Детекторные приемники для УКВ (FM) диапазона
Понятие детекторный приемник прочно ассоциируется с громадными антеннами и радиовещанием на длинных и средних волнах. В публикуемой статье автор приводит экспериментально проверенные схемы детекторных УКВ приемников, предназначенных для прослушивания передач УКВ ЧМ станций.
Сама возможность детекторного приема на УКВ была обнаружена совершенно случайно Однажды, гуляя по Терлецкому парку (г Москва, Новогиреево), я Решил прослушать эфир – благо захватил с собой простейший бесконтурный детекторный приемник (он был описан в Р2001, № 1, с. 52, 53, рис. 3).
Приемник имел телескопическую антенну длиной около 1,4 м. Интересно возможен ли прием на такую короткую антенну? Удалось услышать, довольно слабо, одновременную работу двух станций. Но что удивило – громкость приема периодически возрастала и падала практически до нуля через каждые 5-7 м, причем для каждой станции по-разному!
Известно, что на ДВ, и даже на СВ, где длина волны достигает сотен метров, такое невозможно. Пришлось остановиться в точке максимальной громкости приема одной из станции и внимательно послушать. Оказалось – “Радио Ностальжи”, 100,5 FM, вещающая из недалекой Балашихи.
Прямой видимости антенн радиоцентра не было. Как же передача с ЧМ могла приниматься на амплитудный детектор? Последующие расчеты и эксперименты показывают что это вполне возможно и совершенно не зависит от самого приемника.
Простейший портативный детекторный УКВ приемник делается точно так же, как индикатор поля, только вместо измерительного прибора надо включить высокоомные головные телефоны Имеет смысл предусмотреть и регулировку связи детектора с контуром, чтобы подбирать ее по максимальной громкости и качеству приема
Простейший детекторный УКВ приемник
Схема приемника, отвечающего этим требованиям, показана на рис. 1 Она очень близка к той, по которой был выполнен приемник, упоминавшийся выше и позволивший обнаружить саму возможность детекторного приема. Добавлен лишь контур УКВ диапазона.
Рис. 1. Принципиальная схема простейшего детекторного УКВ приемника.
Устройство содержит штыревую телескопическую антенну WA1, непосредственно связанную с контуром L1 С1, настраиваемым на частоту сигнала. Антенна здесь также является элементом контура, поэтому для выделения максимальной мощности сигнала надо регулировать как ее длину, так и частоту настройки контура. В ряде случаев, особенно при длине антенны, близкой к четверти длины волны, ее целесообразно подключить к отводу контурной катушки, а положение отвода подобрать по максимальной громкости.
Связь с детектором регулируется подстроечным конденсатором С2. Собственно детектор выполнен на двух высокочастотных германиевых диодах VD1 и VD2. Схема полностью тождественна схеме выпрямителя с удвоением напряжения, однако продетектированное напряжение удваивалось бы лишь при достаточно большой емкости конденсатора связи С2, но нагрузка на контур была бы чрезмерной, а его добротность низкой. В результате понизились бы напряжение сигнала в контуре и громкость звука
В нашем же случае емкость конденсатора связи С2 невелика и удвоения напряжения не происходит. Для оптимального согласования детектора с контуром емкостное сопротивление конденсатора связи должно равняться среднему геометрическому между входным сопротивлением детектора и резонансным сопротивлением контура. При этом условии в детектор отдается максимальная мощность высокочастотного сигнала, соответствующая и максимальной громкости.
Конденсатор С3 – блокировочный он замыкает высокочастотные составляющие тока на выходе детектора. Нагрузкой последнего служат телефоны сопротивлением постоянному току не менее 4 кОм. Весь приемник собирается в небольшом металлическом или пластмассовом корпусе. В верхней части корпуса закреплена телескопическая антенна длиной не менее 1 м, а снизу – разъем или гнезда для подключения телефонов. Заметим, что шнур телефонов служит второй половиной принимающего диполя, или противовесом
Катушка L1 бескаркасная, она содержит 5 витков провода ПЭЛ или ПЭВ диаметром 0,6-1 мм, намотанных на оправке диаметром 7…8 мм. Подобрать необходимую индуктивность можно, растягивая или сжимая витки при настройке.
