Падение напряжения: расчет, формула, как найти
Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.
Что означает падение напряжения
Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.
Мнемоническая диаграмма для закона ОмаВажно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.
Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.
Закон Ома для участка цепиДопустимое падение напряжение в кабеле
Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.
Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.
Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.
Падение напряжения на резистореПроверка кабеля по потере напряжения
Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.
Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:
- при освещении и сигнализации при напряжении более 50 вольт – 5 %;
- при освещении и сигнализации при напряжении 50 вольт – 10 %;
- при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
- при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
- при пуске двигателей – 25 %;
- при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
- при подаче электричества в генераторы и распределительный щит – 1 %.
Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.
Пример калькулятора для автоматизации вычисленийКак найти падение напряжения и правильно рассчитать его потерю в кабеле
Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.
Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:
- определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
- определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
- определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
- определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).
Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.
Таблица значений индуктивных сопротивленийВ трехфазной сети
Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.
Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле
Формула расчетаПервый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.
Потери напряжения определены следующей формулой:
ΔU = ΔUтабл * Ма;
Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.
Однолинейная схема линии трехфазного токаНа участке цепи
Для того, чтобы провести замер потери напряжения на участке цепи, следует:
- Произвести замер в начале цепи.
- Выполнить замер напряжения на самом удаленном участке.
- Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.
Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.
Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).
Образец калькулятора для вычисления потерьТаким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.
Доброго дня, уважаемые гости и читатели нашего блога! Сегодня мы хотели бы рассказать Вам о том, как выбрать электрический провод для системы энергоснабжения объекта так, чтобы
не пришлось кусать локти, сетуя на скачки напряжения или нехватку мощности для одновременного питания всего комплекса оборудования.
Основной акцент в этом деле делаем на диаметр провода для проходящего по нему тока, и расчет падения напряжения в кабеле как раз и призван решить эту задачу.
Давайте вместе выясним, как производится расчет, а также узнаем, каким образом можно увеличить показатель силового напряжения электрической сети, повысив тем самым безопасность электроустановок.
Содержание статьи
Что нам нужно знать?
Всем известно, что кабельная проводка передает электроэнергию от источника – линии электропередачи – к конечному потребителю – жилым, административным зданиям, строительным объектам и т.п.
При движении тока по металлическому проводу часть энергии теряется в нем из-за сопротивления току самого металла.
Поэтому потребителю достается не та часть электричества, которая отошла от источника, а несколько меньшая с учетом потерь при движении тока.Для обеспечения оптимального распределения нагрузки и стабильности напряжения провод для электрической сети необходимо выбирать определенного размера – сечения, которое определяет диаметр провода.
Падение напряжения будет также зависеть от длины проводника.
Расчетная величина падения не должна сильно отклоняться от исходного нормативного значения.
При увеличении подключаемой нагрузки также возрастают препятствия для прохождения тока.
Кроме того, при небольшой силе тока увеличивается сопротивление проводника, поэтому происходит падение напряжения, ведь все мы из школы помним математическую зависимость:
I = U / R.
Поэтому, если взять два разных по длине проводника одинакового сечения, то потери выше у более длинного из них.Следовательно, при прокладке токоведущего кабеля для ЛЭП или других электрических установок основным критерием наряду с сечением проводника выступает его длина.
А можно ли рассчитать эту величину в обычных бытовых условиях, используя подручные средства?
Разумеется, определить снижение напряжения мы сможем тремя способами:
- Используя два вольтметра, производим замер этой величины в на концах кабеля.
- Измеряем напряжение последовательно на разных участках провода. При этом методе показания могут быть не объективными, т.к. возможно изменение нагрузки или условий работы сети.
- Подключаем один электроприбор параллельно замеряемому кабелю. Здесь также возможны погрешности, потому что длинные соединительные провода способны влиять на искомую характеристику.
Важно. Значение этой величины может быть минимальным — от 0,1 В. Советуем применять для измерения приборы не ниже класса точности 0,2.
Причины падения напряжения
В большинстве случае для монтажных работ выбор останавливают на жилах двух сортов металла. Это:
- медь;
- алюминий.
Они защищены изоляционной обмоткой.
Реже применяют термоусадку для самостоятельной изоляции жильных проводов.
То есть задача изоляции – создать диэлектрическую оболочку для проводника, потому как в одном кабеле все провода лежат очень плотно друг к другу.
При протяженных линиях сердечники под обмоткой создают некоторый заряд с ёмкостным сопротивлением, по причине чего и возникает падение напряжения.
Оно происходит по следующему алгоритму.
- Проводящая жила под воздействием тока греется, затем создается ёмкостное реактивное сопротивление.
- Преобразования в элементах цепи делают мощность электрической энергии индуктивной.
- Сопротивление каждой фазы всей цепи возникает из-за резистивного сопротивления проводов.
- Каждая токопроводящая жила имеет полное сопротивление при подключении кабеля на токовую нагрузку.
- Если используются три фазы, то линии тока в них симметричны, нейтральная жила при этом проводит почти нулевой ток.
- Полное (комплексное) сопротивление создает потери напряжения, потому что ток в цепи движется с некоторым отклонением за счет реактивного сопротивления.
Данную схему можно представить графически: горизонтальная прямая линия, выходящая из определенной точки – сила тока.
Из той же точки выходит линия входного напряжения U1 и линия выходного напряжения U2, первая под большим, а вторая под меньшим углом к вектору силы тока.
Падение напряжения будет равно геометрической разнице между направлениями U1 и U2.
На рисунке – отрезок AB и есть падение, это гипотенуза треугольника.
Катеты BC и AC – показатели понижения напряжения с учетом реактивного и активного сопротивлений.
Линия AD – это значение энергетических потерь. Эту схему удобно применять, когда нет доступного способа описать показатель понижения напряжения математически, т.к. вручную его рассчитывать довольно трудно.
Результат падения напряжения
А что становится результатом этого процесса в фундаментальном смысле?
Давайте посмотрим, что происходит при снижении этой характеристики электрической энергии.
В соответствии с нормативной документацией ПУЭ, потери при движении тока от трансформаторной подстанции до самого отдаленного участка по электрической нагрузке для населенного пункта должны быть не более 9 %.
При этом потери в размере 4 % разрешаются от главного ввода до потребителя электроэнергии, а 5 % – от трансформатора до главного ввода.
В трехфазных коммуникациях нормативный показатель по ГОСТ 29322-2014 составляет 400 В ± 10 % при нормальной эксплуатации линии.Отклонение этой величины от норматива может приводить к следующим результатам для стационарных объектов или электрических приборов.
- Сбои в работе электроустановок, неправильная работа оборудования, выход его из строя, нарушение освещения объекта.
- Отключение электроприборов или сбои их корректной работы.
- Понижение ускорения вращения у электрических двигателей при старте, потери энергии, отключение устройств при нагреве.
- Некорректное распределение электронагрузки от начала линии до удаленного конца провода между объектами потребления.
- Работа на 50 % осветительных устройств помещения.
Нормальным значением для потерь при стандартном рабочем режиме электролинии является 5 %.
Эту величину допускается принимать для электросетей на этапе проекта.
Относительно токов большой мощности строятся протяженные электрические магистрали.
Важно. К устройству ЛЭП на всех стадиях предъявляются высокие требования. Поэтому важно просчитывать потери на всех участках магистрали, от главного магистрального пути до линий второстепенного назначения.
Рассчитываем падение напряжения
При вычислении обязательно учитываем активное и реактивное сопротивления, составляющие комплексное (общее) сопротивление цепи, а также мощность.
Формула для расчета этого показателя на участке цепи длиной L выглядит так:
∆U = (P * r0 + Q * x0) * L / Uном,
где
- P — активная мощность;
- Q — реактивная мощность;
- r0 — активное сопротивление;
- x0 — реактивное сопротивление;
- Uном — номинальное напряжение.
Как мы сказали выше, на практике допускаются отклонения от нормативного показателя по ПУЭ. Разрешенные пределы отклонения:
- силовые линии – ±5 %;
- внутреннее и наружное бытовое освещение – ±5 %;
- производственное освещение (также для общественных зданий) – от +5 % до -2,5 %.
В итоге вычисления мы получим процентный показатель.
Приведем пример. Суммарная потребляемая мощность всех приборов в доме – 2 кВт. Все приборы подключены к сети. Тогда сила тока I = 2 * 1000/220 = 9 А.
Далее нам необходимо знать формулу расчета потерь напряжения. Она выглядит следующим образом:
∆U = (I * р * L) / S.
Используя эту формулу, получаем потери в кабеле:
∆U = (I * R / U) * 100 % = 2 (два провода) * 0,0175 / 1,5 * 30 = 0,7 Ом.
Тогда значение понижения напряжения будет равняться:
∆U = (9 * 0,7 / 220) * 100 % = 2,86 %.
Полученная величина вполне вписывает в нормативный по ПУЭ показатель 5 % отклонения.
Это значение, к тому же, очень выгодно для конечного потребителя, поскольку он получает электроэнергию полной мощности с потреблением электричества более низкого напряжения.
