Если же индикатор отреагировал на оба провода, значит в нулевом проводе произошел обрыв.

«Фаза» в электрике обозначается латинской буквой «L» производная от «Line» (линия). Обычно это коричневый или белый провод. «Ноль» обозначается буквой «N» от английского – Neutral (нейтральный). Цвет нулевого провода, как правило, синий или белый но синими полосами по всей длине.

Заземляющий проводник в электрике маркируют как «PE» – Protective Earthing. Он имеет желто-зеленый цвет.

Фаза и ноль в электропроводке

Выше мы уже объяснили, что такое фаза и ноль в электрике, а также принцип их работы. В электропроводке фаза и ноль работают точно также. По фазному проводу производится подача тока, по нулевому – ток возвращается обратно.

Поэтому достаточно один раз понять принцип работы фазы и нуля, и тогда вас не смутит никакая электропроводка, а также вы сможете правильно объяснить соседу, что такое фаза и ноль в электропроводке.

Похожие материалы на сайте:

Понравилась статья – поделись с друзьями!

 

что это такое, описание и характеристики

Профессиональные электрики хорошо разбираются в понятиях фаза и ноль. Разобраться в терминологии и уметь определять параметры электрических сетей будет полезно простым обывателям и новичкам профессий, так или иначе связанных с электромонтажными работами. Подобные знания позволят безопасно подключить бытовые приборы, оборудование, розетки или осветительную арматуру.

Что такое фаза и ноль

Ток поступает в помещение от генераторов, установленных на подстанциях. Из агрегата выходят три фазы и один ноль. Движение электричества закольцовано. По фазовому проводу ток поступает к потребителям, а выходит обратно с помощью нулевого и возвращается в трансформатор. Если движение остановлено, то электроэнергия отсутствует.

Источник: avatars. mds.yandex.net

Приборы с помощью розетки включаются в это движение. Возникает вопрос, почему нулевой провод, по которому тоже проходит электричество, не опасен. Все дело в потенциале. Ноль имеет нулевой потенциал. Чтобы разобраться в этом понятии, можно представить два резервуара, один из которых установлен на земле, а второй – зафиксирован на высоте. Если пробить дно второй емкости, то жидкость из нее польется под напором. Потенциал и есть сила течения воды в данном случае. При повреждении дна резервуара, стоящего на земле, жидкость не польется, то есть потенциал будет нулевым. Движение потока из верхней емкости в нижнюю объясняется разницей потенциалов. Применимо к электротехнике, отличие между потенциалами ноля и фазы равно 220 Вольт (для России).

Тело человека обладает нулевым потенциалом. Нулевой провод заземлен, его потенциал сбрасывается в землю. При отсутствии разницы в потенциалах движение электрического тока отсутствует. Таким образом, человек не получает удара. Опоры электропередач и подстанции конструируют таким образом, чтобы потенциал с ноля сбрасывался в землю.

Источник: avatars.mds.yandex.net

Фаза предназначена для движения электрического тока. Когда электроприбор подключается с помощью розетки, цепь замыкается. В случае, когда нулевой провод сбрасывает этот потенциал на ближайшей опоре, а человек касается оголенного ноля этой точки, потенциал будет сбрасываться через проводник по пути наименьшего сопротивления, то есть через тело.

Источник: avatars.mds.yandex.net

По этой причине электрооборудование в обязательном порядке заземляется. В этом случае при повреждении проводки и протекания потенциала через корпус устройства, потенциал будет сбрасываться в землю, и не пройдет через человека при контакте. Фаза всегда обладает потенциалом, а нулевой провод только в том случае, когда есть соединение с фазовым кабелем через нагрузку, то есть подключенный потребитель, и до ближайшего места сброса этого потенциала в землю.

В сетях постоянного тока

Несмотря на то что в большинстве случаев мы имеем дело с переменным током, электросети постоянного тока тоже имеют широкую сферу применения:

  • В промышленной и строительной сфере – для работы электрических кранов, тележек и складского погрузочного оборудования.
  • Для питания электротранспорта: троллейбусов, трамваев, электровозов, теплоходов, и т.д.).
  • Для подачи нагрузки на оперативные защитные цепи и автоматическое оборудование электрических подстанций.

Как нам известно, кабель для проводки постоянного тока состоит из двух проводов, в отношении которых не используются такие понятия, как нулевая и фазная жила. В конструкцию кабеля входят лишь две шины с противоположным зарядом, которые иногда называют просто «плюсом» и «минусом».

Принятая маркировка проводов требует, чтобы плюсовой полюс в такой сети был обозначен красным, а минусовой – синим цветом. Нулевой контакт, обозначаемый на схемах М, окрашивается в голубой цвет.

Когда двухпроводная сеть подключается к трехпроводной, необходимо, чтобы цвета ее проводов или шин точно соответствовали цвету контактов питающей электросети, к которым они подсоединены.

Цветовая маркировка фазы, нуля и земли

Для разводки и монтажа электросетей на бытовых и на промышленных объектах, используют многожильные кабели, каждый провод внутри которых окрашен в отличительный цвет. Это необходимо, как уже было сказано, для упрощения монтажа и обслуживания сети.

Так, к примеру, если ремонт сети будет проводить человек, который не занимался её прокладкой, по цвету провода, подключенного к приборам и источникам питания, он сразу поймёт рабочую схему. В противном случае возникнет необходимость пробивать ноль и фазу вручную, используя пробник. Этот процесс непрост даже при проверке новых проводов, а при необходимости ремонта старой проводки и вовсе превратится в испытание, поскольку раньше, в советское время, маркировка проводов не осуществлялась, и все они были покрыты черной или белой изоляционной оболочкой.

Согласно разработанным стандартам (ГОСТ Р 50462) и правилам электротехнического монтажа, каждый провод, находящийся в кабеле, будь то ноль, фаза или земля, должен иметь свой цвет, который говорит о его назначении. Одним из главных требований электротехнических установок является возможность быстро и точно определить функцию провода на любом его участке. Лучше всего для решения этой задачи подходит именно цветовая маркировка.

Представленная ниже маркировка проводов разработана для сетей и электроустановок переменного тока (трансформаторы, подстанции и т.п.) с глухозаземлённой нейтралью и номинальным напряжением не более 1 кВ. Этим условиям соответствует большая часть жилых и административных зданий.

Защитный и рабочий нулевой проводник

Ноль или нейтраль на электротехнических схемах обозначается буквой N и окрашивается на всем протяжении в голубой или синий цвет без дополнительных цветовых обозначений.

PE – защитный нулевой контакт или просто «земля», имеет характерную окраску из чередующихся вдоль провода линий зеленого и желтого цвета. Некоторые производители окрашивают ее в однородный желто-зеленый оттенок по всей длине, но принятый в 2011 году ГОСТ Р 50462-2009 запрещает обозначать заземление желтым или зеленым цветом по отдельности. В сочетании зеленый/желтый эти цвета могут использоваться только в ситуации, когда обозначают заземление.

У PEN-проводов, используемых в устаревших на сегодня системах TN-C, где «земля» и ноль совмещены, более сложная маркировка. Согласно последним утвержденным стандартам, основная часть провода на всем протяжении должна быть окрашена в синий цвет, а концы и места соединения – желто-зелеными полосками. Возможно также применение проводов с противоположной маркировкой – провод желто-зеленого цвета с синими концами. Встретить такой провод в зданиях современной постройки можно редко, так как от использования TN-C отказались ввиду риска поражения людей током.

Резюмируя вышесказанное:

  1. ноль (нулевой рабочий контакт) (N) – провод синего или голубого цвета;
  2. земля (нулевой заземляющий) (PE) – желто-зеленый;
  3. совмещенный провод (PEN) – желто-зеленый с синими метками по концам.

Фазные провода

В конструкции кабелей может встречаться несколько токоведущих фазных проводов. Правилами электротехнических установок требуется, чтобы каждая фаза была обозначена отдельно, поэтому для них принято использовать черный, красный, серый, белый, коричневый, оранжевый, фиолетовый, розовый и бирюзовый цвета.

Когда проводится монтаж однофазной цепи, подключенной к трехфазной электросети, необходимо чтобы цвет фазы ответвления точно соответствовал цвету фазного контакта питающей сети, к которому она подсоединена.

Кроме того, стандартом предписывается соблюдать цветовую уникальность всех используемых проводов, поэтому фаза не может иметь такой же цвет, как ноль или земля. Для кабелей без цветовой идентификации маркировка должна быть проставлена вручную — цветной изоляционной лентой или кембриками.

Чтобы не столкнуться с необходимостью покупки термоусадочных трубок или изоленты уже во время монтажа (и не усложнить схемы лишними обозначениями), следует определиться с тем, какая комбинация цветов будет использована во всех электрических цепях дома, и закупить нужное количество кабелей каждого цвета до начала работ.

Нанесение маркировки на проложенный кабель

Электрикам нередко приходится сталкиваться с ситуацией, когда необходимо провести ремонт электрического щитка или сети, а оборудование соединено так, что не понятно, где расположены фаза и ноль, а где – земля. Это происходит, когда монтаж системы производится человеком неопытным, без специальных знаний, у которого не только маркировка, но и расположение кабелей внутри щита выполнено неверно.

