схема, порядок сборки в домашних условиях
Электроэнергия не всегда подается бесперебойно, например, из-за удаленного расположения ЛЭП от жилых построек. И когда то и дело отключают свет, наверняка вы задумывались о покупке генератора? Конечно, покупное устройство – недешевое решение, да и затраты не всегда оправданы. Более доступный вариант – изготовить генератор своими руками. Такое решение не требует больших вложений на сборку, может преобразовать энергию не только за счет дорогостоящего бензина, дизельного движка, но и более доступных – газа, пара и т.п.
Поэтому он решает проблему с перебоями электричества и экономит энную сумму в бюджете. Но как сделать действительно качественный генератор, какие еще у самоделки преимущества перед покупными устройствами? Мы поможем вам разобраться во всех нюансах – в этой статье приведем схемы сборки электрогенератора, принцип его работы, преимущества использования самоделки. Также рассмотрим пошаговую инструкцию по изготовлению генератора в домашних условиях.
Содержание статьи:
Преимущества самодельного генератора
Самодельный генератор выигрывает у покупного более доступной стоимостью. Безусловно финансовая сторона важна, но устройство, сделанное своими руками – это прибор только с необходимыми и заявленными требованиями.
Стоит учесть, что выбранная конструкция непосредственно сказывается на КПД. Так в асинхронных генераторах потери КПД не превышают 5%. Лаконичность конструкции его корпуса с защитой мотора от влаги, грязи снижает потребность в частом техническом обслуживании. Асинхронный генератор более устойчив против скачков напряжения за счет выпрямителя на выходе, что предотвращает поломки подключенного оборудования.
Самодельный генератор работает вне зависимости от удаленности ЛЭП, обеспечивая электроэнергией в любых условиях. Он преобразует энергию, используя доступный вид топлива
Такое устройство эффективно питает сварочные аппараты, лампы накаливания, компьютерную и мобильную технику с чувствительностью к перепадам напряжения. Имеет хорошую производительность и моторесурс.
Прибор – хорошая альтернатива обычным источникам электропитания, выручает при аварийном отключении электричества, экономит средства. Мобилен, малогабаритен, с простой конструкцией, легко поддается ремонту – можно своими силами заменить вышедшие из строя детали, узлы.
Кроме прочего, самоделка обладает небольшими размерами, поэтому с легкостью устанавливается даже в небольших помещениях.
Разместить самодельный генератор можно в небольшом помещении, за счет компактной конструкции прибор не требует много места для своей установки
В зависимости от от используемого типа топлива генератор требует лишь соблюдения мер предосторожности в процессе использования.
В процессе эксплуатации самодельного генератора необходимо соблюдать технику безопасности: следить за электрическими кабелями, не допускать их перекручивания, не трогать оголенные провода руками и т.п
Разновидности генераторов электроэнергии
Обычно самодельный генератор в домашних условиях изготавливают на основе асинхронного двигателя, магнитным, паровым, на дровах.
Вариант #1 — асинхронный генератор
Устройство сможет вырабатывать напряжение 220-380 В, исходя из показателей выбранного мотора.
Для сборки такого генератора потребуется лишь запустить асинхронный двигатель, подключив конденсаторы к обмоткам.
Генератор на основе асинхронного двигателя самостоятельно синхронизируется, запускает роторные обмотки с постоянным магнитным полем.
Двигатель оборудован ротором с трехфазной или однофазной обмоткой, вводом кабеля, короткозамыкательными устройством, щетками, регулирующим датчиком
Если ротор короткозамкнутого типа, то обмотки возбуждаются при помощи остаточной силы намагниченности.
Вариант #2 — устройство на магнитах
Для магнитного генератора подходит коллекторный, шаговый (синхронный бесщеточный) двигатель и прочие.
Обмотка с большим количеством полюсов увеличивает показатель КПД. В сравнение с классической схемой (где КПД 0,86) 48-полюсная обмотка позволяет сделать мощность генератора больше
В процессе сборки магниты крепятся на вращающуюся ось и устанавливаются в прямоугольную катушку. Последняя при вращении магнитов вырабатывает электростатическое поле.
Вариант #3 — паровой генератор
Для генератора на пару используют печь с водяным контуром. Работает устройство за счет тепловой энергии пара и турбинных лопастей.
Чтобы самостоятельно сделать генератор на пару, понадобится печь с водяным (охлаждающим) контуром
Это замкнутая система с массивной немобильной установкой, требующей контроля и охлаждающего контура для превращения пара в воду.
Вариант #4 — устройство на дровах
Для генератора на дровах используют печи, включая походные. К стенкам печей закрепляют элементы Пельтье и располагают конструкцию в корпус радиатора.
Принцип работы генератора следующий: при нагревании поверхности проводниковых пластин с одной стороны другая охлаждается.
Чтобы самостоятельно сделать генератор на дровах, можно использовать любые печи. Генератор работает за счет элементов Пельтье, нагревающих и охлаждающих проводниковые пластины
На полюсах пластин появляется электрический ток. Наибольшая разница между температурами пластин обеспечивает генератор максимальной мощностью.
Агрегат более работоспособен при минусовых температурных режимах.
Принцип работы электрогенератора
Работа генераторов реализуется по принципу электромагнитной индукции, когда в замкнутой рамке происходит наводка тока за счет пересечения ее вращающимся магнитным полем. Магнитное поле создают обмотки либо постоянные магниты.
Когда из коллектора электродвижущая сила достигает замкнутого контура и узлов щетки, то ротор начинает вращаться сообща с магнитным потоком. Так создается напряжение в подпружиненных щетках, прижатых к коллекторам пластинчатого вида.
Далее электроток передается к выходным клеммам, проходит в сеть, распространяется по генератору.
Используют генераторы переменного и постоянного тока. Электрогенератор переменного тока малогабаритен, не образовывает вихревые токи, при этом имеет возможность функционировать в экстремальных температурах. Аппарат с постоянным током не требует тщательного контроля, обладает значительным числом ресурсов.
Конструкционно генератор включает в себя: щетки со щеткодержателями, коллектор, якорную обмотку, якорь, стартер, кольца контактные, обмотку стартера, ротор, корпус, вентилятор, привод и станину
Генератор переменного тока может быть как синхронным, так и асинхронным. Первый – с постоянным электрическим магнитом и количеством вращений статора равных роторным, формирующим магнитное поле. Преимуществами такого генератора называют стабильно высокое напряжение, к недостаткам относят перегрузку по токам из-за завышенной нагрузки на регулятор, повышающий ток обмотки ротора.
Конструкция асинхронного генератора: короткозамкнутый ротор, статор. Когда вращается ротор генератор индуцирует ток, а магнитное поле выдает напряжение синусоидального типа.
Пошаговая инструкция по сборке
Собирать генератор в домашних условиях необходимо после того, как подготовлен комплект из необходимых радиокомпонентов, электроинструментов и материалов.
Этап 1 – подготовка радиокомпонентов
Для сборки модуля механического генератора с электромагнитами потребуется двигатель. Для изготовления маломощного генератора можно использовать электродвигатель от стиралки типа «Ока», «Волга», насоса «Агидель» и прочие.
Ток, вырабатываемый мотором, определяет выбор деталей и узлов. Для преобразования тока из переменного в постоянный необходимы выпрямительные диоды, например, диодный мост высокой мощности в десятки ампер с напряжением не более 50 В. Для полярных конденсаторов постоянного тока важны сглаживающие фильтры со способностью выравнивать пульсацию напряжения постоянного характера.
Для того, чтобы сделать самодельный ветрогенератор, не потребуется большой точности исполнения и узкоспециализированных материалов. Построенный образец работает при скорости ветра от 9 до 10 м/с, обеспечивает мощностью в 800 Вт.
В качестве дополнительной платы с USB-портом для подключения гаджетов выбирается устройство для преобразования напряжения в 1,5-20 В. Такой список радиокомпонентов достаточен для маломощного генератора напряжением до двух десятков вольт. В случае с асинхронным двигателем подключить мобильные устройства получится напрямую.
Этап 2 – подготовка инструментов и материалов
Из электроинструментов понадобится болгарка, в наборе которой есть отрезные диски по металлу, дереву и шлифовальный диск (твердый или круг-наждачка).
Рекомендуем ознакомиться с .
Также необходима электрическая дрель со сверлами по металлу. Может понадобиться перфоратор с ударными сверлами, коронками по бетону. Иногда перфоратор комплектуется переходником с простыми, коническими сверлами, коронками по дереву. Также пригодится шуруповерт с головками под переходник-гайковерт, головкой под гайки.
Для сборки каркаса генератора потребуются материалы. Их выбирают по своему усмотрению. Это может быть трубный прокат разного диаметра, металлическая арматура, профиль и т.п.
Во время сборки конструкции генератора у мастера под рукой должны находиться отвертки разного диаметра, плоскозубцы, молоток, гаечные ключи и прочее
Для соединения запасаются крепежами – гайками, шайбами, саморезами, болтами. Это универсальный набор инвентаря, собрав который, можно приступать к изготовлению генераторной установки своими руками.
Этап 3 – подготовительные работы
После подготовки инструментов и материалов приступают к подготовительным работам. Они необходимы перед сборкой генератора потому, что включают первоначальный расчет мощности устройства.
Рассчитывают мощность, подключая двигатель в сеть. Количество выдаваемых вращений определят мощность мотора. Иногда для измерений используют тахометр, а к полученным данным прибавляют 10% для компенсации нагрузки (предотвращение перегрева мотора при использовании).
После того, как мощность точно подсчитана, подбирают конденсатор соответственно ранее полученным данным мощности двигателя.
После проведенного подсчета мощности необходимо выбрать конденсатор. Устройство предотвращает перегрева мотора во время работы генератора
В завершение подготовительных работ продумывают заземление будущего генератора. Этот процесс помогает избежать травматических ситуаций, продлить эксплуатационные сроки генератора.
Этап 4 – изучение схемы звезда и треугольник
Чтобы собрать генератор в 220, требуется схемы-аналоги производственной модели – звезда или треугольник.
В сложных устройствах иногда используют комбинированную схему звезда-треугольник. В соединение типа звезда концы крепятся в единой точке. Графический вид представляет собой расхождение фаз из центра в разные стороны, как-будто лучи образуют звезду. По схеме типа треугольник концы одной обмотки крепятся с началом последующей
По схеме звезды электросоединение выполняют для каждого из концов обмоток одной точки, для треугольника – соединение последовательного типа.
Этап 5 – непосредственно сборка
Рассмотрим несколько вариантов сборки электрогенератора.
Сборка асинхронного генератора
Изготовление асинхронного генератора не требует переточки ротора под неодимовые магниты, поэтому схему устройства называют переделкой готового асинхронного мотора. В таком варианте нет необходимости в питании роторной обмотки, она снимается с двигателя, а ось ротора протачивается для плоских магнитов.
По схеме сборки асинхронного генератора мощность устройства достигает от 2 до 5 киловатт при емкости конденсаторов от 28 до 138 микрофарад. Для того, чтобы напряжение было статичным, необходима емкость, в зависимости от планируемой нагрузки на генератор.
Сборка агрегата происходит в три этапа. Первый предполагает собрать одну несущую конструкцию, установив в нее двигатель с приводом передаточного типа.
Соединение выполняется так: конец 1-ой обмотки соединяется с концами начала 2-ой обмотки. Далее конец 2-ой обмотки крепят к началу 3-ей обмотки. Конец 3-ей обмотки соединяется с началом 1-ой обмотки
На втором этапе подключают переменные и неполярные конденсаторы к обмоткам. Последние включаются по схеме звезда, когда часть концов соединяют к центру корпуса, а остальные выводятся отдельно.
В заключении к вершинам конденсатора присоединяют свободные обмоточные концы согласно схемы треугольник.
Подключаем переменные и неполярные конденсаторы к обмоткам, часть концов у которых соединяем к центру корпуса, другие выводим отдельно
Перед первым запуском новое устройство тестируется, например, обычной лампочкой накаливания в два-три десятка ватт. Это необходимо для проверки генератора на способность обеспечивать бесперебойной выдачей напряжения, 3000 оборотов в одну минуту.
Собираем генератор на дровах
Сборку дровяного генератора рассмотрим на примере буржуйки. Порядок сборки такой: в начале радиатор размещается на стенках буржуйки так, чтобы шипы смотрели внутрь. Далее, в зависимости от размеров радиатора, устанавливаются элементы Пельтье, к одному из которых в последующем крепят еще один радиатор.
Такую установку лучше расположить в тени, возле неутепленной стены небольшой толщины, что обеспечит максимальное охлаждение.
Для запуска генератора на дровах поджигают поленья. Разгораясь они нагревают стенки печки, которые заставляют элемент Пельтье выдавать максимальную мощность. Охлаждается генератор холодным уличным воздухом.
У нас на сайте есть подробная инструкция по своими руками.
Нюансы сборки коллекторного генератора
Коллекторный генератор собирают по следующей схеме: сначала размещают мотор коллекторного типа на несущую раму, иную конструкцию.
Потом присоединяют к выводам мотора сглаживающий конденсатор, плату DC-инверторного преобразователя. Конденсатор должен быть постоянного тока.
Необходимо прикрутить патрон к оси двигателя, при этом мотор закрепить так, чтобы патрон был плотно прижат к устройству. Далее минусовой провод мотора присоединяется к минусу от аккумулятора, а плюсовой к анодам диодов, катоды диодов к плюсам аккумуляторов
Следующим шагом, если нет USB-порта, будет его подсоединение к выходу от DC-платы. К такому генератору можно подключать мобильные устройства.
Располагается конструкция генератора на велосипедной раме или ветряке.
Устанавливаем генератор на велосипеде или ветряке из вентиляторных запчастей. Для удобства использования можно прикрепить флюгер-хвостовик
Вместо коллекторного можно поставить шаговый мотор с более высоким КПД и сроком службы от 10 лет. Предпочтительно выбирать модели с напряжением в 12 В и током от 1,8 до 4,2 ампера. В таких моторах обмоток от 2 до 4, их подключают последовательно для напряжения в 24, 36, 48 В. Если мотор подключают параллельное, то на выходе получается ампераж в большом значении. В связи с этим до нужного напряжения генератор будет разгоняться сложнее.