Это позволяет существенно снизить затраты потребителей на электроэнергию.
Еще один способ определения величины потерь напряжения предполагает использование таблицы, которая представлена в профильных методических указаниях для инженеров ЛЭП.
Там учтены все технические качества линии и оборудования, в зависимости от которых можно «достать» значение потерь для определенных условий эксплуатации.
Как уменьшить падение напряжения в электрической сети
При выполнении работ по прокладке кабеля сечение провода, взятое по допустимому понижению, превосходит таковую величину, выбранную по нагреву проводника.
Это приводит к удорожанию электричества для потребителя. Как уменьшить этот показатель? Ведь от него зависит итоговая цена за 1 кВт электроэнергии.
Опишем несколько способов сделать это.
- Установить стабилизатор около нагрузки для устойчивости сети.
- Повысить значение потенциала у начала кабеля, подключившись к отдельному трансформатору.
- Расположить на небольшом расстоянии от потребителя блок питания или понижающий трансформатор при подключенной нагрузке 12-36 В.
Как уменьшить потери в кабеле
Потери напряжения приводят к дополнительным затратам.
Для того чтобы понизить этот показатель, можно воспользоваться следующими методами.
- увеличить сечение питающих кабелей;
- уменьшить количество ломаных линий (поворотов) в проводке, тем самым уменьшив длину маршрута проводника для снижения общего сопротивления;
- понизить температуру окружающей среды, т.к. при нагревании металла возрастает его сопротивление, охлаждение даст обратный эффект;
- уменьшить нагрузку на сеть;
- привести угол между вектором напряжения и вектором силы тока к единице.
Замечание. Для того чтобы понизить сопротивление кабеля, а, соответственно, потери электричества в нем, можно попробовать улучшить вентиляцию в конструкциях кабеля и кабельных лотках.
Дорогие читатели, мы с Вами рассмотрели очередной вопрос, касающийся нашей безопасности в отношении электроснабжения, именно, узнали, как произвести правильный расчет падения напряжения.
Если информация была Вам полезна, порекомендуйте наш блог своим друзьям, подписывайтесь на нас в социальных сетях и будьте всегда под защитой! Всего Вам хорошего.
Понравилась статья ? Поделитесь с друзьями!
в кабеле при питании нагрузок шлейфом
Расчет падения напряжения при питании потребителей по радиальным схемам достаточно прост. Один участок, одно сечение кабеля, одна длина, один ток нагрузки. Подставляем эти данные в формулу и получаем результат.
При питании потребителей по магистральным схемам (шлейфом) расчет падения напряжения выполнить сложнее. Фактически, приходится выполнять несколько расчетов падения напряжения для одной линии: нужно выполнять расчет падения напряжения для каждого участка. Дополнительные сложности возникают при изменении потребляемой мощности электроприемников, запитанных по магистральной схеме. Изменение мощности одного электроприемника отражается на всей цепочке.
Насколько часто на практике встречается питание по магистральным схемам и шлейфом? Примеров привести можно много:
- В групповых сетях — это сети освещения, розеточные сети.
- В жилых домах этажные щиты запитаны по магистральным схемам.
- В промышленных и коммерческих зданиях также часто применяются магистральные схемы питания и питания шлейфом щитов.
- Шинопровод является примером питания потребителей по магистральной схеме.
- Питание опор наружного освещения дорог.
Рассмотрим расчет падения напряжения на примере наружного освещения.
Предположим, что нужно выполнить расчет падения напряжения для четырёх столбов наружного освещения, последовательно запитанных от щита наружного освещения ЩНО.
Длина участков от щита до столба, между столбами: L1, L2, L3, L4.
Ток, протекающий по участкам: I1, I2, I3, I4.
Падение напряжения на участках: dU%1, dU%2, dU%3, dU%4.
Ток, потребляемый светильниками на каждом столбе, Ilamp.
Столбы запитаны шлейфом, соответственно:
- I4=Ilamp
- I3=I4+Ilamp
- I2=I3+Ilamp
- I1=I2+Ilamp
Ток, потребляемый лампой, неизвестен, зато известна мощность лампы и её тип (либо из каталога, либо по п.6.30 СП 31-110-2003).
Ток определяем по формуле:
Формула расчета полного фазного тока
Iф — полный фазный ток
P — активная мощность
Uф — фазное напряжение
cosφ — коэффициент мощности
Nф — число фаз (Nф=1 для однофазной нагрузки, Nф=3 для однофазной нагрузки)
Напомню, что линейное (междуфазное) напряжение больше фазного напряжения в √3 раз:
При расчете падения напряжения в трехфазной сети подразумевают падение линейного напряжения, в однофазных — однофазного.
Расчет падения напряжения выполняется по формулам:
Формула расчета падения напряжения в трехфазной цепи
Формула расчета падения напряжения в однофазной цепи
Iф — полный фазный ток, протекающий по участку
R — сопротивление участка
cosφ — коэффициент мощности
Сопротивление участка рассчитывается по формуле
ρ — удельной сопротивление проводника (медь, алюминий)
L — длина участка
S — сечение проводника
N — число параллельнопроложенных проводников в линии
Обычно в каталогах приводят удельные значения сопротивления для различных сечений проводников
При наличии информации об удельных сопротивлениях проводников формулы расчета падения напряжения принимают вид:
Формула расчета падения напряжения в трехфазной цепи
Формула расчета падения напряжения в однофазной цепи
Подставляя в формулу соответствующие значения токов, удельных сопротивлений, длины, количества параллельнопроложенных проводников и коэффициента мощности, вычисляем величину падения напряжения на участке.
Нормативными документами регламентируется величина относительного падения напряжения (в процентах от номинального значения), которая рассчитывается по формуле:
U — номинальное напряжение сети.
Формула расчета относительного падения напряжения одинакова для трехфазной и однофазной сети. При расчете в трехфазной сети нужно подставлять трехфазное падение и номинальное напряжения, при расчете в однофазной сети — однофазные:
Формула расчета относительного падения напряжения в трехфазной сети
Формула расчета относительного падения напряжения в однофазной сети
С теорией закончено, рассмотрим, как это реализовать с использованием DDECAD.
Примем следующие исходные данные:
- Мощность лампы 250Вт, cosφ=0,85.
- Расстояние между столбами, от щита до первого столба L1=L2=L3=L4=20м.
- Питание столбов осуществляется медным кабелем 3×10.
- Ответвление от питающего кабеля до лампы выполнено кабелем 3×2,5, L=6м.
Для каждого столба в программе DDECAD создаём расчетную таблицу.
Заполняем данные для лампы в каждой расчетной таблице:
Подключаем к расчетной таблице Столб 3 расчетную таблицу Столб 4, к Столб 2 — Столб 3, к Столб 1 — Столб 2, к ЩНО — Столб 1:
Далее, из расчетной таблицы ЩНО рассчитанное программой значение падения напряжения в конце первого участка (Столб 1) переносим в зелёную ячейку расчетной таблицы Столб 1:
Переносить значения следует делая ссылку на ячейку расчетной таблицы вышестоящего щита. В случае Столб 1 и ЩНО это делается так:
- В расчетной таблице Столб 1 курсор устанавливают на зелёную ячейку в столбике «∆U».
- Нажимают «=».
- Переключаются на расчетную таблицу ЩНО.
- Устанавливают курсор на ячейку в столбике «∆U∑», находящуюся в строке Столб 1.
- Нажимают «Enter».
Получаем рассчитанное значение падения напряжения в конце второго участка (Столб 2) — 0,37% и рассчитанное падение напряжения на лампе — 0,27%.
Аналогично делаем для всех остальных расчетных таблиц и получаем рассчитанные значения падения напряжения на всех участках.
Так как мы выполнили связывание таблиц (средствами программы, подключая одну таблицу к другой, и вручную, перенося значения падения напряжения), то получили связанную систему. При внесении любых изменений всё будет автоматически пересчитано.
Подпишитесь и получайте уведомления о новых статьях на e-mail
Читайте также:
Нас часто спрашивают, можно ли светодиодные лампы на 12 вольт такой-то мощности в таком-то количестве отдалить от трансформатора на такое-то расстояние?
Общая рекомендация – это расстояние не должно превышать 5 метров. Это известный факт.
Но что делать, если требуется больше 5 метров? Часто из-за конструктивных ограничений невозможно уложиться в такое короткое расстояние.
Потери на проводах – суть проблемы
В некоторых ситуациях можно превратить число 5 в гораздо большее значение. Для этого нужно оценить падение напряжения на проводах.
Именно оно является причиной ограничений – сам провод имеет внутреннее сопротивление и поэтому «съедает» часть напряжения источника тока. И когда провод слишком длинный, может случиться так, что лампам останется такая малая часть исходного напряжения, что они не загорятся.
Вторая часть проблемы – провод не просто «съедает» часть напряжения, а превращает его в тепло. Помимо того, что это просто бестолковое расходование электричества, так оно ещё и несёт в себе пожарную проблему – провод может нагреться слишком сильно.