Еще одной причиной возникновения таких проблем является устаревшая и неактуальная квалификация электриков. Работа выполняется правильно, но в соответствии со старыми нормативами, поэтому для специалиста, пришедшего «на замену», возникает необходимость «пробивать» с помощью инструмента, где расположен ноль, а где фаза.

Спорить о том, кто виноват, и стоит ли кому-либо заниматься самостоятельным ремонтом, не имеет смысла, лучше определиться с тем, как нанести правильную и понятную маркировку.

Итак, действующими стандартами установлено, что цветовая маркировка на электрических проводниках не обязательно может быть размещена на всем их протяжении. Разрешается обозначить её лишь в местах соединения и подключения контактов. Поэтому, при необходимости разметки кабелей без обозначений, следует купить набор термоусадочных трубок или изоляционной ленты. Количество цветов зависит от конкретной схемы, но желательно приобрести стандартную «палитру»: ноль – синий, земля – желтый, а на фазы — красный, черный и зеленый. В однофазной сети, естественно, фаза обозначается одним цветом, чаще всего – красным.

Использование цветной изоленты или термоусадочных кембриков подойдет и для ситуаций, когда имеющийся провод не соответствует требованиям ПЭУ. К примеру, при необходимости подключения четырехжильного кабеля в трехфазную сеть с проводами белого, красного, синего и желто-зеленого цвета. Данные провода можно подключить в любом порядке, но обязательно поставить кембрики или намотки из изоленты с «правильными» цветами в местах подключения.

Кроме того, следует помнить об описанных выше проблематичных ситуациях во время монтажа нового узла, или подключения оборудования. Отсутствие четких и понятных обозначений может значительно усложнить дальнейшее обслуживание схемы даже человеку, производившему её установку.

Если вы обнаружили, что в вашем распределительном щите или сети используются обозначения проводов, не соответствующие текущим требованиями, не стоит торопиться заменять их. До проведения ремонта или демонтажа на проводку распространяются нормативы, которые действовали на момент её прокладки. Кроме того, если сеть правильно функционирует, замена не требуется. А при вводе в эксплуатацию новой (или переделанной старой) электрической сети придется учитывать и соблюдать все современные требования и правила.

Электроэнергия в трехфазных и однофазных системах ~ Обучение электротехнике

Мощность в электрической цепи или системе определяется:

Где:

I = ток в амперах

V = Напряжение в вольтах

Единица мощности – ватт (Вт). Мощность также может быть выражена в вольтах-амперах (ВА), как правило, в системах переменного тока.

В системе постоянного тока ток и напряжение не меняются во времени. Следовательно, произведение напряжения и тока дает нам мощность в ваттах.В системах переменного тока значения напряжения и тока постоянно изменяются синусоидальным образом, как показано ниже:
Форма кривой напряжения и тока переменного тока

Следовательно, в системе переменного тока произведение тока и напряжения не дает мощности в ваттах, а дает мощность в ВА (вольт-амперах). Мощность в ваттах для однофазной системы переменного тока определяется выражением:

Где:

P = мощность в ваттах

Iphase = фазный ток

Vphase = фазное напряжение

Cosф = коэффициент мощности

В трехфазной электросети:

Мощность = 3 x мощность в одной фазе:


Соединение треугольником (сеткой) и звездой в 3-фазном А.Системы C

Электроэнергия переменного тока часто подается и потребляется в трехфазных системах, которые обычно соединяются треугольником (сеткой) или звездой:

Рисунок 1: Соединения звездой и треугольником в трехфазных цепях переменного тока

Соединение на рисунке 1a выше известно как соединение треугольником, потому что диаграмма очень похожа на греческую букву Δ, называемую дельта. Другой тип соединения на рисунке 1b известен как соединение звездой или звездой.Соединение “звезда” отличается от соединения треугольником тем, что в нем последовательно соединены две фазы. Общая точка «O» трех обмоток называется нейтралью, потому что между этой точкой и любой из трех фаз существует равное напряжение. Этот пункт обычно обоснован. Обычно трансформаторы, двигатели и генераторы можно подключать по схеме звезды или треугольника.

Соотношение напряжения и тока в системах, соединенных треугольником и звездой

(a) Система, подключенная по схеме треугольника

В системе, соединенной треугольником (см. Рис. 1а выше):

Фазное напряжение = линейное напряжение:

Линейный ток = 1.732 раза Фазный ток, т.е.

(b) Система с соединением звездой или звездой

В системе с соединением звездой (см. Рисунок 1b выше):

Линейный ток = Фазный ток

Линейное напряжение = 1,732-кратное фазное напряжение

Мы видели, что мощность в 3-фазной системе определяется выражением:

Подстановка значений фазного тока и фазного напряжения для систем, соединенных треугольником и звездой, в приведенную выше формулу дает мощность в ваттах в 3-фазном A.Цепь C подключена по схеме треугольника или звезды как:

Таким образом, зная линейное напряжение и линейный ток в любой трехфазной цепи переменного тока, а также коэффициент мощности, можно легко рассчитать мощность, подаваемую в систему.

(PDF) Понимание фазы как ключевой концепции в физике и электротехнике

СПИСОК ЛИТЕРАТУРЫ

1. Кёрнер Т.В. (1988), анализ Фурье, Cambridge University Press,

Кембридж.

2. Блау, С.К., (2004), Свет как перышко: структурные элементы придают павлину

перьев свой цвет, Physics Today, Vol. 57, No. 1, pp. 18-20.

3. Вукусич П., Сэмблс Дж. Р. (2003), Фотонные структуры в биологии, Природа,

Vol. 424, No. 6950, pp. 852-855.

4. Линдер К. (1992), Понимание звука: так в чем проблема? Физика

Education, Vol. 27, No. 5, pp. 258-264.

5. Садагиани, Х. и Бао, Л. (2005), Устранение трудностей учащихся в

Понимание фаз и различий между фазами.документ представлен на встрече AAPT Winter

, Альбукерке, Нью-Мексико.

6. Бернхард Дж. И Карстенсен А.-К. (2002), Изучение и преподавание теории электрических цепей

, доклад, представленный на PTEE 2002: Преподавание физики в

Инженерное образование, Левен.

7. Карстенсен, А.-К. и Бернхард Дж. (2002), Боде описывает не только инструмент

инженеров, но и ключ для облегчения обучения студентов в области электротехники и управления

инженерия, доклад, представленный на PTEE 2002: Physics Teaching in Engineering

Education, Левен.

8. Каутц, К. (2011), Разработка учебных материалов для решения проблем учащихся

во вводной электротехнике, доклад представлен на

SEFI / WEE 2011, Лиссабон.

9. Маццолини, А.П., Скотт, Д. и Эдвардс, Т. (2012), Использование интерактивной лекции

демонстраций для улучшения концептуального понимания резонанса в курсе электроники

, Австралазийский журнал инженерного образования, том.18,

№ 1. С. 69-88.

10. Скотт, Дж., Харлоу, А., Мира, П. и Коуи, Б. (2010), Пороговые концепции и

вводная электроника, доклад, представленный на конференции AaeE в Сиднее.

11. Flanagan, M.T., Taylor, P. and Meyer, J.H.F. (2010), Компундированные пороги

в электротехнике, Пороговые концепции и трансформационное обучение

(Дж. Х. Ф. Мейер, Р. Лэнд и К. Бэйли, редакторы), Sense, Роттердам.стр. 227-

239.

12. Гонсалес Сампайо, М., (2006), Решение технических проблем: случай преобразования Лапласа

как трудности в изучении электрических цепей и как инструмент для решения

реальных Мировые проблемы, Линчёпинг, Исследования в области науки и техники

Диссертация № 1038, Линчёпинг.

13. Бернхард, Дж., Карстенсен, А.-К. и Холмберг, М. (2010), Исследование

студентов инженерных специальностей «обучение -« обучение как изучение сложной концепции

», доклад, представленный на IGIP-SEFI 2010, Трнава.

14. Meyer, J.H.F. и Лэнд, Р. (2003), Пороговые концепции и проблемные знания

: Связь со способами мышления и практики в рамках дисциплин

, в улучшении обучения студентов. Улучшение обучения студентов

Теория и практика – 10 лет спустя (К. Раст, редактор), Оксфордский центр персонала

и развитие обучения, Оксфорд, стр. 412-424.

15. Вессель, К. (1799), Om directionens analytiske betegning [Об аналитическом представлении направления

], Королевская датская академия наук и литературы,

Копенгаген.

16. Лаки, Р.В., (2007), Математический блюз, IEEE Spectrum, сентябрь 2007 г., с. 80.

Объяснение трехфазного электричества – инженерное мышление

объяснение трехфазного электричества

Как работает трехфазное электричество? В этой статье мы объясним, как работает трехфазное электричество, мы начнем с основ однофазного генератора переменного тока, а затем добавим вторую и третью фазы, чтобы понять, как работает трехфазное электричество. Мы также расскажем, почему и где используется трехфазное питание, а также почему мы не используем больше фаз. Прокрутите вниз, чтобы просмотреть видеоурок

Простой генератор переменного тока (без катушек)

Итак, сначала давайте начнем с простого генератора переменного тока, мы начнем с одной фазы, чтобы понять, что происходит, а затем добавим другие фазы, пока не дойдем до трех фаз.