Помимо этих вариантов у нас на сайте есть подробные инструкции по сборке и генератора.
Рекомендации по безопасной эксплуатации
Для генераторов, которые будут использоваться в уличной среде, например, ветряная электростанция, велогенератор, следует создать защиту от осадков, пыли, грязи. Устройство размещают в специальном отдельном корпусе.
Если генератор будет работать на улице в многочасовом режиме, испытывая каждодневные нагрузки, ему необходима регулярная смазка подшипников. Манипуляции проводят один-два раза в пол года.
Не допустимо короткое замыкание: проводов двигателя, вспомогательной радиоэлектроники, полупроводников. Это может привести к тому, что сгорят замкнутые обмотки.
Если случилось короткое замыкание, ремонт двигателя может осложняться сложностью доступа к внутренним деталям генератора
Ремонт двигателя может осложняться трудностью доступа к внутренним узлам из-за силы ротора, тормозящей вращение пропорционально нагрузке. Для предотвращения таких ситуаций следует постоянно контролировать температуру двигателя, не давая ему перегреваться.
Также следует постараться не использовать устройство продолжительное время: чем дольше генератор в работе, тем его мощность меньше. Значение оптимальной температуры двигателя от 40 до 45 градусов.
Для самодельного генератора без автоматических приборов управления требуется постоянный пользовательский контроль, в том числе для снятия данных.
Если сборка и использование самодельного электрогенератора вам кажется сложным, рекомендуем присмотреться к покупным аналогам – в следующей статье приведен газовых генераторов электроэнергии.
Выводы и полезное видео по теме
Тем не менее, генератор, изготовленный в домашних условиях – это резервный источник электропитания с хорошей производительностью, моторесурсом и экономической выгодой. Даже маломощные генераторы обеспечивают приборы и оборудование работоспособностью, поддерживают на должном уровне комфорт в частном доме, квартире в черте города или за его пределами. Для того, чтобы сделать самодельный генератор, потребуется всего лишь определиться с его конструкцией, видом устройства и подобрать необходимые детали.
А может быть у вас есть свои способы изготовления генератора своими руками или даже хитрости? Поделитесь, пожалуйста, секретами. Это можно сделать в комментариях к данной статье, в блоке, расположенном ниже.
Видео об изготовлении ручного электрогенератора:
Собираем ветрогенератор своими руками:
Генератор, изготовленный в домашних условиях – это резервный источник электропитания с хорошей производительностью, моторесурсом. Даже маломощные генераторы обеспечивают приборы и оборудование работоспособностью, поддерживают на должном уровне комфорт в частном доме, квартире в черте города или за его пределами. Для того, чтобы собрать самодельный генератор, потребуется определиться с его конструкцией, видом и подобрать необходимые детали.
У вас есть опыт изготовления генератора своими руками? Поделитесь своими рекомендациями с другими посетителями нашего сайта. Это можно сделать в комментариях к данной статье – блок расположен ниже. Также здесь вы можете добавить уникальные фото самодельного электрогенератора.
Асинхронный генератор своими руками: устройство, принцип работы, схемы
Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.
Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:
- более высокую степень надёжности;
- длительный срок эксплуатации;
- экономичность;
- минимальные затраты на обслуживание.
Эти и другие свойства асинхронных генераторов заложены в их конструкции.
Устройство и принцип работы
Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.
Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.
Рис. 1. Ротор и статор асинхронного генератораАсинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин.
По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).
Рис. 2. Асинхронный генератор в сбореПринцип действия
По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.
В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора.
При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.
Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.
На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.
Рис. 3. Схема сварочного асинхронного генератораСуществуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.
Рисунок 4. Схема устройства с индуктивностямиОтличие от синхронного генератора
Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).
Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.
Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:
- ИБП;
- регулируемые зарядные устройства;
- современные телевизионные приёмники.
Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.
Классификация
Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.
Рис. 5. Типы асинхронных генераторовНаличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.
Область применения
Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.
Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.
Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.
Сфера применения довольно обширная:
- транспортная промышленность;
- сельское хозяйство;
- бытовая сфера;
- медицинские учреждения;
Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.
Асинхронный генератор своими руками
Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):
Рис. 6. Заготовка с наклеенными магнитамиГотовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.
Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.
Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.
Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U2·C·10-6.
При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.
Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
https://www.
Часть 2
https://www.youtube.com/watch?v=nDCdADUZghs
Часть 3
https://www.youtube.com/watch?v=6M_w1b2xyM8
Часть 4
https://www.youtube.com/watch?v=CONHg7p-IYE
Часть 5
https://www.youtube.com/watch?v=z2YSqVh2vM8
Часть 6
https://www.youtube.com/watch?v=FNU83kOeSbA
Для упрощения подбора конденсаторов воспользуйтесь таблицей:
Таблица 1
Мощность альтернатора (кВт-А) | Ёмкость конденсатора (мкФ) на холостом ходу | Ёмкость конденсатора (мкФ) при средней нагрузке | Ёмкость конденсатора (мкФ) при полной нагрузке |
2 | 28 | 36 | 60 |
3,5 | 45 | 56 | 100 |
5 | 60 | 75 | 138 |
На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.
Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.
Рис. 7. Схема подключения конденсаторовСоветы по эксплуатации
Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.
Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.
При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.
Список использованной литературы
- Кацман М.М. «Электрические машины» 2013
- А.А. Усольцев «Электрические машины» 2013
- Бартош А.И. «Электрика для любознательных» 2019
Как сделать электрогенератор своими руками, разбираем подробно
Постоянное и бесперебойное обеспечение электричества в доме – залог приятного и комфортного времяпровождения в любую пору года. Чтобы организовать автономное питание загородного участка, нам придется прибегнуть к мобильным установкам – электрогенераторам, которые в последние годы особенно популярны ввиду большого ассортимента самых разных мощностей.
Сфера применения
Многие интересуются, как сделать электрогенератор для дачного участка? Об этом мы и расскажем ниже. Применим в большинстве случаев асинхронный генератор переменного тока, который будет производить энергию для работы электроприборов. В асинхронном генераторе скорость вращения роторов, чем в синхронном и КПД будет выше.
Впрочем, силовые установки нашли свое применение в более широком кругу, как отличное средство для добычи энергии, а именно:
- Их применяют на ветровых электростанциях.
- Используются как сварочные агрегаты.
- Обеспечивают автономную поддержку электричества в доме наравне с миниатюрной ГЭС.
Включается агрегат с помощью входящего напряжения. Зачастую для запуска устройство подключают к питанию, но это не совсем логическое и рациональное решение для мини-станции, которая сама должна вырабатывать электричество, а не потреблять его для запуска. Поэтому в последние годы активно производятся генераторы с самовозбуждением или последовательным переключением конденсаторов.
Как работает электрогенератор
Асинхронный генератор электроэнергии производит ресурс, если скорость вращения мотора быстрее синхронного. Самый обычный генератор работает на параметрах от 1500 оборотов.
Он производит энергию, если ротор при старте быстрее работает, нежели синхронная скорость. Разница между этими показателями называется скольжение и высчитывается в процентном соотношении относительно синхронной скорости. Однако, скорость статора еще выше, чем частота вращения ротора. За счет этого образуется поток заряженных частиц, меняющих полярности.
Смотрим видео, принцип работы:
При возбуждении подключенное устройство электрогенератора берет контроль над синхронной скоростью, самостоятельно управляя скольжением. Выходящая из статора энергия проходит по ротору, однако, активное питание уже переместилось в катушки статора.
Основной принцип работы электрогенератора сводится к преобразованию механической энергии в электрическую. Чтобы запустить ротор для выработки энергии, необходим сильный крутящий момент. Самым адекватным вариантом, по словам электриков, является «вечный ход вхолостую», который поддерживает одну скорость вращения в течение времени работы генератора.
Почему используется асинхронный генератор
В отличие от синхронного генератора, асинхронный имеет огромное количество достоинств и преимуществ. Основным фактором выбора асинхронного варианта стал низкий клирфактор. Высокий показатель клирфактора характеризует количественное наличие высших гармоник в выходном напряжении. Они вызывают бесполезный нагрев мотора и неравномерность вращения. Синхронные генераторы имеют величину клирфактора на уровне 5-15%, в асинхронных он не превышает 2%. Их этого следует, что асинхронный генератор энергии вырабатывает только полезную энергию.
Немного о асинхронном генераторе и его подключении:
Не менее весомым преимуществом данного вида электрогенератора является полное отсутствие вращающихся обмоток и электронных деталей, чувствительных к повреждениям и внешним факторам. Следовательно, данный вид аппаратов не подвержен активному износу и прослужит дольше.
Как сделать генератор своими руками
Устройство асинхронный генератор переменного тока
Приобретение асинхронного электрогенератора – достаточно недешёвое удовольствие для среднестатистического жителя нашей страны. Поэтому многие умельцы прибегают к решению вопроса о самостоятельной сборке аппарата. Принцип работы, как и конструкции – достаточно прост. При наличии всех инструментов сборка не займет более 1-2 часов.
Согласно вышеопределенному принципу действия электрогенератора, следует настроить все оборудование так, чтобы вращения были быстрее, нежели обороты двигателя. Чтобы это сделать, следует подключить двигатель в сеть и завести его. Для вычисления количества оборотов в минуту используйте тахометр или тахогенератор.
Определив значение скорости вращения двигателя, прибавьте к нему 10%. Если скорость вращения 1500 оборотов в минуту, тогда генератор должен работать на 1650 оборотах.
Теперь нужно переделать асинхронный генератор «под себя», используя конденсаторы необходимых емкостей. Для определения типа и емкости используйте следующую табличку:
Таблица емкости ДЛ
Надеемся, как собрать электрогенератор своими руками уже понятно, но обратите внимание: емкость конденсаторов не должна быть очень завышенной, в противном случае генератор, работающий на дизельном топливе, будет сильно греться.
Установите конденсаторы согласно расчету. Установка требует достаточного количества внимания. Убедитесь в хорошей изоляции, при необходимости используйте специальные покрытия.
На базе двигателя процесс сборки генератора завершен. Теперь его уже можно использовать как необходимый источник энергии. Помните, что в случае, когда устройство имеет короткозамкнутый ротор и производит достаточно серьезное напряжение, которое превышает 220 вольт, необходимо установить понижающий трансформатор, который стабилизирует напряжение на требуемом уровне. Помните, чтобы все приборы в доме работали, должен быть строгий контроль самодельного электрогенератора на 220 вольт по напряжению.
Смотрим видео, этапы работ:
Для генератора, который будет работать на малых мощностях, в целях экономии можно использовать асинхронные двигатели с одной фазой от старых или ненужных бытовых электроприборов, например, стиральных машин, насосов для дренажа, газонокосилок, бензопил и т.д. Моторы от таких бытовых приборов следует подключать параллельно обмотке. Как вариант, можно использовать конденсаторы, сдвигающие фазы. Они достаточно редко разнятся по необходимой мощности, так что потребуется ее увеличение до требуемых показателей.
Подобные генераторы очень хорошо показывают себя при необходимости питания лампочек, модемов и прочих мелких приборов со стабильным активным напряжением. При определенных знаниях можно подключить электрогенератор к электропечке или обогревателю.
Готовый к эксплуатации генератор следует установить так, чтобы на него не влияли осадки и окружающая среда. Позаботьтесь о дополнительном кожухе, который защитит установку от неблагоприятных условий.
Советы по эксплуатации
Практически каждый асинхронный генератор, будь это бесщеточный, электрический, бензиновый или дизельный генератор, он считается прибором с достаточно высоким уровнем опасности. Обращайтесь с таким оборудованием очень аккуратно и держите всегда защищённым от внешнего погодного и механического воздействия или изготовьте для него кожух.
Смотрим видео, дельные советы специалиста:
Любой автономный агрегат следует оснащать специальными измерительными приборами, которые будут фиксировать и отображать данные об эффективности работы. Для этого можно использовать тахометр, вольтметр и частотомер.
- Оборудуйте генератор кнопкой включения и выключения по возможности. Для запуска можно использовать ручной старт.
- Некоторые электрогенераторы требуется заземлять перед использованием, внимательно оцените территорию и выберите место для установки.
- При преобразовании механической энергии в электроэнергию, иногда коэффициент полезного действия может падать до 30%.
- Если не уверены в силах или боитесь сделать что-либо не так, советуем приобрести генератор в соответствующем магазине. Порой риски могут обернуться крайне плачевно…
- Следите за температурой асинхронного генератора и его тепловым режимом.
Итоги
Несмотря на свою простоту реализации, самодельные электрогенераторы – это очень кропотливая работа, требующая полной сосредоточенности на конструкции и правильному подключению. Целесообразна сборка с финансовой точки зрения только, если у вас уже имеется работоспособный и ненужный двигатель. В ином случае вы отдадите за основной элемент установки больше половины ее стоимости, и общие траты могут существенно превысить рыночную стоимость генератора.
Теперь вы знаете, как сделать электрогенератор и если твердо решили создать его, надеемся, вы получили ответы на все интересующие вопросы перед началом сборки и теперь с полным багажом знаний можете приступать к работе.
В заключение хотелось предложить вам сборку замечательного изобретения одного студента-инженера. Это слабенький, генератор, который может вас спасти в трудную минуту без траты денежных средств даже на топливо.
Генератор своими руками на 220 вольт. Теперь отключения света не страшны / Хабр
Я покажу как собрать простой, но достаточно мощный, генератор на 220 вольт.Потребуется:
— коллекторный мотор, можно другой на 12 вольт
— насадка на ось мотора — патрон от дрели
— бесперебойник UPS или инвертор с 12 на 220
— диод на 10 ампер: Д214, Д242, Д215, Д232, КД203 и т. д.
— провода
— велосипед
— и желательно аккумулятор на 12 вольт
Сборка:
— закрепляем велосипед так, что бы заднее колесо крутилось свободно, вывешиваем его
— прикручиваем патрон на ось мотора
— крепим мотор так, что бы патрон плотно прижимался к колесу, можно подтянуть его пружиной
— подключаем мотор к аккумулятору: минусовой провод мотора к минусу аккумулятора, плюсовой провод мотора к аноду диода, катод диода к плюсу аккумулятора
— аккумулятор соединяем с бесперебойником или с инвертором
Всё! К бесперебойнику можно подключать потребители на 220 вольт и пользоваться электричеством! Как только аккумулятор разрядится, достаточно будет покрутить педали и примерно через час аккумулятор зарядится.