Конденсатор переменной емкости (КПЕ) С1 лучше всего использовать с воздушным диэлектриком, например, типа 1КПВМ с двумя-тремя подвижными и одной-двумя неподвижными пластинами. Его максимальная емкость невелика и может составлять 7-15 пФ. Если пластин больше (соответственно и емкость больше), целесообразно либо удалить часть пластин, либо включить последовательно с КПЕ постоянный или подстроечный конденсатор, уменьшив, таким образом, максимальную емкость. В качестве С1 подойдут также малогабаритные конденсаторы “плавной настройки’’ от транзисторных приемников с КВ диапазоном.
Конденсатор С2 – керамический подстроечный, типа КПК-1 или КПК-М емкостью 2…7 пФ Допустимо использовать и другие подстроечные конденсаторы, а также установить КПЕ, подобный С1, выведя его ручку на панель приемника. Это позволит регулировать связь “на ходу”, оптимизируя прием
Диоды VD1 и VD2, кроме указанных на схеме, могут быть типов ГД507Б, Д18, Д20 Блокировочный конденсатор С3 керамический, емкость его некритична и может иметь значение колебаться от 100 до 4700 пФ.
Налаживание приемника несложно и сводится к настройке контура конденсатором С1 на частоту станции и регулировке связи конденсатором С2 до получения максимальной громкости. Настройка контура при этом неизбежно изменится, поэтому все операции надо провести последовательно несколько раз, одновременно выбирая и наилучшее место для приема.
Оно, кстати, совсем необязательно должно совпадать (и скорее всего, не будет) с тем местом, где максимальна напряженность поля. Об этом следует поговорить подробнее и объяснить, наконец, почему вообще этот приемник может принимать сигналы с ЧМ.
Интерференция и преобразование ЧМ в АМ
Если контур L1С1 нашего приемника настроить так, чтобы несущая ЧМ сигнала попала на скат резонансной кривой, то ЧМ будет преобразовываться в АМ Посмотрим, какова для этого должна быть добротность контура. Полагая полосу пропускания контура равной удвоенной девиации частоты, получаем Q = fo/2*f = 700 как для верхнего, так и для нижнего УКВ диапазонов.
Реальная добротность контура в детекторном приемнике будет, вероятно, меньше из-за невысокой собственной добротности (порядка 150. ..200) и шунтирования контура и антенной, и входным сопротивлением детектора. Тем не менее слабое преобразование ЧМ в АМ возможно, и, таким образом, приемник будет еле-еле работать, если его контур слегка расстроить вверх или вниз по частоте.
Однако есть значительно более мощный фактор, способствующий преобразованию ЧМ в АМ, – это интерференция. Очень редко приемник находится в зоне прямой видимости антенны радиостанции, чаще ее закрывают здания, холмы, деревья и другие отражающие предметы. К антенне приемника приходит несколько лучей, рассеянных этими предметами.
Даже в зоне прямой видимости кроме прямого луча к антенне приходит несколько отраженных. Суммарный сигнал зависит как от амплитуд, так и от фаз складывающихся компонент.
Два сигнала складываются, если они в фазе, т. е. разность их путей кратна целому числу длин волн, и вычитаются, если они в противофазе, когда разность их путей составляет то же число длин волн плюс еще пол волны. Но ведь длина волны, как и частота, изменяется при ЧМ! Будет изменяться и разность хода лучей, и их относительный сдвиг фаз. Если разность хода велика, то даже небольшое изменение частоты приводит к значительным сдвигам фаз. Элементарный геометрический расчет приводит к соотношению:
где, дельта t – разность хода лучей, требуемая для сдвига фазы на ± Пи/2, т. е. для получения полной АМ суммарного сигнала; tдельтаf – девиация частоты. Под полной АМ мы здесь понимаем изменение амплитуды суммарного сигнала от суммы амплитуд двух сигналов до их разности. Формулу можно еще более упростить, если учесть, что произведение частоты на длину волны fo*(лямбда) равно скорости света с; дельта t = c/4*дельта f.
Теперь легко сосчитать, что для получения полной АМ двухлучевого ЧM сигнала достаточна разность хода лучей около километра. Если разность хода меньше, то пропорционально уменьшится и глубина АМ. Ну, а если больше?