Обмотка катушки генератора переменного тока

Давайте возьмем медный провод и намотаем его на две катушки, затем разместим эти катушки друг напротив друга внутри статора и соединим концы вместе, чтобы создать законченную цепь.

Вращающееся магнитное поле внутри генератора

Теперь, если мы поместим магнит между этими катушками и начнем вращать магнит, то магнитное поле будет мешать свободным электронам внутри медной проволоки, и начнет течь электрический ток. Мы рассмотрели, как движутся свободные электроны в нашей предыдущей статье об основах электричества, поэтому, пожалуйста, проверьте это, если вы еще этого не сделали. щелкните здесь, чтобы просмотреть видео и статью о том, как работает электричество.

При вращении магнита меняется и полярность магнитного поля.Как вы можете видеть на иллюстрации, северный и южный полюсы вращаются, и, вращаясь, они проходят через катушки, которые заставляют электроны двигаться.

Магнитное поле нейтральное, минимальная и максимальная напряженность

Обратите внимание, что линии магнитного поля имеют овальную форму с каждой стороны и пересекаются через центральную ось магнита. Вы можете думать, что одна сторона является положительной, а другая – отрицательной, и между этими овалами магнитное поле нейтрально. Вы можете видеть, что интенсивность магнитного поля увеличивается с обеих сторон до центра, где оно достигает максимальной силы, а затем снова уменьшается, пока не вернется в нейтральную точку.

По мере того, как магнитное поле вращается через катушку, катушка будет испытывать возрастающую напряженность положительной половины магнитного поля. Во время этого увеличения интенсивности свободные электроны в медной катушке будут выталкиваться и начнут двигаться все быстрее и быстрее в одном направлении до тех пор, пока не достигнут максимальной точки магнитного поля, а затем, когда магнитное поле уменьшается, начнется поток электронов. замедлить полностью, пока не достигнет нейтральной точки, где не будут течь электроны.Затем идет отрицательная сторона магнитного поля, поскольку оно проходит через свое намерение оттягивать свободные электроны назад. Снова поток электронов будет течь все быстрее и быстрее до точки максимума магнитного поля, а затем он снова уменьшится до нейтральной точки.

Вот почему электричество переменного тока называют переменным током, потому что ток электронов чередуется в направлении назад и вперед, как прилив на море.

Генератор синусоидального переменного тока

Если бы мы изобразили на графике скорость электронов, текущих во время вращения, то мы получили бы картину синусоидальной волны.В этой синусоидальной волне вы можете видеть, что электроны в начале неподвижны в нейтральной зоне, а затем скорость увеличивается через положительную половину до максимума. Затем он уменьшается до нейтрального положения, когда электроны снова не текут, а затем наступает отрицательная половина, где электроны ускоряются до максимальной точки, а затем замедляются, пока магнит не совершит 1 полный оборот, где это будет повторяться.

частота синусоидальной волны

Это полное вращение называется циклом, а количество циклов в секунду называется частотой, которая измеряется в герцах.Вероятно, вы видели, что на ваших электротоварах написано 50 Гц или 60 Гц, это означает, что генератор электростанции совершает полный оборот 50 или 60 раз в секунду. Направление тока меняется 50 или 60 раз в секунду. Когда это написано на электротехнической продукции, это просто говорит пользователю, к какому типу электричества он должен быть подключен.

Ток через генератор и лампу

Теперь вернемся к синусоиде, которую мы видели ранее. Этот график тока также представляет мощность, и если мы подключим лампу к цепи, мы увидим, что она будет увеличивать яркость вплоть до пика, а затем уменьшать яркость до нейтральной точки, где лампа выключена, поскольку ток не течет. , но затем он снова увеличивается в яркости, поскольку электроны начинают течь через него в противоположном направлении, пока он снова не достигнет нейтральной точки.

В нейтральной точке цикла лампа не излучает свет, в точках увеличения и уменьшения в цикле лампа тусклая. Лампа горит только полностью и ярко светится в максимальные моменты циклов. Это означает, что свет постоянно мигает и гаснет.

Двухфазный генератор переменного тока

Чтобы улучшить это, мы можем добавить еще один набор катушек или вторую фазу в генератор и разместить эти 120 градусов поворота от первого набора катушек, а затем подключить это к другой лампе.Это вращение означает, что катушки испытывают изменяющуюся напряженность магнитного поля в разные моменты времени. Первая катушка достигает максимального тока и яркости, и по мере ее уменьшения вторая катушка начнет увеличиваться.

Это улучшило освещение, но все еще есть зазор, который вызовет мерцание, поэтому мы можем добавить третий набор катушек или третью фазу, и это будет означать, что одна из ламп почти всегда имеет максимальную яркость, поэтому освещение почти постоянный.Это основы трехфазного электричества. Это означает, что передается больше мощности и достигается более стабильная скорость.

Трехфазный генератор переменного тока

Между фазами все еще есть небольшие промежутки, и вы можете добавлять все больше и больше фаз, чтобы заполнить эти промежутки, но становится все дороже и дороже поддерживать все эти кабели, поэтому трехфазное электричество стало широко распространено, поскольку это хороший компромисс между предоставленной мощностью и стоимостью строительства.

В реальном мире вы не собираетесь использовать три лампы на разных фазах для создания освещения.Все лампы в ваших домах работают в однофазном режиме, но они мерцают, просто они включаются и выключаются так быстро, что человеческий глаз не увидит этого, если вы не запишите лампу в замедленном темпе.

Более практичным применением является питание электрических асинхронных двигателей и другого коммерческого и промышленного оборудования, поскольку трехфазное питание этих устройств обеспечивает большую мощность, что означает, что вы можете качать воду выше и запускать двигатели быстрее.

Трехфазное распределение электроэнергии

Мощность обычно генерируется и распределяется по трем фазам, и трансформаторы используются для изменения напряжения. Если вы хотите узнать, как работают трансформаторы, мы также рассмотрели это, ссылки приведены в видеоописании ниже.

Одна из интересных вещей, связанных с трехфазным питанием, заключается в том, что вы можете подключаться ко всем трем фазам и питать большое промышленное оборудование, или вы также можете подключаться только к одной из фаз, а также питать небольшие электрические товары.

трехфазное распределение электроэнергии в здании

Обычно так большие многоэтажки и небоскребы распределяют электричество по зданию. Двигатели лифтов и насосы кондиционеров нуждаются в трехфазном питании, а компьютеры и офисное оборудование – в однофазном питании.Таким образом, они распределяют трехфазное питание по зданию, а затем отводят от него по мере необходимости.

То же самое происходит с распределением электроэнергии по городу. Дома будут подключаться только к одной фазе, потому что они не требуют большой мощности, тогда как большие здания будут подключены к трем фазам, поскольку им требуется много энергии.

Электрооборудование

Электрооборудование, усилители и электропроводка, калибр проводов и AWG, электрические формулы и двигатели

12 Вольт – Автомобильная электрическая проводка

Максимальная длина провода vs.токи в 12-вольтовой электрической системе автомобиля.

12 В – максимальная длина провода в зависимости от тока

Максимальная длина медного провода при падении напряжения 2%.

12 Вольт – калибр проводов по сравнению с током

Максимальный ток (амперы) в электрической цепи 12 В в зависимости от размера (AWG) и длины провода.

Переменный ток – активная, реактивная и полная мощность

Действительная, мнимая и кажущаяся мощность в цепях переменного тока.

Цепи переменного тока – мощность vs.Напряжение и ток

Переменный ток в цепи переменного тока генерируется источником синусоидального напряжения.

Алюминий – Характеристики проводника

Характеристики цельналюминиевых проводников (AAC).

Асинхронные асинхронные двигатели – электрические свойства

Типичные данные электродвигателя, такие как номинальный ток, предохранитель, пусковой ток, размер контактора и автоматического выключателя – для асинхронных асинхронных двигателей.

AWG – Американский преобразователь калибра проволоки

Американский калибр проводов (AWG) vs.преобразователь площади поперечного сечения.

AWG – Американские номинальные токи для калибра проводов

Номинальные параметры усилителя по сравнению с калибрами проводов американского стандарта AWG.

AWG – Американский калибр проволоки в сравнении с круговыми милами

AWG в зависимости от диаметра в мил, кругового мил, диаметра в мм и площади в мм 2 .

Конденсаторы

Конденсаторы и емкость – заряд и единица заряда.

Маркировка CE

Подтверждает, что продукт разработан в соответствии с соответствующими стандартами Европейской директивы по машинному оборудованию.

Круги внутри прямоугольника

Максимальное количество кругов в прямоугольном калькуляторе, которое можно использовать для расчета количества труб или проводов в кабелепроводе или аналогичном.

CM – круговая мил.

Единица измерения площади в миллиметрах (CM) обозначает размер поперечного сечения провода или кабеля.

Цветовая температура

Источники света и их цветовое излучение в градусах Кельвина.

Закон Кулона

Электрическая сила, действующая на точечный заряд.

Текущий делитель – онлайн-калькулятор

Делитель электрического тока выводит ток, который составляет часть входного тока.