Где взять детали?
— мотор можно купить в автомобильном магазине: мотор вентилятора охлаждения. Стоит не дорого. А если хочешь почти даром, тогда его можно скрутить на пункте приёма металла, из старого авто.
— бесперебойник от персонального ПК, можно старый с негожим внутренним аккумулятором. Или инвертор 12 — 220, продаётся в автомобильных магазинах.
— диод на 10 ампер, например: Д305, Д214, Д242, Д243, Д245, Д215, Д232,
Д246, Д203, Д233, КД210, КД203 и т. д. Продаётся в магазинах радио запчастей. Или можно его выкрутить из старой техники.
Мой опыт:
Несколько месяцев я пользовался этим генератором и он показал довольно не плохие результаты! Зарядный ток аккумулятора был примерно 10 ампер и зависел от того как крутить педали. Если крутить не спеша, получалось 5 ампер, если крутить максимально быстро, то 20 ампер. Средняя мощность генератора — 120 ватт. В основном пользовался потребителями малой мощности:
— 3 Вт — зарядка телефона
— 5 Вт — радио приёмник
— 7 Вт — зарядка и пользование планшетом
— 10 Вт — зарядное фотоаппарата, фонарика и видеокамеры
— 12 Вт — энергосберегающая лампочка
— 30 Вт — музыкальный центр
— 40 Вт — ноутбук
— 70 Вт — телевизор (включал редко)
Мне хватало заряда почти на день, после чего я в течении часа крутил педали и вновь можно было пользоваться электричеством.
Если кто знает другие методы добычи электричества в домашних условиях делитесь в комментариях.
Как превратить электродвигатель в генератор
Вопрос о необходимости иметь дома собственный генератор возникает у многих, так как вещь довольно практичная, а в некоторых случаях крайне необходима. Второй вопрос – как его сделать самому? Наиболее верный метод в данном решении – это сделать генератор из электродвигателя. На помощь приходят такие свойства электротехнических агрегатов как обратимость, позволяющая из одного преобразовать в другое. Для этих целей подходят отлично асинхронные электродвигатели переменных значений тока. В этом случае, главный атрибут генератора, такой как магнитное поле, будет обеспечиваться при вращении якоря.
Чтобы конструктивно подойти к преображению в генератор электродвигателя, рассмотрим основные конструктивные узлы последнего:
- стартер и его обмотка;
- крышки с подшипниками: передняя и задняя;
- выполненный с короткозамкнутыми витками ротор;
- контактные выходы для присоединения к сети питания.
Первоначально простая конструкция, отличающаяся надёжностью составляющих из-за их немногочисленности в конструкции, на самом деле имеет множество нюансов, основанных как на строении приводных частей, так и на участвующих в создании электромагнитной энергии с преобразованием её в механическую. В общем смысле, суть работы электродвигателя имеет вид:
- Вокруг статорной обмотки появляется достаточно мощное электромагнитное поле. Назвать это условием для генерирования пока нельзя, так как в статическом поле отсутствует процесс движения.
- Благодаря имеющимся в роторе замкнутым виткам толстого кабеля, индуцируется ЭДС, создающее переменно магнитное поле в окружающем ротор пространстве.
- Под действием данных сил ротор приводится во вращение.
Поскольку генератор – это машина трёхфазного подключения, образующая электрическую энергию от механической, заданной первичным двигателем, элементы строения электродвигателей подходят для создания требуемого агрегата. И так, приводящийся в движение ротор достигает вращения в синхронной частоте, что вызывает во влиянии остаточного магнитного поля появление электродвижущей силы на клемах статорной обмотки. Далее, путём подключения конденсаторов к зажимам, в статорных обмотках появиться намагничивающий ёмкостный ток опережения. Чтобы появилось самовозбуждение генератора, конденсаторная ёмкость должна быть больше, нежели изначальные параметры генератора в критическом ёмкостном значении. Это повысит его частоту вращения генератора процентов на 5-10 в номинальном режиме от заданной синхронной. Так, к примеру, электродвигатель частотой 1500 об/мин для обращения в генератор должен быть раскручен до 1575-1650 об/мин.
Главное правило для выполнения электрогенераторов – мощность двигателей, которые используются, не должна превышать максимума в 20 кВА. Полученный агрегат, выполненный своими руками, станет незаменимым в рамках домашнего хозяйства.
Будьте осторожны
Процесс превращения электродвигателя в генератор несёт не только массу удовольствия, но и немалый риск, связанный с нарушением техники безопасности. Наиболее требуемыми правилами являются:
- поскольку генератор переменного тока является достаточно опасным, применяемое напряжение должно быть 380В. 220В допускается лишь по крайнему случаю;
- электрогенератор должен обязательно быть оборудован заземляющими отводами;
- перед эксплуатацией выполните пробный запуск на наличие ошибок;
- применять конденсаторы следует исходя из таблицы расчёта, представленной в любом соответствующем справочнике. Использование конденсаторов ниже или выше мощности может сулить нерабочим или неправильным в работе состоянием генераторов;
- проверяйте надёжность соединения всех рабочих устройств и механизмов;
- используйте частотные преобразователи Веспер или другие устройства для регулирования задающих параметров генератором, перемена энергетических величин которого может влиять на работу введённых электроприводов в полученную сеть;
- не используйте генератор холостым ходом, так как может случиться перегрев;
- чётко прослеживайте выходную вырабатываемую мощность тока. Так, если в трёхфазном генераторе была задействована всего одна типаемая фаза, мощность составит 30-35%, при двух – 60-70% мощности общего значения, которую имеет генератор;
- выполняйте контроль частоты переменного тока путём сравнения выходного напряжения, величина которого при холостых оборотах превысит промышленное значение на 4-6%.
Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)
Генератор своими руками – инструкция, как сделать простой электрический генератор в домашних условиях
Электрогенераторы – это дополнительный источник энергии для дома. В случае большой удаленности основных электросетей он вполне может их заменить. Частые перебои электроэнергии вынуждают устанавливать генераторы переменного тока.
Стоят они не дешево, есть ли смысл тратить более 10 000 т.р. за устройство, если можно сделать генератор из электродвигателя самому? Разумеется, для этого пригодятся некоторые навыки электротехника, и инструменты. Главное не придется тратить деньги.
Можно собрать простой генератор своими руками, он будет актуален в том случае, если нужно покрыть временную недостачу электроэнергии. Для более серьезных дел он не пригоден, так как не обладает достаточной функциональностью и надежностью.
Естественно, в процессе ручной сборки есть немало трудностей. Требуемые детали и инструменты могут отсутствовать. Неимение опыта и навыков в подобных работах может наводить страх. Но сильное желание будет являться главным стимулом, и поможет преодолеть все трудоемкие процедуры.
Краткое содержимое статьи:
Реализация генератора и принцип его работы
Благодаря электромагнитной индукции в генераторе образуется электрический ток. Это происходит потому, что обмотка движется в искусственно созданном магнитном поле. В этом и есть принцип работы электрогенератора.
Движение генератору придает двигатель внутреннего сгорания малой мощности. Он может работать на бензине, газу или дизельном топливе.
В устройстве электрогенератора имеется ротор и статор. Магнитное поле создается при помощи ротора. На нем крепятся магниты. Статор является неподвижной частью генератора, и состоит из специальных стальных пластин и катушки. Между ротором и статором есть маленький зазор.
Есть два типа электрогенератора. Первый имеет синхронное вращение ротора. У него сложная конструкция, и низкий КПД. Во втором типе ротор вращается асинхронно. По принципу действия – он прост.
Асинхронные двигатели теряют минимум энергии, тогда как в синхронных генераторах показатель потерь доходит до 11%. Поэтому электродвигатели с асинхронным вращением ротора пользуются большой популярностью в бытовых приборах, и на различных заводах.
В процессе работы могут возникать перепады напряжения, они губительно сказываются на бытовых приборах. Для этого на выходных концах стоит выпрямитель.
Асинхронный генератор прост в техническом обслуживании. Его корпус надежен и герметичен. Можно не бояться за бытовые приборы, имеющие омическую нагрузку, и чувствительные к перепадам напряжения. Высокое КПД, и продолжительный период эксплуатации, делают устройство востребованным, к тому же его можно собрать самостоятельно.
Что понадобится для сборки генератора? Во-первых, нужно подобрать подходящий электродвигатель. Его можно взять от стиральной машинки. Самостоятельно делать статор не стоит, лучше воспользоваться готовым решением, где есть обмотки.
Стоит сразу запастись достаточным количество медных проводов, и изолирующими материалами. Так как любой генератор будет производить скачки напряжения, то понадобится выпрямитель.
По инструкции для генератора своими руками требуется сделать расчет мощности. Чтобы будущее устройство выдавало необходимую мощность, ему нужно дать число оборотов чуть больше номинальной мощности.
Воспользуемся тахометром и включим двигатель в сеть, так можно узнать скорость вращения ротора. К полученной величине нужно прибавить 10%, это позволит не доводить двигатель до перегрева.
Поддерживать необходимый уровень напряжения помогут конденсаторы. Они подбираются в зависимости от генератора. Например, для мощности в 2 кВт потребуется емкость конденсаторов в 60 мкФ. Таких деталей нужно 3шт с одинаковой емкостью. Чтобы устройство получилось безопасным, его нужно заземлить.
Процесс сборки
Тут все просто! К электродвигателю подключаются конденсаторы по схеме «треугольник». В процессе работы периодически нужно проверять температуру корпуса. Его нагрев может происходить из-за неправильно подобранных емкостей конденсатора.
За самодельным генератором, не обладающим автоматикой, нужно постоянно следить. Возникающий со временем нагрев будет понижать КПД. Тогда устройству нужно дать время для охлаждения. Время от времени следует замерять напряжение, число оборотов, и силу тока.
Неправильно рассчитанные характеристики не способны придать оборудованию необходимую мощность. Поэтому перед началом сборки, следует провести чертежные работы, и запастись схемами.
Вполне возможно, что самодельное устройство будут сопровождать частые поломки. Не стоит этому удивляться, так как герметичного монтажа всех элементов электрогенератора в домашних условиях получиться практически не может.
Итак, как сделать генератор из электродвигателя теперь надеюсь понятно. Если есть желание сконструировать аппарат, мощность которого должно хватать для одновременной работы бытовых приборов и осветительных ламп, или строительного инструмента, тогда нужно сложить их мощность и подобрать нужный двигатель. Желательно чтобы он был с небольшим запасом мощности.
Если при ручной сборке электрогенератора постигла неудача, не стоит отчаиваться. На рынке есть множество современных моделей, не нуждающихся в постоянном надзоре. Они могут быть различной мощности, и достаточно экономичными. В интернете есть фото генераторов, они помогут оценить габариты устройства. Единственный минус – это их дороговизна.
Фото генераторов своими руками
6 конструкций с пошаговой инструкцией
В наше время генераторы все чаще используются в быту. Рост такой популярности связан с развитием их конструкции. Современные устройства компактные, экономичные и производительные. Есть много разных моделей, отличающихся мощностью, током, уровнем мобильности и приводом.
В этой статье:
Водяной генератор на 220 В: как сделать в домашних условиях?
Для отопления частных домов применяют разные методы. Они отличаются друг от друга передачей тепла и видом энергоносителя. В процессе использования водяного отопления применяются разные виды котлов в зависимости от типа топлива:
- Твердотопливные — в этом случае применяют для работы твердое топливо.
- Электрические — в таких котлах тепло преобразуется с помощью преобразования электричества.
- Газовые — в таких котлах теплоотдача происходит в момент сгорания газа.
Водяной генератор представляет собой емкость с водой, в которой находятся электроды для преобразования воды в кислород и водород. Чтобы сделать самостоятельно водяной генератор, потребуются:
- лист нержавеющей стали;
- пластина из оргстекла;
- трубки из резины для подвода воды и отвода газа;
- листы резины;
- источник напряжения, который должен обеспечивать поступление тока в 5–8 А.
Чтобы собрать водяной генератор, необходимо:
- Сначала нарезать нержавеющие пластины на прямоугольные листы.
- Уголки на них срезать, чтобы в дальнейшем стянуть устройство болтами.
- В каждой пластине просверлить отверстие в 5 мм на расстоянии 3 см от низа пластины для поступления и отвода воды.
- Кроме того, к пластинам следует припаять провод, чтобы присоединить его к источнику питания.
Прежде чем собрать генератор из резины, сначала нарезают кольца с диаметром 200 × 190 мм. Готовят две пластины из оргстекла с размерами 200 × 200 мм, при этом нужно заранее просверлить в них отверстия по всем сторонам под болты М8.
Собирать водяной генератор начинают так: сначала кладут первую пластину, затем резиновое кольцо, промазанное герметиком, и так далее по такой же схеме. После этого всю конструкцию стягивают болтами и пластинами из оргстекла.
В последних нужно просверлить отверстия: в одной пластине внизу, чтобы проходила жидкость, в другой — наверху для отвода газа. Туда следует вставить штуцер. На эти штуцера нужно одеть полихлорвиниловые трубки.
Справка! Чтобы газ не попал обратно в газогенератор, на пути от него к горелке нужно установить водяной затвор.
Из достоинств данного вида отопления выделяют следующие:
- экологический тип отопления, ведь при сгорании водорода в кислороде появляется вода в виде пара, при этом нет выбросов вредных веществ в атмосферу;
- можно не переделывая подключить генератор к уже существующей системе водяного отопления;
- установка работает без шума, поэтому ей не требуется какое-то специальное помещение.
К недостаткам водяного генератора относятся:
- Водород имеет большую температуру горения, поэтому простой котел может быстро сломаться.
- Во время работы с газом Брауна необходимо быть осторожным, так как он взрывоопасный.
- При работе водяного генератора необходимо применение дистиллированной воды.
Домашний агрегат, работающий на дровах
Самостоятельная сборка такой модели не представляет трудностей. При его создании необходимо купить или изъять из старого холодильника элемент Пельтье. Он представляет собой тонкостенный пластинчатый квадрат. Одна его панель производится из меди, а другая из никеля.
На них закрепляются контактные зажимы, которые подключаются к сети. Работа такого генератора заключается в том, что в момент прохождения тока сквозь металлические поверхности одна его сторона нагревается, а вторая остывает.
Во время работы генератора на твердом топливе используется обратный способ действия: одна пластина нагревается благодаря сжиганию дров, а другая охлаждается кулером и радиатором, подключенным к агрегату. В этот момент между деталями образуется электрический ток, который и нужно было получить.
Кроме элемента Пельте в процессе сборки генератора потребуются:
- металлический лист для корпуса;
- деталь, которая стабилизирует напряжение;
- кулер и радиатор;
- теплопроводящая паста;
- прибор для установки заклепок;
- ножницы по металлу;
- клепки, дрель и паяльник.
Справка: после подготовки всех необходимых инструментов и материалов можно приступать к сборке механизма. В продаже бывают готовые наборы электроинструментов.
Для начала нужно изготовить металлический корпус в форме цилиндра. Отверстия для поступления воздуха нужно устроить снизу, а сверху установить подставку с емкостью под воду.
Радиатор термопастой закрепляется с холодной стороны. С другого края закрепляется основной нагревательный элемент. При сборке еще потребуется стабилизатор электричества с USB-разъемом. Данное приспособление создаст напряжение и позволит готовить еду и заряжать разные электроприборы. Стабилизирующую часть нужно изолировать и спаять с основным элементом с учетом полюсов.
При подробном рассмотрении данного устройства есть один большой изъян — высокая цена для многих туристов и дачников. Но при частом применении стоимость оправдывается экономией на топливе. Дрова стоят дешевле в отличие от дизельного топлива и бензина.
Кроме этого, при работе такого электрогенератора в помещении нужно установить дымоход. Он выбрасывает в атмосферу продукты сгорания. Но, несмотря на эти недостатки, прибор на дровах имеет и достоинства:
- способен отопить дом до 50 метров кубических;
- может использоваться как плита для приготовления еды;
- у прибора небольшие размеры, поэтому его можно установить в небольших помещениях;
- продолжительный срок службы;
- небольшой вес;
- отсутствие шума при работе;
- экономность в применении топлива.
Из электродвигателя
Для преобразования электромотора в функционирующий генератор необходимо использовать неполярные конденсаторные батареи, поэтому электролитические конденсаторы лучше не применять.
В моторе подключить конденсатор можно по двум схемам:
- «Звезда» — с ее помощью можно провести генерацию при наименьшем количестве оборотов, но с низким напряжением на выходе.
- «Треугольник» — работает на больших оборотах, поэтому вырабатывает больше напряжения.
Мнение эксперта
Иван Зайцев
Специалист по освещению, консультант в отделе строительных материалов крупной сети магазинов
Задать вопрос экспертуМожно создать свое устройство из однофазного мотора при условии, что оно будет оборудовано ротором. Для запуска разработки нужно использовать фазосдвигающий конденсатор. Однофазный для переделки не подойдет.
Создать генератор просто, главное, иметь под рукой все необходимые компоненты в виде:
- асинхронного мотора;
- тахометра;
- емкости под конденсатор;
- самого конденсатора;
- набор инструментов.
В процессе сборки потребуется выполнить следующие действия:
- Для начала нужно подсоединить электродвигатель к сети и завести его. Далее тахометром определить скорость его вращения.
- Узнав скорость, нужно к полученному значению надбавить еще 10 %.
- Далее нужно выбрать емкость под конденсаторы.
Важно! Если емкость будет большая, то генератор быстро нагреется. Нужно подобрать такие, которые обеспечат необходимую скорость вращения.
Генератор с короткозамкнутым ротором создает высокое напряжение, поэтому если нужен показатель в 220 В, то потребуется установка понижающего трансформатора.
Основное преимущество данного аппарата состоит в том, что имеющиеся конденсаторы не требуют обслуживания, ведь вся энергия ротора передается от магнитного поля ротора и тока, вырабатываемого в процессе работы генератора.
Но есть и некоторые недостатки:
- В процессе работы нет возможности обеспечения промышленных параметров электрического тока, который вырабатывается генератором.
- Высокая чувствительность даже к небольшим перепадам рабочих нагрузок.
- При высоких нагрузках на генератор происходит нехватка электричества, после чего подзарядка становится невозможной, и генератор перестает работать.
Самодельный из магнитов
Магнитный генератор немного отличается от предыдущего. К примеру, ему не нужна установка компенсаторных батарей. Магнитное поле, которое создает электричество в обмотке статора, образуется благодаря неодимовым магнитам.
Как же создать такой тип генератора:
- Нужно открутить имеющиеся крышки двигателя.
- Вытащить ротор.
- Ротор нужно проточить, при этом снять верхний слой необходимой толщины. Самостоятельно сделать такую процедуру без токарного оборудования сложно.
- Сделать шаблон для круглых магнитов на листе бумаги. Подбирать необходимый размер нужно в зависимости от размеров ротора. Далее закрепить созданный шаблон на ротор и установить магниты полюсами и под углом в 20 градусов к оси ротора.
- Должно получиться четыре группы полос с расстоянием в два диаметра магнита, а между ними в группе один диаметр. За счет такого расположения ротор не станет залипать к статору.
- После установки всех магнитов нужно залить ротор эпоксидной смолой. Когда она высохнет, следует покрыть цилиндрическую часть стекловолокном и опять смолой. Благодаря такому креплению магниты крепко зафиксируются.
- При просушке ротора его можно поставить на место и прикрутить две крышки двигателя.
Многие специалисты полагают, что для обеспечения электричеством загородного дома достаточно будет маятника с осью длиной 6 м.
В этом случае электромагниты будут толкать неодимовые магниты с силой больше 100 кг. Достоинства данного устройства заключаются в том, что оно не зависит от солнца и ветра. Кроме того, генератор не нуждается в дорогостоящих аккумуляторах как другие генераторы энергии.
Но во время его использования не исключены и некоторые проблемы:
- в процессе движения маятника в обратную сторону может поменяться полярность магнитов;
- в момент зависания маятника в верхней точке может образоваться эффект пульсации в сети.
Внимание! С ферритовыми магнитами данный проект реализовать не удастся из-за их технических характеристик.
Бензиновая модификация
Есть две конструкции бензинового генератора, изготовленного своими руками на базе двигателя от триммера и генератора от машины.
Для сборки первого генератора потребуются:
- бензиновый двигатель от триммера, желательно 4-тактный;
- рабочий автомобильный генератор;
- аккумулятор 12 В, необязательно мощный, он будет использоваться только для запуска; без него генератор не сможет вырабатывать электричество, так как на коллектор нужно будет подать начальное напряжение для первого возбуждения.
Устройство с прямой подачей простое и незамысловатое. Единственный сложный этап — подготовка вала под сверлильный патрон.
- Сначала вал обрезают и точат на станке, а затем нарезают резьбу под патрон.
- Затем навинчивают патрон, в который зажимают вал электрогенератора.
- Дальше все крепится на деревянную поставку.
- Теперь нужно запустить бензиновый движок и подключить генератор к аккумулятору. Вольтмер с лампочкой проверит его работу.
Второй способ сборки генератора чем-то похож на первый, только для процесса вращения применяется ремень. На вал триммера крепится шкив, и все соединяется ремнем. Далее все крепится на деревянное основание. Запускается триммер, и проверяется работа устройства.
Что касается достоинств бензиновых устройств, то их немало:
- Сфера использования устройства практически не ограничена. Его используют для электроснабжения загородного дома, дачного участка, при аварийном отключении электричества в больницах, аптеках и торговых точках.
- Бензиновое устройство имеет небольшие размеры и вес. Его малогабаритность обеспечивает мобильность: удобно брать с собой и перевозить в багажнике.
- Низкий уровень шума отличает бензиновые устройства от дизельных или газовых.
- Бензиновые генераторы экономичны в плане расхода топлива, его можно купить на любой заправке.
К недостаткам данного типа генераторов относятся:
- Основной минус заключается в высокой цене. Газ и дизель обходятся дешевле. Поэтому частое использование подобного устройства невыгодно в финансовом плане.
- Обладает низкой продолжительностью непрерывной работы, которая не превышает 8 часов. Но этого времени достаточно для энергоснабжения или проведения работ на участке.
Вертикальный ветряной генератор электрического тока
Сделать своими руками ветряное устройство с вертикальной осью вращения несложно. Достаточно купить обязательные составляющие детали, собрать их правильно и установить агрегат на выбранное место.
Для изготовления ветряного устройства потребуются следующие материалы:
- Осевая мачта — несущая конструкция в виде пирамиды, имеющая высоту 5 метров. На ней закрепляются генератор и лопасти.
- Лопасти ловят потоки ветра.
- Статор включает в себя фазы из катушек.
- Ротор является подвижной частью ветряка.
- Контроллер замедляет работу устройства, когда тот развивает большую мощность.
- Инвертер выдает переменный ток, а аккумулятор накапливает энергию.
Для изготовления лопастей потребуется качественный пластик. Подойдут даже пластиковые трубы. В этом случае к каждой стороне трубы закрепляются жестяные фрагменты.
Для ротора потребуются два ферритовых диска, диаметр которых 32 см. Для статора следует сделать девять катушек с 60 витками меди.
Форму для катушек нужно сделать из фанеры и выложить стекловолокном.
Собирать ветряной генератор нужно следующим образом:
- сверху в роторе проделать отверстие для шпилек.
- В статоре проделать отверстия для закрепления к подставке.
- Уложить нижний диск ротора на подставку магнитами наверх.
- Здесь же установить статор и закрепить шпильками в пластину.
- Накрыть конструкцию еще одним диском.
- С помощью вращения шпилек следует добиться равномерного сближения верхнего и нижнего дисков, после чего шпильки с пластиной аккуратно убрать.
- Закрепить генератор гайками.
- Готовое устройство прикрутить к осевой мачте.
Электричество запускается в последнюю очередь: энергия от устройства попадает на контроллер, далее собирается на аккумуляторе и превращается в переменный ток инвертором.
Вертикальный генератор превращает ветер в энергетический ресурс. Для хорошей работы ему не нужны дополнительные устройства, которые определяют направление ветра.
Для его обслуживания не требуются приспособления, обеспечивающие безопасное проведение ремонтных работ.
Полезное! Минимальное количество движущихся деталей делают такую установку надежной и устойчивой.
Аппарат работает без шума, не мешает соседям и хозяевам, не образует вредные выбросы в атмосферу и надежно служит долгие годы.
Полезное видео
Посмотрите интересный видео ролик про асинхронный электрогенератор на магнитах:
Центр творческой науки – доктор Джонатан П. Хэйр
Центр творческой науки – доктор Джонатан П. Хэйр ссылка на 6 самодельный электрогенератор страницаОчень простой генератор, описанный ниже, является примитивным, но показывает основные операции. Он был намеренно оставлен как можно более простым, чтобы иметь максимальные возможности для использования в творческих проектах и изобретениях. Следовательно, он может лечь в основу более сложного устройства, как будет показано ниже.
Генератор состоит из катушки с проволокой (около 1000 витков), намотанной на последние 3 см или около того большого гвоздя. Когда вращающийся магнит помещается рядом с устройством, он индуцирует напряжение в катушке, которое затем может использоваться для зажигания лампочки (или, еще лучше, светодиода, см. Подробности на конце) – таким образом, можно просто продемонстрировать генерацию электричества.
Схема простого генератора
Шаг 1
Сделайте два картонных круга диаметром около 3 см (толщиной 1-2 мм).В середине кружков аккуратно проткните дырочку. Найдите большой (10-15 см длиной, 6 мм шириной) чистый (неноржавый) гвоздь с большой шляпкой. Проденьте один из кружочков на гвоздь и продвиньте его прямо к голове.
Шаг 2
Закройте последние 3-4 см ногтя одинарным слоем изоляционной ленты (шляпку ногтя не закрывайте). Наденьте второй круг на гвоздь, но только до изоляционной ленты. Добавьте еще ленту на другую сторону круга, чтобы закрепить круг на месте.Теперь у вас должна быть готовая «катушка», на которую можно наматывать катушку.
Шаг 3
Возьмите немного тонкой изолированной медной проволоки (скажем, 25 м или около того 30SWG, примерно 0,3 мм в диаметре), оставьте около 20-30 см свободными и начните наматывать витки на изолированную часть гвоздя между двумя кругами. Сделайте 1000-1500 оборотов (точное количество не имеет большого значения и будет зависеть от того, насколько аккуратно вы сможете их надеть, прежде чем они выйдут за сдерживающие картонные круги).Оставьте на конце еще 20-30 см и перережьте проволоку. Заклейте всю сборку изолентой, чтобы проволока не развязывалась.
Шаг 4
Возьмите свободные концы проводов и соскребите изоляцию. Подключите их к лампочке или к светодиоду. Поднесите магнит к шляпке гвоздя и, удерживая его на расстоянии примерно 5 мм от головки, быстро перемещайте магнит из стороны в сторону. Лампочка или светодиод загорится, показывая выработку электричества !!
КАК РАБОТАЕТ ГЕНЕРАТОР
Генератор работает за счет магнитного поля, индуцирующего напряжение в катушке с проволокой.Важно отметить, что напряжение увеличивается по мере увеличения количества витков провода на катушке, размера катушки и силы магнитного поля. Магнитное поле (или катушка) должно находиться в постоянном движении, чтобы производить / индуцировать электричество в катушке. Это можно сделать, перемещая магнит или перемещая катушку – эффект тот же. Катушка (или магнит) должна двигаться таким образом, чтобы катушка постоянно проходила через магнитное поле.Железный гвоздь также важен в нашем простом генераторе, поскольку он имеет тенденцию концентрировать магнитное поле.Когда катушка наматывается на гвоздь, она имеет тенденцию втягивать больше магнитного потока в область катушки, что повышает общую эффективность устройства и увеличивает создаваемое напряжение.
Тип провода в катушке также важен. Например, толстый провод означает меньшие потери мощности, но недостаток в том, что катушка станет очень большой, когда потребуется большое количество витков. Поэтому в практическом генераторе необходимо найти компромисс между размером магнита, катушки и провода.
переменного или постоянного тока
Этот простой генератор называется генератором переменного тока. Это означает, что напряжение, появляющееся на двух проводах, меняется между + и -, и – и + каждый раз, когда магнит совершает полный оборот. В результате генератор может зажечь лампочку или светодиод, не беспокоясь о том, в каком направлении должны идти соединения (поскольку они все равно постоянно меняют направление). Однако этот простой генератор не подходит для работы радиоприемников, калькуляторов или других устройств, которым требуется постоянный ток (DC), который вырабатывается, например, от батареи.Вы можете весело провести время, подключив динамики к выходу генератора, так как вы можете услышать переменное электричество – но, пожалуйста, не используйте лучшие Hi-Fi динамики своих родителей! Попробуйте использовать наушники типа Walkman и т. Д.
ГЕНЕРАТОР ДОПОЛНИТЕЛЬНО
На фотографии ниже показан простой генератор с ручным коленчатым валом, который я построил, в котором использовались два таких генератора гвоздей, соединенные вместе (чтобы дать вдвое большую мощность). Таким образом, одновременно используются как северная, так и южная сторона магнита. Необходимо правильно выполнить проводку между катушками, иначе напряжение исчезнет, и вы не получите никакой энергии от генератора! Катушки подключаются одна за другой, а не одна через другую (т. Е.последовательная цепь, а не параллельная). Использовалась простая деревянная зубчатая передача, чтобы вы могли с комфортом вырабатывать электричество, не поворачивая ручку слишком быстро.Простой генератор с двумя гвоздями и рукояткой
Крупный план генератора
ВОЗМОЖНО САМЫЙ ПРОСТОЙ ЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР В МИРЕ
Щелкните здесь, чтобы увидеть еще более простой генератор
КАКОЙ ТИП ЛАМПОЧКИ Я ДОЛЖЕН ИСПОЛЬЗОВАТЬ?
Может показаться здравым смыслом использовать лампочку с как можно более низким напряжением в этом типе генератора, но на самом деле лампа с более высоким напряжением часто работает лучше.Например, лампочка 1,5 В (напряжение) часто требует 0,25 А (ампер – электрический ток), чтобы зажечься, а лампе 6 В – всего 0,05 А. Этот простой генератор может подавать только относительно небольшой ток (скажем, 0,05-0,1 А), поэтому лампы с более высоким напряжением, как правило, работают лучше. Кстати, светодиод (светоизлучающий диод) очень хорошо работает в этой конструкции, потому что они потребляют очень небольшой ток (около 0,01 А). Светодиоды можно получить у Tandys или Maplins (подойдет почти любой) или выбросить из старого радио или игрушки, в которой они есть.
Щелкните здесь для получения информации о светодиодах
КАКОЙ ТИП МАГНИТА Я ДОЛЖЕН ИСПОЛЬЗОВАТЬ?
В общем, чем сильнее магнит, тем лучше. Eclipse производит всевозможные магниты, и их можно купить в большинстве хозяйственных магазинов. В описанном выше генераторе «кривошипная рукоятка» использовался магнит E825 Eclipse. Стоит попробовать другие типы магнитов, но вам, возможно, придется разработать другие способы вращения магнитов, чтобы убедиться, что магнитное поле изменяется правильным образом по отношению к катушке.Хорошие генераторы можно сделать из кнопок, планок, часовых туфель и цилиндрических магнитов – это просто ваше воображение!
ПЕРЕЧЕНЬ ДЕТАЛЕЙ И ИНСТРУМЕНТЫ
Картон из крупяной коробки например
Железный гвоздь с головкой (диаметр 1/4 дюйма (6 мм), длина ~ 6 дюймов (15 см))
Катушка (прибл. 25 м) с эмалированной медной проволокой (30 SWG или диаметром ~ 0,3 мм)
E825 Магнит кнопки Eclipse
Лампа фонаря (6 В, 0,06 А) и патрон, а еще лучше – светодиод
Ручная дрель (стандартный тип ящика для инструментов)
Большинство этих деталей можно приобрести в магазине DIY или в электронных магазинах, таких как Tandy или Maplins.
Книг и статей:
Продвинутая физика, Том Дункан, 4-е изд., Джон Мюррей, ISBN 0 7195 5199 4
хороший раздел по генераторам и электричеству.
Идеи для дальнейшей работы:
1) попробуйте варьировать количество оборотов. Всегда ли верно, что напряжение растет с количеством витков для этого простого генератора? Что произойдет, если катушка станет настолько большой, что ее пятна перестанут приближаться к гвоздю?
2) Вы можете найти лучший штамп для утюга, чем гвоздь?
3) как насчет того, чтобы попробовать другие формы энергии для питания вращающегося магнита, например?энергия ветра, энергия волн (например, см. раздел, посвященный созданию собственной ветряной мельницы)
goto ‘build your own windmill’
4) Можете ли вы встроить подвижный переключатель, чтобы напряжение было постоянным (DC) вместо переменного (AC) – это называется коммутатором
5) Можете ли вы использовать катушку для гвоздей (без магнита) в качестве “поисковая” катушка для обнаружения магнитных полей? Попробуйте поставить катушку с гвоздем рядом с динамиком, проигрывающим загруженную музыку, светодиод мигает вместе с музыкой?
ПРИМЕЧАНИЕ: никогда не приближайтесь к устройствам с питанием от сети с этим устройством
НЕ ИГРАЙТЕ С ЭЛЕКТРИЧЕСКИМ ПИТАНИЕМ – ОНО УБИВАЕТ
Информация о сайте:
Подробная информация о магните, использованном в этом проекте:
www.magnets2buy.com/acatalog/Buttons.html
ВОЗМОЖНО САМЫЙ ПРОСТОЙ ЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР В МИРЕ
Щелкните здесь, чтобы увидеть еще более простой генератор
ссылка на страницу 6 генов
ЦЕНТР ТВОРЧЕСКОЙ НАУКИ
Д-р Джонатан Хэйр, Университет Сассекса
Брайтон, Восточный Суссекс. BN1 9QJ
домой | дневник | что на | Резюме CSC | последние новости
Как создать магнитное динамо
Обновлено 28 декабря 2020 г.
Автор: S.Хуссейн Атер
Точно так же, как электрические генераторы вырабатывают электричество посредством химических реакций, гидростатических сил, ветра и других форм энергии для питания городов, магнитные генераторы могут создавать магнитные силы, а также поставлять электричество. Вы даже можете создать магнитный генератор или магнитное динамо из материалов, которые вы можете купить в магазине или, возможно, валять у себя дома.
Самодельная рама генератора динамо
Вы можете сделать самодельный генератор или динамо-машину из некоторых простых предметов, которые могут валяться у вас дома.Для его изготовления вам понадобится толстый полутолстый картон, четыре небольших керамических магнита, пистолет для горячего клея, около 200 футов магнитной проволоки, небольшая лампочка и большой гвоздь. Генератор лучше всего работает с этими материалами, поэтому старайтесь не заменять их. Этот самодельный динамо-генератор должен быть достаточно мощным, чтобы зажечь несколько маленьких лампочек.
Первое, что вам понадобится, это картонная рамка в форме прямоугольной призмы без верхней и нижней граней. Хороший размер – сделать верхнее и нижнее пустое пространство примерно 8 см x 3 см, при этом лица, обращенные влево и вправо, 8 см x 8 см, а лица, обращенные вперед и назад, 8 см x 3 см.Другие размеры могут быть более выгодными в зависимости от размера используемых вами магнитов.
Вместо того, чтобы вырезать грани картона и затем склеивать их вместе, может быть более эффективным вырезать длинную полосу картона с шириной рамки и длиной как суммой длин в одном направлении, чтобы Вы можете сложить его по форме рамы. Это означает вырезание длины
8 \ text {cm} + 3 \ text {cm} + 8 \ text {cm} + 3 \ text {cm} = 22 \ text {cm}
с шириной 8 см, сложив и закрепив лентой.Убедитесь, что рама не качается и не изгибается слишком сильно.
Повернув самую большую лицевую сторону рамки к себе, сделайте небольшое отверстие посередине и небольшое отверстие посередине лицевой стороны напротив нее. Это отверстие, через которое вы вставите гвоздь, чтобы обнаружить магнитный ток. Убедитесь, что отверстие достаточно маленькое, чтобы закрепить ноготь, но достаточно большое, чтобы гвоздь мог свободно вращаться в ответ на магнитное поле. Посмотрите, сможете ли вы крутить его самостоятельно, не повредив раму.
Самодельная проводка магнитного поля генератора
Удалите гвоздь из рамы и прикрепите конец провода к коробке.Начните наматывать проволоку на коробку. Вам понадобятся сотни катушек вокруг рамы, чтобы создать значительное магнитное поле, которое вы сможете измерить. Вы можете рассмотреть возможность размещения магнитов в раме, когда вы ее оборачиваете, чтобы сделать раму достаточно прочной и надежной, чтобы выдержать силу наматывания на нее проволоки.
Вставьте гвоздь обратно в два отверстия и прикрепите два магнита внутри рамки к обеим сторонам гвоздя. Используйте горячий клей, чтобы убедиться, что они остаются в отличие от ленты или другого материала, который может не проводить электрический ток.Соедините концы проволоки с двумя концами лампочки и покрутите ноготь, чтобы посмотреть, загорится ли он. Если можете, попробуйте крутить магнитный гвоздь, чтобы вращать его как можно быстрее.
Тестирование самодельного динамо-генератора
Этот хобби-динамо-генератор или генератор «сделай сам» должен работать, преобразовывая магнитное поле, создаваемое движением гвоздя, в ток для питания света. Магнитное поле должно индуцировать напряжение в обмотках проводов. Вы можете создать самодельный динамо-генератор другого типа, используя другие методы, такие как изменение количества обмоток катушки, использование катушки разных размеров и использование различных материалов магнитной катушки.
Лампочки с более высоким напряжением могут работать более эффективно, поскольку они могут загораться при меньшем токе. Светодиодные фонари могут работать даже лучше, потому что они также могут загораться при небольшом токе. Для питания целых цепей лампочек можно использовать более мощные генераторы.
DIY-генератор, преобразовывающий энергию
Этот DIY-генератор является примером генератора переменного тока (переменного тока). Ток на концах двух проводов, которые подключаются к лампочке, чередуется между прямым и обратным направлениями каждый раз, когда вы вращаете магнит.При каждом повороте магнита ток проходит прямой полупериод и обратный полупериод, и ток чередуется между ними, используя форму синусоидальной волны. Переменный ток присутствует в большинстве бытовых приборов.
Этот тип динамо-машины для хобби показывает, как магнитные генераторы преобразуют механическую энергию в электромагнитную энергию. Когда вы используете гальванометр , прибор для измерения электрического тока, для измерения силы тока, проходящего через генератор или провод, вы можете увидеть, что игла инструмента отклонена.Вы можете измерить это изменение магнитного поля на динамо-машине, чтобы проверить, насколько оно сильное. Ученые и инженеры продолжают изучать потенциал магнитных двигателей для повышения эффективности двигателей.
В промышленных условиях коммерческие электрические генераторы плотно наматывают катушки проволоки вокруг кольцевых магнитов. Магнитное поле катушки индуцирует электромагнитную силу в магнитах. Гидроэлектростанции преобразуют механическую энергию через водяную турбину за счет падающей воды.Это преобразование механической энергии генераторами в электрическую отличается от двигателей, которые преобразуют электрическую энергию в механическую.
Magnet Dynamo Physics
Вы можете рассчитать электродвижущую силу ( ЭДС ) , создаваемую количеством катушек в вашем генераторе, используя уравнение V = NBAω sin ωt для напряжения ЭДС. В , количество катушек N , магнитное поле B , площадь, на которой расположены катушки A , угловая частота ω («омега») и более время т .Угловая частота измеряет частоту, количество электрических волн, которые проходят через одно место за секунду, умноженное на 2π.
С магнитным динамо-машиной можно обращаться как с электрическим генератором, потому что электричество и магнетизм являются частью одной и той же силы. Изменения электрического поля создают магнитное поле, а изменения магнитного поля создают электрическое поле. В то время как этот самодельный генератор показывает, как магнитное поле может создавать электрический ток, другие наблюдения могут показать вам, как электричество может вызывать магнитные явления как часть той же электромагнитной силы.
Если вы поместите магнитный компас рядом с проводом в электрической цепи, вы заметите отклонение стрелки компаса. Это происходит потому, что ток через провода в цепи создает магнитные поля, заставляющие стрелку компаса менять направление. Компасы созданы, чтобы реагировать на изменения магнитного поля Земли, поэтому присутствие внешнего магнитного поля также может вызвать это отклонение.
Эта фундаментальная связь между электричеством и магнетизмом также означает, что вы можете создать свой собственный электрический генератор так же, как и магнитный.Вращение магнитного объекта вокруг катушки проводов генерирует как электрическое, так и магнитное поле. Другие творческие идеи могут потребовать использования более мощных источников механической энергии, таких как велосипедные машины или ветряные мельницы, для получения электричества таким же образом.
Генератор переменного тока, простой проект DIY с пошаговыми инструкциями
Генератор переменного тока, простой проект DIY с пошаговыми инструкциями
Генератор переменного тока, простой проект DIY с пошаговыми инструкциями
Введение
Генератор переменного токаобсуждает преобразование механической энергии (кинетической энергии) в электрическую с помощью магнитной индукции и ЭДС.Основное внимание в нем уделяется принципам работы и используемым в нем компонентам. Обмен различными энергиями и выработка электричества в процессе индукции полностью объясняется генератором переменного тока.
Необходимый материал:
Для изготовления электрогенератора вам понадобятся следующие вещи и инструменты.
- Клей для ужина (Эльфи) 20 мл
- Бумажная лента
- Железные полосы 2
- Труба из ПВХ 1/5 ′ ”
- Железный гвоздь длиной 6 дюймов
- Светодиоды
- Медный провод калибра от 30 до 34
- 4 магнита
- Деревянная деталь 6 дюймов
инструментов:
- Пила по металлу
- Солдатское железо
- Сверлильный станок
- Отвертка
- плоскогубцы
- Ролик Инструменты
Схемы деталей генератора переменного тока
1 СтаторСтатор состоит из 2-х частей.10 железных полос длиной 5 дюймов соединяются бумажной лентой и имеют медную обмотку.
Обмотка медной катушкиОбмотка медной катушки
2 Ротор: Ротор изготовлен из отрезка трубы из ПВХ, 4-х магнитов и железного гвоздя.
Переменный ток (переменный ток) Вид сбоку ротора генератора
Переменный ток (переменный ток) Вид сбоку ротора генератораПеременный ток (переменный ток) Вид спереди ротора генератора
Электрогенератор переменного тока (переменного тока)
Электрогенератор переменного тока в действии
Хабаб Идрис Пакистанский научный клуб Хост
Этапы строительства
Изготовление катушки
- Отмерьте 2 ½ дюйма железной полосы и вырежьте из нее 10 равных частей.
- Крепко скрепите и сложите все части вместе бумажной лентой таким образом, чтобы не было промежутков между полосками.
- Намотайте примерно 300 витков медной проволоки на жгут ленты вертикально. Оберните его бумажной лентой, чтобы он не разматывался.
- Нам нужны две такие катушки, чтобы сделать генератор переменного тока.
Изготовление ротора
- Возьмите трубу из ПВХ диаметром полдюйма и отрежьте кусок 2 ½ дюйма
- Наклеить 4 стержневых магнита на кусок трубы с помощью суперклея
- Убедитесь, что одинаковые полюса магнитов должны быть альтернативными.Это будет порядок Север-Юг-Север-Юг.
- Проверьте, правильно ли выровнены полюса магнитов с помощью другого магнита.
Привод оси
- Сделайте ось, используя длинный железный гвоздь 6 дюймов.
- Отступите на полдюйма от хвоста гвоздя и отметьте длину магнитного ротора.
- Оберните гвоздь бумажной лентой так, чтобы магнитный ротор закрепился на нем.
Корпус генератора
- Возьмите кусок дерева 6 × 6 дюймов и два куска труб из ПВХ (один – 2 дюйма, другой – 1 дюйм).
- Сделайте вертикальную канавку на 1-дюймовой трубе из ПВХ.
- Совместите его с 2-дюймовым элементом и проделайте в нем отверстие.
- Закрепите ось через обе трубы из ПВХ и проверьте, идеально ли она выровнена.
- Наклеить трубы ПВХ на деревянную основу с помощью суперклея.
- Сделайте еще 2 катушки, как обсуждалось ранее, оставив оба их вывода вне ленты.
- Отрежьте 2 куска ПВХ-труб размером полдюйма.
- Соедините детали перпендикулярно оси (по одной с каждой стороны) у основания.
- Закрепите змеевик на каждой трубе ПВХ.
- Прожгите покрытие катушек на клеммах зажигалкой.
Тестирование
- Соедините светодиод с катушкой и поверните гвоздь, светодиод загорится.
- Если обе катушки соединены последовательно, светодиод будет светиться ярче.
Примечание: Конструкцию генератора можно увидеть на этом видео (язык урду). Для иностранных посетителей добавлены английские субтитры.
Посмотреть видео
- Ведущий: Habab Idrees
- Дизайн проекта: Абдул Рауф
- Переводчик: Эрум Хабиб
См. Также
Скачать PDF
как сделать генератор переменного тока (278 загрузок)Абдул Рауф
Учитель, новатор, любит творить, исследует новые способы рассматривать и воображать вещи, а затем воплощать их в реальность
Гидроэлектрический генератор: как построить маленький
Гидроэлектрический генератор – лучшее, что можно построить для производства электроэнергии, если поблизости протекает ручей.
Все мы знаем, что ученые находятся в постоянном поиске альтернативных источников энергии, и это происходит потому, что в последние годы количество традиционных источников энергии начало значительно сокращаться.
Они разработали различные системы, которые преобразуют энергию природы в электричество, и многие из этих систем могут быть построены дома в меньшем масштабе, чтобы снизить потребление электроэнергии. После того, как мы увидели, как производить электричество с помощью магнитов или энергии ветра, пора поговорить о людях, которые живут рядом с рекой.
Часто называемую гидро-, микрогидро- или ручным гидроэлектрическим генератором с малым ударным воздействием, эту систему не очень сложно построить.
Чтобы построить гидроэлектрический генератор, вы должны выполнить следующие шаги:
1. Подготовка дисков
Наш гидроэлектрический генератор будет состоять из двух основных частей:
– Статор (эта часть не движется и снабжена витками провода для сбора электроэнергии)
– Ротор (ротор – это часть, которая движется и имеет несколько мощных магнитов. что вызовет электричество в катушках)
Для начала вам понадобятся шаблоны и картон.Два шаблона, которые содержат схему ротора и статора, необходимо вырезать и прикрепить к передней и задней части картона. После того, как эти шаблоны хорошо приклеены к картону, сделайте отверстие (1 см) в центре диска статора.
2. Крепление статора
Теперь вам нужно сделать 4 катушки, которые будут прикреплены к картону. Для этого необходимо использовать картон с овальным сечением. Затем начните наматывать провода на этот картон, чтобы получилась плотная катушка (200 витков). Осторожно снимите катушку с овальной части и затем повторите эту процедуру, чтобы сделать еще три катушки.
Расположите катушки на картоне по шаблонной схеме (их обмотки должны чередоваться по часовой стрелке и против часовой стрелки). Вы должны быть уверены, что электрон будет следовать по пути, указанному стрелками на шаблоне, начиная с левой катушки против часовой стрелки.
Соедините концы катушек и используйте изоляционную ленту, чтобы избежать ошибок. Используйте мультиметр, чтобы проверить электрическое сопротивление (Ом). Если провода подключены правильно, счетчик должен показывать около 10 Ом.
3. Установка ротора
На этом этапе вам нужно прикрепить 4 сильных магнита к шаблону статора. Проверьте магниты, отметьте южный полюс на двух из них и северный полюс на двух оставшихся. Магниты должны быть расположены на шаблоне так, чтобы их полярность чередовалась (Н-С-Н-С).
Тогда вам понадобится пробка и 8 пластиковых ложек. Вы должны укоротить ложки так, чтобы длина ручки не превышала 1 см. Посмотрите на шаблон ротора и вставьте ложки в пробку (глубиной 1 см).
4. Турбина
Проделайте в пробке отверстие диаметром 6 мм (убедитесь, что отверстие находится по центру), снова зафиксируйте геометрическое положение ложек и добавьте немного горячего клея в каждую ложку, чтобы закрепить ее.
5. Корпус генератора и окончательная сборка
Найдите пластиковый резервуар или бутылку, чтобы прикрепить ротор, статор и небольшую турбину. После того, как вы найдете центр бака, проделайте в этом месте отверстие (6 мм) и закрепите статор с его катушками чуть выше отверстия.Затем прикрепите к одному валу турбину и ротор (ложки должны быть обращены к горлышку бутылки, а магниты должны быть близко к катушкам (3 мм между катушками и магнитами)).
Кажется, наш небольшой гидроэлектрический генератор почти готов к работе. Все, что нам сейчас нужно, это поток воды, чтобы турбина вращалась непрерывно, пока есть вода для ее вращения. Если турбина правильно подключена к генератору, этот поток должен производить достаточно гидроэлектроэнергии, чтобы обеспечивать энергией наши коммунальные предприятия или заряжать аккумуляторы.
Рабочий электрогенератор
Пользователь Youtube TheDamHeroes, вдохновленный разработкой, представленной в этой статье, разместил работающий гидроэлектрический генератор. Посмотрите это в действии ниже:
(Посещали 114900 раз, сегодня 4 раза)
Создание автономного генератора | Проекты самодельных схем
Генератор с автономным питанием – это постоянное электрическое устройство, предназначенное для бесконечной работы и создания непрерывной электрической мощности, которая обычно больше по величине, чем входная мощность, через которую он работает.
Кто не хотел бы видеть автономный мотор-генератор, работающий дома и обеспечивающий бесперебойную работу нужных бытовых приборов, абсолютно бесплатно. Мы обсудим детали нескольких таких схем в этой статье.
Энтузиаст бесплатной энергии из Южной Африки, который не хочет раскрывать свое имя, щедро поделился деталями своего твердотельного автономного генератора для всех заинтересованных исследователей свободной энергии.
Когда система используется со схемой инвертора, выходная мощность генератора составляет около 40 Вт.
Система может быть реализована в нескольких различных конфигурациях.
Первая версия, обсуждаемая здесь, способна заряжать три 12 батареи вместе, а также поддерживать генератор для постоянной непрерывной работы (до тех пор, пока, конечно, батареи не потеряют свою способность заряжаться / разряжаться)
Предлагаемый генератор с автономным питанием предназначен для работают днем и ночью, обеспечивая непрерывную электрическую мощность, как наши солнечные панели.
Первоначальный блок был сконструирован с использованием 4 катушек в качестве статора и центрального ротора, имеющего 5 магнитов, встроенных по его окружности, как показано ниже:
Показанная красная стрелка говорит нам о регулируемом зазоре между ротором и катушками, который может быть изменен. можно изменить, ослабив гайку, а затем переместив узел катушки рядом или от магнитов статора для получения желаемых оптимальных выходов.Зазор может составлять от 1 мм до 10 мм.
Узел ротора и механизм должны быть чрезвычайно точными с точки зрения центровки и легкости вращения, и поэтому должны быть построены с использованием прецизионных станков, таких как токарный станок.
Материал, используемый для этого, может быть прозрачным акрилом, и сборка должна включать 5 комплектов из 9 магнитов, закрепленных внутри цилиндрической трубы, как полости, как показано на рисунке.
Верхнее отверстие этих 5 цилиндрических барабанов закреплено пластиковыми кольцами, извлеченными из тех же цилиндрических трубок, чтобы обеспечить надежную фиксацию магнитов в соответствующих положениях внутри цилиндрических полостей.
Вскоре 4 катушки были расширены до 5, в которых недавно добавленная катушка имела три независимых обмотки. Конструкции будут понятны постепенно, когда мы пройдемся по различным принципиальным схемам и объясним, как работает генератор. Первую принципиальную схему можно увидеть ниже.
Батарея, обозначенная буквой «А», питает цепь. Ротор «C», состоящий из 5 магнитов, перемещается вручную и толкается так, что один из магнитов перемещается близко к катушкам.
Набор катушек «B» включает 3 независимых обмотки на одном центральном сердечнике, и магнит, проходящий мимо этих трех катушек, генерирует внутри них крошечный ток.
Ток в катушке номер «1» проходит через резистор «R» в базу транзистора, заставляя его включиться. Энергия, проходящая через катушку транзистора «2», позволяет ей превратиться в магнит, который толкает диск ротора «C» на своем пути, вызывая вращательное движение ротора.
Это вращение одновременно вызывает обмотку «3», которая выпрямляется через синие диоды и передается обратно на зарядку батареи «A», пополняя почти весь ток, потребляемый от этой батареи.
Как только магнит внутри ротора «C» удаляется от катушек, транзистор выключается, восстанавливая напряжение коллектора за короткое время вблизи линии питания +12 Вольт.
Это истощает катушку «2» по току. Из-за того, как расположены катушки, он увеличивает напряжение коллектора примерно до 200 вольт и выше.
Однако этого не происходит, потому что выход подключен к пяти последовательным батареям, которые падают нарастающее напряжение в соответствии с их общим номиналом.
Батареи имеют последовательное напряжение приблизительно 60 вольт (что объясняет, почему был включен мощный, быстро переключающийся высоковольтный транзистор MJE13009.
Поскольку напряжение коллектора изменяется на напряжение последовательного блока батарей, красный диод начинает включаться, высвобождая накопленное в катушке электричество в аккумуляторную батарею. Этот импульс тока проходит через все 5 аккумуляторов, заряжая каждую из них. Проще говоря, это составляет конструкцию генератора с автономным питанием.
В прототипе в качестве нагрузки, используемой для длительных, неутомимых испытаний, использовался 12-вольтный 150-ваттный инвертор, освещающий 40-ваттную сетевую лампу:
Простая конструкция, продемонстрированная выше, была дополнительно улучшена за счет включения еще нескольких приемные катушки:
Катушки «B», «D» и «E» активируются одновременно 3 отдельными магнитами. Электроэнергия, генерируемая во всех трех катушках, передается на 4 синих диода для производства постоянного тока, который подается для зарядки аккумулятора «A», который питает цепь.
Дополнительный ввод в приводную батарею в результате включения 2 дополнительных приводных катушек в статор позволяет машине работать без сбоев в виде автономной машины, поддерживая напряжение батареи «А» бесконечно.
Единственной движущейся частью этой системы является ротор диаметром 110 мм, представляющий собой акриловый диск толщиной 25 мм, установленный на шарикоподшипниковом механизме, извлеченный из утилизированного жесткого диска компьютера. Схема выглядит так:
На изображениях диск кажется полым, однако на самом деле это твердый кристально чистый пластик.На диске просверливаются отверстия в пяти одинаково распределенных точках по окружности, то есть с разделением на 72 градуса.
5 основных отверстий, просверленных на диске, предназначены для удерживания магнитов, которые объединены в группы из девяти кольцевых ферритовых магнитов. Каждый из них имеет диаметр 20 мм и высоту 3 мм, образуя стопки магнитов общей высотой 27 мм в длину и диаметром 20 мм. Эти стопки магнитов расположены таким образом, что их северные полюса выступают наружу.
После того, как магниты установлены, ротор помещается в пластиковую трубную ленту, чтобы надежно закрепить магниты на месте, в то время как диск быстро вращается. Пластиковая труба крепится к ротору с помощью пяти крепежных болтов с потайной головкой.
Бобины катушек имеют длину 80 мм и диаметр конца 72 мм. Средний шпиндель каждой катушки изготовлен из пластиковой трубы длиной 20 мм, имеющей внешний и внутренний диаметр 16 мм. обеспечивая плотность стены 2 мм.
После того, как намотка катушки завершена, этот внутренний диаметр заполняется рядом сварочных стержней со снятым с них сварочным покрытием. Впоследствии они обволакиваются полиэфирной смолой, но цельный брусок из мягкого железа также может стать отличной альтернативой:
3 жилы, составляющие катушки «1», «2» и «3», имеют диаметр 0,7 мм и являются обернуты друг с другом до намотки на шпульку «B». Этот метод бифилярной намотки создает намного более тяжелый пучок композитных проводов, который может эффективно наматываться на катушку.Показанная выше намоточная машина работает с патроном, удерживающим сердечник катушки для обеспечения возможности намотки, тем не менее, можно также использовать любой тип базовой намоточной машины.
Разработчик выполнил скручивание проволоки, вытягивая 3 жилы проволоки, каждая из которых происходит от независимой катушки с жгутом на 500 грамм.
Три жилы плотно удерживаются на каждом конце, при этом провода прижимаются друг к другу на каждом конце, оставляя зазор между зажимами три метра. После этого провода фиксируются в центре и 80 витков приписываются миделю.Это позволяет сделать 80 поворотов на каждый из двух 1,5-метровых пролетов, расположенных между зажимами.
Набор скрученных или намотанных проволок скручивается на временной катушке для поддержания аккуратности, потому что это скручивание придется повторить еще 46 раз, поскольку для этой одной композитной катушки потребуется все содержимое катушек с проволокой:
следующие 3 метра трех проводов затем зажимаются и 80 витков наматываются в среднее положение, но в этом случае витки размещаются в противоположном направлении.Даже сейчас реализованы точно такие же 80 витков, но если предыдущая обмотка была «по часовой стрелке», то эта обмотка перевернута «против часовой стрелки».
Эта конкретная модификация направления катушки обеспечивает полный диапазон скрученных проводов, в которых направление скручивания становится противоположным через каждые 1,5 метра по всей длине. Так устроена серийно производимая проволока Litz.
Этот замечательный на вид комплект скрученных проводов теперь используется для намотки катушек.В одном фланце катушки, ровно возле средней трубки и сердечника просверливается отверстие, через которое продевается начало проволоки. Затем проволоку с силой сгибают под углом 90 градусов и накладывают на вал катушки, чтобы начать намотку катушки.
Намотка жгута проводов выполняется с большой осторожностью рядом друг с другом по всему валу катушки, и вы увидите 51 градус намотки вокруг каждого слоя, а следующий слой наматывается прямо поверх этого самого первого слоя, снова к началу.Убедитесь, что витки этого второго слоя лежат точно поверх обмотки под ними.
Это может быть несложно, потому что пакет проводов достаточно толстый, чтобы сделать установку довольно простой. Если хотите, вы можете попробовать обернуть один толстый белый лист вокруг первого слоя, чтобы второй слой был отчетливым при его переворачивании. Вам понадобится 18 таких слоев, чтобы закончить катушку, которая в конечном итоге будет весить 1,5 килограмма, и готовая сборка может выглядеть примерно так, как показано ниже:
Эта готовая катушка на данный момент состоит из 3 независимых катушек, плотно намотанных друг на друга, и этого набора up предназначен для создания фантастической магнитной индукции на двух других катушках, когда на одну из катушек подается напряжение питания.
Эта обмотка в настоящее время включает катушки 1,2 и 3 принципиальной схемы. Вам не нужно постоянно беспокоиться о маркировке концов каждой жилы провода, так как вы можете легко идентифицировать их с помощью обычного омметра, проверив непрерывность на определенных концах провода.
Катушка 1 может использоваться в качестве запускающей катушки, которая будет включать транзистор в нужные периоды. Катушка 2 может быть катушкой возбуждения, которая возбуждается транзистором, а катушка 3 может быть одной из первых выходных катушек:
Катушки 4 и 5 представляют собой простые пружинные катушки, которые подключены параллельно катушке 2 возбуждения.Они помогают повысить драйв и поэтому важны. Катушка 4 имеет сопротивление постоянному току 19 Ом, а сопротивление катушки 5 может составлять около 13 Ом.
Тем не менее, в настоящее время продолжаются исследования, чтобы определить наиболее эффективное расположение катушек для этого генератора, и, возможно, дополнительные катушки могут быть идентичны первой катушке, катушка «B» и все три катушки прикреплены таким же образом, и Обмотка возбуждения на каждой катушке работает через единственный высокопроизводительный и быстро переключающийся транзистор.Текущая установка выглядит так:
Вы можете проигнорировать показанные порталы, поскольку они были включены только для изучения различных способов активации транзистора.
В настоящее время катушки 6 и 7 (22 Ом каждая) работают как дополнительные выходные катушки, подключенные параллельно выходной катушке 3, каждая из которых состоит из трех жил и имеет сопротивление 4,2 Ом. Они могут быть с воздушным сердечником или с твердым железным сердечником.
При тестировании выяснилось, что вариант с воздушным сердечником работает немного лучше, чем с железным сердечником.Каждая из этих двух катушек состоит из 4000 витков, намотанных на катушки диаметром 22 мм с использованием суперэмалированного медного провода 0,7 мм (AWG # 21 или SWG 22). Все катушки имеют одинаковые характеристики провода.
Используя эту настройку катушки, прототип мог работать без остановок в течение примерно 21 дня, постоянно сохраняя аккумулятор привода на 12,7 вольт. Через 21 день система была остановлена для внесения некоторых модификаций и снова протестирована с использованием совершенно новой конструкции.
В конструкции, показанной выше, ток, протекающий от аккумуляторной батареи в цепь, на самом деле составляет 70 миллиампер, что составляет 12.7 вольт дают входную мощность 0,89 Вт. Выходная мощность составляет примерно 40 Вт, что подтверждает коэффициент полезного действия 45.
Без учета трех дополнительных аккумуляторов 12 В, которые дополнительно заряжаются одновременно. Результаты действительно кажутся чрезвычайно впечатляющими для предложенной схемы.
Метод привода так много раз использовался Джоном Бедини, что создатель решил поэкспериментировать с подходом Джона к оптимизации для достижения максимальной эффективности. Несмотря на это, он обнаружил, что в конечном итоге полупроводник с эффектом Холла, специально правильно выровненный с магнитом, дает наиболее эффективные результаты.
Дальнейшие исследования продолжаются, и на данный момент выходная мощность достигла 60 Вт. Это выглядит поистине потрясающе для такой крошечной системы, особенно когда вы видите, что в ней нет реалистичного ввода. Для этого следующего шага мы уменьшаем батарею до одного. Схема показана ниже:
В рамках этой схемы на катушку «B» также подаются импульсы транзистора, и выходной сигнал от катушек вокруг ротора теперь направляется на выходной инвертор.
Здесь снимается приводная батарея и заменяется маломощным трансформатором 30 В и диодом.Он, в свою очередь, управляется выходом инвертора. Небольшое вращательное движение ротора создает достаточный заряд конденсатора, чтобы система могла запускаться без батареи. Выходная мощность для этой нынешней установки достигает 60 Вт, что на 50% больше.
3 батарейки на 12 В также сняты, и цепь может легко работать, используя только одну батарею. Непрерывная выходная мощность от одиночной батареи, которая никоим образом не требует внешней подзарядки, кажется большим достижением.
Следующее усовершенствование – это схема, включающая датчик Холла и полевой транзистор. Датчик Холла расположен точно по одной линии с магнитами. Это означает, что датчик помещается между одной из катушек и магнитом ротора. У нас есть зазор 1 мм между датчиком и ротором. На следующем изображении показано, как именно это должно быть сделано:
Другой вид сверху, когда катушка находится в правильном положении:
Эта схема показала огромные 150 ватт безостановочной выходной мощности с использованием трех 12-вольтных батарей.Первая батарея помогает питать схему, в то время как вторая перезаряжается с помощью трех диодов, подключенных параллельно, чтобы увеличить ток, передаваемый для заряжаемой батареи.
Переключающий переключатель DPDT «RL1» меняет местами подключения батареи каждые пару минут с помощью схемы, показанной ниже. Эта операция позволяет обеим батареям все время оставаться полностью заряженными.
Ток зарядки также проходит через второй набор из трех параллельных диодов, заряжающих третью 12-вольтовую батарею.Эта третья батарея управляет инвертором, через который работает предполагаемая нагрузка. В качестве тестовой нагрузки для этой установки использовалась лампа мощностью 100 Вт и вентилятор на 50 Вт.
Датчик Холла переключает транзистор NPN, тем не менее, практически любой транзистор с быстрым переключением, например BC109 или 2N2222 BJT, будет работать очень хорошо. Вы поймете, что все катушки на данный момент управляются полевым транзистором IRF840. Реле, используемое для переключения, имеет тип фиксации, как показано в этой конструкции:
И оно питается от низкоточного таймера IC555N, как показано ниже:
Синие конденсаторы выбираются для переключения конкретного фактического реле, которое используется схема.Это позволяет реле включаться и выключаться на короткое время каждые пять минут или около того. Резисторы 18K над конденсаторами расположены так, чтобы разряжать конденсатор в течение пяти минут, когда таймер находится в состоянии ВЫКЛ.
Однако, если вы не хотите, чтобы это переключение между батареями, вы можете просто настроить его следующим образом:
В этой конфигурации батарея, питающая инвертор, подключенный к нагрузке, имеет более высокую емкость. Хотя создатель использовал пару аккумуляторов емкостью 7 Ач, можно использовать любую обычную 12-вольтовую аккумуляторную батарею для скутеров емкостью 12 А · ч.
Обычно одна из катушек используется для подачи тока к выходной батарее и одна оставшаяся катушка, которая может быть частью трехжильной основной катушки. Это привыкло подавать напряжение питания непосредственно на аккумуляторную батарею.
Диод 1N5408 рассчитан на работу с током 100 В и током 3 А. Диоды без значения могут быть любым диодом, например диодом 1N4148. Концы катушек, присоединенные к полевому транзистору IRF840, физически устанавливаются по окружности ротора.
Всего таких катушек 5. Те, которые имеют серый цвет, показывают, что крайние правые три катушки состоят из отдельных жил основной трехпроводной композитной катушки, уже обработанной в наших более ранних схемах.
В то время как мы видели использование трехжильной витой проволочной катушки для коммутации типа Бедини, используемой как для возбуждения, так и для целей вывода, в конечном итоге было обнаружено, что использование этого типа катушки не требуется.
Следовательно, обычная спиральная катушка, намотанная на 1500 граммов 0.Эмалированная медная проволока диаметром 71 мм оказалась столь же эффективной. Дальнейшие эксперименты и исследования помогли разработать следующую схему, которая работала даже лучше, чем предыдущие версии:
В этой улучшенной конструкции мы находим использование 12-вольтного реле без фиксации. Реле рассчитано на потребление около 100 миллиампер при 12 вольт.
Подключение резистора 75 Ом или 100 Ом последовательно с катушкой реле помогает снизить потребление до 60 мА.
Он потребляется только половину времени во время периодов работы, потому что он остается нерабочим, пока его контакты находятся в положении N / C. Как и в предыдущих версиях, эта система тоже работает без каких-либо проблем.
Отзыв от одного из преданных читателей этого блога, г-на Тамала ИндикаУважаемый Свагатам, сэр,
Большое спасибо за ваш ответ, и я благодарен вам за то, что вы меня поддержали. Когда вы обратились ко мне с этой просьбой, я уже установил еще 4 катушки для моего маленького двигателя Bedini, чтобы сделать его более эффективным.Но я не мог создать схемы Бедини с транзисторами для этих 4 катушек, так как не мог купить оборудование.
Но все же мой мотор Бедини работает с предыдущими 4 катушками, даже если есть небольшое сопротивление со стороны ферритовых сердечников недавно подключенных других четырех катушек, поскольку эти катушки ничего не делают, а просто сидят вокруг моего маленького магнитного ротора. Но мой мотор все еще может заряжать аккумулятор 12 В 7 А, когда я вожу его с батареями 3,7.
По вашему запросу я приложил к настоящему видео-ролик о моем двигателе Bedini и советую вам посмотреть его до конца, так как вначале вольтметр показывает, что аккумулятор Charge имеет цифру 13.6 В, а после запуска двигателя оно возрастает до 13,7 В, а через 3-4 минуты поднимается до 13,8 В.
Я использовал маленькие батарейки 3,7 В для привода своего маленького двигателя Бедини, и это хорошо доказывает эффективность двигателя Бедини. В моем двигателе 1 катушка является бифилярной катушкой, а другие 3 катушки запускаются тем же триггером этой бифилярной катушки, и эти три катушки повышают энергию двигателя, выдавая еще несколько шипов катушки при ускорении ротора магнита. . В этом секрет моего маленького мотора Бедини, поскольку я подключал катушки в параллельном режиме.
Я уверен, что когда я использую другие 4 катушки с цепями Bedini, мой мотор будет работать более эффективно, а магнитный ротор будет вращаться с огромной скоростью.
Я пришлю вам еще один видеоклип, когда закончу создавать схемы Бедини.
С уважением!
Thamal Indika
Результаты практических испытаний
О Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!
Электрические машины – генераторы и двигатели | Электродинамика
11.2 Электрические машины – генераторы и двигатели (ESCQ4)
Мы видели, что когда проводник перемещается в магнитном поле или когда перемещается магнит около проводника в проводнике течет ток.Величина тока зависит от:
- скорость, с которой проводник испытывает изменяющееся магнитное поле,
- количество витков, составляющих проводник, и
- положение плоскости проводника относительно магнитного поле.
Рисунок 11.1: Серия рисунков, показывающих, что магнитный поток через проводник зависит от от угла, который плоскость проводника составляет с магнитным полем.Величайший поток проходит через проводник, когда плоскость проводника перпендикулярна силовые линии магнитного поля, как на Рисунке 11.1 (а). Номер силовых линий, проходящих через проводник, уменьшается, так как проводник вращается до тех пор, пока он параллелен магнитному полю Рис. 11.1 (c).
Если наведенная ЭДС и ток в проводнике были представлены как функция угла между плоскостью проводника и магнитным полем для проводника, имеющего постоянной скорости вращения, то наведенные ЭДС и ток будут варьируются, как показано на рисунке 11.2. Сила тока колеблется около нуля. и известен как переменный ток (сокращенно AC).
Рисунок 11.2: Изменение наведенной ЭДС и тока как угол между плоскостью проводника и проводником. магнитное поле изменяется.
Угол изменяется как функция времени, поэтому приведенные выше графики можно отобразить на оси времени. также.
Вспомните закон Фарадея, о котором вы узнали в 11 классе:
- Закон Фарадея
ЭДС, \ (\ mathcal {E} \), индуцированный вокруг одиночной петли проводника, пропорционален скорость изменения магнитного потока φ через площадь, \ (A \) петли.Математически это можно выразить как:
\ [\ mathcal {E} = -N \ frac {\ Delta \ phi} {\ Delta t} \]где \ (\ phi = B · A \ cos \ theta \) и \ (B \) – напряженность магнитного поля.