Тогда за один период модулирующего звукового колебания суммарная амплитуда интерферирующего сигнала несколько раз пройдет через максимумы и минимумы, и искажения при преобразовании ЧM в АМ окажутся чрезвычайно сильными, вплоть до полной неразборчивости звукового сигнала при приеме на АМ детектор.
Интерференция при ЧM – явление чрезвычайно вредное. Она вызывает не только сопутствующую паразитную АМ сигнала, как мы только что видели, но и паразитную фазовую модуляцию, что приводит к искажениям даже при приеме на хороший приемник ЧM. Вот почему важно вынести антенну в то место пространства, где преобладает один сигнал.
Всегда лучше использовать направленную антенну, поскольку она увеличивает прямой сигнал и ослабляет отраженные, приходящие с других направлений.
Лишь в нашем случае самого простого детекторного приемника интерференция сыграла полезную роль и позволила прослушать передачу, но передача может быть слышна слабо или с большими искажениями не везде, а лишь в отдельных местах. Этим и объясняются периодические изменения громкости приема в Терлецком парке.
Детекторный с частотным детектором
Радикальный способ улучшения приема состоит в использовании частотного детектора вместо амплитудного. На рис. 2 показана схема портативного детекторного УКВ приемника с простым частотным детектором, выполненным на одном высокочастотном германиевом транзисторе УТ1.
Применение германиевого транзистора обусловлено тем, что его переходы открываются при пороговом напряжении около 0,15 В, что позволяет детектировать довольно слабые сигналы. Переходы кремниевых транзисторов открываются при напряжении около 0,5 В, и чувствительность приемника с кремниевым транзистором получается значительно ниже.
Рис. 2. Детекторный УКВ приемник с частотным детектором.
Как и в предыдущей конструкции, антенна связана с входным контуром L1С1, настраиваемым на частоту сигнала с помощью КПЕ С1. Сигнал с входного контура подается на базу транзистора. С входным контуром индуктивно связан другой – L2С2, также настраиваемый на частоту сигнала.
Колебания в нем, благодаря индуктивной связи, сдвинуты по фазе на 90° относительно колебаний во входном контуре. С отвода катушки L2 сигнал подается на эмиттер транзистора. В коллекторную цепь транзистора включены блокировочный конденсатор С3 и высокоомные телефоны BF1.
Транзистор открывается, когда на его базе и эмиттере действуют положительные полуволны сигнала, причем мгновенное напряжение на эмиттере больше. При этом в его коллекторной цепи через телефоны проходит продетектированный и сглаженный ток. Но положительные полуволны перекрываются лишь частично при сдвиге фаз колебаний в контурах на 90°, поэтому продетектированный ток не достигает максимального значения, определяемого уровнем сигнала.
При ЧМ, в зависимости от отклонения частоты, сдвиг фазы также изменяется, в соответствии с фазочастотной характеристикой (Ф4Х) контура L2С2. При отклонении частоты в одну сторону сдвиг фазы уменьшается и полуволны сигналов на базе и эмиттере перекрываются больше, в результате чего продетектированный ток возрастает.
При отклонении частоты в другую сторону перекрытие полуволн уменьшается и ток падает. Так происходит частотное детектирование сигнала.
Коэффициент передачи детектора прямо зависит от добротности контура L2С2, она должна быть как можно выше (в пределе, как мы сосчитали, до 700), поэтому-то связь с эмиттерной цепью транзистора выбрана слабой. Конечно, такой простейший детектор не подавляет АМ принимаемого сигнала, более того, его продетектированный ток пропорционален уровню сигнала на входе, что является очевидным недостатком. Оправдание – лишь в исключительной простоте детектора.
Так же, как и предыдущий, приемник собран в небольшом корпусе, из которого кверху выдвигается телескопическая антенна, а снизу расположены гнезда телефонов. На переднюю панель выведены ручки обоих КПЕ. Эти конденсаторы не следует объединять в один блок, поскольку, настраивая их раздельно, удается получить и большую громкость, и лучшее качество приема.
Катушки приемника бескаркасные, они намотаны проводом ПЭЛ 0,7 на оправке диаметром 8 мм. L1 содержит 5 витков, а L2 – 7 витков с отводом от 2-го витка, считая от заземленного вывода. Если есть возможность, катушку L2 желательно намотать посеребренным проводом для повышения ее добротности, диаметр провода при этом некритичен.
Индуктивность катушек подбирается сжиманием и растягиванием витков так, чтобы хорошо слышимые УКВ станции оказались в середине диапазона перестройки соответствующего КПЕ. Расстояние между катушками в пределах 15…20 мм (оси катушек параллельны) подбирают подгибанием их выводов, припаянных к КПЕ.
С описанным приемником можно провести массу занимательных экспериментов, исследуя возможность детекторного приема на УКВ, особенности прохождения волн в условиях городской застройки и т. д. Не исключены и эксперименты по дальнейшему усовершенствованию приемника.
Однако качество звука при приеме на высокоомные головные телефоны с жестяными мембранами оставляет желать лучшего. В связи со сказанным, был разработан более совершенный приемник, обеспечивающий лучшее качество звука и позволяющий использовать различные наружные антенны, соединенные с приемником фидерной линией.
Приемник с питанием от энергии поля
Экспериментируя с простым детекторным приемником, неоднократно пришлось убеждаться, что мощность продетектированного сигнала достаточно велика (десятки и сотни микроватт) и могла бы обеспечить довольно громкую работу телефонов.
Но прием получается неважным из-за отсутствия частотного детектора (ЧД). Второй приемник (рис. 2) в какой-то мере решает эту проблему, но мощность сигнала в нем также используется неэффективно из-за квадратурного питания транзистора высокочастотными сигналами. Поэтому решено было применить в приемнике два детектора: амплитудный – для питания транзистора; частотный – для лучшего детектирования сигнала
Схема разработанного приемника показана на рис. 3. Внешняя антенна (петлевой диполь) соединяется с приемником двухпроводной линией, выполненной из ленточного УКВ кабеля с волновым сопротивлением 240 .300 Ом. Согласование кабеля с антенной получается автоматически, а согласование со входным контуром L1С1 достигается подбором места подключения отвода к катушке.
Вообще говоря, несимметричное подключение фидера ко входному контуру уменьшает помехоустойчивость антенно-фидерной системы, но, учитывая низкую чувствительность приемника, здесь это не имеет особого значения.
Есть общеизвестные способы симметричного подключения фидера с использованием катушки связи или симметрирующего трансформатора. В условиях автора петлевой диполь был выполнен из обычного монтажного провода в изоляции и размещен на балконе, в месте с максимальной напряженностью поля. Длина фидера не превышала 5 м. При столь незначительных длинах потери в фидере пренебрежимо малы, поэтому с успехом можно применить телефонный провод.
Входной контур L1С1 настроен на частоту сигнала, и выделяющееся на нем высокочастотное напряжение выпрямляется амплитудным детектором, выполненным на высокочастотном диоде VD1. Поскольку при ЧМ амплитуда колебаний неизменна, требований к сглаживанию выпрямленного постоянного напряжения практически никаких нет.
Тем не менее чтобы снять возможную паразитную АМ сигнала при многолучевом распространении (см. выше рассказ об интерференции), емкость сглаживающего конденсатора С4 выбрана значительной. Выпрямленное напряжение служит для питания транзистора VT1, а для контроля потребляемого тока и одновременной индикации уровня сигнала служит стрелочный индикатор РА1.
Рис. 3. Схема УКВ приемника с питанием от энергии поля.
Квадратурный ЧД приемника собран на транзисторе VT1 и фазосдвигающем контуре L2С2. Высокочастотный сигнал на базу транзистора подается с отвода катушки входного контура через конденсатор связи С3, а на эмиттер – с отвода катушки фазосдвигающего контура. Работа детектора происходит точно так же, как и в предыдущей конструкции.
Для повышения коэффициента передачи ЧД и более полного использования усилительных свойств транзистора на его базу подано смещение через резистор R1, поэтому-то и пришлось установить разделительный конденсатор С3. Обратите внимание на его значительную емкость – она выбрана такой для замыкания низкочастотных токов на эмиттер, т. е. для “заземления” базы по звуковым частотам. Это повышает коэффициент усиления транзистора и увеличивает громкость приема.
В коллекторную цепь транзистора включена первичная обмотка выходного трансформатора Т1, служащего для согласования высокого выходного сопротивления транзистора с низким сопротивлением телефонов. С приемником можно использовать высококачественные стереотелефоны ТДС-1 или ТДС-6. Оба телефона (левого и правого каналов) соединяют параллельно.
Конденсатор С5 – блокировочный, он служит для замыкания высокочастотных токов, проникающих в коллекторную цепь. Кнопка SB1 служит для замыкания коллекторной цепи при настройке входного контура и поиске сигнала. Звук в телефонах при этом исчезает, но чувствительность индикатора значительно повышается.
Конструкция приемника может быть самой разной, но необходима передняя панель с установленными на ней КПЕ С1 и С2 (их снабжают отдельными ручками настройки) и кнопкой SB1. Чтобы движения рук не влияли на настройку контуров, панель желательно сделать металлической или из фольгированного материала.
Она же может служить и общим проводом приемника. Роторы КПЕ должны иметь хороший электрический контакт с панелью. Разъемы антенны и телефонов Х1 и Х2 можно установить как на той же передней панели, так и на боковых или задней стенках корпуса приемника. Его размеры целиком зависят от имеющихся в распоряжении деталей Скажем несколько слов о них.
Конденсаторы С1 и С2 – типа КПВ с максимальной емкостью 15 .25 пФ Конденсаторы СЗ-С5 использованы керамические, малогабаритные.
Катушки L1 и L2 бескаркасные, намотаны на оправках диаметром 8 мм и содержат 5 и 7 витков соответственно. Длина намотки 10. .. 15 мм (регулируют при настройке).
Провод ПЭЛ 0,6…0,8 мм, но лучше использовать посеребренный, особенно для катушки L2. Отводы сделаны от 1 витка к электродам транзистора и от 1,5 витков к антенне.
Катушки можно расположить как соосно, так и параллельно друг другу. Расстояние между катушками (10…20 мм) подбирают при налаживании. Приемник будет работать даже при отсутствии индуктивной связи между катушками – емкостной связи через междуэлектродную емкость транзистора вполне достаточно. Трансформатор Т1 взят готовый, от трансляционного громкоговорителя.
В качестве VT1 подойдет любой германиевый транзистор с граничной частотой не ниже 400 МГц. При использовании р-п-р транзистора, например, ГТ313А полярность включения стрелочного индикатора и диода следует изменить на обратную. Диод может быть любым германиевым, высокочастотным.
Для приемника годится любой индикатор с током полного отклонения 50-150 мкА, например, стрелочный индикатор уровня записи от магнитофона.
Налаживание приемника сводится к настройке контуров на частоты хорошо слышимых радиостанций, подбору положения отводов катушек по максимальной громкости и качеству приема, а также связи между катушками. Полезно подобрать и резистор R1, тоже по максимальной громкости.
С описанной антенной на балконе приемник обеспечивал высококачественный прием двух станций с наиболее мощным сигналом при расстоянии до радиоцентра не менее 4 км и при отсутствии прямой видимости (загораживали дома). Коллекторный ток транзистора составлял 30…50 мкА.
Разумеется, возможные конструкции детекторных УКВ приемников не ограничиваются описанными. Напротив, их следует рассматривать лишь как первые опыты в этом интересном направлении. Если применить эффективную антенну, вынесенную на крышу и направленную на интересующую радиостанцию, можно получить достаточную мощность сигнала даже на значительном удалении от радиостанции.
Это открывает весьма заманчивые перспективы высококачественного приема на головные телефоны, а в некоторых случаях, возможно, удастся получить и громкоговорящий прием. Усовершенствование самих приемников возможно при использовании более эффективных схем детектирования и высокодобротных объемных, в частности, спиральных резонаторов в качестве колебательных контуров.
В. Поляков, г. Москва. Р2001, 7.
Радиоконструктор: FM радиоприемник | AmperMarket.kz
1 600 тг
Нет в наличии
Уведомить о поступлении
Артикул: 0901012 Категория: Радиоконструкторы
- Описание
- Характеристики
- Габариты
FM радиоприемник — приемник, принимающий сигнал с частотной модуляцией (ЧМ приемник). Данный приемник рассчитан на прием частот, лежащих в диапазоне от 76 МГц до 108 МГц. Для прослушивания звукового сигнала предусмотрен 3,5 мм разъем, к которому можно, например, подключить наушники. Настройка частоты производится с помощью тактовых кнопок. Конструктор представляет собой хороший материал для получения навыков сборки и пайки электронных устройств.
Состав набора
- Отсек для 2-х AA батарей (1 шт)
- Биполярный транзистор S8050 (1 шт)
- Разъем 3,5 мм на плату (PJ-307) (1 шт)
- Кварцевый резонатор (1 шт)
- Контакты для пайки 4pin (1 шт)
- Керамические конденсаторы (3 шт)
- Микросхема (1 шт)
- Индуктор (1 шт)
- Диод 4148ST (2 шт)
- Резистор 10 кОм (4 шт)
- Тактовая кнопка 6x6x4.3мм (5 шт)
- Светодиод 5 мм (1 шт)
- Электролитический конденсатор 100 мкФ 10 В (2 шт)
- Перемычка (1 шт)
- Монтажная плата с нанесенными компонентами (1 шт)
Схема
Управление и положение перемычки
Кнопки слева — направо:
- Включить/выключить радио
- Громкость уменьшить
- Громкость увеличить
- Предыдущая станция
- Следующая станция
Станции приёмник ловит, автоматически определяя самый сильный сигнал.
Жёлтым кругом выше выделены четыре штыревых контакта на плате.
- Перемычка на контактах 2-3 делает антенной проводные наушники.
- Перемычка на контактах 1-2 делает антенной контакт A на плате, если будете паять внешнюю отдельную антенну. Но в этом случае потребуется ещё одна перемычка для контактов 3-4, чтобы обеспечить контакт между GND («землёй») и общим проводом наушников.
Питание | 3 В |
---|---|
Потребление | 24 мА (включенное состояние), 15 мкА (выключен) |
Диапазон частот | 76 МГц — 108 МГц |
3,5 мм |
Вес | 30 г |
---|---|
Размеры | 55 x 28 мм |
AARON Ретрансляционный FM-приемник — модель 650
UPC: 850025677165
FM-ретрансляционный приемник
FM-приемник ретрансляционного/трансляторного сигнала AARON 650 создан для работы в самых сложных сценариях приема. Обладая чувствительностью и избирательностью, превосходящими даже самые элитные профессиональные или бытовые приемники, AARON 650 сочетает в себе функции премиум-класса с непревзойденной производительностью приемника.
AARON работает либо в режиме пропускания композита, либо в режиме регенерации композита. Композитный транзит устраняет задержку повторной передачи (латентность), а композитная регенерация дает возможность полностью реконструировать основной сигнал для уменьшения шума, даже изменяя сообщения RDS перед ретрансляцией.
На задней панели расположены двойные антенные входы, двойные композитные выходы, симметричные аналоговые и цифровые аудиовыходы AES, а также удаленный IP-доступ. Тревоги на задней панели и с саморегистрацией постоянно проверяют наличие потери звука, потери радиочастоты и потери RDS (или «угона»). Онлайн-уведомления могут оповещать персонал по электронной почте или мгновенными текстовыми сообщениями при возникновении любого из сигналов тревоги.
На передней панели отображаются левый и правый аудиометры, локальные светодиодные сигналы тревоги и имеется ЖК-экран с колесиком для расширенного управления и редактирования всех рабочих параметров. Резервное копирование звука при отказе обеспечивается через SD-карту на передней панели или веб-поток, если ваш сигнал пропадает.«Отзывчивый» веб-интерфейс AARON 650 позволяет выполнять полную настройку, прослушивание, регистрацию и управление устройством с вашего ПК, планшета или смартфона, а надежное двустороннее подключение обеспечивается встроенной утилитой Dynamic DNS. Расширенные инструменты измерения вне эфира включают FM BandScanner и FFT области MPX. Ширина полосы приема, автоматическое смешивание и многие другие параметры приемника контролируются с помощью ручной или автоматической обработки приема.
* Планшет на фото не входит в комплект.
«Отличный исполнитель в сложных условиях приема»
Tom Vernon – Radio Magazine (февраль 2015 г.
) ОбзорыИзбирательность и чувствительность приемника делают AARON серьезным претендентом на звание номер 1 в своем классе.
– Пол Маклейн – Radio World, главный редактор Как правильно выбрать приемник Inovonics AARON
Чувствительность и избирательность Aaron 650 решили для нас сложную проблему приема. Aaron 650 очень прост в настройке. Это значительно улучшило качество модуляции нашего FM-транслятора. Возможность регенерировать сообщения RDS — отличная функция, которая улучшает идентификацию слушателя нашего сигнала транслятора. Aaron 650 стоил нам своих денег.
– Тед Статник – главный инженер @ WLMP, Милтон, Пенсильвания
Аарон 650 прорезает болтовню
– Том Вернон Aaron 650 прерывает болтовню – RadioWorld 7/11/14
Полевой отчет: Aaron 650 — отличный исполнитель в сложных условиях приема
— Дэн Хоуг Надежный исполнитель в сложных условиях приема – Radiomagonline. com
SpecificationsGENERAL PERFORMANCE
Tuning RangeExtended FM band: 65.0MHz–108.0MHz
Sensitivity/Noise PerformanceUnweighted monaural SNR for AES Digital and L/R Analog line выходы относятся к девиации несущей ±75 кГц при указанных входных ВЧ уровнях:
- 82 дБ цифровой, >80 дБ аналоговый при 60 дБмкВ
- 78 дБ цифровой, >76 дБ аналоговый при 40 дБмкВ
- 60 дБ Цифровой/Аналоговый при 20 дБмкВ
- 50 дБ Цифровой/аналоговый при 10 дБмкВ
- 43 дБ Цифровой/аналоговый при 0 дБмкВ
Выбираемые полосы пропускания ПЧ: 311 кГц, 287 кГц, 254 кГц, 236 кГц, 217 кГц, 200 кГц, 184 кГц, 168 кГц, 151 кГц, 133 кГц, 114 кГц, 97 кГц, 84 кГц, 72 кГц, 70053: : : , : :
- Композитный/MPX-выход: >45 дБ в сквозном режиме; >50 дБ в режиме регенерации MPX
- Цифровой AES и аналоговый линейный выход L/R: >50 дБ
- Композитный/MPX-выход: <250 мкс в сквозном режиме; <2,4 мс в режиме регенерации MPX
- Цифровой AES и аналоговый линейный выход L/R: <2,4 мс
- Шаги настройки: 200 кГц, 100 кГц или 10 кГц
- De-Emphasis (линейные выходы): 75 мкс или 50 мкс
- Система радиоданных: RBDS или RDS
Любой из двух 50-омных (N) входов может быть назначен любой предустановленной станции.
Цифровой линейный выход24-битный стереовыход AES3 (XLR) можно настроить в диапазоне от –30 дБ полной шкалы до 0 дБ полной шкалы, что соответствует девиации несущей ±75 кГц, с компенсацией или без нее. Частота дискретизации на выходе может быть установлена на 32 кГц, 44,1 кГц или 48 кГц.
Аналоговые линейные выходыАктивные балансные (XLR) выходы регулируются в диапазоне от –20dBu до +18dBu (+15,5dBm), что соответствует девиации несущей ±75 кГц, с деакцентированием или без него. Импеданс источника 200 Ом.
Выходы Composite/MPXДва небалансных (BNC) выхода независимо регулируются между 1 В и 6 В, что соответствует девиации несущей ±75 кГц. Импеданс источника 75 Ом.
Порт USBПредоставляет необработанные данные RDS для анализа
Сетевой портГнездо RJ45 принимает сетевые соединения TCP/IP для удаленной настройки и управления AARON 650. дюймовый (TRS) разъем для наушников контролирует сигнал внеэфирной программы. Громкость наушников — это пункт меню.
АВАРИЙНАЯ ЗАЩИТА АУДИОПри потере входящей несущей, потере звука программы или «захвате» RDS внеэфирная программа может быть заменена либо предварительно записанным материалом на подключаемой SD-карте, либо Потоковое аудио в Интернете.
ФУНКЦИИ ОБРАБОТКИ АУДИОКак в режимах сквозной передачи, так и в режиме регенерации MPX, для лучшего определения предела отклонения FM может быть задействовано до 3 дБ композитного ограничения. Стереопилот 19 кГц и поднесущая RDS 57 кГц удаляются, фильтруются и повторно вставляются после ограничителя.
ПОЛЬЗОВАТЕЛЬСКИЙ ИНТЕРФЕЙС Передняя панельГрафический дисплей на передней панели и поворотное колесо позволяют легко управлять AARON 650 на месте с помощью меню и управлять им. Отображение уровней звука программы L/R.
Управление программным обеспечениемСетевой IP-порт обеспечивает полную удаленную настройку и управление AARON 650 через локальную сеть или Интернет с помощью любого настольного компьютера, планшета или мобильного браузера.
SNMPПоддерживается удаленный мониторинг SNMP
РАЗНОЕ Генератор тестового тона20 Гц – 20 кГц; аттенюатор 60 дБ
Требования к сети переменного тока90–130 В переменного тока или 200–255 В переменного тока, 50/60 Гц; 5 Вт.
РазмерВ: 1¾ дюйма/44 мм, Ш: 19 дюймов/483 мм, Г: 9½ дюйма/240 мм (1U).
Масса9 фунтов/4 кг (нетто), 12 фунтов/5,4 кг (транспортировка)
Условия окружающей средыНепрерывная работа при температуре окружающей среды от 32°F/0°C до 122°C/50°F; Относительная влажность 0-95%, без конденсации, высота до 3048 м/10 000 футов.
ДокументацияСравнительная таблица AARON 640, 650, 655 (испанский)
Сравнительная таблица AARON, модели 640, 650, 655
650 Руководство
650 Технический паспорт
650 Спецификация (испанский)
ЗагрузкиМикропрограмма AARON 650, версия 1.2.0.15
Программное обеспечение для мониторинга RDS
R-100 Программируемый FM-приемник – Enersound
Артикул:
Enersound R-100 – это FM-приемник с программируемым каналом, специально разработанный для беспроводного синхронного перевода на несколько языков (также называемого синхронным переводом) и -канальные вспомогательные приложения для прослушивания.
Категории: Вспомогательное прослушивание, Системы гида, Перевод и интерпретация, Передатчики и приемники, Передатчики и приемники, Передатчики и приемники
- Загрузки
Ресивер Enersound R-100 идеально подходит для всех видов конференций и совещаний руководителей. Это оборудование предпочитают компании по аренде оборудования для синхронного перевода, поставщики аудиовизуального оборудования, молитвенные дома, государственные учреждения, организации путешествий и туризма, конференц-залы и переводчики. Он совместим с большинством имеющихся на рынке FM-систем, работающих в диапазоне частот 72–76 МГц. Его многочисленные функции были разработаны, чтобы сэкономить время в этом очень требовательном бизнесе. Его привлекательный дизайн, инновационные технические характеристики и уникальная универсальность делают его ведущим продуктом в своей области. Приемник R-100 имеет цифровой ЖК-дисплей с индикаторами канала, низкого заряда батареи и уровня громкости. Он также имеет функцию блокировки канала. Он совместим со стереонаушниками.
Приемники настроены на один канал в соответствии с трансляцией передатчика, поэтому слушателям нужно только включить устройство, надеть наушники и слушать. Однако всего в меню настроек ресиверов доступно двадцать каналов на тот случай, если вам нужно распределить их уже предустановленными на разные языки или аудиоисточники.
На любой конференции или мероприятии с сотнями приемников нет времени бороться с помехами, может потребоваться несколько часов на перепрограммирование каждого из устройств. Ничто не сравнится с простотой ресивера Enersound R-100!
Характеристики
- До 20 программируемых каналов
- Совместимость с большинством FM-систем 72-76 МГц
- Превосходное качество звука
- ЖК-экран
- Экранный индикатор низкого заряда батареи
- Экранный индикатор громкости
- Простота использования
- Оптимизирован для синхронного перевода
- Идеально подходит для многоканальных приложений
- Инновационный и привлекательный дизайн
- Прочная конструкция для максимальной надежности и долговечности
- Маленький и легкий
- Несколько вариантов переноски:
- Зажим для ремня
- Шейный ремень
- Повязка на липучке
- Функция блокировки канала
- 100% цифровая настройка
- Прямой доступ к переключателям каналов
- Используются 2 щелочные или перезаряжаемые батареи 1,5 В AAA
- Низкое потребление батареи (до 35 часов работы)
- Наушники в комплекте
Технические характеристики
- Количество каналов: 20 программируемых.