Стандарты DIN VDE

Электроустановки DIN VDE

Электрокабельные установки – номинальный ток

Номинальные значения тока и сечения кабелей для стационарной установки внутри зданий

Электрическая принципиальная схема – шаблон чертежа

Общая электрическая схема, доступная в Интернете.

Электрический нагрев массы

Электрический нагрев объекта или массы – изменение температуры в зависимости от подаваемой энергии.

Калькулятор электродвигателя

Рассчитайте токи, л.с. и кВА для электродвигателей.

Электродвигатели – Электропроводка 480 В

Данные по электропроводке двигателя 480 В – ток NEMA, размер стартера, размер HMCP для двигателей мощностью от 1/2 до 500 л.с.

Электродвигатели – КПД

Рассчитайте КПД электродвигателя.

Электродвигатели – Подключение трехфазных цепей 230 и 460 В

Расчет медного провода и трансформаторов для трехфазных электродвигателей 230 и 460 В.

Электродвигатели – крутящий момент в зависимости от мощности и оборотов

Выходная мощность и крутящий момент электродвигателя в зависимости от скорости вращения.

Поражение электрическим током

Физиологические последствия поражения электрическим током.

Электрический провод – уравнения площади поперечного сечения

Рассчитайте площадь сечения и диаметр одиночных и пучковых электрических проводов.

Электрический провод – максимальная длина 240 В, однофазный

Максимальная длина однофазного электрического провода 240 В с макс. Падение напряжения 2%.

Сопротивление электрического провода

Электрическое сопротивление в проволоке из меди, алюминия, латуни, константана, нихрома, платины, серебра или вольфрама.

Электропроводность – элементы и другие материалы

Электрическая проводимость – это способность элемента проводить электрический ток.

Электрические двигатели постоянного тока – токи полной нагрузки

Ток полной нагрузки в электрических двигателях постоянного тока на 120 и 240 вольт.

Электрические формулы

Часто используемые электрические формулы, такие как закон Ома и другие.

Электрическая индуктивность – последовательные и параллельные соединения

Электрическая индуктивность в последовательно и параллельно соединенных индукторах.

Электрические асинхронные двигатели – синхронная скорость

Рабочая скорость асинхронного двигателя зависит от входной частоты сети и количества магнитных полюсов в двигателе.

Электрометаллические трубки (EMT) – трубопроводы

Размеры сделок и макс. расстояние между опорами кабелепровода.

Электродвигатели – Размеры рамы

Габаритные размеры электродвигателей NEMA.

Электродвигатели – ток полной нагрузки

Ток полной нагрузки для одно- и трехфазных электродвигателей на 460 В, 230 В и 115 В.

Электрические двигатели – мощность в лошадиных силах в зависимости от напряжения и тока

Номинальная мощность электродвигателей в лошадиных силах vs.их рейтинг ампер.

Электродвигатели – классы изоляции

Электродвигатели NEMA по температуре и классам изоляции.

Электрические двигатели – Буквенные обозначения конструкции заторможенного ротора

Блокировка ротора NEMA с указанием буквенного кода для электродвигателей.

Электродвигатели – максимальный размер и длина кабеля в зависимости от мощности

Максимальная длина кабеля электродвигателя в зависимости от мощности.

Электродвигатели – Мощность на валу vs.Напряжение и ток

Рассчитайте мощность на валу электродвигателей.

Электродвигатели – однофазная схема подключения 230 В

Калибр для медных проводов и размер трансформатора для однофазных электродвигателей 230 В.

Электрические двигатели – скорость в зависимости от частоты

Частота вращения электродвигателей с 2, 4, 6 или 8 полюсами при 50 Гц и 60 Гц

Рейтинги эффективности электродвигателей

NEMA – рейтинг КПД электродвигателя

Скорость вращения электродвигателей при рабочих нагрузках

Скорость работающего электродвигателя с нагрузкой ниже синхронной скорости (без нагрузки) двигателя

Электрическое сопротивление – медный провод

Калибр, вес, круговые милы и электрическое сопротивление в медной проволоке.

Электрическое сопротивление – медные и алюминиевые провода

Электрическое сопротивление в простых медных или алюминиевых проводах.

Электрическое сопротивление в последовательных и параллельных сетях

Резисторы параллельного и последовательного включения

Электрические единицы

Определение общих электрических единиц, таких как Ампер, Вольт, Ом, Siemens

Зарядка электромобиля – мощность в зависимости от напряжения и тока

Зарядка электромобиля – переменный ток vs.Постоянный ток, однофазный и трехфазный и мощность в зависимости от напряжения и силы тока.

Электродный потенциал и гальваническая коррозия

Введение в электрохимические ряды и коррозию металлов

Электродвижущая сила – ЭДС

Изменение электрического потенциала между двумя точками

Электротехнические сокращения

Сокращения согласно Международной электротехнической комиссии (МЭК).

Энергия, запасенная в конденсаторах

Потенциальная мощность и энергия, запасенная в конденсаторах

Энергия, запасенная в индукторах

Энергия, запасенная в магнитных полях

Удлинители

Размер удлинителей – полная грузоподъемность при 115 В

Тепловые потери от электродвигателей

Потери тепла от электродвигателей в окружающую среду

IEC – Стандартные крутящие моменты электродвигателей NEMA

Классификация крутящего момента электродвигателей IEC и NEMA

Рабочие циклы IEC

Восемь – S1 – S8 – рабочих циклов IEC рабочих электродвигателей

Индуктивность

Электромагнитное поле – ЭДС – индуцированное в цепь

Асинхронные двигатели – синхронная скорость и скорость полной нагрузки

Синхронная частота вращения и частота вращения асинхронных двигателей переменного тока с полной нагрузкой

Изоляционные материалы – диэлектрическая прочность

Диэлектрическая прочность материала – это способность материала действовать как изолятор.

Промежуточный металлический трубопровод – IMC

Более легкие и недорогие металлические трубы

IP – степень защиты от проникновения

IP – Степень защиты от проникновения используется для определения защиты от окружающей среды или электрического корпуса электрооборудования

.

Законы Кирхгофа

Законы Кирхгофа по току и напряжению

LENI – Цифровой индикатор энергии освещения

Энергопотребление систем освещения

Освещение и силовые установки

Освещение силовых установок в обычных типах зданий и помещений

Световая отдача

Видимый свет, создаваемый источниками света

Максимальный ток в медном и алюминиевом проводе

Максимальный ток в медном и алюминиевом проводе

NEMA – Национальная ассоциация производителей электрооборудования

Национальная ассоциация производителей электрооборудования

Конструкция электродвигателя NEMA A, B, C и D

NEMA разработала четыре различных исполнения – A, B, C и D для электрических асинхронных двигателей

.

Классификация корпусов NEMA и IEC

Классификация корпусов NEMA по сравнению с классификацией корпусов IEC

Стандарты корпусов NEMA для электродвигателей

Стандарт корпуса NEMA для электродвигателей

Классы изоляции NEMA

Системы электроизоляции, соответствующие стандартным классификациям NEMA для максимальных допустимых рабочих температур

Нема Стартеры

Контакторы или пускатели nema

Никель-хромовая проволока – электрическое сопротивление vs.Рост температуры

Электрическое сопротивление и повышение температуры

Закон Ома

Напряжение, ток и сопротивление

Онлайн калибр проводов – AWG – Калькулятор

Рассчитайте AWG, мил, мм, см или квадратный мм

Конденсаторы, подключенные параллельно и последовательно

Емкость в параллельно и последовательно соединенных цепях

Параллельные схемы

Сопротивление, напряжение и ток в параллельных сетях

Проницаемость

Электромагнетизм и образование магнитных полей

Делитель потенциала – онлайн-калькулятор

Выходное напряжение с делителя потенциала

Коэффициент мощности – индуктивная нагрузка

Индуктивные нагрузки и коэффициенты мощности для электрических трехфазных двигателей

Электропроводка – Цветовые коды

Цветовые коды, используемые в силовой проводке

Аккумуляторы – Калькулятор срока службы батарей

Свойства аккумуляторных батарей и аккумуляторов

Относительная диэлектрическая проницаемость – диэлектрическая проницаемость

Некоторые распространенные материалы и их относительная диэлектрическая проницаемость

Относительный vs.Абсолютное напряжение

Электрические цепи и напряжение в любой точке

Сопротивление и проводимость

Электропроводимость, обратная величине электрического сопротивления, составляет

.

Сопротивление и удельное сопротивление

Электрическое сопротивление и удельное сопротивление

Удельное сопротивление и проводимость – температурные коэффициенты для обычных материалов

Коэффициенты удельного сопротивления, проводимости и температуры для некоторых распространенных материалов, таких как серебро, золото, платина, железо и др.