Закон Фарадея связывает наведенную ЭДС со скоростью изменения магнитного потока, который является произведением напряженности магнитного поля и поперечного сечения область, через которую проходят силовые линии. Площадь поперечного сечения изменяется при вращении петли проводника. что дает фактор \ (\ cos \ theta \).\ (\ theta \) – угол между нормаль к поверхности витка проводника и магнитному полю. Когда проводник замкнутого контура меняет ориентацию относительно магнитного поля, величина магнитного потока, проходящего через область контура, изменяется, и в проводящем контуре индуцируется ЭДС.
Электрогенераторы (ESCQ5)
Генераторы переменного тока (ESCQ6)
Используется принцип вращения проводника в магнитном поле для генерации тока. в электрических генераторах.Генератор преобразует механическую энергию (движение) в электрическую.
- Генератор
Генератор – это устройство, преобразующее механическую энергию в электрическую.
Схема простого генератора переменного тока показана на рисунке 11.3. Проводник представляет собой катушку с проволокой, помещенную в магнитное поле. В проводник вручную вращается в магнитном поле. Это порождает чередование ЭДС.Переменный ток нужно передать от проводника к нагрузке, это система, для функционирования которой требуется электрическая энергия.
Нагрузка и проводник соединены контактным кольцом. Скользящее кольцо это соединитель, который может передавать электричество между вращающимися частями машины. Он состоит из кольца и щеток, одна из которых неподвижна. по отношению к другому. Здесь кольцо прикрепляется к проводнику и щеткам. прикреплены к нагрузке.Ток генерируется во вращающемся проводнике, проходит в контактные кольца, которые вращаются против щеток. Ток передается через щетки в нагрузку, и, таким образом, система получает питание.
Рисунок 11.3: Схема генератора переменного тока.
Направление тока меняется с каждым пол-оборотом катушки. Когда одна сторона петли переходит в другую полюс магнитного поля, ток в контуре меняет направление.Этот тип тока, который меняет направление, известен как переменный. current, а на рис. 11.4 показано, как это происходит. как проводник вращается.
Рисунок 11.4: Красные (сплошные) точки обозначают ток, исходящий со страницы, а крестики показывают текущий ток. переходя на страницу. Генераторы переменного токатакже известны как генераторы переменного тока. Они используются в легковых автомобилях для зарядки автомобильного аккумулятора.
Генератор постоянного тока (ESCQ7)
Простой генератор постоянного тока устроен так же, как генератор переменного тока, за исключением того, что представляет собой одно контактное кольцо, которое разделено на две части, называемые коммутатором, поэтому ток в внешняя цепь не меняет направление.Схема генератора постоянного тока показана на Рисунок 11.5. Коммутатор с разъемным кольцом учитывает изменение направление тока в контуре, создавая тем самым постоянный ток (DC), проходящий через щетки и в цепь. Ток в петле меняет направление, но если вы посмотрите Внимательно изучив 2D-изображение, вы увидите, что секция коммутатора с разъемным кольцом также изменилась. какой стороны цепи он касается. Если ток меняет направление одновременно что коммутатор меняет местами стороны внешней цепи всегда будет иметь ток, идущий в в том же направлении.
Рисунок 11.5: Схема генератора постоянного тока.
Форма ЭДС от генератора постоянного тока показана на рисунке 11.6. ЭДС не является постоянной, но представляет собой абсолютное значение синусоидальной / косинусоидальной волны.
Рисунок 11.6: Изменение ЭДС в генераторе постоянного тока.
Генераторы переменного и постоянного тока (ESCQ8)
Проблемы, связанные с замыканием и размыканием электрического контакта с движущейся катушкой, – это искрение и нагрев, особенно если генератор вращается с высокой скоростью.Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше.
Если вращается магнитное поле, а не катушка / проводник, то в генераторе переменного тока (генераторе) не нужны щетки, поэтому у генератора переменного тока не будет тех же проблем, что и у генераторов постоянного тока. Те же преимущества переменного по сравнению с постоянным током для конструкции генератора применимы и к электродвигателям. В то время как электродвигатели постоянного тока нуждаются в щетках для электрического контакта с движущимися катушками провода, электродвигатели переменного тока этого не делают.Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы. Электродвигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки с проволокой, чтобы заставить магнит вращаться. Двигатель постоянного тока зависит от замыкания и размыкания щеточных контактов. соединения для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).
Электродвигатели (ESCQ9)
Основные принципы работы электродвигателя такие же, как и у генератора, за исключением того, что электродвигатель преобразует электрическую энергию в механическую энергию (движение).
- Электродвигатель
Электродвигатель – это устройство, преобразующее электрическую энергию в механическую.
Если поместить движущуюся заряженную частицу в магнитное поле, она испытал бы силу, называемую силой Лоренца .
- Сила Лоренца
Сила Лоренца – это сила, испытываемая движущейся заряженной частицей в электрическом и магнитное поле.{-1} $} \)) и \ (B \) – напряженность магнитного поля (в теслах, Тл).
На этой диаграмме показано движение положительного заряда между двумя противоположными полюсами магнитов. В направление движения заряда указано оранжевой стрелкой. Он испытает Сила Лоренца, которая будет направлена зеленой стрелкой.
Токоведущий провод, в котором ток идет в направлении оранжевого стрелка, также будет испытывать магнитную силу, зеленая стрелка, из-за Лоренца сила на движущиеся отдельные заряды в текущем потоке.
Если направление тока обратное для того же направления магнитного поля, то направление магнитной силы также будет обратным, как показано на этой диаграмме.
Мы можем, если есть два параллельных проводника с током в противоположных направлениях, они будут испытывать магнитные силы в противоположных направлениях.
Электродвигатель работает за счет использования источника ЭДС, заставляя ток течь по петле проводник так, чтобы сила Лоренца на противоположных сторонах петли была противоположной направления, которые могут вызвать вращение петли вокруг центральной оси.
Сила, действующая на проводник с током из-за магнитного поля, называется законом Ампера.
Направление магнитной силы перпендикулярно обоим направлениям потока. тока и направления магнитного поля и можно найти используя Правило для правой руки , как показано на рисунке ниже. Используйте ваш правая ; ваш первый палец указывает в сторону ток, второй палец по направлению магнитного поля и большой палец будет указывать в направлении силы.
И двигатели, и генераторы можно объяснить с помощью катушки, вращающейся в магнитном поле. В генераторе катушка присоединена к внешней цепи, которая вращается, что приводит к изменению потока, вызывающему ЭДС. В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, создавая крутящую силу (называемую крутящим моментом , , произносится как «разговор»), которая заставляет ее вращаться.
Если используется переменный ток, для создания двигателя переменного тока требуются два контактных кольца.Двигатель переменного тока показан на рисунке 11.7
Рисунок 11.7: Схема двигателя переменного тока.
Если используется постоянный ток, для создания двигателя постоянного тока требуются коммутаторы с разъемным кольцом. Это показано на рисунке 11.8.
Рисунок 11.8: Схема двигателя постоянного тока.
Реальные приложения (ESCQB)
Автомобили
В автомобиле есть генератор. Когда двигатель автомобиля работает, Генератор заряжает аккумулятор и питает электрическую систему автомобиля.
Генераторы
Постарайтесь выяснить, какие значения тока генерируют генераторы переменного тока для разных типов машин. Сравните их, чтобы понять, какие числа имеют смысл в реальном мире. Вы найдете разные значения для автомобилей, грузовиков, автобусов, лодок и т. Д. Попытайтесь выяснить, какие другие машины могут иметь генераторы переменного тока.
Автомобиль также содержит электродвигатель постоянного тока, стартер, который вращает двигатель и запускает его. Стартер состоит из очень мощного электродвигателя постоянного тока и соленоида стартера, прикрепленного к двигателю.Стартерному двигателю требуется очень большой ток для запуска двигателя, и он соединен с аккумуляторной батареей с помощью больших кабелей для передачи большого тока.
Производство электроэнергии
Для производства электроэнергии для массового распределения (в дома, офисы, фабрики и т. д.) обычно используются генераторы переменного тока. Электроэнергия, производимая массивными Электростанции обычно имеют низкое напряжение, которое преобразуется в высокое напряжение. это эффективнее распределять электроэнергию на большие расстояния в виде высоких напряжение в линиях электропередач.
Затем высокое напряжение снижается до 240 В для потребления в домах и офисах. Этот обычно делается в пределах нескольких километров от того места, где он будет использоваться.
Рисунок 11.9: Генераторы переменного тока используются на электростанциях (все типы, гидро- и угольные станции) для выработки электроэнергии.
Siyavula Practice дает вам доступ к неограниченному количеству вопросов с ответами, которые помогут вам в обучении. Тренируйтесь где угодно, когда угодно и на любом устройстве!
Зарегистрируйтесь сейчас для тренировкиГенераторы и двигатели
Упражнение 11.1Укажите разницу между генератором и двигателем.
Электрический генератор – это механическое устройство для преобразования энергии источника в электрическую.
Электродвигатель – это механическое устройство для преобразования электрической энергии из источника в энергию другого вида.
Используйте закон Фарадея, чтобы объяснить, почему в катушке, вращающейся в магнитном поле, индуцируется ток.
Закон Фарадея гласит, что изменяющийся магнитный поток может индуцировать ЭДС, когда катушка вращается в магнитном поле. Вращение может изменять магнитный поток, тем самым вызывая ЭДС.
Если вращение катушки такое, что поток не меняется, т.е. поверхность катушки остается параллельно магнитному полю, то наведенной ЭДС не будет.
Объясните основной принцип работы генератора переменного тока, в котором катушка механически вращается в магнитном поле.Нарисуйте диаграмму, подтверждающую ваш ответ.
Решение пока недоступно
Объясните, как работает генератор постоянного тока. Нарисуйте диаграмму, подтверждающую ваш ответ. Также опишите, чем генератор постоянного тока отличается от генератора переменного тока.
Решение пока недоступно
Объясните, почему катушка с током, помещенная в магнитное поле (но не параллельно полю), будет вращаться. Обратитесь к силе, действующей на движущиеся заряды со стороны магнитного поля и крутящего момента на катушке.
Катушка с током в магнитном поле испытывает силу с обеих сторон катушки, параллельно магнитному полю, создавая крутящую силу (называемую крутящим моментом), которая заставляет его вращаться. Любая катушка, по которой проходит ток, может чувствовать силу в магнитном поле. Сила обусловлена Магнитная составляющая силы Лоренца на движущихся зарядах в проводнике, называемая законом Ампера. Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движется в противоположных направлениях.
Объясните основной принцип работы электродвигателя. Нарисуйте диаграмму, подтверждающую ваш ответ.
Решение пока недоступно
Приведите примеры использования генераторов переменного и постоянного тока.
Автомобили (как переменного, так и постоянного тока), производство электроэнергии (только переменного тока), везде, где требуется электропитание.
Приведите примеры использования двигателей.
Насосы, вентиляторы, бытовая техника, электроинструменты, бытовая техника, оргтехника.
Советы по работе с электричеством и безопасность генератора «Сделай сам» – BGE HOME
Советы по электрическому оборудованию «Сделай сам»
Для устранения неисправностей в электрической сети часто может потребоваться помощь лицензированного специалиста. Однако иногда может потребоваться небольшое устранение неполадок и незначительное исправление. Ниже приведены несколько быстрых советов по электрике, которые можно сделать своими руками, и способы устранения неполадок в доме:
- Светильник не работает: сначала проверьте лампочку; в противном случае это может быть неисправный выключатель, неплотная проводка или неисправная розетка.
- Устройство не включается: проверьте, нет ли перегрузки в цепи, повреждения шнура или ослабленной вилки.
- Гудящий светильник: проверьте лампочку, так как это может означать неисправный балласт или трансформатор, который необходимо заменить, или, возможно, конфликт между регулятором освещения низкого напряжения и регулятором освещения низкого напряжения.
- Перегорел предохранитель: отключите все питание перед тем, как дотронуться до предохранителя, и всегда заменяйте его на предохранитель того же типа и номинального тока. Розетка
- GFI / GFCI не будет работать: попробуйте нажать кнопку сброса, и вы должны вернуться к работе.
- Лампочки перегорают быстро: проверьте мощность лампы, так как она может быть слишком высокой для светильника.
Советы по электробезопасности
Безопасность с электрическими устройствами всегда должна быть высшим приоритетом. Ниже приведены некоторые общие советы по электробезопасности, которые можно использовать в доме:
- Отключите питание: Никогда не работайте на каких-либо цепях, приборах, выключателях или розетках под напряжением. Обязательно отключите питание перед выполнением любого электрического ремонта.
- Правильно используйте удлинители. Никогда не используйте изношенные или поврежденные удлинители и не кладите их под ковры или коврики.Также никогда не перегружайте удлинитель и розетку. Удлинители никогда не должны использоваться вместо постоянной проводки.
- Соблюдайте рекомендации по мощности: Используйте лампочки соответствующей мощности, рекомендованные на бирке UL®, в осветительных приборах и лампах.
- Для срабатывания автоматического выключателя: Если ваш автоматический выключатель срабатывает или перегорают предохранители, это может быть короткое замыкание, перегрузка цепи или слабый выключатель. Сертифицированный электрик должен будет справиться с этим за вас.
- Учитывайте прерыватели замыкания на землю (GFI / GFCI): в местах с повышенной влажностью рассмотрите возможность установки розеток GFI для защиты от поражения электрическим током.GFI / GFCI постоянно контролируют поток электроэнергии в цепи и могут обнаруживать даже незначительные отклонения. Они быстро отключают ток, протекающий в цепи, когда происходят изменения.
- Для старых электрических систем: рассмотрите возможность проверки электрической системы, чтобы определить безопасность и эффективность вашей системы.
- Попробуйте ночники для безопасности: установите ночники с низким энергопотреблением в коридорах, ванных комнатах и на кухнях, чтобы направлять членов семьи и гостей в ночное время.
Советы своими руками: резервные генераторы
Вот несколько советов, которые помогут обеспечить правильную работу вашего генератора:
- Запланируйте ежегодное техническое обслуживание, чтобы обеспечить необходимое техническое обслуживание.