Чтобы быть уверенным, что требуемые, например, 15 метров между трансформатором и лампой не принесут неприятностей, нужно оценить, сколько именно вольт потеряется на этих 15 метрах.
Рассчитать падение напряжения на проводе очень просто. Все необходимые для этого данные у Вас, как правило, есть: длина провода, суммарная мощность подключаемых ламп (ленты), напряжение питания и площадь поперечного сечения проводника. Нужно лишь дополнительно узнать удельное электрическое сопротивление материала, из которого изготовлен провод.
Формула для расчёта падения напряжения на проводах
Достаточно легко выводится простая общая формула для расчёта падения напряжения, применимая в любой ситуации.
Нам понадобится только закон Ома R = V / I и формула связи электрической мощности, напряжения и силы тока W = V · I.
Также для оценки сопротивления провода нужно знать значение удельного электрического сопротивления [википедия] материала проводника.
Проведя простые выкладки, получим вот такую формулу, дающую оценку значения падения напряжения на проводах:
Оценка падения напряжения на проводахПадение напряжения зависит от типа материала провода, сечения провода, его длины, мощности потребителей и напряжения источника питания. В этой формуле обозначено:
- W – мощность в ваттах потребителей тока на конце провода;
- V – напряжение источника тока в вольтах, как правило, 12 вольт или 24 вольта;
- L – длина провода в метрах, т.е. удалённость потребителей от трансформатора;
- S – площадь сечения провода в мм²;
- ρ – значение удельного электрического сопротивление в Ом·мм²/м, для меди это примерно 0.018 Ом·мм²/м
Формула проста, но применима только в случае, если ожидаемое падение напряжения невелико, не более нескольких процентов, т.е. когда расстояние между трансформатором и потребителем не превышает 10 метров, а мощность менее 10-20 ватт.
В иных случаях следует воспользоваться более точной формулой:
Точное значение падения напряжения на проводахТеперь, вычислив значение падение напряжения на проводах, мы можем оценить, какая мощность будет теряться – просто расходоваться на нагрев проводов. Нужно полученное значение падения напряжения умножить на мощность потребителей тока W и поделить на напряжение трансформатора V:
Оценка падения мощности на проводахЕсли эта мощность получится слишком большой, то, очевидно, нужно увеличить толщину провода. Иначе можно получить разные неприятности вплоть до пожара.
Выводы
Как легко видеть из формул, двукратное увеличение площади сечения проводника примерно двукратно уменьшает падение напряжения на проводах.
Также возможным решением проблемы может быть увеличение значения напряжения источника тока. Если, конечно, потребители тока это позволяют. Опять же, двукратное увеличение питающего напряжения примерно в два раза снижает падение напряжения.
Например, наши низковольтные лампы Е27 на 12-24 вольт одинаково светят и от 12 и от 24 вольт. И в этом случае имеет смысл перейти на трансформатор на 24 вольта.
Также становится понятно, что для мощных потребителей (порядка 100 ватт) понадобятся очень толстые провода.
Пример
Оценим падение напряжения на медном проводе сечением 1.5 мм² и длиной 20 м при 24 вольтах и мощности подключенной ленты 50 ватт.
Подставив в первую формулу эти значения, мы получим, что на проводах «потеряется» примерно 1 вольт и около 2 ватт. В принципе, это не много, но если есть возможность увеличить толщину провода, лучше это сделать.
Можно, конечно, увеличить напряжение источника тока, заложив падение напряжение, но это совсем не лучший выход. Например, если мощность светильников на конце провода 180 ватт, то падение напряжения на проводе составит уже 3.5 вольта, а мощности – 25 ватт. Светильникам останется только 20 вольт, и драйверы некоторых светильников от недостатка напряжения могут войти в нештатный режим работы и начать перегреваться, потребляя гораздо больше заявленной мощности (хотя светодиоды при этом будут выдавать ту же яркость), что только увеличит падения напряжения на проводе. В этой ситуации останется только гадать, что случится раньше – возгорание проводов или выход из строя светильников.
А для трансформаторов на 12 вольт падение напряжения и расход мощности будут ещё в два раза больше.
Единственное правильное решение – увеличить толщину проводника. Как уже было сказано, увеличиваем сечение провода в два раза – примерно в два раза уменьшаем потери на проводах.
рассчитываем потери и уменьшаем затраты
Для работы электроприборов необходимы определённые параметры сети. Провода обладают сопротивлением электрическому току, поэтому при выборе сечения кабелей необходимо учитывать падение напряжения в проводах.
Изменение напряжения вдоль линии
Что такое падение напряжения
При измерении в разных частях провода, по которому течёт электрический ток, по мере движения от источника к нагрузке наблюдается изменение потенциала. Причина этого – сопротивление проводов.
Закон Ома
Как замеряется падение напряжения
Измерить падение можно тремя способами:
- Двумя вольтметрами. Замеры производятся в начале и конце кабеля;
- Поочерёдно в разных местах. Недостаток метода в том, что при переходах может измениться нагрузка или параметры сети, что повлияет на показания;
- Одним прибором, подключённым параллельно кабелю. Падение напряжения в кабеле мало, а соединительные провода большой длины, что приводит к погрешностям.
Важно! Падение напряжения может составлять от 0,1В, поэтому приборы используются класса точности не ниже 0,2.
Принцип замера потерь напряжения в кабеле
Сопротивление металлов
Электрический ток – это направленное движение заряженных частиц. В металлах это движение свободных электронов сквозь кристаллическую решётку, которая оказывает сопротивление этому движению.
В расчетах удельное сопротивление обозначается буквой “p” и соответствует сопротивлению одного метра провода сечением 1мм².
Для самых распространённых металлов, используемых для изготовления проводов, меди и алюминия, этот параметр равен 0,017 и 0,026 Ом*м/мм², соответственно. Сопротивление отрезка провода вычисляется по формуле:
R=(p*l)/S, где:
- l – длина,
- S – сечение кабеля.
Например, 100 метров медного провода сечением 4мм² имеет сопротивление 0,425 Ом.
Если сечение S неизвестно, то, зная диаметр проводника, оно рассчитывается как:
S=(π*d²)/4, где:
- π – число “пи” (3,14),
- d – диаметр.
Как рассчитать потери напряжения
По закону Ома, при протекании тока через сопротивление на нём появляется разность потенциалов. В этом отрезке кабеля при токе 53А, допустимом при открытой прокладке, падение составит U=I*R=53А*0,425Ом=22,5В.
Для нормальной работы электрооборудования величина напряжения сети не должна выходить за пределы ±5%. Для бытовой сети 220В – это 209-231В, а для трёхфазной сети 380В допустимые пределы колебаний – 361-399В.
При изменении потребляемой мощности и тока в электрокабелях падение напряжения в токопроводящих жилах и его значение возле потребителя меняется. Эти колебания необходимо учитывать при проектировании электроснабжения.
Выбор по допустимым потерям
При расчёте потерь необходимо учитывать, что в однофазной сети используется два провода, соответственно, формула расчёта падения напряжения меняется:
U=I*R=(p*2l)/S.
В трёхфазной сети ситуация сложнее. При равномерной нагрузке, например, в электродвигателе, мощности, подключенные к фазным проводам, компенсируют друг друга, ток по нулевому проводу не идёт, и его длина в расчётах не учитывается.
Если нагрузка неравномерная, как в электроплитах, в которых может быть включен только один ТЭН, то расчёт ведётся по правилам однофазной сети.
В линиях большой протяжённости, кроме активного, учитывается также индуктивное и ёмкостное сопротивление.
Принцип образования потерь напряжения
Расчёт можно выполнить по таблицам или при помощи онлайн-калькулятора. В ранее приведённом примере в однофазной сети и при расстоянии 100 метров необходимое сечение составит не менее 16мм², а в трёхфазной – 10 мм².
Выбор сечения кабелей по нагреву
Ток, текущий через сопротивление, выделяет энергию Р, величина которой рассчитывается по формуле:
Р=I²*R.
В кабеле из предыдущего примера Р=40А²*0,425Ом=680Вт. Несмотря на длину, этого достаточно для того, чтобы нагреть проводник.
При нагреве провода свыше допустимой температуры изоляция выходит из строя, что приводит к короткому замыканию. Величина допустимого тока зависит от материала токопроводящей жилы, изоляции и условий прокладки. Для выбора необходимо пользоваться специальными таблицами или онлайн-калькулятором.
Как уменьшить падение напряжения в кабеле
При прокладке электропроводки на большие расстояния сечение кабеля, выбранное по допустимому падению напряжения, многократно превосходит выбор, сделанный по нагреву, что приводит к увеличению стоимости электроснабжения. Но есть способы уменьшить эти расходы:
- Повысить потенциал в начале питающего кабеля. Возможно только это при подключении к отдельному трансформатору, например, в дачном посёлке или микрорайоне. При отключении части потребителей потенциал в розетках остальных окажется завышенным;
- Установка возле нагрузки стабилизатора. Это требует расходов, но гарантирует постоянные параметры сети;
- При подключении нагрузки 12-36В через понижающий трансформатор или блок питания располагать их рядом с потребителем.