Резисторы – Калькулятор цветовых кодов

Цветовая кодировка постоянных резисторов – значения и допуски – онлайн калькулятор

Резисторы – буквенные и цифровые коды

Буквенные и цифровые коды для обозначения номиналов резисторов

Резисторы – стандартные значения

Предпочтительный номер серии резисторов

Жесткий алюминиевый трубопровод – RAC

Размеры жесткого алюминиевого кабелепровода

Цепи серии

Напряжение и ток в последовательных цепях

Фактор обслуживания

Эксплуатационный коэффициент – SF – это мера периодически перегрузочной способности, при которой двигатель может работать без повреждений

Однофазные уравнения мощности

Уравнения однофазной электрической мощности

Одиночный vs.Трехфазный переменный ток – сила тока

Преобразование между однофазным (напряжение 120, 240 и 480) и трехфазным (напряжение 240 и 480)

Скольжение в электрических асинхронных двигателях

Скольжение – это различие между синхронной и асинхронной скоростью

Меньшие круги в большом круге

Оцените количество маленьких кругов, которые вписываются во внешний больший круг – напр. сколько труб или проводов умещается в большей трубе или кабелепроводе

Почва – удельное сопротивление

Типы грунтов и их среднее значение удельного сопротивления

SWG – Стандартный калибр проводов

Имперский стандартный калибр для проволоки и листового металла

Трехфазные электрические двигатели

Ток полной нагрузки, размеры проводов и кабелепроводов для трехфазных электродвигателей

Трехфазные уравнения мощности

Электрические 3-фазные уравнения

Крутящие моменты в электрических асинхронных двигателях

Крутящий момент описывает и классифицирует электродвигатели

Трансформеры

Переменное напряжение и индуцированное электромагнитное поле – e.м.ф. – в трансформаторе

Переходные процессы

Переходный процесс – это выброс высокого напряжения, вызванный внешним или внутренним источником переходных процессов

Типы электрических шкафов NEMA

Описание электрических шкафов NEMA типа

Напряжение по странам

Типичные напряжения и частоты, используемые для бытовых приборов

Падение напряжения в электрических цепях

Закон Ома и падение напряжения в электрической цепи

Дисбаланс напряжения – коэффициент снижения мощности в многофазных двигателях

КПД электрических многофазных двигателей снижается с увеличением дисбаланса напряжений

Проволока – преобразовать квадратный мм в диаметр мм

Преобразовать квадратный мм в диаметр

мм

Трехфазная электрическая мощность

Теория

Трехфазная электроэнергия – это распространенный метод производства, передачи и распределения электроэнергии переменного тока.Это разновидность многофазной системы, которая является наиболее распространенным методом передачи энергии в электрических сетях во всем мире. Он также используется для питания больших двигателей и других тяжелых нагрузок. Трехфазная система обычно более экономична, чем эквивалентная однофазная или двухфазная система при том же напряжении, потому что в ней используется меньше проводящего материала для передачи электроэнергии. Трехфазная система была изобретена Галилео Феррари, Михаилом Доливо-Добровольским и Николой Тесла в конце 1880-х годов.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений на расстоянии одной трети цикла друг от друга.Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока. Эта задержка между фазами обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные нагрузки с более низким напряжением.В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах:

  • Фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это дает возможность уменьшить размер нейтрального проводника; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки.
  • Передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя.
  • Трехфазные системы могут создавать магнитное поле, вращающееся в заданном направлении, что упрощает конструкцию электродвигателей.

Пример двухфазного домохозяйства

Рисунок: Двухфазная система для дома, из заметок Эдди.

В типичном домохозяйстве на 120 вольт электричество поступает от энергокомпании в однофазном и высоком напряжении.Трансформатор берет эту мощность и понижает ее до 240 вольт с нейтральным ответвлением посередине. Питание с двух концов дает 240 вольт для систем с высокими требованиями, таких как сушилка для одежды. Подача питания от центральной нейтральной вершины к любой фазе дает 120 вольт для большинства бытовых нужд.

Пример трехфазного самолета

Рисунок: Трехфазная система с интегрированным приводным генератором G450 с самолета Эдди.

В авиационном генераторе переменного тока обычно имеется три выхода, по одному для каждой фазы, и общая нейтраль.В отличие от домашнего примера, напряжения обычно не комбинируются. Системы самолета с высокими требованиями будут использовать все три фазы для получения большей мощности, чем может обеспечить одна фаза. Например, двигатель с высокими требованиями может иметь три набора обмоток, чтобы использовать все три фазы.

9.3: Трехфазные соединения – Engineering LibreTexts

Можно сконфигурировать системы, использующие источники, соединенные треугольником или Y, с нагрузками, подключенными треугольником или Y. Следует отметить, что системы, соединенные треугольником, всегда являются трехпроводными системами, в то время как системы, соединенные по схеме Y, могут использовать четвертый нейтральный провод (общая точка, к которой подключаются все три источника).

Однородные системы

Самые простые системы – это дельта-дельта и Y-Y. Мы будем называть их однородными системами, поскольку конструкции генератора и нагрузки схожи. Примеры показаны на рисунках \ (\ PageIndex {1} \) и \ (\ PageIndex {2} \) соответственно.

Рисунок \ (\ PageIndex {1} \): генератор, подключенный по схеме треугольник, с нагрузкой, подключенной по схеме треугольник (дельта-треугольник). Рисунок \ (\ PageIndex {2} \): генератор с подключением по схеме Y и нагрузкой с подключением по схеме Y (ГГ). Показан дополнительный четвертый нейтральный провод от центра к центру.

В этих конфигурациях каждая ветвь нагрузки соответствует соответствующей ветви генератора. В конфигурации дельта-дельта на рисунке \ (\ PageIndex {1} \) должно быть очевидно, что напряжение на любом плече нагрузки должно равняться напряжению соответствующего плеча генератора. Например, импеданс нагрузки, подключенной между \ (A ‘\) и \ (B’ \), должен соответствовать напряжению, подаваемому генератором, расположенным между \ (A \) и \ (B \), потому что \ (A \) непосредственно соединен с \ (A ‘\) так же, как \ (B \) с \ (B’ \).Точно так же для конфигурации YY на рисунке \ (\ PageIndex {2} \) ток через любую ветвь нагрузки должен быть равен току, протекающему через связанную ветвь генератора, поскольку нет других путей для тока между \ (A \) и \ (A ‘\), \ (B \) и \ (B’ \), а также \ (C \) и \ (C ‘\).

Поскольку нагрузка уравновешена и ветви генератора идентичны, за исключением фазы, напряжение и ток (и, следовательно, мощности) для каждой ветви нагрузки должны быть одинаковыми, за исключением фаза.Это верно как для конфигурации Y-Y, так и для конфигурации дельта-дельта. Сложность здесь заключается в разнице между током или напряжением источника (или нагрузки) и линейным током или напряжением.

\ [\ text {Напряжение линии – это величина напряжения между любыми двумя проводниками, соединяющими источник с нагрузкой, за исключением земли или общего провода.} \ Nonumber \]

\ [\ text {Линейный ток – это величина тока, протекающего в любом проводнике, соединяющем источник с нагрузкой, за исключением земли или общего провода.} \ nonumber \]

Рассмотрим систему дельта-дельта на рисунке \ (\ PageIndex {1} \). Мы уже установили, что напряжение, развиваемое генератором \ (A, B \), должно быть таким же, как напряжение на нагрузке \ (A ‘, B’ \). Таким образом, напряжение, измеренное от проводника A, A ‘к проводнику B, B’, должно быть таким же, как напряжения источника и нагрузки. Другими словами, в конфигурации треугольник-треугольник все напряжения источника, нагрузки и линии одинаковы.

Мы также обнаружили, что токи источника и нагрузки должны быть одинаковыми для конфигурации треугольник-треугольник, однако это не означает, что ток, протекающий через провод, соединяющий \ (A \) с \ (A ‘\), должен быть такой же, как ток, протекающий через генератор или нагрузку.В конце концов, к \ (A ‘\) подключаются два провода нагрузки, а не только один. По определению, ток, протекающий через этот провод, является линейным током, и поэтому в конфигурации треугольник-треугольник линейный ток не совпадает с токами источника или нагрузки. Чтобы избежать путаницы, напряжение или ток, связанные с одной ветвью, называют фазным напряжением или током в зависимости от линейного напряжения или тока.

Обращаясь к конфигурации Y-Y на рисунке \ (\ PageIndex {2} \), мы видим противоположную ситуацию.Источник, нагрузка и линейные токи будут одинаковыми. С другой стороны, линейное напряжение состоит из двух генераторов, а не одного (например, от \ (A \) до \ (B \) или от \ (B \) до \ (C \)). Таким образом, для конфигурации Y-Y напряжения источника и нагрузки одинаковы, но они не равны линейному напряжению (и не в два раза, благодаря фазовому сдвигу).

Определение линейного напряжения и тока

Чтобы определить линейное напряжение для генератора, подключенного по схеме Y (и аналогично, линейный ток для генератора, подключенного по схеме треугольника), полезно изучить векторную диаграмму напряжений отдельных генераторов.Это показано на рисунке \ (\ PageIndex {3} \). У нас есть три напряжения одинаковой амплитуды, единственная разница между ними – их фаза. Каждый вектор отделен от других на 120 градусов. Далее, каждый отдельный генератор соединен из общей точки с одной из внешних точек \ (A \), \ (B \) и \ (C \). Линейное напряжение определяется как потенциал, существующий между любыми двумя этими тремя точками. Хотя можно просто вычесть напряжение одного генератора из другого, чтобы получить разницу, есть хорошее графическое решение, из которого мы можем вывести точную формулу для линейного напряжения с учетом напряжения генератора.

Рисунок \ (\ PageIndex {3} \): фазорная диаграмма Y-связанного генератора

Мы начнем с сосредоточения внимания на втором и третьем квадрантах векторной диаграммы. Этот раздел перерисован на рисунке \ (\ PageIndex {4} \). В действительности для следующего доказательства можно использовать любые два вектора, но эта пара оказывается особенно удобной по ориентации.

Рисунок \ (\ PageIndex {4} \): Решение для линейного напряжения генератора с Y-соединением.

Для удобства использования приведем величину напряжения генератора к единице.Мы видим, что векторы \ (B \) и \ (C \) идеально разделяются горизонтальной осью; то, что находится над осью, идеально отражается под ней. В верхней части мы находим прямоугольный треугольник с гипотенузой единицы (темно-красный). Угол, который он образует с горизонталью, должен составлять половину угла между ним и вектором \ (C \). Это половина 120 градусов или 60 градусов. Поскольку сумма внутренних углов треугольника должна составлять 180 градусов, это означает, что третий угол должен составлять 30 градусов. Горизонтальный отрезок треугольника (темно-желтый или, может быть, «острая горчица») может быть определен, потому что мы знаем и гипотенузу, и противоположный угол.2} \ nonumber \]

\ [\ text {vertical} = \ sqrt {\ frac {3} {4}} \ nonumber \]

\ [\ text {vertical} = \ frac {1} {2} \ sqrt {3} \ nonumber \]

Вертикальная ножка идеально отражается под горизонтальной осью. Следовательно, интервал от \ (B \) до \ (C \) должен быть в два раза больше этого значения, или \ (\ sqrt {3} \). Поскольку напряжение, развиваемое на каждой ножке генератора, называется фазным напряжением генератора, мы можем сказать:

\ [\ text {Линейное напряжение для генератора, подключенного по схеме Y, в} \ sqrt {3} \ text {умножено на его фазное напряжение.} \ label {9.1} \]

Например, если фазное напряжение генератора, подключенного по схеме Y, составляет 120 вольт, линейное напряжение будет в \ (\ sqrt {3} \) раз больше, или примерно 208 вольт.

Для генератора, подключенного по схеме треугольник, то же самое верно для фазных и линейных токов, с доказательством, оставленным в качестве упражнения. То есть

\ [\ text {Линейный ток для генератора, подключенного по схеме треугольника, равен} \ sqrt {3} \ text {умноженному на его фазный ток.} \ Label {9.2} \]

Те же самые отношения справедливы как для нагрузок, так и для источников, e.g., ток в ветви нагрузки, подключенной по схеме Y, будет таким же, как и линейный ток, а его фазовое напряжение будет в \ (\ sqrt {3} \) раз меньше, чем линейное напряжение.

\ [\ text {В итоге: для конфигураций треугольником (генератор или нагрузка) фазное напряжение равно линейному напряжению, а линейный ток больше фазного тока на} \ sqrt {3} \ text {. Для конфигураций Y фазный ток равен линейному току, а линейное напряжение} \ sqrt {3} \ text {больше, чем фазное напряжение.} \ nonumber \]

Для однородных систем, поскольку генератор и нагрузка имеют одинаковую конфигурацию, фазные напряжения и токи нагрузки должны быть идентичны фазам генератора. Полезное средство запоминания состоит в том, что мощность, рассеиваемая в системе, должна равняться генерируемой мощности.

Пример \ (\ PageIndex {1} \)

Генератор с трехфазным соединением треугольником питает нагрузку с трехфазным соединением треугольником, как в системе, показанной на рисунке \ (\ PageIndex {1} \). Предположим, что фазное напряжение генератора составляет 120 В переменного тока (среднеквадратичное значение).Груз состоит из трех одинаковых ножек по 50 \ (\ Omega \) каждая. Определите линейное напряжение, напряжение фазы нагрузки, ток фазы генератора, линейный ток, ток фазы нагрузки и общую мощность, подаваемую на нагрузку.

Поскольку это однородная система (треугольник-треугольник), напряжение и ток фазы нагрузки такие же, как у генератора. Следовательно, напряжение фазы нагрузки также должно быть 120 вольт. Во-вторых, в конфигурации треугольником линейное напряжение равно фазному напряжению, снова 120 вольт.Ток фазы нагрузки определяется по закону Ома и будет среднеквадратичным значением, так как напряжение равно среднеквадратичному значению:

.

\ [i_ {phase} = \ frac {v_ {phase}} {Z_ {load}} \ nonumber \]

\ [i_ {phase} = \ frac {120 V} {50 \ Omega} \ nonumber \]

\ [i_ {phase} = 2,4 A \ nonumber \]

Фазный ток генератора должен быть одинаковым, поскольку генератор и нагрузка имеют одинаковую конфигурацию. Для дельта-конфигураций линейный ток в \ (\ sqrt {3} \) раз больше, чем фазный ток, таким образом,

\ [i_ {line} = \ sqrt {3} \ times i_ {phase} \ nonumber \]

\ [i_ {line} = \ sqrt {3} \ times 2.2 \ раз 50 \ Омега \ nonumber \]

\ [P_ {total} = 864 Вт \ nonumber \]

Это эквивалентно примерно 1,2 л.с. Мы также могли бы вычислить мощность фазы нагрузки, используя квадрат фазного напряжения, деленный на сопротивление нагрузки, или умножая фазное напряжение на фазный ток. Поскольку это чисто резистивная нагрузка, здесь нет фазового угла и, следовательно, нет коэффициента мощности, о котором нужно было бы беспокоиться.

Пример \ (\ PageIndex {2} \)

Трехфазный генератор с Y-подключением питает трехфазную нагрузку с Y-подключением, аналогично системе, показанной на рисунке \ (\ PageIndex {2} \).Предположим, что фазное напряжение генератора составляет 220 В переменного тока (среднеквадратичное значение). Груз состоит из трех одинаковых ножек по 100 \ (\ Omega \) каждая. Определите линейное напряжение, напряжение фазы нагрузки, ток фазы генератора, линейный ток, ток фазы нагрузки и общую мощность, подаваемую на нагрузку.

Это однородная (Y-Y) система, поэтому напряжение и ток фазы нагрузки такие же, как у генератора. Следовательно, напряжение фазы нагрузки должно быть 220 вольт. В конфигурации Y линейное напряжение равно фазному напряжению, умноженному на \ (\ sqrt {3} \).

\ [v_ {line} = \ sqrt {3} \ times v_ {phase} \ nonumber \]

\ [v_ {line} = \ sqrt {3} \ times 220V \ nonumber \]

\ [v_ {line} \ приблизительно 381 V \ nonumber \]

Ток фазы нагрузки определяется по закону Ома и будет среднеквадратичным значением, поскольку напряжение является среднеквадратичным. Это то же самое, что и фазный ток генератора, и линейный ток.

\ [i_ {phase} = \ frac {v_ {phase}} {Z_ {load}} \ nonumber \]

\ [i_ {phase} = \ frac {220 V} {100 \ Omega} \ nonumber \]

\ [i_ {phase} = 2.2A \ nonumber \]

Полная мощность может быть найдена с использованием основного закона мощности, поскольку нагрузка является чисто резистивной, и у нас есть среднеквадратичные значения. В этом случае мы будем использовать ток, умноженный на напряжение, для изменения темпа.

\ [P_ {total} = 3 \ times i_ {фаза} \ times v_ {фаза} \ nonumber \]

\ [P_ {total} = 3 \ умножить на 2,2 А \ умножить на 220 В \ nonumber \]

\ [P_ {total} = 1452 Вт \ nonumber \]

Это всего лишь 2 хп. Опять же, это чисто резистивная нагрузка и фазовый угол отсутствует.Таким образом, коэффициент мощности равен единице, причем действительная и кажущаяся мощности одинаковы.

Пример \ (\ PageIndex {3} \)

Для системы, показанной на рисунке \ (\ PageIndex {5} \), определите общую полную и активную мощность, подаваемую на нагрузку. Также найдите напряжение в сети. Фазовое напряжение источника составляет 240 вольт (среднеквадратичное значение) при 60 Гц.

Рисунок \ (\ PageIndex {5} \): Схема для примера \ (\ PageIndex {3} \).

Учитывая тот факт, что все три опоры нагрузки находятся вместе в одной общей точке (земле), это должна быть система Y-Y.Следовательно, мы знаем, что линейное напряжение должно быть в \ (\ sqrt {3} \) раз больше фазного напряжения генератора.

\ [v_ {line} = \ sqrt {3} \ times v_ {phase} \ nonumber \]

\ [v_ {line} = \ sqrt {3} \ times 240 В \ nonumber \]

\ [v_ {line} \ около 416 В RMS \ nonumber \]

Это однородная система (Y-Y), поэтому мы также знаем, что напряжение нагрузки равно напряжению генератора или 240 вольт RMS. Отсюда мы можем найти ток нагрузки (линейный ток должен быть того же значения, потому что это нагрузка, подключенная по схеме Y).2 \ times R_ {load} \ nonumber \]

\ [P = 3 \ times 4.8A 2 \ times 40 \ Omega \ nonumber \]

\ [P = 2765W \ nonumber \]

Компьютерное моделирование

Схема примера \ (\ PageIndex {3} \) достойна моделирования. Первое, что нужно сделать, это определить подходящее значение индуктивности для достижения реактивного сопротивления \ (j40 \ Omega \). Учитывая частоту источника 60 Гц, получается примерно 80 мГн. Схема построена, как показано на рисунке \ (\ PageIndex {6} \).Среднеквадратичное фазовое напряжение источника 240 вольт эквивалентно пиковому напряжению приблизительно 340 вольт. Положения катушки индуктивности и резистора в каждой ножке поменялись местами по причине, которая вскоре станет очевидной.