Справка. При понижении напряжения растёт ток в сети, падение напряжения и необходимое сечение проводов.
Способы снижения потерь в кабеле
Кроме нарушения нормальной работы электроприборов, падение напряжения в проводах приводит к дополнительным расходам на электроэнергию. Уменьшить эти затраты можно разными способами:
- Увеличение сечения питающих проводов. Этот метод требует значительных расходов на замену кабелей и тщательной проверки экономической целесообразности;
- Уменьшение длины линии. Прямая, соединяющая две точки, всегда короче кривой или ломаной линии. Поэтому при проектировании сетей электроснабжения линии следует прокладывать максимально коротким прямым путём;
- Снижение окружающей температуры. При нагреве сопротивление металлов растёт, и увеличиваются потери электроэнергии в кабеле;
- Уменьшение нагрузки. Этот вариант возможен при наличии большого числа потребителей и источников питания;
- Приведение cosφ к 1 возле нагрузки. Это уменьшает потребляемый ток и потери.
Важно! Все изменения необходимо отображать на схемах.
К сведению. Улучшение вентиляции в кабельных лотках и других конструкциях приводит к снижению температуры, сопротивления и потерь в линии.
Для достижения максимального эффекта необходимо комбинировать эти способы между собой и с другими методами энергосбережения.
Расчёт падения напряжения и потерь электроэнергии в кабеле важен при проектировании систем электроснабжения и кабельных линий.
Видео
Рассчет падение напряжения по длине кабеля
Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.
Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.
На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.
к содержанию ↑Результат понижения напряжения
Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.
Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.
Отклонение параметра от нормированного значения может иметь следующие последствия:
- Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
- Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
- Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
- Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
- Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.
В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.
к содержанию ↑К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.
Причины падения напряжения
Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.
Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.
Падение напряжения происходит по следующей схеме:
- Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
- Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
- В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
- Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
- При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
- Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.
Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.
Рисунок 1. Графическое изображение падения напряжения
На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.
Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.
к содержанию ↑Расчет с применением формулы
На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.
Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.
Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:
- Удельное сопротивление провода — p.
- Длина токопроводящего кабеля — l.
- Площадь сечения проводника — S.
- Сила тока нагрузки в амперах — I.
- Сопротивление проводника — R.
- Напряжение в электрической цепи — U.
Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.
Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:
U = 0,0175*40*2/1,5*16
U = 14,93 В
Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.
Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.
Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.
к содержанию ↑Проведение сложных расчетов
Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.
Для проведения расчетов падения напряжения в кабеле используют формулу:
∆U = (P*r0+Q*x0)*L/ U ном
В этой формуле указаны следующие величины:
- P, Q — активная, реактивная мощность.
- r0, x0 — активное, реактивное сопротивление.
- U ном — номинальное напряжение.
Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.
Есть три варианта подключения нагрузки:
- от электрощита в конец линии;
- от электрощита с равномерным распределением по длине кабеля;
- от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.
Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.
Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.
По формуле потери напряжения составляют:
∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.
Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.
Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.
к содержанию ↑Использование готовых таблиц
Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.
В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.
Таблица 1. Определение потерь напряжения по длине кабеля
Площадь сечения, мм2 | Линия с одной фазой | Линия с тремя фазами | |||||
---|---|---|---|---|---|---|---|
Питание | Освещение | Питание | Освещение | ||||
Режим | Пуск | Режим | Пуск | ||||
Медь | Алюминий | Косинус фазового угла = 0,8 | Косинус фазового угла = 0,35 | Косинус фазового угла = 1 | Косинус фазового угла = 0,8 | Косинус фазового угла = 0,35 | Косинус фазового угла = 1 |
1,5 | 24,0 | 10,6 | 30,0 | 20,0 | 9,4 | 25,0 | |
2,5 | 14,4 | 6,4 | 18,0 | 12,0 | 5,7 | 15,0 | |
4,0 | 9,1 | 4,1 | 11,2 | 8,0 | 3,6 | 9,5 | |
6,0 | 10,0 | 6,1 | 2,9 | 7,5 | 5,3 | 2,5 | 6,2 |
10,0 | 16,0 | 3,7 | 1,7 | 4,5 | 3,2 | 1,5 | 3,6 |
16,0 | 25,0 | 2,36 | 1,15 | 2,8 | 2,05 | 1,0 | 2,4 |
25,0 | 35,0 | 1,5 | 0,75 | 1,8 | 1,3 | 0,65 | 1,5 |
35,0 | 50,0 | 1,15 | 0,6 | 1,29 | 1,0 | 0,52 | 1,1 |
50,0 | 70,0 | 0,86 | 0,47 | 0,95 | 0,75 | 0,41 | 0,77 |
Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.
Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:
∆U = 1 В*0,05 км*100А = 5 В
Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.
На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда
∆U при запуске = 0,52*0,05*500 = 13 В
∆U щита = 10*1400/100 = 14 В
∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.
к содержанию ↑Применение сервис-калькулятора
Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.
Как это работает:
- Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
- В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
- Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
- После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
- Недостоверный результат можно получить при ошибочном введении исходных величин.
Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.
Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.
к содержанию ↑Как сократить потери
Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.
Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:
- Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
- Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
- Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.
Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.
Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.
Падение напряжения в электрической сети может стать настоящей проблемой с приобретением современных мощных электроприборов. Чаще всего от этого страдают жильцы старых многоквартирных и частных домов, проводка в которых проложена 20, а то и 30 лет назад. Для энергопотребителей тех времен сечения кабеля было вполне достаточно, однако сегодня практически все пользователи полностью перешли на электрическую технику, эксплуатация которой требует модернизации проводки.
Наглядную картину можно наблюдать на примере освещения. Когда в электрической сети падает напряжение при подключении нагрузки с малым сопротивлением, лампы начинают гореть с меньшей яркостью. Причиной такого явления может быть недостаточное сечение проводки.
Чтобы убедиться в том, что источник выдает больший вольтаж, чем потребитель, необходимо вычислить напряжение на нагрузке. Сделать это можно путем включения в цепь вольтметра или по формуле. В первом случае измерительный прибор, который изначально имеет достаточно высокое сопротивление на входе, необходимо подключать параллельно линии. Это позволяет избежать шунтирования нагрузки и искажения результатов измерения.
Как рассчитать напряжение по формуле
Когда возникают перебои в подаче электроэнергии к приборам, важно проанализировать работу линии. При этом следует определить напряжение на нагрузке по формуле – такое решение дает максимально точный результат и позволяет вычислить другие параметры аналогичным способом. Так, формула расчета напряжения на нагрузке выглядит следующим образом:
U1 – напряжение источника;
ΔU – падение напряжения в линии;
I – ток в линии;
R0 – сопротивление линии.
В том случае, если сопротивление линии и напряжение источника постоянны, напряжение на нагрузке напрямую зависит от силы тока в линии.
Например, при подключении прибора в электрическую сеть с напряжением 220 В, током 10 А и сопротивлением линии, равным 2 Ом, напряжение на нагрузке составит:
В режиме холостого хода падения напряжения в линии нет (ΔU = 0), поэтому напряжение на нагрузке теоретически равно вольтажу источника (U2 = U1). Однако на практике напряжение источника равняться напряжению потребителя не может, поскольку и проводка, и источник электроэнергии, и подключенный к сети прибор имеют собственное сопротивление.
Пример. Напряжение источника составляет 220 В, внутреннее его сопротивление можно не учитывать. Сопротивление проводки – 1 Ом. Сопротивление включенного в сеть электрического прибора – 12 Ом. Суммарное сопротивление цепи составит 13 Ом. Ток в линии рассчитывается по закону Ома и составляет:
Напряжение на нагрузке вычисляется по формуле, приведенной выше:
Таким образом, видно, что напряжение на нагрузке меньше исходных 220 В, остальной вольтаж «теряется» на проводах.
Падение напряжения при подключении нагрузки потребителя
Из-за скачков вольтажа в сети страдают преимущественно жители частного сектора, дачных и коттеджных поселков. Из-за чего же происходит падение напряжения при подключении потребителя?
Первая причина этого явления – недостаточное сечение электрической проводки в доме. Дело в том, что слишком тонкие жилы кабеля не выдерживают большой нагрузки, которая возникает при включении в сеть электроприборов с высокой мощностью. Вторая причина – некачественные контакты в местах соединения проводов, что создает дополнительное сопротивление на линии.
Из-за падения напряжения в обоих случаях есть риск перегрева проводки или участка, в котором находится неисправный контакт. Это может стать причиной полного прекращения подачи электроэнергии на объект и даже возгорания.
Иногда падение напряжения наблюдается не на стороне пользователя, а на линиях электропередач. Оно может возникать вследствие перегрузки подстанции. В этом случае решить проблему может лишь поставщик электроэнергии путем замены устаревшей подстанции на более новую модель с современной релейной защитой. Еще одной причиной низкого напряжения может быть недостаточное сечение проводов на линии электропередач, а также нестабильное распределение нагрузки фаз на стороне подстанции. Как и в первом случае, устранить эти недочеты может только поставщик коммунальной услуги.
Узнать, действительно ли поставщик электроэнергии виноват в «провалах» напряжения, можно, опросив соседей. Если у них подобной проблемы нет, значит, стоит искать причину на территории участка. Зачастую этот вопрос успешно решается путем замены проводки на новый кабель с большим сечением. Однако в некоторых случаях падение напряжения продолжает наблюдаться. Причина может заключаться в так называемых «скрутках» – соединениях проводов путем их скручивания. Дело в том, что каждый некачественный контакт на линии снижает конечное напряжение в сети. Чтобы этого избежать, рекомендуется использовать заводские зажимы, которые гораздо более надежны, чем другие способы соединения электрических кабелей, а также абсолютно безопасны.
В случаях с применением низковольтных аккумуляторных батарей тоже могут наблюдаться «провалы». Если при включении потребителей падает напряжение зарядки источника питания, наиболее вероятная причина этого – некачественные контакты.
При падении напряжения в сети принципиально важно выяснить и устранить причину этого. В противном случае бездействие может обернуться печальными последствиями, особенно если дело касается электрической бытовой проводки. Современные кабели с подходящим сечением и качественно выполненные соединения проводов – залог длительной и эффективной работы всех электроприборов.
Калькулятор падения напряжения
Это калькулятор для оценки падения напряжения в электрической цепи на основе размера провода, расстояния и ожидаемого тока нагрузки. Обратите внимание, этот калькулятор предполагает, что схема работает в нормальных условиях – температура в помещении с нормальной частотой. Фактическое падение напряжения может варьироваться в зависимости от состояния провода, используемого трубопровода, температуры, разъема, частоты и т. Д. Рекомендуется, чтобы падение напряжения не превышало 5% при условии полной нагрузки.
Основной закон падения напряжения
В падение = ИК
где:
I: ток через объект, измеренный в амперах
R: сопротивление проводов, измеряется в омах
Типичные размеры проволоки AWG
AWG | Диаметр | витка провода | Площадь | Медное сопротивление | NEC медная проволока с изоляцией 60/75/90 ° C (A) | Прибл. Метрический эквивалент | ||||
дюймов | мм | на дюйм | на см | тыс. Куб. М. | мм 2 | O / км | O / KFT | |||
0000 (4/0) | 0.4600 | 11,684 | 2,17 | 0,856 | 212 | 107 | 0,1608 | 0,04901 | 195/230/260 | |
000 (3/0) | 0,4096 | 10,404 | 2,44 | 0,961 | 168 | 85,0 | 0,2028 | 0,06180 | 165/200/225 | |
00 (2/0) | 0.3648 | 9,266 | 2,74 | 1,08 | 133 | 67,4 | 0,2557 | 0,07793 | 145/175/195 | |
0 (1/0) | 0,3249 | 8,252 | 3,08 | 1,21 | 106 | 53,5 | 0,3224 | 0,09827 | 125/150/170 | |
1 | 0.2893 | 7,348 | 3,46 | 1,36 | 83,7 | 42,4 | 0,4066 | 0,1239 | 110/130/150 | |
2 | 0,2576 | 6,544 | 3,88 | 1,53 | 66,4 | 33,6 | 0,5127 | 0,1563 | 95/115/130 | |
3 | 0.2294 | 5,827 | 4,36 | 1,72 | 52,6 | 26,7 | 0,6465 | 0,1970 | 85/100/110 | 196 / 0,4 |
4 | 0,2043 | 5,189 | 4,89 | 1,93 | 41,7 | 21,2 | 0,8152 | 0,2485 | 70/85/95 | |
5 | 0.1819 | 4,621 | 5,50 | 2,16 | 33,1 | 16,8 | 1,028 | 0,3133 | 126 / 0,4 | |
6 | 0,1620 | 4,115 | 6,1723 | 2,43 | 26,3 | 13,3 | 1,296 | 0,3951 | 55/65/75 | |
7 | 0.1443 | 3,666 | 6,93 | 2,73 | 20,8 | 10,5 | 1,634 | 0,4982 | 80 / 0,4 | |
8 | 0,1285 | 3,264 | 7,78 | 3,06 | 16,5 | 8,37 | 2,061 | 0,6282 | 40/50/55 | |
9 | 0.1144 | 2,906 | 8,74 | 3,44 | 13,1 | 6,63 | 2,599 | 0,7921 | 84 / 0,3 | |
10 | 0,1019 | 2,588 | 9,81 | 3,86 | 10,4 | 5,26 | 3,277 | 0,9989 | 30/35/40 | |
11 | 0.0907 | 2,305 | 11,0 | 4,34 | 8,23 | 4,17 | 4,132 | 1,260 | 56 / 0,3 | |
12 | 0,0808 | 2,053 | 12,4 | 4,87 | 6,53 | 3,31 | 5,211 | 1,588 | 25/25/30 (20) | |
13 | 0.0720 | 1,828 | 13,9 | 5,47 | 5,18 | 2,62 | 6,571 | 2,003 | 50 / 0,25 | |
14 | 0,0641 | 1,628 | 15,6 | 6,142323 | 4.11 | 2,08 | 8,286 | 2,525 | 20/20/25 (15) | |
15 | 0.0571 | 1,450 | 17,5 | 6,90 | 3,26 | 1,65 | 10,45 | 3,184 | 30 / 0,25 | |
16 | 0,0508 | 1,291 | 19,7 | 7,75 | 2,58 | 1,31 | 13.17 | 4,016 | – / – / 18 (10) | |
17 | 0.0453 | 1,150 | 22,1 | 8,70 | 2,05 | 1,04 | 16,61 923 | 5,064 | 32 / 0,2 | |
18 | 0,0403 | 1,024 | 24,8 | 9,77 | 1,62 | 0,823 | 20,95 | 6,385 | – / – / 14 (7) | 24/0.2 |
19 | 0,0359 | 0,912 | 27,9 | 11,0 | 1,29 | 0,653 | 26,42 | 8,051 | ||
20 | 0,0320 | 0,812 | 31,3 | 12,3 | 1,02 | 0,518 | 33,31 923 | 10.15 | 16 / 0,2 | |
21 | 0,0285 | 0,723 | 35,1 | 13,8 | 0,810 | 0,410 | 42,00 | 12.80 | 13 / 0,2 | |
22 | 0,0253 | 0,644 | 39,5 | 15.5 | 0,642 | 0,326 | 52,96 | 16,14 | 7 / 0,25 | |
23 | 0,0226 | 0,573 | 44,3 | 17,4 | 0,509 | 0,258 | 66,79 | 20,36 | ||
24 | 0.0201 | 0,511 | 49,7 | 19,6 | 0,404 | 0,205 | 84.22 | 25,67 | 1 / 0,5, 7 / 0,2, 30 / 0,1 | |
25 | 0,0179 | 0,455 | 55,9 | 22,0 | 0,320 | 0,162 | 106,2 | 32,37 | ||
26 | 0.0159 | 0,405 | 62,7 | 24,7 | 0,254 | 0,129 | 133,9 | 40,81 | 7 / 0,15 | |
27 | 0,0142 | 0,361 | 70,4 | 27,7 | 0,202 | 0,102 | 168,9 | 51,47 | ||
28 | 0.0126 | 0,321 | 79,1 | 31,1 | 0,160 | 0,0810 | 212,9 | 64.90 | ||
29 | 0,0113 | 0,286 | 88,8 | 35,0 | 0,127 | 0,0642 | 268,5 | 81,84 | ||
30 | 0.0100 | 0,255 | 99,7 | 39,3 | 0,101 | 0,0509 | 338,6 | 103,2 | 1 / 0,25, 7 / 0,1 | |
31 | 0,00893 | 0,227 | 112 | 44,1 | 0,0797 | 0,0404 | 426,9 | 130,1 | ||
32 | 0.00795 | 0,202 | 126 | 49,5 | 0,0632 | 0,0320 | 538,3 | 164,1 | 1 / 0,2, 7 / 0,08 | |
33 | 0,00708 | 0,180 | 141 | 55,6 | 0,0501 | 0,0254 | 678,8 | 206,9 | ||
34 | 0.00630 | 0,160 | 159 | 62,4 | 0,0398 | 0,0201 | 856,0 | 260,9 | ||
35 | 0,00561 | 0,143 | 178 | 70,1 | 0,0315 | 0,0160 | 1079 | 329,0 | ||
36 | 0.00500 | 0,127 | 200 | 78,7 | 0,0250 | 0,0127 | 1361 | 414,8 | ||
37 | 0,00445 | 0,113 | 225 | 88,4 | 0,0198 | 0,0100 | 1716 | 523,1 | ||
38 | 0.00397 | 0,101 | 252 | 99,3 | 0,0157 | 0,00797 | 2164 | 659,6 | ||
39 | 0,00353 | 0,0897 | 283 | 111 | 0,0125 | 0,00632 | 2729 | 831,8 | ||
40 | 0.00314 | 0,0799 | 318 | 125 | 0,00989 | 0,00501 | 3441 | 1049 |
Когда электрический ток проходит через провод, он должен превышать определенный уровень противоположного давления. Если ток переменный, такое давление называется импедансом. Импеданс – это вектор или двумерная величина, состоящая из сопротивления и реактивного сопротивления (реакция накопленного электрического поля на изменение тока).Если ток постоянный, давление называется сопротивлением.
Все это звучит ужасно абстрактно, но на самом деле мало чем отличается от воды, протекающей через садовый шланг. Требуется определенное давление, чтобы протолкнуть воду через шланг, что похоже на напряжение для электричества. Ток похож на воду, текущую через шланг. И шланг вызывает определенный уровень сопротивления, в зависимости от его толщины, формы и т. Д. То же самое относится и к проводам, так как их тип и размер определяют уровень сопротивления.
Чрезмерное падение напряжения в цепи может вызвать мерцание или тусклое освещение, нагреватели плохо нагреваться и двигатели работать горячее, чем обычно, и перегорать. Это условие заставляет нагрузку работать с меньшим напряжением, подталкивающим ток.
Эксперты говорят, что падение напряжения никогда не должно превышать 3 процентов. Это можно сделать, выбрав правильный размер провода и позаботившись об использовании удлинителей и подобных устройств.Существует четыре основных причины падения напряжения.
Первый – это выбор материала, используемого для проволоки. Медь – лучший проводник, чем алюминий, и при данной длине и размере провода падение напряжения будет меньше, чем у алюминия. Электричество, которое движется по медному проводу, на самом деле представляет собой группу электронов, на которые воздействует напряжение. Чем выше напряжение, тем больше электронов, которые могут быть отправлены, протекают через провод.
Амплитуда относится к максимальному количеству электронов, которое может быть выдвинуто за один раз – слово амплитуда является сокращением от амперной емкости.
Размер провода является еще одним важным фактором в определении падения напряжения. При больших размерах провода (с большим диаметром) падение напряжения будет меньше, чем при меньших размерах провода той же длины. В американском измерительном приборе каждое уменьшение на 6 проводов дает удвоение диаметра проволоки, а каждое уменьшение на 3 проводника удваивает площадь поперечного сечения провода. В метрической шкале калибр в 10 раз больше диаметра в миллиметрах, поэтому метрическая проволока 50 калибра будет иметь диаметр 5 мм.
Еще одним критическим фактором падения напряжения является длина провода.У более коротких проводов будет меньшее падение напряжения, чем у более длинных проводов для провода того же размера (диаметра). Падение напряжения становится важным, когда длина провода или кабеля становится очень большой. Обычно это не проблема в цепях внутри дома, но может стать проблемой при подключении провода к хозяйственной постройке, насосу скважины и т. Д.
Чрезмерное падение напряжения может привести к потере эффективности при работе света, двигателей и приборов. Это может привести к тусклому освещению и двигателям или приборам, срок службы которых сокращается.Поэтому важно использовать правильный калибр провода при прокладке проводов на большое расстояние.
Наконец, величина передаваемого тока может влиять на уровни падения напряжения. Падение напряжения на проводе увеличивается с увеличением тока, протекающего через провод. Пропускная способность по току равна амплитуде.
Емкость провода зависит от ряда факторов. Провода покрыты изоляцией, и это может привести к повреждению, если температура провода станет слишком высокой. Основной материал, из которого сделана проволока, является, конечно, важным ограничивающим фактором.Если переменный ток посылается через провод, скорость чередования может влиять на амплитуду. Температура, при которой используется провод, также может влиять на амплитуду.
Кабеличасто используются в жгутах, и при их соединении общее количество выделяемого тепла влияет на амплитуду и падение напряжения. Существуют строгие правила в отношении комплектации кабелей, которые необходимо соблюдать по этой причине.
Выбор кабеля руководствуется двумя основными принципами. Во-первых, кабель должен выдерживать текущую нагрузку на него без перегрева.Он должен быть в состоянии сделать это в самых экстремальных условиях, с которыми он сталкивается в течение срока службы. Во-вторых, он должен обеспечивать достаточно надежное заземление, чтобы (i) ограничить напряжение, до которого люди подвергаются безопасному уровню, и (ii) позволить току короткого замыкания отключить предохранитель за короткое время.
Это важные соображения безопасности. В течение 2005-2009 гг. В среднем происходило 373900 пожаров в год, вызванных плохой электроустановкой. Выбор правильного кабеля для работы является важной мерой безопасности.
,Формула падения напряженияс примерами
- Классы
- Класс 1 – 3
- Класс 4 – 5
- Класс 6 – 10
- Класс 11 – 12
- КОНКУРСНЫЕ СУЩНОСТИ
- BBS
- 000000000000 Книги
- NCERT Книги для 5 класса
- NCERT Книги Класс 6
- NCERT Книги для 7 класса
- NCERT Книги для 8 класса
- NCERT Книги для 9 класса 9
- NCERT Книги для 10 класса
- NCERT Книги для 11 класса
- NCERT Книги для 12-го класса
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
- NCERT Exemplar Class 12 9000al Aggar
Agaris Agard Agard Agard Agard Agard 2000 12000000- Классы
- Решения RS Aggarwal класса 10
- Решения RS Aggarwal класса 11
- Решения RS Aggarwal класса 10 90 003 Решения RS Aggarwal класса 9
- Решения RS Aggarwal класса 8
- Решения RS Aggarwal класса 7
- Решения RS Aggarwal класса 6
- Решения RD Sharma
- Решения класса RD Sharma
- Решения класса 9 Шарма 7 Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- ФИЗИКА
- Механика
- 000000 Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- МАТС
- Теорема Пифагора
- Отношения и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убыток
- Полиномиальные уравнения
- Делительные дроби
- 000 ФОРМУЛЫ
- Математические формулы
- Алгебровые формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- S000
- 80003 Pегипс Класс 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 11
- Образец образца CBSE pers for Class 12
- CBSE Предыдущий год Вопросник
- CBSE Предыдущий год Вопросники Класс 10
- CBSE Предыдущий год Вопросник класс 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- Решения HC Verma Class 12 Physics
- Решения Lakhmir Singh
- Решения Lakhmir Singh Class 9
- Решения Lakhmir Singh Class 10
- Решения Lakhmir Singh Class 8
- Примечания
- CBSE
- Notes
- CBSE Класс 7 Примечания CBSE
- Класс 8 Примечания CBSE
- Класс 9 Примечания CBSE
- Класс 10 Примечания CBSE
- Класс 11 Примечания CBSE
- Класс 12 Примечания CBSE
- Дополнительные вопросы CBSE 8 класса
- Дополнительные вопросы CBSE 8 по естественным наукам
- CBSE 9 класса Дополнительные вопросы
- CBSE 9 дополнительных вопросов по науке CBSE 9000 Класс 10 Дополнительные вопросы по математике
- Класс 3
- Класс 4
- Класс 5
- Класс 6
- Класс 7
- Класс 8
- Класс 9
- Класс 10
- Класс 11
- Класс 12
- Решения NCERT для класса 11
- Решения NCERT для физики класса 11
- Решения NCERT для класса 11 Химия Решения для класса 11 Биология
- NCERT Solutions для Класс 12 Физика
- Решения NCERT для 12 класса Химия
- Решения NCERT для 12 класса Биология
- Решения NCERT для 12 класса Математика
- Решения NCERT Класс 12 Бухгалтерский учет
- Решения NCERT Класс 12 Бизнес исследования
- Решения NCERT Класс 12 Экономика
- NCERT Solutions Class 12 Бухгалтерский учет Часть 1
- NCERT Solutions Class 12 Бухгалтерский учет Часть 2
- NCERT Solutions Class 12 Микроэкономика
- NCERT Solutions Class 12 Коммерция
- NCERT Solutions Class 12 Макроэкономика
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6 Maths
- Решения NCERT для класса 6 Science
- Решения NCERT для класса 6 Общественные науки
- Решения NCERT для класса 6 Английский
- Решения NCERT для класса 7 Математика
- Решения NCERT для 7 класса Science
- Решения NCERT для 7 класса Общественные науки
- Решения NCERT для 7 класса Английский
- для 8 класса Математика
- Решения NCERT для класса 8 Science
- Решения NCERT для класса 8 Общественные науки
- NCERT Solutio ns для класса 8 Английский
- Решения NCERT для класса 9 Общественные науки
- Решения NCERT для класса 9 Математика Глава 1
- Решения NCERT Для класса 9 Математика 9 класса Глава 2
- Решения NCERT для математики 9 класса Глава 3
- Решения NCERT для математики 9 класса Глава 4
- Решения NCERT для математики 9 класса Глава 5
- Решения NCERT для математики 9 класса Глава 6
- Решения NCERT для Математика 9 класса Глава 7
- Решения NCERT для математики 9 класса Глава 8
- Решения NCERT для математики 9 класса Глава 9
- Решения NCERT для математики 9 класса Глава 10
- Решения NCERT для математики 9 класса Глава 11
- Решения NCERT для Математика 9 класса Глава 12
- Решения NCERT для математики 9 класса Глава 13
- Решения NCERT для математики 9 класса Глава 14
- Решения NCERT для математики класса 9 Глава 15
- Решения NCERT для науки 9 класса Глава 1
- Решения NCERT для науки 9 класса Глава 2
- Решения NCERT для класса 9 Наука Глава 3
- Решения NCERT для 9 класса Наука Глава 4
- Решения NCERT для 9 класса Наука Глава 5
- Решения NCERT для 9 класса Наука Глава 6
- Решения NCERT для 9 класса Наука Глава 7
- Решения NCERT для 9 класса Научная глава 8
- Решения NCERT для 9 класса Научная глава
- Решения NCERT для 9 класса Научная глава 10
- Научные решения NCERT для 9 класса Научная глава 12
- Научные решения NCERT для 9 класса Научная глава 11
- Решения NCERT для 9 класса Научная глава 13
- Решения NCERT для 9 класса Научная глава 14
- Решения NCERT для класса 9 Science Глава 15
- Решения NCERT для класса 10 Общественные науки
- Решения NCERT для математики класса 10 Глава 1
- Решения NCERT для математики класса 10 Глава 2
- решения NCERT для математики класса 10 глава 3
- решения NCERT для математики класса 10 глава 4
- решения NCERT для математики класса 10 глава 5
- решения NCERT для математики класса 10 глава 6
- решения NCERT для математики класса 10 Глава 7
- решения NCERT для математики класса 10 глава 8
- решения NCERT для математики класса 10 глава 9
- решения NCERT для математики класса 10 глава 10
- решения NCERT для математики класса 10 глава 11
- решения NCERT для математики класса 10, глава 12
- Решения NCERT для математики класса 10, глава 13
- соль NCERT Решения для математики класса 10 Глава 14
- Решения NCERT для математики класса 10 Глава 15
- Решения NCERT для науки 10 класса Глава 1 Решения NCERT для науки 10 класса Глава 2
- Класс 11 Коммерческая программа Syllabus
- Класс 11 бизнес-дисциплин Syllabus
- Класс 11 Экономика Syllabus
- Класс 12 Бухгалтерский учебный план
- Класс 12 Бизнес-учебный план
- Класс 12 Экономический учебный план
- Образцы коммерческих документов класса 11
- Образцы коммерческих документов класса 12
- Решения TS Grewal Класс 12 Бухгалтерский учет
- Решения TS Grewal Класс 11 Бухгалтерский учет
- ML Решения Aggarwal Class 10 Maths
- ML Решения Aggarwal Class 9 Математика
- ML Решения Aggarwal Class 8 Maths
- ML Решения Aggarwal Class 7 Математические решения
- ML 6 0004
- ML 6
- Selina Solution для класса 8
- Selina Solutions для класса 10
- Selina Solution для класса 9
- ICSE класс 6
- ICSE класс 7
- ICSE
- ICSE
- ICSE Class 9
- ICSE Class 10
- ISC C lass 11
- ISC Class 12
- IAS экзамен
- экзамен по гражданской службе
- UPSC Syllabus
(Advanced) – V Formula Drop Formula и решаемые примеры
Расширенный калькулятор падения напряжения и формула падения напряжения
Что такое допустимое падение напряжения?
В соответствии с NEC (Национальный электротехнический кодекс) [ 210.19 A (1) ] FPN № 4 и [ 215.2 A (3) ] FPN № 2, допустимое падение напряжения для фидеров составляет 3% и допустимое падение напряжения для конечной подсистемы и ответвленной цепи составляет 5% для правильной и эффективной работы.
Например, если напряжение питания составляет 110В , то значение допустимого падения напряжения должно быть;
Допустимое падение напряжения = 110 x (3/100) = 3,3 В .
Мы уже обсуждали выбор правильного размера кабеля для монтажа электропроводки в SI и британской системе с примерами. В вышеупомянутой статье мы также объяснили расчет падения напряжения и формулу падения напряжения, а также онлайн калькулятор размера кабеля.
Сегодня мы собираемся поделиться подробными формулами интерактивного расширенного калькулятора падения напряжения и снижения напряжения с решенными примерами.
Полезно знать : Прочитайте полное описание под калькулятором падения напряжения для лучшего объяснения, так как существует множество формул расчета падения напряжения с примером. Кроме того, существует также очень простой метод для расчета падения напряжения .
Также проверьте
Калькулятор падения напряжения (Дополнительно)
Введите значение и нажмите для расчета.Результат будет отображаться
Примечание. Этот калькулятор также доступен в нашем бесплатном приложении для Android с электрической технологией
Формулы и расчет падения напряжения
Базовая формула падения напряжения .
Базовая формула падения электрического напряжения:
В D = ИК ……. (Закон Ома).
Где;
- В D = Падение напряжения в вольтах.
- I = ток в амперах.
- R = сопротивление в омах (Ом).
Но это не всегда так, и мы не можем запустить колесо системы с этой базовой формулой (почему? См. Также случаи ниже).
Формула падения напряжения для стального трубопровода.
Это приблизительная формула падения напряжения при единичном коэффициенте мощности, температуре кабального ввода 75 ° C и кабельных проводниках в стальном кабелепроводе.
В D = (2 x k x Q x I x D) / см для однофазный .
В D = (1,732 x k x Q x I x D) / см для Трехфазный .
Где;
- См = площадь поперечного сечения проводника в круглых мил.
- D = расстояние в одну сторону в футах.
- I = ток цепи в амперах.
- Q = отношение сопротивления переменному току и сопротивлению постоянному току (R AC / R / DC ) для проводника больше 2/0 для скин-эффекта.
- к = удельное сопротивление = 21.2 для алюминия и 12,9 для меди.
Формула падения напряжения для однофазных цепей и цепей постоянного тока
Когда длина провода в футах.
В D = I × R
В D = I × (2 × L × R / 1000)
Где;
- В D = Падение напряжения в вольтах.
- I = ток в амперах.
- R = сопротивление провода в омах (Ом) [Ом / кфт].
- L = расстояние между проводами в футах.
А;
Когда длина провода в метрах.
V D = I × (2 × L × R / 1000)
Где;
- В D = Падение напряжения в вольтах.
- I = ток в амперах.
- R = сопротивление провода в омах (Ом) [Ом / км].
- L = расстояние между проводами в метрах.
Расчет падения напряжения и формулы для трехфазной системы.
В D = 0.866 × I × R
В D = 0,866 × I × 2 × L × R / 1000
В D = 0,5 × I × R
V D = 0,5 × I × 2 × L × R /1000
Где;
- В D = Падение напряжения в вольтах.
- I = ток в амперах.
- R = Сопротивление провода в Ом (Ом) [Ом / км или] или (Ом / кфт).
- L = расстояние до провода в метрах или футах.
Расчет площади поперечного сечения проволоки
Площадь поперечного сечения проволоки в ккм (круглые милы)
A n = 1000 × d n 2 = 0,025 × 92 (36– n ) / 19,5
Где;
- An = площадь поперечного сечения провода сечением «n» в киломиль.
- км3 = килограмм круговой мил.
- n = номер размера датчика.
- d = квадратный диаметр проволоки в 2 .
Площадь поперечного сечения провода в квадратных дюйма (в 2 ).
A n = (π / 4) × d n 2 = 0,000019635 × 92 ( 36 – n) / 19,5
Где;
- An = площадь поперечного сечения проволоки размера «n» в квадратных дюймах (в 2 ).
- n = номер размера датчика.
- d = квадратный диаметр проволоки в 2 .
Площадь поперечного сечения проволоки в ккм (круглые милы)
A n = (π / 4) × d n 2 = 0,012668 × 92 (36 -n) /19,5
Где;
- An = площадь поперечного сечения проволоки размера «n» в квадратных миллиметрах (мм 2 )
- n = число размеров калибра.
- d = квадратный диаметр проволоки в мм 2 .
Вы также можете прочитать: Как найти неисправности в кабелях? Неисправности, типы и причины неисправностей кабелей
Расчет диаметра проволоки
Диаметр проволоки в дюймах формула
d n = 0.005 × 92 (36- n ) / 39 …. В дюймах
Где «n» – номер размера датчика, а «d» – диаметр проволоки в дюймах.
Диаметр проволоки в мм (миллиметрах) формула
d n = 0,127 × 92 (36- n ) / 39 …. В миллиметрах (мм)
Где «n» – номер размера датчика, а «d» – диаметр проволоки в мм.
Формула для расчета сопротивления проводов
(1). R n = 0,3048 × 10 9 × ρ / (25.4 2 × A n )
Где;
- R = Сопротивление проводников (в Ом / кфт).
- n = № размера датчика.
- ρ = rho = удельное сопротивление в (Ом · м).
- An = площадь поперечного сечения n # датчика в квадратных дюймах (в 2 ).
Или;
(2) . R n = 10 9 × ρ / A n
Где;
- R = Сопротивление проводников (в Ом / км).
- n = № размера датчика.
- ρ = rho = удельное сопротивление в (Ом · м).
- An = площадь поперечного сечения n # датчика в квадратных миллиметрах (мм 2 ).
Падение напряжения в конце формулы и расчета кабеля.
V Конец = V – V D
Где;
- В Конец = Напряжение питания на конце кабеля.
- В = Напряжение питания.
- В D = Падение напряжения в проводниках кабеля.
Формула расчета падения напряжения для круглых мил
В D = ρ P L I / A
Где;
- В D = Падение напряжения в вольтах .
- ρ = rho = удельное сопротивление в ( Ω – милл / фут ).
- P = фазовая постоянная = 2 (для однофазной системы и системы постоянного тока) и = √3 = 1,732 (для трехфазной системы)
- L = длина провода в футах.
- A = площадь проволоки в круглых милях.
Как рассчитать падение напряжения в медном проводнике (1 и 3 фазы)?
Падение напряжения в медных проводниках можно рассчитать по приведенной ниже простой и легкой формуле с помощью следующей таблицы.
В D = f x I… L = 100 футов
Где;
- f = коэффициент из таблицы ниже.
- I = ток в амперах.
- L = длина проводника в футах (100 футов).
(см. Решенный пример ниже в таблице для ясного понимания)
Таблица: как рассчитать падение напряжения по простой формуле падения напряжения однофазный, ток 5А, длина проводника 100 футов, а сечение провода (AWG) # 8.Рассчитать падение напряжения?Решение:
Падение напряжения можно найти по следующей формуле:
В D = f x I… L = 100 футов
Поскольку коэффициент для проводника AWG № 8 равен 0,125 (из таблицы выше). Теперь поместим значения в приведенную выше формулу.
В D = 0,125 x 5A x (для 100 футов)
В D = Падение напряжения = 0,625 В.
PS: Вышеуказанный калькулятор падения напряжения дает приблизительные значения, и мы не гарантируем 100% точных результатов, так как результаты могут изменяться для разных и реальных кабелей, проводников, проводов и разного удельного сопротивления материала, количества жил в проводе, температура и погодные условия, трубопровод и ПВХ и т. д.
Похожие сообщения:
.- Классы
- Класс 1 – 3
- Класс 4 – 5
- Класс 6 – 10
- Класс 11 – 12
- КОНКУРСНЫЕ СУЩНОСТИ
- BBS
- 000000000000 Книги
- NCERT Книги для 5 класса
- NCERT Книги Класс 6
- NCERT Книги для 7 класса
- NCERT Книги для 8 класса
- NCERT Книги для 9 класса 9
- NCERT Книги для 10 класса
- NCERT Книги для 11 класса
- NCERT Книги для 12-го класса
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
- NCERT Exemplar Class 12 9000al Aggar
Agaris Agard Agard Agard Agard Agard 2000 12000000- Классы
- Решения RS Aggarwal класса 10
- Решения RS Aggarwal класса 11
- Решения RS Aggarwal класса 10 90 003 Решения RS Aggarwal класса 9
- Решения RS Aggarwal класса 8
- Решения RS Aggarwal класса 7
- Решения RS Aggarwal класса 6
- Решения RD Sharma
- Решения класса RD Sharma
- Решения класса 9 Шарма 7 Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- ФИЗИКА
- Механика
- 000000 Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- МАТС
- Теорема Пифагора
- Отношения и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убыток
- Полиномиальные уравнения
- Делительные дроби
- 000 ФОРМУЛЫ
- Математические формулы
- Алгебровые формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- S000
- 80003 Pегипс Класс 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 11
- Образец образца CBSE pers for Class 12
- CBSE Предыдущий год Вопросник
- CBSE Предыдущий год Вопросники Класс 10
- CBSE Предыдущий год Вопросник класс 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- Решения HC Verma Class 12 Physics
- Решения Lakhmir Singh
- Решения Lakhmir Singh Class 9
- Решения Lakhmir Singh Class 10
- Решения Lakhmir Singh Class 8
- Примечания
- CBSE
- Notes
- CBSE Класс 7 Примечания CBSE
- Класс 8 Примечания CBSE
- Класс 9 Примечания CBSE
- Класс 10 Примечания CBSE
- Класс 11 Примечания CBSE
- Класс 12 Примечания CBSE
- Дополнительные вопросы CBSE 8 класса
- Дополнительные вопросы CBSE 8 по естественным наукам
- CBSE 9 класса Дополнительные вопросы
- CBSE 9 дополнительных вопросов по науке CBSE 9000 Класс 10 Дополнительные вопросы по математике
- Класс 3
- Класс 4
- Класс 5
- Класс 6
- Класс 7
- Класс 8
- Класс 9
- Класс 10
- Класс 11
- Класс 12
- Решения NCERT для класса 11
- Решения NCERT для физики класса 11
- Решения NCERT для класса 11 Химия Решения для класса 11 Биология
- NCERT Solutions для Класс 12 Физика
- Решения NCERT для 12 класса Химия
- Решения NCERT для 12 класса Биология
- Решения NCERT для 12 класса Математика
- Решения NCERT Класс 12 Бухгалтерский учет
- Решения NCERT Класс 12 Бизнес исследования
- Решения NCERT Класс 12 Экономика
- NCERT Solutions Class 12 Бухгалтерский учет Часть 1
- NCERT Solutions Class 12 Бухгалтерский учет Часть 2
- NCERT Solutions Class 12 Микроэкономика
- NCERT Solutions Class 12 Коммерция
- NCERT Solutions Class 12 Макроэкономика
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6 Maths
- Решения NCERT для класса 6 Science
- Решения NCERT для класса 6 Общественные науки
- Решения NCERT для класса 6 Английский
- Решения NCERT для класса 7 Математика
- Решения NCERT для 7 класса Science
- Решения NCERT для 7 класса Общественные науки
- Решения NCERT для 7 класса Английский
- для 8 класса Математика
- Решения NCERT для класса 8 Science
- Решения NCERT для класса 8 Общественные науки
- NCERT Solutio ns для класса 8 Английский
- Решения NCERT для класса 9 Общественные науки
- Решения NCERT для класса 9 Математика Глава 1
- Решения NCERT Для класса 9 Математика 9 класса Глава 2
- Решения NCERT для математики 9 класса Глава 3
- Решения NCERT для математики 9 класса Глава 4
- Решения NCERT для математики 9 класса Глава 5
- Решения NCERT для математики 9 класса Глава 6
- Решения NCERT для Математика 9 класса Глава 7
- Решения NCERT для математики 9 класса Глава 8
- Решения NCERT для математики 9 класса Глава 9
- Решения NCERT для математики 9 класса Глава 10
- Решения NCERT для математики 9 класса Глава 11
- Решения NCERT для Математика 9 класса Глава 12
- Решения NCERT для математики 9 класса Глава 13
- Решения NCERT для математики 9 класса Глава 14
- Решения NCERT для математики класса 9 Глава 15
- Решения NCERT для науки 9 класса Глава 1
- Решения NCERT для науки 9 класса Глава 2
- Решения NCERT для класса 9 Наука Глава 3
- Решения NCERT для 9 класса Наука Глава 4
- Решения NCERT для 9 класса Наука Глава 5
- Решения NCERT для 9 класса Наука Глава 6
- Решения NCERT для 9 класса Наука Глава 7
- Решения NCERT для 9 класса Научная глава 8
- Решения NCERT для 9 класса Научная глава
- Решения NCERT для 9 класса Научная глава 10
- Научные решения NCERT для 9 класса Научная глава 12
- Научные решения NCERT для 9 класса Научная глава 11
- Решения NCERT для 9 класса Научная глава 13
- Решения NCERT для 9 класса Научная глава 14
- Решения NCERT для класса 9 Science Глава 15
- Решения NCERT для класса 10 Общественные науки
- Решения NCERT для математики класса 10 Глава 1
- Решения NCERT для математики класса 10 Глава 2
- решения NCERT для математики класса 10 глава 3
- решения NCERT для математики класса 10 глава 4
- решения NCERT для математики класса 10 глава 5
- решения NCERT для математики класса 10 глава 6
- решения NCERT для математики класса 10 Глава 7
- решения NCERT для математики класса 10 глава 8
- решения NCERT для математики класса 10 глава 9
- решения NCERT для математики класса 10 глава 10
- решения NCERT для математики класса 10 глава 11
- решения NCERT для математики класса 10, глава 12
- Решения NCERT для математики класса 10, глава 13
- соль NCERT Решения для математики класса 10 Глава 14
- Решения NCERT для математики класса 10 Глава 15
- Решения NCERT для науки 10 класса Глава 1 Решения NCERT для науки 10 класса Глава 2
- Класс 11 Коммерческая программа Syllabus
- Класс 11 бизнес-дисциплин Syllabus
- Класс 11 Экономика Syllabus
- Класс 12 Бухгалтерский учебный план
- Класс 12 Бизнес-учебный план
- Класс 12 Экономический учебный план
- Образцы коммерческих документов класса 11
- Образцы коммерческих документов класса 12
- Решения TS Grewal Класс 12 Бухгалтерский учет
- Решения TS Grewal Класс 11 Бухгалтерский учет
- ML Aggarwal Solutions Class 10 Maths
- ML Aggarwal Solutions Class 9 математика
- ML Aggarwal Solutions Class 8