Рисунок \ (\ PageIndex {6} \): Эквивалентная система, показанная на рисунке \ (\ PageIndex {5} \) в симуляторе.

Непосредственный интерес представляет проверка временных сдвигов и амплитуд фазных напряжений. Они соответствуют узлам 1, 2 и 3. В этой конфигурации напряжение фазы нагрузки равно фазному напряжению генератора, поэтому они должны быть пиковыми 340 вольт и разделены на 120 градусов или 1/3 цикла.

Выполняется анализ переходных процессов с нанесением на график интересующих узловых напряжений. Результат показан на рисунке \ (\ PageIndex {7} \). Напряжения в точности такие, как ожидалось, и график отлично согласуется с теоретическим графиком на рисунке 9.2.4.

Рисунок \ (\ PageIndex {7} \): три напряжения нагрузки, смоделированные из рисунка \ (\ PageIndex {6} \).

Теперь проверяем сетевое напряжение. Было рассчитано, что это среднеквадратичное значение 416 вольт, или примерно 588 вольт пикового значения. Постпроцессор используется для отображения результата: напряжение узла 1 минус напряжение узла 2.Это показано на рисунке \ (\ PageIndex {8} \). Опять же, результаты такие, как ожидалось, с пиком чуть ниже 600 вольт.

Наконец, мы исследуем истинную мощность нагрузки. Возможно, самый простой способ сделать это – определить напряжение на резистивной части нагрузки. Из предыдущих работ мы знаем, что истинная мощность связана только с сопротивлением, а не с реактивным сопротивлением. Таким образом, все, что нам нужно сделать, это измерить пиковое напряжение на резисторе. Отсюда мы находим его эквивалент RMS, возводим его в квадрат и делим на номинал резистора.Это дает нам истинную мощность нагрузки на одну ногу. Для общей мощности просто утроим результат. Получить напряжение на резисторе легко, если резистор заземлен. В этом случае это просто напряжение на узле, к которому подключен резистор. Вот почему позиции индуктора и резистора были поменяны местами при моделировании. Поскольку они подключены последовательно, это не влияет на общий импеданс нагрузки, однако новая схема позволяет нам получать напряжение резистора напрямую, вместо того, чтобы полагаться на дифференциальное напряжение, полученное через постпроцессор.

Выполняется еще один анализ переходных процессов, на этот раз строится график напряжения на одном из нагрузочных резисторов; а именно узел 4. Результат показан на рисунке \ (\ PageIndex {9} \). Пик этой формы волны составляет 271,5 вольт, или около 192 вольт (среднеквадратичное значение). Если возвести это в квадрат и разделить на 40 \ (\ Omega \), получим чуть более 921 Вт на каждую ногу, в общей сложности около 2765 Вт, как и ожидалось.

Рисунок \ (\ PageIndex {8} \): одно из линейных напряжений, смоделированное из рисунка \ (\ PageIndex {6} \). Рисунок \ (\ PageIndex {9} \): моделируемое напряжение на одном из нагрузочных резисторов на рисунке \ (\ PageIndex {6} \).

Гетерогенные системы

Системы, сконфигурированные как дельта-Y и Y-дельта, кажутся немного более сложными, чем однородные системы. Мы будем называть их гетерогенными системами, так как структуры генератора и нагрузки противоположного типа. Примеры показаны на рисунках \ (\ PageIndex {10} \) и \ (\ PageIndex {11} \) соответственно.

Рисунок \ (\ PageIndex {10} \): генератор, подключенный по схеме треугольник, с нагрузкой, подключенной по схеме Y (треугольник-Y). Рисунок \ (\ PageIndex {11} \): генератор с подключением по схеме Y и нагрузкой, подключенной треугольником. (Ydelta).

Эти системы вовсе не так сложны, как думают некоторые; все, что вам нужно сделать, это запомнить операторы \ ref {9.1} и \ ref {9.2}. Действительно, здесь стоит повторить суммирование:

\ text {Для конфигураций треугольником (генератор или нагрузка) фазное напряжение равно линейному напряжению, а линейный ток больше фазного тока на} \ sqrt {3} \ text {. Для конфигураций Y фазный ток равен линейному току, а линейное напряжение} \ sqrt {3} \ text {больше, чем фазное напряжение.} \ nonumber \]

Вы можете рассматривать анализ этих систем как двухэтапный процесс. Сначала определите линейное напряжение и ток от генератора или нагрузки; и во-вторых, переход от линии к другой стороне (нагрузке или генератору). Если возникнет путаница, помните, что генерируемая мощность должна равняться мощности рассеиваемой или доставленной.

На рисунке \ (\ PageIndex {10} \) линейное напряжение равно фазному напряжению генератора. Нагрузка подключена по схеме Y, поэтому на каждой ветви напряжение линии делится на \ (\ sqrt {3} \).Исходя из этого, можно вычислить каждое плечо тока нагрузки. Обратите внимание, что линейный ток равен току нагрузки. Фазный ток генератора равен линейному току, деленному на \ (\ sqrt {3} \).

На рисунке \ (\ PageIndex {11} \) линейное напряжение равно \ (\ sqrt {3} \), умноженному на фазное напряжение генератора. Нагрузка подключена по схеме треугольника, поэтому на каждой ножке отображается линейное напряжение. Зная это, можно вычислить каждое плечо тока нагрузки. Кроме того, линейный ток равен фазному току генератора, а фазный ток нагрузки будет равен линейному току, деленному на \ (\ sqrt {3} \).{\ circ} \) \ (\ Omega \), определяет фазный ток генератора, линейное напряжение, фазное напряжение нагрузки, фазный ток нагрузки и общую мощность, подаваемую на нагрузку.

Генератор подключен по схеме треугольника, поэтому линейное напряжение равно фазному напряжению генератора, или 230 вольт. Нагрузка, подключенная по схеме Y, будет видеть фазное напряжение, уменьшенное в \ (\ sqrt {3} \) раз.

\ [v_ {load} = \ frac {v_ {line}} {\ sqrt {3}} \ nonumber \]

\ [v_ {load} = \ frac {230 В} {\ sqrt {3}} \ nonumber \]

\ [v_ {load} \ около 132.{\ circ} \ Omega} \ nonumber \]

\ [i_ {load} \ приблизительно 0,664 A RMS \ nonumber \]

При Y-соединении линейный ток должен быть таким же, как ток фазы нагрузки, или 0,664 ампера. Для соединений треугольником линейный ток в \ (\ sqrt {3} \) раз больше, чем фазный ток, поэтому фазный ток генератора должен быть в \ (\ sqrt {3} \) раз меньше.

\ [i_ {gen} = \ frac {i_ {line}} {\ sqrt {3}} \ nonumber \]

\ [i_ {gen} = \ frac {0.664A} {\ sqrt {3}} \ nonumber \]

\ [i_ {gen} \ около 0.2 \ times 200 \ Omega \ nonumber \]

\ [P_ {total} = 264 Вт \ nonumber \]

В качестве перекрестной проверки вырабатываемая мощность составляет:

\ [P_ {total} = 3 \ times i_ {gen} \ times v_ {gen} \ nonumber \]

\ [P_ {total} = 3 \ умножить на 0,383A \ умножить на 230 В \ nonumber \]

\ [P_ {total} = 264 Вт \ nonumber \]

Выработанная мощность равна рассеиваемой мощности.

Пример \ (\ PageIndex {5} \)

Система Y-треугольник, подобная показанной на рисунке \ (\ PageIndex {11} \), имеет фазное напряжение генератора 100 В (среднеквадратичное значение) при 60 Гц.Если нагрузка имеет величину 50 \ (\ Omega \) с запаздывающим коэффициентом мощности 0,8, определите ток фазы генератора, линейное напряжение, напряжение фазы нагрузки, ток фазы нагрузки и общую истинную мощность, подаваемую на нагрузку. .

Генератор, соединенный по схеме Y, создает линейное напряжение, равное напряжению фазы генератора, умноженному на \ (\ sqrt {3} \). Это также напряжение фазы нагрузки, поскольку оно соединено треугольником.

\ [v_ {line} = \ sqrt {3} \ times v_ {phase} \ nonumber \]

\ [v_ {line} = \ sqrt {3} \ times 100 V \ nonumber \]

\ [v_ {line} \ около 173.2В RMS \ nonumber \]

Нагрузка, подключенная по схеме треугольника, будет видеть фазное напряжение, такое же, как и линейное напряжение, или 173,2 вольт. Отсюда мы можем определить ток нагрузки.

\ [i_ {load} = \ frac {v_ {phase}} {Z_ {load}} \ nonumber \]

\ [i_ {load} = \ frac {173.2V} {50 \ Omega} \ nonumber \]

\ [i_ {load} \ приблизительно 3,464A RMS \ nonumber \]

Поскольку нагрузка подключена по схеме треугольника, линейный ток равен времени тока нагрузки \ (\ sqrt {3} \). Фазный ток генератора будет таким же, как и линейный ток.2 \ times 40 \ Omega \ nonumber \]

\ [P_ {total} = 1440 Вт \ nonumber \]

Мы также можем найти полную мощность и использовать коэффициент мощности.

\ [P_ {total} = 3 \ times v_ {load} \ times i_ {load} PF \ nonumber \]

\ [P_ {total} = 3 \ умножить на 173,2В \ умножить на 3,464 А \ умножить на 0,8 \ nonumber \]

\ [P_ {total} = 1440 Вт \ nonumber \]

Для перекрестной проверки сравните рассеиваемую мощность с генерируемой.

\ [P_ {total} = 3 \ times v_ {gen} \ times i_ {gen} \ times PF \ nonumber \]

\ [P_ {total} = 3 \ умножить на 100В \ умножить на 6А \ умножить на 0.8 \ nonumber \]

\ [P_ {total} = 1440 Вт \ nonumber \]

Чем занимается инженер-электрик?

Чем занимается инженер-электрик?

Электротехника восходит к концу 19 века и является одной из новейших отраслей инженерии. Область электроники зародилась с изобретением в 1904 году Джоном Амброузом Флемингом термоэмиссионной ламповой диодной лампы и до середины 20-го века была основой всей электроники, включая радиоприемники, телевидение и радары.

Среди наиболее важных пионеров электротехники – Томас Эдисон (электрическая лампочка), Джордж Вестингауз (переменный ток), Никола Тесла (асинхронный двигатель), Гульельмо Маркони (радио) и Фило Т. Фарнсворт (телевидение). Инновационные идеи и концепции были превращены в практические устройства и системы, проложившие путь к тому, что мы имеем и используем сегодня.

Инженеры-электрики работают над различными проектами, такими как компьютеры, роботы, сотовые телефоны, карты, радары, навигационные системы, проводка и освещение в зданиях и другие виды электрических систем.

Инженеры-электрики все больше и больше полагаются на системы автоматизированного проектирования (САПР) для создания схем и компоновки схем, и они используют компьютеры для моделирования работы электрических устройств и систем.

Инженеры-электрики работают в разных отраслях, и требуемые навыки также различаются. Эти навыки могут варьироваться от базовой теории схем до навыков, необходимых для работы менеджером проекта. Инструменты и оборудование, которые могут понадобиться инженерам-электрикам, также разнообразны и могут варьироваться от простого вольтметра до анализатора верхнего уровня и передового программного обеспечения для проектирования и производства.

Должностные обязанности инженера-электрика могут требовать:

  • Оценка электрических систем, продуктов, компонентов и приложений
  • Разработка и проведение исследовательских программ
  • Применение знаний в области электричества и материалов
  • Подтверждение возможностей системы и компонентов путем разработки методов и свойств испытаний
  • Разработка электротехнической продукции на основе изучения требований клиентов
  • Исследования и испытания методов производства и сборки и материалов
  • Разработка производственных процессов путем проектирования и модификации оборудования
  • Обеспечение качества продукции путем разработки методов электрических испытаний
  • Тестирование готовой продукции и возможностей системы
  • Подготовка отчетов о продуктах путем сбора, анализа и обобщения информации и тенденций
  • Предоставление инженерной информации путем ответов на вопросы и запросы
  • Поддержание репутации продукции и компании путем соблюдения федеральных и государственных нормативных требований
  • Ведение базы данных о продуктах путем написания компьютерных программ и ввода данных

Электротехника включает множество дисциплин.Некоторые инженеры-электрики специализируются исключительно на одной дисциплине, в то время как другие специализируются на комбинации дисциплин.

Наиболее популярные дисциплины:

Инженер-электронщик
Инженеры-электронщики исследуют, проектируют, создают и тестируют электронные системы и компоненты, которые будут использоваться в таких областях, как телекоммуникации, акустика, аэрокосмическое наведение и управление движением, или приборы и средства управления. Эта карьера очень похожа на карьеру инженера-электрика – обе профессии в США взаимозаменяемы.Основное отличие – специализация. В то время как инженеры-электрики заботятся о целых электрических системах, инженеры-электронщики оттачивают более мелкие детали, такие как отдельные компьютеры, электронные схемы, резисторы, конденсаторы, катушки индуктивности, транзисторы и диоды, и используют свои знания теории электроники и свойств материалов.

Инженер по микроэлектронике
Микроэлектроника – это область электроники, которая связана с исследованием и микроизготовлением очень маленьких электронных конструкций и компонентов схем, обычно изготавливаемых из полупроводниковых материалов.Многие компоненты обычной электронной конструкции также доступны в микроэлектронном эквиваленте, который может включать транзисторы, конденсаторы, индукторы, резисторы, диоды, изоляторы и проводники. Инженеры в области микроэлектроники используют специализированное оборудование и уникальные методы подключения, такие как соединение проводов, из-за необычно малого размера компонентов, выводов и контактных площадок. По мере совершенствования технологий масштаб микроэлектронных компонентов продолжает уменьшаться, поэтому влияние свойств схемы, таких как межсоединения, может стать более интересным.Задача инженера по микроэлектронике – найти способы минимизировать эти «паразитные» эффекты, создавая при этом меньшие, более быстрые и дешевые устройства.

Инженер по обработке сигналов
Инженер по обработке сигналов анализирует и изменяет цифровые сигналы, чтобы сделать их более точными и надежными. В обязанности входит разработка, управление и обновление цифровых сигналов, а также создание алгоритмов для их более эффективной обработки. Инженер по обработке сигналов может работать в таких областях, как обработка изображений, обработка речи, распознавание образов, проектирование микросхем, разработка радиочастот, обработка биомедицинских сигналов, а также космические и военные приложения, включая спутниковую и мобильную связь.Эффективное использование сигналов достигается за счет реализации точных алгоритмов, закодированных в программных пакетах, с краткими шагами и выводами в реальном времени. Инженеры должны разработать необходимые этапы, предоставить спецификации, спроектировать процессор, который действует как машина, и предварительно смоделировать систему перед изготовлением.

Инженер-энергетик
Инженер-энергетик, также называемый инженером по энергетическим системам, имеет дело с подобластью электротехники, которая включает в себя производство, передачу, распределение и использование электроэнергии, а также электрического оборудования, связанного с этими системами (например, трансформаторы, генераторы, двигатели и силовая электроника).Хотя большая часть внимания энергетиков сосредоточена на вопросах, связанных с трехфазным питанием переменного тока, другая область внимания связана с преобразованием между мощностью переменного и постоянного тока и развитием конкретных систем питания, таких как те, которые используются в самолетах или на электрических железных дорогах. сети. Энергетики большую часть своей теоретической базы черпают из электротехники.

Инженер по контролю
Инженерия управления, или разработка систем управления, обычно преподается вместе с электротехникой во многих университетах и, в частности, фокусируется на реализации систем управления, полученных путем математического моделирования широкого диапазона систем.Этот тип инженерной дисциплины использует теорию автоматического управления для разработки контроллеров, которые заставляют системы вести себя определенным образом, используя микроконтроллеры, программируемые логические контроллеры, процессоры цифровых сигналов и электрические схемы. Используя детекторы и датчики для измерения выходной производительности управляемого процесса и обеспечения корректирующей обратной связи, можно достичь желаемой производительности.

Инженер по телекоммуникациям
Телекоммуникационная инженерия – это дисциплина, сосредоточенная на электротехнике и вычислительной технике, которая пытается помочь и улучшить телекоммуникационные системы.Работа инженера по телекоммуникациям будет варьироваться от проектирования базовой схемы до предоставления услуг высокоскоростной передачи данных и надзора за установкой телекоммуникационного оборудования (например, электронных систем коммутации, волоконно-оптических кабелей, IP-сетей и систем микроволновой передачи). Они используют ассортимент оборудования и транспортных средств для проектирования сетевой инфраструктуры (такой как витая пара, коаксиальные кабели и оптические волокна) и предоставляют решения для беспроводных режимов связи и передачи информации, таких как услуги беспроводной телефонной связи, радио и спутниковая связь. связь, Интернет и широкополосные технологии.

Инженер по КИП
Приборостроение берет свое начало как в электротехнике, так и в электронике и занимается разработкой измерительных устройств для измерения давления, расхода и температуры. Короче говоря, эта область имеет дело с процессами измерения, автоматизации и управления, что требует глубокого понимания физики. Инженеры по КИП разрабатывают новые интеллектуальные датчики, интеллектуальные преобразователи, технологию MEMS и технологию Blue Tooth. Инженеры по КИП работают практически во всех обрабатывающих отраслях и обрабатывающих отраслях, связанных со сталелитейной, нефтяной, нефтехимической, энергетической и оборонной промышленностями.

Инженер-компьютерщик
Большинство университетов предлагают компьютерную инженерию либо в качестве степени, суб-дисциплины электротехники, либо предлагают двойную степень в области электротехники и вычислительной техники. Компьютерные инженеры исследуют, проектируют, разрабатывают и тестируют компьютерные системы и компоненты, такие как процессоры, компьютерные платы, устройства памяти, сети и маршрутизаторы, микрочипы и другие электронные компоненты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *