Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

ВЧ-генератор сигналов с частотомером – RadioRadar

В журнале “Радио”, 1997, № 6 на с. 48 и 49 было опубликовано в рубрике “За рубежом” описание “Простого широкополосного генератора сигналов ВЧ”, которое меня заинтересовало. Собранный по схеме из этой статьи генератор работал без замечаний, поддерживая определённый уровень сигнала на выходе почти независимо от частоты. Чтобы превратить изготовленную плату в полноценный сигнал-генератор, нужно было поместить её в корпус и проградуировать шкалу переменного конденсатора, но руки до этого не дошли. Кроме того, очень трудно оказалось точно устанавливать необходимую частоту без частотомера.

Когда в продаже появились недорогие цифровые частотомеры, предназначенные для встраивания в различную аппаратуру, я решил объединить такой частотомер с уже готовым генератором. Кроме того, расширил возможности этого генератора, предусмотрев в нём амплитудную и частотную модуляцию выходного сигнала.

Схема прибора изображена на рис. 1. В качестве основного органа установки частоты в нём применён переменный конденсатор C1 с твёрдым диэлектриком от переносного приёмника. Дополнение его варикапом VD1 позволило осуществить плавную подстройку частоты и частотную модуляцию. Для повышения предельной генерируемой частоты предусмотрено отключение переменного конденсатора C1 выключателем SA1. При этом остаётся возможной перестройка генератора варикапом VD1.

Рис. 1. Схема прибора

 

Генератор модулирующего НЧ-сигнала собран на транзисторах VT5 и VT7. Его сигнал частотой 1 кГц через делитель напряжения из резисторов R3, R4 и конденсатор C3 поступает на переключатель SA3. В положении переключателя “ЧМ” модулирующий сигнал подан на варикап VD1, а в положении “АМ” – на затвор полевого транзистора VT4 через резисторы R11 и R17. Девиацию частоты в режиме ЧМ или глубину АМ регулируют переменным резистором R4.

Если вставить в гнездо XS1 штекер внешнего источника модулирующего сигнала, контакты этого гнезда разорвут цепь подачи сигнала внутреннего генератора НЧ и генератор ВЧ будет модулирован внешним сигналом. Если этот сигнал имеет пилообразную форму, то в режиме ЧМ генерируется ВЧ-сигнал качающейся частоты, который можно использовать для проверки и настройки полосовых фильтров.

Частотомер P1 – PLJ-8LED-RS (рис. 2). Он был приобретён в интернет-магазине. Его описание можно найти по адресу http://www.zL2pd. com/files/PLJ-8LED_Manual_ Translation_EN.pdf (30.10.17). Переключатель SA4 позволяет подключить вход частотомера к выходу генератора для измерения частоты его сигнала или к разъёму XW1, чтобы измерять частоту любого внешнего сигнала, поданного на этот разъём.

Рис. 2. Частотомер P1 – PLJ-8LED-RS

 

Переменным резистором R24 регулируют амплитуду ВЧ-сигнала на выходе генератора, но поскольку этот резистор находится под потенциалом плюсовой линии питания, сигнал подан с него на разъём XW2 через конденсаторы C13 и C18.

Генератор, частотомер и блок сетевого питания удалось уместить в общий корпус размерами 200х100х х40 мм. Расположение в нём плат и других деталей показано на рис. 3. В качестве источника постоянного напряжения 12 В можно использовать любой сетевой блок питания на это напряжение и ток не менее 0,3 А. Я применил готовую плату от ИБП. Различные готовые блоки питания можно использовать и отдельно, не помещая их в корпус генератора, и этим уменьшить размеры прибора.

Рис. 3. Расположение плат и других деталей в корпусе прибора

 

В генераторе ВЧ желательно использовать керамические конденсаторы с малым ТКЕ. Переключатели SA1, SA3, SA4 – движковые ПД9-1, подойдут и другие малогабаритные переключатели на два положения. Переключатель SA1 желательно установить поблизости от конденсатора C1. Переключатель поддиапазонов SA2 – SK 1P3T либо другой движковый или галетный на три положения.

Катушка L1 – 62 витка, L2 – 15 витков, L3 – 5 витков провода ПЭВ-2 диаметром 0,2…0,3 мм. Катушки L1 и L2 намотаны на каркасах, демонтированных с платы старой автомагнитолы. Каркас катушки L3 – пластмассовый диаметром 7 мм. Все они имеют ферромагнитные подстроечники. Варикап VD1 и конденсатор C2 постарайтесь разместить рядом с катушкой L3.

Переменный резистор R8 должен быть многооборотным, а R24 не должен быть проволочным. Гнездо XS1 – под аудиоштекер диаметром 3,5 мм, оснащённое внутренним выключателем. Разъёмы XW1 и XW2 – байонетные BNC или СР50-73Ф.

Все детали прибора размещены на листе фольгированного стеклотекстолита размерами 200×100 мм, который служит и лицевой панелью прибора (рис. 4).

Рис. 4. Лицевая панель прибора

 

Правильно собранный генератор начинает работать сразу. Однако его частотные поддиапазоны требуют “укладки”. При этом возможно потребуется подбирать число витков катушек.

При переключателе SA2 в положении “1”, максимальной ёмкости переменного конденсатора C1 и движке переменного резистора R8 в верхнем по схеме положении генерируемая частота должна быть около 400 кГц. Этого следует добиться, вращая под-строечник катушки L1. Если установить нужную частоту с помощью подстроеч-ника не удаётся, придётся менять число витков этой катушки. Увеличение их числа понизит частоту, а при его уменьшении она возрастёт. Получив нужную минимальную частоту, переведите ротор переменного конденсатора C1 в положение минимальной ёмкости, а напряжение управления варикапом VD1 сделайте максимальным, переведя движок переменного резистора R8 в нижнее положение. Прочитайте на табло частотомера значение верхней частоты первого поддиапазона.

Далее переведите переключатель SA2 в положение “2” и вновь установите максимальную ёмкость переменного конденсатора C1 и минимальное напряжение на варикапе VD1. Подстро-ечником катушки L2 и подбором числа её витков добейтесь, чтобы генерируемая частота стала равной уже известной верхней частоте первого поддиапазона. При минимальной ёмкости пере-менного конденсатора и максимальном напряжении на варикапе измерьте максимальную частоту второго поддиапазона. Аналогичным образом, переведя переключатель SA2 в третье положение, “уложите”, изменяя индуктивность катушки L3, и третий, самый высокочастотный поддиапазон. Ещё боль-шую частоту генерации в этом поддиапазоне можно получить, отключив выключателем SA1 переменный конденсатор C1 и пользуясь для перестройки генератора только переменным резистором R8. В своём генераторе я добился перекрытия диапазона 400 кГц…150 МГц без разрывов.

Автор: А. Чех, г. Москва

Мощный ВЧ-генератор | Катушки Тесла и все-все-все

 Довольно давно я уже писал о простейшем «СВЧ-генераторе», состоящем из 3. 5 деталей и выдающем несколько ватт мощности на частоте в 400-500 мегагерц, достаточных для того, чтобы засвечивать газоразрядные приборы типа неонок, слегка обжигать пальцы и сообщать о себе частотомерам.

При наличии правильных транзисторов, понимания методик составления ВЧ плат и некотором везении можно значительно усилить эту конструкцию, подняв мощность до 40-50 ватт на той же частоте.

 Транзисторы, которые работают на таких частотах и мощностях, уже значительно отличаются от привычных многим читателям моего скромного блога трёхногих TO-247, TO-220, и других корпусов, равно как и от «кирпичей». Форма их корпусирования в значительной степени диктуется поведением сигналов на высоких частотах. Обычно это квадрат или прямоугольник, характерного белого оттенка, с расположенными с двух или четырёх сторон позолоченными выводами довольно внушительной толщины. Стоят эти транзисторы также значительно дороже силовых инверторных, причём цена растёт пропорционально как мощности, так и частоте, и может доходить до сотен долларов за штуку и выше.
 Для данной конструкции ВЧ транзистор с маркировкой MRF 6522- 70 был аккуратно выпаян из демонтированной платы GSM базовой станции. Как нетрудно заметить по даташиту, он может выдавать до 70 ватт на частоте в 900 мегагерц. Однако, для ввода его в такой режим необходимо довольно тщательно спроектировать плату — все эти характерные для высоких частот изгибы дорожек, гальванически никуда не подключенные куски фольги и прочие странные выверты, кажущиеся не особо осмысленными, но на деле влияющие на поведение сигнала, здесь уже совершенно необходимы. А на меньших мощностях и частотах на них можно забить и сделать плату банальным методом гравировки прорезей.  Принципиальных отличий конструкции от упоминавшегося выше элементарного СВЧ-генератора нет. Разве что, в качестве резонатора взяты две медные полосы, определённой длины и размеров (расстояние между ними, их ширина и длина определяют L и С резонансного автогенераторного контура — они сами себе и индуктивность, и ёмкость).
 Генератор потребляет по входу 18 вольт с током до 4 ампер, и довольно ощутимо разогревает радиатор. Принудительное охлаждение является совершенно необходимым для его работы, учитывая КПД в 50-60%. Кроме радиатора, довольно неплохо нагреваются пальцы, если поднести их поближе к медному резонатору. Принцип нагрева здесь тот же, что у продуктов в микроволновке (что убедительно опровергает бредни про резонансные явления в молекулах воды, которые якобы происходят на её рабочей частоте). Если поджечь факел на конце резонатора, то он успешно удерживается там продолжительное время — маленький светящийся шарик плазмы с размытыми краями, диаметром в 3-5 миллиметров.

Схема генератора прилагается:

 Но самое интересное, ради чего я вообще начал всё это рассказывать, это явления, происходящие с разреженными газами на таких частотах. Поведение плазменного жгута начинает резко отличаться от стандартных изгибов, характерных для частот в десятки и сотни килогерц, использовавшиеся мною ранее (при работе с качером и т. д.). Довольно долго описывать при помощи текста все различия, достаточно просто посмотреть галерею изображений и приложенные видео. Наиболее интересным образом себя ведут, конечно, ксенон, криптон и их смеси с добавками. Поразительные сочетания оттенков, форм и движений создают ощущение, что в бутылке или колбе живое существо, приехавшее к нам прямиком из мифологии Лавкрафта или из чего-то подобного. Щупальца, присоски, резкие и в то же время плавные движения, зеленовато-призрачные оттенки как будто бы живая иллюстрация к рассказам о Ктулху и других жителях глубин.

Все четыре видео крайне заслуживают просмотра. Очень рекомендую.

А ещё теперь вы знаете, из чего на самом деле были крылья у архангела Тираэля 😉

Метки отсутствуют.

Генератор тока высокой частоты своими руками. Простой широкополосный генератор сигналов вч

Недавно мне принесли в ремонт генератор ГУК-1 . Что бы потом не думалось, сразу заменил все электролиты. О чудо! Все заработало. Генератор еще советских времен, а отношение у коммунистов к радиолюбителям было такое Х… , что вспоминать не охота.

Вот отсюда и генератор желал бы быть получше. Конечно самое главное неудобство, это установка частоты высокочастотного генератора. Хоть бы, какой ни будь простенький верньер поставили, поэтому пришлось добавить дополнительный подстроечный конденсатор с воздушным диэлектриком (Фото1). По правде сказать я очень не удачно выбрал для его место, надо было бы чуть-чуть сместить. Я думаю вы это учтете.

Что бы поставить ручку, пришлось удлинить ось триммера, кусок медной проволоки диаметром 3мм. Конденсатор подключается параллельно основному КПЕ или непосредственно, или через «растягивающий» конденсатор, что еще больше увеличивает плавность настройки генератора ВЧ. Для кучи заменил и выходные разъемы – родные уже все раздрыгались. На этом ремонт закончился. От куда схема генератора я не узнал, но похоже, что все соответствует. Возможно она пригодится и вам.
Схема генератора универсального комбинированного – ГУК-1 приведена на рисунке 1. В состав прибора входят два генератора, низкочастотный генератор и генератор ВЧ.


ТЕХНИЧЕСКИЕ ДАННЫЕ

1. Диапазон частот ВЧ генератора от 150 кГц до 28 мГц перекрывается пятью поддиапазонами со следующими частотами:
1 поддиапазон 150 – 340 кГц
II 340 – 800 кГц
III 800 – 1800 кГц
IV 4,0 – 10,2 мГц
V 10,2 – 28,0 мГц

2. Погрешность установки ВЧ не более ±5%.
3. Генератор ВЧ обеспечивает плавную регулировку выходного напряжения от 0,05 мВ до 0,1 В.
4. Генератор обеспечивает следующие виды работ:
а) непрерывная генерация;
б) внутренняя амплитудная модуляция синусоидальным напряжением с частотой 1кГц.
5. Глубина модуляции не менее 30%.
6. Выходное сопротивление ВЧ генератора не более 200 Ом.
7. НЧ генератор генерирует 5 фиксированных частот: 100 Гц, 500 Гц, 1кГц, 5кГц, 15кГц.

8. Допустимое отклонение частоты НЧ генератора не более ±10%.
9. Выходное сопротивление НЧ генератора не более 600 Ом.
10. Выходное напряжение НЧ плавно регулируется от 0 до 0.5 В.
11. Время самопрогрева прибора – 10 минут.
12. Питание прибора осуществляется от батареи «Крона» напряжением 9 В.

ГЕНЕРАТОР НИЗКОЙ ЧАСТОТЫ


Генератор НЧ собран на транзисторах VT1 и VT3. Положительная обратная связь, необходимая для возникновения генерации снимается с резистора R10 и подается в цепь базы транзистора VT1 через конденсатор С1 и соответствующую фазосдвигающую цепочку, выбранную переключателем В1 (например С2,С3,С12.). Один их резисторов в цепочке – подстроечный (R13), с помощью которого можно подстраивать частоту генерации низкочастотного сигнала. Резистором R6 устанавливается начальное смещение на базе транзистора VT1. На транзисторе VT2 собрана схема стабилизации амплитуды генерируемых колебаний. Выходное напряжение синусоидальной формы через С1 и R1 подается на переменный резистор R8, который является регуляторов выходного сигнала НЧ генератора и регулятором глубины амплитудной модуляции ВЧ генератора.

ГЕНЕРАТОР ВЫСОКОЙ ЧАСТОТЫ

ВЧ генератор реализован на транзисторах VT5 и VT6. С выхода генератора через С26 сигнал подается на усилитель собранный на транзисторах VT7 и VT8. На транзисторах VT4 и VT9 собран модулятор ВЧ сигнала. Эти же транзисторы используются в схеме стабилизации амплитуды выходного сигнала. Не плохо бы для этого генератора изготовить аттенюатор, или Т, или П типа. Рассчитать такие аттенюаторы можно с помощью соответствующих калькуляторов для расчета и . Вот вроде и все. До свидания. К.В.Ю.

Скачать схему.

Рисунок печатной платы генератора ВЧ

Рисунок в формате LAY любезно предоставил Игорь Рожков, за что я ему выражаю благодарность за себя и за тех, кому этот рисунок пригодится.

В приведенном архиве размещен файл Игоря Рожкова к промышленному радиолюбительском генератору, имеющему пять диапазонов ВЧ — ГУК-1. Плата приведена в формате *.lay и содержит доработку схемы (шестой переключатель на диапазон 1,8 — 4 МГц), ранее опубликованную в журнале Радио 1982, № 5, с.55
Скачать рисунок печатной платы.

Доработка генератора ГУК-1

FM модуляция в генераторе ГУК-1.

Еще одна идея модернизации генератора ГУК-1 , я ее не пробовал, потому, как у меня собственного генератора нет, но по идее все должно работать. Эта доработка позволяет настраивать узлы, как приемной, так и передающей аппаратуры, работающей с применением частотной модуляции, например радиостанций СВ диапазона. И, что не маловажно, с помощью резистора Rп можно подстраивать несущую частоту. Напряжение, которое используется для смещения варикапов должно быть обязательно стабилизированным. Для этих целей можно использовать однокристальные трехвыводные стабилизаторы

на напряжение 5В и небольшим падением напряжения на самом стабилизаторе. В крайнем случае можно собрать параметрический стабилизатор, состоящий из резистора и стабилитрона КС156А. Прикинем величину резистора в цепи стабилитрона. Ток стабилизации КС156А лежит в пределах от 3ма до 55ма. Выберем начальный ток стабилитрона 20ма. Значит при напряжении питания 9В и напряжении стабилизации стабилитрона 5.6В, на резисторе при токе в 20ма должно упасть 9 — 5,6 = 3,4В. R = U/I = 3,4/0,02 = 170 Ом. При необходимости величину резистора можно изменить. Глубина модуляции регулируется все тем же переменным резистором R8 — регулятор выходного напряжения НЧ. При необходимости изменить пределы регулировки глубины модуляции, можно подобрать номинал резистора R*.

Генераторы ВЧ

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать.

В нашем ненаглядном Интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем эту уйму.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

«Классика жанра».

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора,

R2 – задает смещение базы,

C1, L1 – колебательный контур,

C2 – кондер ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности.

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовай ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков:)

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.

Итак, смотрим схему генератора. Имеем:

Два инвертера (DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1. 1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?
Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1. 1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Предлагаемый высокочастотный генератор сигналов привлекает простотой конструкции и обеспечивает стабилизацию выходного напряжения в широкой полосе частот.

Общеизвестны требования, предъявляемые к широкополосному генератору сигналов. В первую очередь, это достаточно малая величина выходного сопротивления, позволяющая согласовать его выход с волновым сопротивлением коаксиального кабеля (обычно 50 Ом), и наличие автоматической регулировки амплитуды выходного напряжения, поддерживающей его уровень практически постоянным независимо от изменения частоты выходного сигнала. Для диапазона СВЧ (выше 30 МГц) большое значение имеют простая и надежная коммутация диапазонов, а также рациональная конструкция генератора.

Высокочастотный сигнал с генератора через конденсатор С4 поступает на затвор полевого транзистора VT3. Этим обеспечивается почти идеальная развязка нагрузки и генератора. Для установки напряжения смещения транзисторов VT3 и VT4 служат резисторы R7, R8, а токовый режим каскада определяют резисторы R12 – R 14. Для увеличения степени развязки выходное высокочастотное напряжение снимается с коллекторной цепи VT4.

Для стабилизации уровня сигнал ВЧ через конденсатор С9 подводится к выпрямителю с удвоением напряжения, выполненного на элементах VD1, VD2, С10, С11, R15. Пропорциональное амплитуде выходного сигнала выпрямленное напряжение дополнительно усиливается в цепи управления на VT5 и VT6. При отсутствии сигнала ВЧ транзистор VT6 полностью открыт; при этом к задающему генератору поступает максимальное напряжение питания. В результате облегчаются условия самовозбуждения генератора и в начальный момент устанавливается большая амплитуда его колебаний. Но это напряжение ВЧ через выпрямитель открывает VT5, при этом напряжение на базе VT6 увеличивается, что приводит к уменьшению напряжения питания генератора и в конечном счете к стабилизации амплитуды его колебаний. Равновесное состояние устанавливается при амплитуде сигнала ВЧ на коллекторе VT4 несколько выше 400 мВ.

Переменный резистор R17 (показан как потенциометр) в действительности представляет собой ВЧ аттенюатор и при отсутствии нагрузки на его выходе максимальное напряжение достигает четверти входного, т.е. 100 мВ. При нагрузке коаксиального кабеля на сопротивление 50 Ом (что является необходимым для его согласования в частотном диапазоне от 50 до 160 МГц и выше) на выходе генератора устанавливается напряжение ВЧ около 50 мВ, которое регулировкой аттенюатора может быть уменьшено до необходимого уровня.

В качестве регулятора R17 в схеме генератора был использован 50-омный аттенюатор фирмы Prech. Если для некоторых конкретных применений не требуется регулировки уровня выходного напряжения, аттенюатор R17 может быть заменен фиксированным резистором с сопротивлением 50 Ом.

Однако и в этом случае сохраняется возможность регулировки уровня напряжения ВЧ в некоторых пределах: с этой целью конденсатор С9 присоединяют не к коллектору VT4, а к его эмиттеру, при этом приходится учитывать небольшое изменение (уменьшение) уровня сигнала на высших частотах рабочего диапазона. Тогда нагрузку для VT4 образуют аттенюатор R17 и резисторы R11, R12. Увеличение амплитуды выходного высокочастотного напряжения может быть достигнуто замыканием резистора R11 проволочной перемычкой, если же требуется уменьшить амплитуду выходного напряжения, то резистор R11 оставляют в устройстве, а конденсаторы С7, С8 выпаивают. Еще большее уменьшение уровня выходного сигнала может быть получено снижением величины сопротивления R17, но в этом случае уже не будет согласования с кабелем, а на частотах выше 50 МГц это недопустимо!

Все детали генератора расположены на печатной плате небольших размеров. Катушки индуктивности генератора L1 – L3 намотаны на каркасах диаметром 7,5 мм. Их индуктивности подстраивают ферритовыми сердечниками с малыми потерями, предназначенными для работы в диапазоне УКВ. Катушка L3 имеет 62 витка, L2 – 15 и L1 – 5 витков провода ПЭЛ 0,2 (намотка всех катушек в один слой). Индуктивность WL1 выполнена в виде шлейфа, который одной своей стороной прикреплен к переключателю диапазонов, а другой – к конденсатору С1 переменной емкости. Размеры шлейфа приведены на рис. 2. Он выполнен из медного посеребренного провода диаметром 1,5 мм; для фиксации расстояний между его проводниками применяются три пластины из изоляционного материала с малыми потерями (например фторопласта), в которых просверлены по два отверстия диаметром 1,5 мм, находящиеся соответственно на расстоянии 10 и 2,5 мм (рис. 2).


Весь прибор размещают в металлическом корпусе размерами 45х120х75 мм. Если аттенюатор и ВЧ разъем установлены в корпусе на стороне, противоположной той, на которой находится печатная плата, то внутри корпуса прибора еще остается достаточно места для узлов блока питания: трансформатора питания мощностью 1 Вт с понижением напряжения сети до 15 В, выпрямительного моста и микросхемы 7812 (отечественный аналог- КР142ЕН8Б). В корпусе может быть размещен также миниатюрный частотомер с предварительным делителем частоты. При этом вход делителя следует подключить к коллектору VT4, а не к выходному разъему, что позволит производить отсчет частоты при любом напряжении ВЧ, снимаемом с аттенюатора R17.

Возможно изменение частотного диапазона прибора путем изменения индуктивности катушки контура или емкости конденсатора С1. При расширении частотного диапазона в сторону более высоких частот следует уменьшать потери контура настройки (применение в качестве С1 конденсатора с воздушным диэлектриком и керамической изоляцией, катушек индуктивности с малыми потерями). Кроме того, диоды VD1 и VD2 должны соответствовать этому расширенному диапазону частот, в противном случае с увеличением частоты выходное напряжение генератора будет увеличиваться, что объясняется уменьшением эффективности цепи стабилизации.

Для облегчения настройки параллельно С 1 подключают дополнительный переменный конденсатор малой емкости (электрический верньер) или же применяют механический верньер к конденсатору настройки с передаточным отношением 1:3 – 1:10.

От редакции. В этой конструкции транзисторы BF199 могут быть заменены отечественными – КТ339 с любым буквенным индексом, а при расширении диапазона генератора в сторону более высоких частот – КТ640, КТ642, КТ643. Вместо полевого транзистора BFW11 допустимо установить КП307Г или КП312, а вместо транзистора ВС252С подойдет КТ3107 с индексами Ж, И, К или Л. В качестве диодов можно применить детекторные диоды СВЧ, например, 2А201, 2А202А. Если же генератор работает на частотах, не превышающих 100 МГц, то могут быть использованы и диоды типа ГД507А (с коррекцией сопротивления резистора R11). Переключатель SA1 – ПГК. Мощность резисторов – 0,125 или 0,25 Вт.

Конденсатор С1 должен быть с воздушным диэлектриком и иметь керамическую или кварцевую изоляцию как статорных пластин от корпуса, так и роторных от оси; его максимальную емкость лучше ограничить 50 пф. Аттенюаторы типа, который применен в генераторе, нашей промышленностью не выпускаются. Вместо него допускается использовать плавный регулятор в цепи авторегулирования и обычный ступенчатый аттенюатор с П или Т-образными звеньями на выходе.

РадиоМир 2008 №9

Предлагаемый ВЧ-генератор является попыткой заменить громоздкий промышленный Г4-18А более малогабаритным и надёжным прибором. Обычно при ремонте и налаживании КВ-аппаратуры необходимо “уложить” КВ-диапазоны с помощью LC-контуров, проверить прохождение сигнала по ВЧ- и ПЧ-тракту, настроить отдельные контура в резонанс и т.д. Чувствительность, избирательность, динамический диапазон и другие важные параметры КВ-устройств определяются схемотехническими решениями, так что для домашней лаборатории не обязательно иметь многофункциональный и дорогой ВЧ-генератор. Если генератор имеет достаточно стабильную частоту с “чистой синусоидой”, значит, он подходит радиолюбителю. Конечно, считаем, что в арсенал лаборатории также входят частотомер, ВЧ-вольтметр и тестер. К сожалению, большинство испробованных мной схем ВЧ-генераторов КВ-диапазона выдавало очень искажённую синусоиду, улучшить которую без неоправданного усложнения схемы не удавалось. ВЧ-генератор, собранный по приведённой на рис.1 схеме, зарекомендовал себя очень хорошо (получалась практически чистая синусоида во всём КВ-диапазоне). За основу взята схема из . В моей схеме вместо настройки контуров варикапом применён КПЕ, а индикаторная часть схемы не используется.

Рис.1 Схема ВЧ-генератора

В данной конструкции использован конденсатор переменной ёмкости типа КПВ-150 и малогабаритный переключатель диапазонов ПМ (11П1Н). С данным КПЕ (10…150 пФ) и катушками индуктивности L2…L5 перекрывается участок КВ-диапазона 1,7…30 МГц. По ходу работы над конструкцией были добавлены ещё три контура (L1, L6 и L7) на верхний и нижний участки диапазона. В экспериментах с КПЕ ёмкостью до 250 пФ весь КВ-диапазон перекрывался тремя контурами. ВЧ-генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 50×80 мм (рис.2). Дорожки и монтажные “пятачки” вырезаны ножом и резаком. Фольга вокруг деталей не удаляется, а используется вместо “земли”. На рисунке печатной платы для наглядности эти участки фольги условно не показаны. Конечно, можно изготовить и печатную плату, приведённую в .


Рис.2 Плата

Вся конструкция генератора вместе с блоком питания (отдельная плата со стабилизатором напряжения на 9 В по любой схеме) размещена на дюралевом шасси и помещена в металлический корпус подходящих размеров. Я использовал кассету от старой аппаратуры с размерами 130x150x90 мм. На переднюю панель выводятся ручка переключателя диапазонов, ручка настройки КПЕ, малогабаритный ВЧ-разъём (50-Омный) и светодиодный индикатор включения в сеть. При необходимости можно установить регулятор выходного уровня (переменный резистор сопротивлением 430…510 Ом) и аттенюатор с дополнительным разъёмом, а также проградуированную шкалу. В качестве каркасов катушек контуров использованы унифицированные секционные каркасы СВ и ДВ диапазонов от устаревших радиоприёмников. Количество витков каждой катушки зависит от ёмкости используемого КПЕ и первоначально берется “с запасом”. При налаживании (“укладке” диапазонов) генератора часть витков отматывается. Контроль ведётся по частотомеру. Катушка индуктивности L7 имеет ферритовый сердечник М600-3 (НН) Ш2,8х14. Экраны на катушки контуров не устанавливаются. Намоточные данные катушек, границы поддиапазонов и выходные уровни ВЧ-генератора приведены в таблице.

№№ п/п Диапазон, МГц Катушка Количество витков Провод (диаметер, мм) Каркас, сердечник Выходной уровень, В
1 80. ..30 L1 5 ПЭВ-2 (1,0) Бескаркасная диаметром 6 мм. L=12 мм 0,4…0,6
2 31…16 L2 12 ПЭВ-2 (0,6) Керамический диаметром 6 мм, L=12 мм 1,1…1,2
3 18…8 L3 3×15 ПЭЛ (0,22) Унифицированный
3-секционный
1,5…1,6
4 8,1…3,6 L4 3×35 ПЭЛ (0,22) -=- 1,7…1,9
5 3,8…1,7 L5 3×55 ПЭЛ (0,22) -=- 1,9…2,0
6 1,75…0,75 L6 3×75 ПЭЛ (0,22) -=- 1,8…2,2
7 1,1…0,46 L7 4×90 ПЭЛ (0,15) Унифицированный
4-секционный
1,7. ..2,2

В схеме генератора, кроме указанных транзисторов, можно применить полевые КП303Е(Г), КП307 и биполярные ВЧ-транзисторы BF324, 25С9015, ВС557 и т.д. Блокировочные ёмкости желательно использовать импортные малогабаритные. Конденсатор связи С5 ёмкостью 4,7…6,8 пФ – типа КМ, КТ, КА с малыми потерями по ВЧ. В качестве КПЕ очень желательно использовать высококачественные (на шарикоподшипниках), однако они дефицитны. Более доступны регулировочные КПЕ типа КПВ с максимальной ёмкостью 80…150 пФ, но они легко ломаются и имеют заметный “гистерезис” при вращении вперёд и назад. Тем не менее, при жёстком монтаже, качественных деталях и прогреве генератора в течение 10…15 минут можно добиться “ухода” частоты не более 500 Гц в час на частотах 20…30 МГц (при стабильной температуре в помещении). Форма сигнала и выходной уровень изготовленного ВЧ генератора проверялись по осциллографу С1-64А. На заключительном этапе наладки все катушки индуктивности (кроме L1, которая припаяна одним концом к корпусу) закрепляются клеем вблизи переключателя диапазонов и КПЕ.

Литература:
1. Коротковолновый ГИР – Радио, 2006, №11, С.72.

А.ПЕРУЦКИЙ, г.Бендеры, Молдова.

Состоящем из 3.5 деталей и выдающем несколько ватт мощности на частоте в 400-500 мегагерц, достаточных для того, чтобы засвечивать газоразрядные приборы типа неонок, слегка обжигать пальцы и сообщать о себе частотомерам.

При наличии правильных транзисторов, понимания методик составления ВЧ плат и некотором везении можно значительно усилить эту конструкцию, подняв мощность до 40-50 ватт на той же частоте.

Транзисторы, которые работают на таких частотах и мощностях, уже значительно отличаются от привычных многим читателям моего скромного блога трёхногих TO-247, TO-220, и других корпусов, равно как и от «кирпичей». Форма их корпусирования в значительной степени диктуется поведением сигналов на высоких частотах. Обычно это квадрат или прямоугольник, характерного белого оттенка, с расположенными с двух или четырёх сторон позолоченными выводами довольно внушительной толщины. Стоят эти транзисторы также значительно дороже силовых инверторных, причём цена растёт пропорционально как мощности, так и частоте, и может доходить до сотен долларов за штуку и выше.

Для данной конструкции ВЧ транзистор с маркировкой MRF 6522- 70 был аккуратно выпаян из демонтированной платы GSM базовой станции. Как нетрудно заметить по даташиту, он может выдавать до 70 ватт на частоте в 900 мегагерц. Однако, для ввода его в такой режим необходимо довольно тщательно спроектировать плату — все эти характерные для высоких частот изгибы дорожек, гальванически никуда не подключенные куски фольги и прочие странные выверты, кажущиеся не особо осмысленными, но на деле влияющие на поведение сигнала, здесь уже совершенно необходимы. А на меньших мощностях и частотах на них можно забить и сделать плату банальным методом гравировки прорезей.

Принципиальных отличий конструкции от упоминавшегося выше нет. Разве что, в качестве резонатора взяты две медные полосы, определённой длины и размеров (расстояние между ними, их ширина и длина определяют L и С резонансного автогенераторного контура — они сами себе и индуктивность, и ёмкость).

Генератор потребляет по входу 18 вольт с током до 4 ампер, и довольно ощутимо разогревает радиатор. Принудительное охлаждение является совершенно необходимым для его работы, учитывая КПД в 50-60%. Кроме радиатора, довольно неплохо нагреваются пальцы, если поднести их поближе к медному резонатору. Принцип нагрева здесь тот же, что у продуктов в микроволновке (что убедительно опровергает бредни про резонансные явления в молекулах воды, которые якобы происходят на её рабочей частоте). Если поджечь факел на конце резонатора, то он успешно удерживается там продолжительное время — маленький светящийся шарик плазмы с размытыми краями, диаметром в 3-5 миллиметров.

Схема генератора прилагается:

Но самое интересное, ради чего я вообще начал всё это рассказывать, это явления, происходящие с разреженными газами на таких частотах. Поведение плазменного жгута начинает резко отличаться от стандартных изгибов, характерных для частот в десятки и сотни килогерц, использовавшиеся мною ранее (при работе с качером и т. д.). Довольно долго описывать при помощи текста все различия, достаточно просто посмотреть галерею изображений и приложенные видео. Наиболее интересным образом себя ведут, конечно, ксенон, криптон и их смеси с добавками. Поразительные сочетания оттенков, форм и движений создают ощущение, что в бутылке или колбе живое существо, приехавшее к нам прямиком из мифологии Лавкрафта или из чего-то подобного. Щупальца, присоски, резкие и в то же время плавные движения, зеленовато-призрачные оттенки как будто бы живая иллюстрация к рассказам о Ктулху и других жителях глубин.

Все четыре видео крайне заслуживают просмотра. Очень рекомендую.

Генератор вч частоты. Генератор сигналов: функциональный генератор своими руками

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор.

(63.6 KiB, 2,811 hits)

После применения лазерно-утюжной технологии и травления, получилась такая заготовка:


Дорожки на этой плате выполнены шириной 0,8 мм, почти все контактные площадки диаметром 1,5 мм и почти все отверстия – сверлом 0,7 мм. Я думаю, что вам будет не очень сложно разобраться в этой плате, и так-же, в зависимости от используемых деталей (особенно подстроечные сопротивления), внести свои изменения. Сразу хочу сказать, что эта плата проверенна и при правильной пайке деталей схема начинает работать сразу.

Немного о функциональности и красоте платы. Беря в руки плату, изготовленную в заводских условиях, вы наверняка замечали как она удобно подготовлена для пайки деталей – и сверху и снизу нанесена белым цветом так называемая “шелкография”, на которой сразу видны и наименование деталей и их посадочные места, что очень облегчает жизнь при пайке радиоэлементов. Видя посадочное место радиоэлемента, никогда не ошибешься в какие отверстия его вставлять, остается только глянуть на схему, выбрать нужную деталь, вставить ее и припаять. Поэтому мы сегодня сделаем плату приближенную к заводской, т.е. нанесем шелкографию на слой со стороны деталей. Единственное, эта “шелкография” будет черного цвета. Процесс очень прост. Если, к примеру, мы пользуемся программой Sprint Layout, то выбираем при печати слой К1 (слой со стороны деталей), распечатываем его как и для самой платы (но только в зеркальном отображении), накладываем отпечаток на сторону платы, где нет фольги (со стороны деталей), центрируем его (а на просвет протравленной платы рисунок виден прилично) и применяя способ ЛУТ переносим тонер на текстолит. Процесс – как и при переносе тонера на медь, и любуемся результатом:


После высверливания отверстий, вы реально будете видеть схему расположения деталей на плате. А самое главное, что это не только для красоты платы (хотя, как я уже говорил, красивая плата – это залог хорошей и долгой работы собранной вами схемы), а главное – для облегчения дальнейшей пайки схемы. Затраченные десять минут на нанесение “шелкографии” заметно окупаются по времени при сборке схемы. Некоторые радиолюбители, после подготовки платы к пайке и нанесения такой “шелкографии”, покрывают слой со стороны деталей лаком, тем самым защищая “шелкографию” от стирания. Хочу отметить, что тонер на текстолите держится очень хорошо, а после пайки деталей вам придется растворителем удалять остатки канифоли с платы. Попадание растворителя на “шелкографию”, покрытую лаком, приводит к появлению белого налета, при удалении которого сходит и сама “шелкография” (это хорошо видно на фотографии, именно так я и делал), поэтому, я считаю, что использовать лак не обязательно. Кстати, все надписи, контура деталей выполнены при толщине линий 0,2 мм, и как видите, все это прекрасно переноситься на текстолит.

А вот так выглядит моя плата (без перемычек и навесных деталей):


Эта плата выглядела бы намного лучше, если бы я не покрывал ее лаком. Но а вы можете как всегда поэкспериментировать, и естественно, сделать лучше. Кроме того, у меня на плате установлены два конденсатора С4, нужного номинала (0,22 мкФ) у меня не оказалось и я заменил его двумя конденсаторами номиналом 0,1 мкФ соединив их параллельно.

Продолжаем. После того, как мы припаяли все детали на плату, припаиваем две перемычки, припаиваем с помощью отрезков монтажных проводов резисторы R7 и R10, переключатель S2. Переключатель S1 пока не припаиваем а делаем перемычку из провода, соединяя выводы 10 микросхемы ICL8038 и конденсатора С3 (т.е. подключаем диапазон 0,7 – 7 кГц), подаем питание с нашего (я надеюсь собранного) лабораторного блока питания на входы микросхемных стабилизаторов около 15 вольт постоянного напряжения

Теперь мы готовы к проверке и настройке нашего генератора. Как проверить работоспособность генератора. Очень просто. Подпаиваем к к выходам Х1 (1:1) и “общий” любой обыкновенный или пьезокерамический динамик (к примеру от китайских часов в будильнике). При подключении питания мы услышим звуковой сигнал. При изменении сопротивления R10 мы услышим как изменяется тональность сигнала на выходе, а при изменении сопротивления R7 – как изменяется громкость сигнала. Если у вас этого нет, то единственная причина в неправильной пайке радиоэлементов. Обязательно пройдитесь еще раз по схеме, устраните недостатки и все будет о,кей!

Будем считать, что этот этап изготовления генератора мы прошли. Если что-то не получается, или получается, но не так, обязательно задавайте свои вопросы в комментариях или на форуме. Вместе мы решим любую проблему.

Продолжаем. Вот так выглядит плата, подготовленная к настройке:


Что мы видим на этой картинке. Питание – черный “крокодил” на общий провод, красный “крокодил” на положительный вход стабилизатора, желтый “крокодил” – на отрицательный вход стабилизатора отрицательного напряжения. Припаянные переменные сопротивления R7 и R10, а также переключатель S2. С нашего лабораторного блока питания (вот где пригодился двухполярный источник питания) мы подаем на схему напряжение около 15-16 вольт, для того, чтобы нормально работали микросхемные стабилизаторы на 12 вольт.

Подключив питание на входы стабилизаторов (15-16 вольт) с помощью тестера проверяем напряжение на выходах стабилизаторов (±12 вольт). В зависимости от используемых стабилизаторов напряжения будет отличаться от ± 12 вольт, но близки к нему. Если у вас напряжения на выходах стабилизаторов несуразные (не соответствуют тому, что надо), то причина одна – плохой контакт с “массой”. Самое интересное, что даже отсутствие надежного контакта с “землей” не мешает работе генератора на динамик.

Ну а теперь нам осталось настроить наш генератор. Настройку мы будем проводить с помощью специальной программы – виртуальный осциллограф . В сети можно найти много программ имитирующих работу осциллографа на экране компьютера. Специально для этого занятия я проверил множество таких программ и остановил свой выбор на одной, которая, как мне кажется, наиболее лучше симулирует осциллограф – Virtins Multi-Instrument . Данная программа имеет в своем составе несколько подпрограмм – это и осциллограф, частотомер, анализатор спектра, генератор, и кроме того имеется русский интерфейс:


Здесь вы можете скачать данную программу:

(41. 7 MiB, 4,326 hits)

Программа проста в использовании, а для настройки нашего генератора потребуется лищь минимальное знание ее функций:


Для того чтобы настроить наш генератор нам необходимо подключиться к компьютеру через звуковую карту. Подсоединиться можно через линейный вход (есть не у всех компьютеров) или к разъему “микрофон” (есть на всех компьютерах). Для этого нам необходимо взять какие-либо старые, ненужные наушники от телефона или другого устройства, со штекером диаметром 3,5 мм, и разобрать их. После разборки припаиваем к штекеру два провода – как показано на фотографии:


После этого белый провод подпаиваем к “земле” а красный к контакту Х2 (1:10). Регулятор уровня сигнала R7 ставим в минимальное положение (обязательно, что-бы не спалить звуковую карту) и подключаем штекер к компьютеру. Запускаем программу, при этом в рабочем окне мы увидим две запущенные программы – осциллограф и анализатор спектра. Анализатор спектра отключаем, выбираем на верхней панели “мультиметр” и запускаем его. Появится окошко, которое будет показывать частоту нашего сигнала. С помощью резистора R10 устанавливаем частоту около 1 кГц, переключатель S2 ставим в положение “1” (синусоидальный сигнал). А затем, с помощью подстроечных резисторов R2, R4 и R5 настраиваем наш генератор. Сначала форму синусоидального сигнала резисторами R5 и R4, добиваясь на экране формы сигнала в виде синусоиды, а затем, переключив S2 в положение “3” (прямоугольный сигнал), резистором R2 добиваемся симметрии сигнала. Как это реально выглядит, вы можете посмотреть на коротком видео:

После проведенных действий и настройки генератора, припаиваем к нему переключатель S1 (предварительно удалив перемычку) и собираем всю конструкцию в готовом или самодельном (смотри занятие по сборке блока питания) корпусе.

Будем считать, что мы успешно со всем справились, и в нашем радиолюбительском хозяйстве появился новый прибор – функциональный генератор . Оснащать его частотомером мы пока не будем (нет подходящей схемы) а будем его использовать в таком виде, учитывая, что нужную нам частоту мы можем выставить с помощью программы Virtins Multi-Instrument . Частотомер для генератора мы будем собирать на микроконтроллере, в разделе “Микроконтроллеры”.

Следующим нашим этапом в познании и практическом претворении в жизнь радиолюбительских устройств будет сборка светомузыкальной установки на светодиодах.

При повторении данной конструкции был случай, когда не удалось добиться правильной формы прямоугольных импульсов. Почему возникла такая проблема сказать трудно, возможно из-за такой работы микросхемы. Решить проблему очень легко. Для этого необходимо применить триггер Шмитта на микросхеме К561(КР1561)ТЛ1 по нижеприведенной схеме. Данная схема позволяет преобразовывать напряжение любой формы в прямоугольные импульсы с очень хорошей формы. Схема включается в разрыв проводника, идущего от вывода 9 микросхемы, вместо конденсатора С6.

Простой генератор сигналов низкой и высокой частоты предназначен для налаживания и проверки различных приборов и устройств, изготовляемых радиолюбителями.

Генератор низкой частоты вырабатывает синусоидальный сигнал в диапазоне от 26 Гц до 400 кГц, который разделен на пять поддиапазонов (26. ..240, 200…1500 Гц: 1.3…10, 9…60, 56…400 кГц). Максимальная амплитуда выходного сигнала 2 В. Коэффициент гармоник во всем диапазоне частот не превышает 1,5%. Неравномерность частотной характеристики – не более 3 дБ. С помощью встроенного аттенюатора можно ослабить выходной сигнал на 20 и 40 дБ. Предусмотрена также плавная регулировка амплитуды выходного сигнала с контролем ее по измерительному прибору.

Генератор высокой частоты вырабатывает синусоидальный сигнал в диапазоне от 140 кГцдо 12 МГц (поддиапазоны 140…340, 330…1000 кГц, 1…2,8,2,7…12МГц).

Высокочастотный сигнал может быть промодулирован по амплитуде сигналом как с внутреннего генератора НЧ. так и с внешнего.

Максимальная амплитуда выходного напряжения 0,2 В. В генераторе предусмотрена плавная регулировка выходного напряжения с контролем амплитуды по измерительному прибору.

Напряжение питания обоих генераторов 12 В.

Принципиальная схема прибора показана на рис. 1.


Генератор низкой частоты построен на основе хорошо известной схемы. Частоту генерируемого сигнала изменяют сдвоенным конденсатором переменной емкости С2. Применение блока конденсаторов переменной емкости для генерации низких (30…100 Гц) частот потребовало высокого входного сопротивления усилителя генератора. Поэтому сигнал с моста поступает на потоковый повторитель на полевом транзисторе V1, а затем на вход двухкаскадного усилителя с непосредственными связями (микросхема А1). С выхода микросхемы сигнал подается на выходной эмиттерный повторитель на транзисторе V3 и на вторую диагональ моста. С резистора R16 сигнал подается на выходной делитель напряжения (резисторы R18-R22) и на измерительный прибор PU1. по которому контролируют амплитуду выходного сигнала.

На полевом транзисторе V2 собран каскад стабилизации амплитуды выходного напряжения, работающий следующим образом. Выходной сигнал с эмиттера транзистора V3 выпрямляется диодами (V4, V5), и постоянное напряжение, пропорциональное амплитуде, выходного сигнала, подается на затвор транзистора V2, играющего роль переменного сопротивления. Если, например, по каким-либо причинам (изменилась или температура окружающей среды или напряжение питания и т. п.) амплитуда выходного сигнала увеличилась, то увеличится и положительное напряжение, поступающее на затвор транзистора V2. Динамическое сопротивление канала транзистора также увеличится, что приведет к увеличению коэффициента отрицательной обратной связи в микросхеме А1, коэффициент усиления последней уменьшится, что приведет к восстановлению амплитуды выходного сигнала.

Связь между истоковым повторителем на транзисторе V1 и входом микросхемы А1 гальваническая. Это позволило исключить переходный конденсатор большой емкости и улучшить фазовую характеристику генератора. Подстроечным резистором R12 устанавливают оптимальный коэффициент передачи.

Генератор высокой частоты выполнен на трех транзисторах V10-V12. Задающий генератор собран на транзисторе V11, включенном по схеме с общей базой. Каскад каких-либо особенностей не имеет. Требуемый диапазон выбирают переключением контурных катушек. Внутри поддиапазона частоту плавно изменяют конденсатором переменной емкости С14. Выходной каскад представляет собой эмиттерный повторитель на транзисторе V12. Сигнал на него подают с части витков контурной катушки, что дополнительно уменьшает влияние нагрузки на стабильность частоты генератора.

С резистора R35 высокочастотное напряжение поступает на выпрямитель (диоды V13, V14), и выпрямленное напряжение через резистор R37 поступает на измерительный прибор PUI, по которому контролируют напряжение выходного сигнала.

На транзисторе V10, включенном по схеме с общим эмиттером, собран модулирующий каскад. Его нагрузкой является задающий генератор. Таким образом, задающий генератор работает при переменном напряжении питания, поэтому и амплитуда выходного напряжения генератора также меняется, в результате чего происходит амплитудная модуляция. Такое построение генератора позволило получить глубину модуляции от 0 до 70%. Низкочастотный сигнал на модулятор можно подавать как с внутреннего, так и с внешнего генератора.

Питаются оба генератора от выпрямителя со стабилизатором (рис. 2), выполненного по типовой схеме.


Оба генератора и сетевой источник питания выполнены в виде отдельных блоков, установленных в общем корпусе. Общим для генераторов является также и измерительный прибор PU1. Блок высокочастотного генератора закрывают экраном из латуни.

Катушки генератора ВЧ намотаны на каркасах от контуров ПЧ телевизора “Старт-3” с карбонильными подстроечниками. На рис. 3 приведены эскизы каркасов катушек. Их намоточные данные даны в таблице. Катушки L1. L2, L3 наматывают внавал, а катушку L4 – виток к витку. Трансформатор Т1 применен готовый от радиолы “Эфир-М”. При самостоятельном изготовлении трансформатора его следует намотать на сердечнике Ш16Х24. Сетевая обмотка для напряжения 220 В должна содержать 2580 витков провода Г1ЭВ-2 0,15, вторичная – 208 витков провода ПЭВ-1 0,59.



Puc.3

Шкалы прибора наклеены на диски диаметром 90 мм, которые вместе со шкивами верньерного устройства закреплены на осях конденсаторов переменной емкости.

Вместо транзистора КП103Л можно применить КП102Е. Эта замена может даже несколько улучшить параметры генератора.

Налаживание генератора НЧ начинают с подбора резистора R11. Для этого размыкают цепь R12, R13. Высокоомным вольтметром измеряют напряжение на входе микросхемы А1 (вывод 4). Затем, подбирая резистор R11 в пределах от 300 Ом до 1,5 кОм, добиваются такого же напряжения на истоке транзистора V1. Если этого не удается сделать, следует подобрать транзистор V1. (Может получиться так, что подобрать такой транзистор не удастся, тогда следует развязать по постоянному току вход микросхемы с истоком транзистора V1, включив в разрыв цепи конденсатор емкостью 50 мкФ.) Восстановив разомкнутую цепь, изменяют сопротивление резистора R12 так, чтобы получить на выходе генератора сигнал без искажений, контролируя его форму по осциллографу. При дальнейшем уменьшении сопротивления этого резистора должно наступить симметричное ограничение сигнала. Установив амплитуду выходного сигнала около 2 В и подобрав необходимое сопротивление резистора R17 в цепи PU1, налаживание генератора НЧ считают законченным.

Налаживание генератора ВЧ начинают с модулирующего каскада. Подбирая резистор R23, устанавливают на коллекторе транзистора V10 напряжение 6,2 В. Налаживание задающего генератора состоит в подборе резистора R31 в цепи положительной обратной связи. При этом по осциллографу контролируют форму выходного сигнала. Делают это на низкочастотном поддиапазоне. Если позволяют параметры осциллографа, проверку делают и на других частотных поддиапазонах. Затем подбирают резистор R37 в цепи измерительного прибора.

Завершив налаживание блоков и проверив их работу во всех поддиапазонах, приступают к подбору элементов частотозадающих цепей и достижению необходимого перекрытия, после этого прибор градуируют по одной из методик, неоднократно описанных в радиотехнической литературе и журнале “Радио”.

Идея сделать недорогой генератор УКВ диапазонов для работы в полевых условиях родилась, когда возникло желание измерить параметры собранных своими руками антенн самодельным КСВ-метром . Быстро и удобно сделать такой генератор удалось, используя сменные блоки-модули. Уже собрал несколько генераторов на: радиовещательный 87,5 – 108 МГц, радиолюбительские 144 – 146 МГц и 430 – 440 МГц, включая PRM (446 МГц) диапазоны, диапазон эфирного цифрового телевидения 480 – 590 МГц. Такой мобильный и простой измерительный прибор помещается в кармане, а по некоторым параметрам не уступает профессиональным измерительным приборам. Линейку шкалы легко дополнить, поменяв несколько номиналов в схеме или модульную плату.

Структурная схема для всех используемых диапазонов одинаковая.

Это задающий генератор (на транзисторе Т1) с параметрической стабилизацией частоты, который определяет необходимый диапазон перекрытия. Для упрощения конструкции, перестройка по диапазону осуществляется подстроечным конденсатором. На практике такая схема включения, при соответствующих номиналах, на стандартизированных чип-индуктивностях и чип-конденсаторах, проверялась вплоть до частоты 1300 МГц.

Фото 2. Генератор с ФНЧ на диапазоны 415 – 500 МГц и 480 – 590 МГц.

Фильтр нижних частот (ФНЧ) подавляет высшие гармоники более чем на 55 дБ, выполнен на контурах с катушками индуктивностями L 1, L 2, L 3. Конденсаторы параллельные индуктивностям образуют режекторные фильтры-пробки настроенные на вторую гармонику гетеродина, что и обеспечивает дополнительное подавление высших гармоник гетеродина.

Линейный усилитель на микросхеме имеет нормированное выходное сопротивление 50 Ом и для данной схемы включения развивает мощность от 15 до 25 мВт, достаточную для настройки и проверки параметров антенн, не требующую регистрации. Именно такую мощность на выходе имеет высокочастотный генератор Г4 – 176. Для простоты схемы ФНЧ на выходе микросхемы отсутствует, поэтому подавления высших гармоник генератора на выходе ухудшилось на 10 дБ.

Микросхема ADL 5324 предназначена для работы на частотах от 400 МГц до 4-х ГГц, но практика показала, что она вполне работоспособна и на более низких частотах УКВ диапазона.

Питание генераторов осуществляется от литиевого аккумулятора с напряжением до 4,2 вольта. Устройство имеет разъём для внешнего питания и подзарядки аккумулятора и высокочастотный разъём для подключения внешнего счётчика, а самодельный КСВ-метр может служить индикатором уровня.

Генератор диапазона 87.5 – 108 МГц.

Параметры. Реальная перестройка частоты составила 75 – 120 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 25 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 40 дБ. Неравномерность в частотном диапазоне 87,5 – 108 МГц менее 2 дБ. Ток потребления не более 100 мА (V п = 4 В).

Рис. 1. Генератор диапазона 87,5 – 108 МГц.

Рис. 2.
На рис. 2. представлен эскиз монтажа задающего генератора на частоту 115,6 – 136 МГц. Этот генератор используется в роли гетеродина в преобразователе а и в Перестройка генератора осуществляется с помощью переменного резистора, изменяющего напряжение на варикапе.

Генератор радиолюбительского диапазона 144 – 146 МГц.

Параметры. Реальная перестройка частоты при этом составила 120 – 170 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 20 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 45 дБ. Неравномерность в частотном диапазоне менее 1 дБ. Ток потребления не более 100 мА (V п = 4 В).

В генераторе катушка индуктивности уменьшается до 10 витков (диаметр оправки 4 мм, диаметр провода 0,5 мм). Номиналы конденсаторов ФНЧ уменьшились.

Генератор радиолюбительского диапазона 430 – 440 МГц.

Параметры. Реальный диапазон перестройки при указанных номиналах составил 415 – 500 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 15 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 45 дБ. Неравномерность в частотном диапазоне 430 – 440 МГц менее 1 дБ. Ток потребления не более 95 мА (V п = 4 В).

Фото 6. Конструкция генератора на диапазон 415 – 500 МГц и 480 – 590 МГц.

Генератор диапазона эфирного цифрового телевидения 480 – 590 МГц.

Параметры. Реальный диапазон перестройки при указанных номиналах составил 480 – 590 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 15 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 45 дБ. Неравномерность в частотном диапазоне менее 1 дБ. Ток потребления не более 95 мА (V п = 4 В).

Рис.3 Генератор диапазона 480 – 490 МГц.
Генератор диапазона 415 -500 МГц. Lг = 47 нГн. С3, С4 -5,6 пФ.

Поделись статьей:

Похожие статьи

Мощный генератор высокой частоты своими руками. Генератор высокой частоты

Юным радиолюбителям посвящается…

Предисловие

Радиосигнал, однажды сгенерированный, уносится в глубь Вселенной со скоростью света… Эта фраза, прочитанная в журнале «Юный техник» в далеком детстве произвела на меня очень сильное впечатление и уже тогда я твердо решил, что обязательно пошлю свой сигнал нашим «братьям по разуму», чего бы мне это не стоило. Но путь, от желания до воплощения мечты долог и непредсказуем…

Когда я только начинал заниматься радиоделом, мне очень хотелось построить портативную радиостанцию. В то время я думал, что она состоит из динамика, антенны и батарейки. Стоит только соединить их в правильном порядке и можно будет разговаривать с друзьями где-бы они не находились… Я изрисовал не одну тетрадку возможными схемами, добавлял всевозможные лампочки, катушки и проводки. Сегодня эти воспоминания вызывают у меня лишь улыбку, но тогда мне казалось, что еще чуть-чуть и чудо-устройство будет у меня в руках…

Я помню свой первый радиопередатчик. В 7 классе я ходил в кружок спортивной радиопеленгации (т.н. охоты на лис). В один из прекрасных весенних дней наша последняя «лиса» — приказала долго жить. Руководитель кружка, недолго думая, вручил мне её со словами — «… ну, ты там её почини…». Я наверное был страшно горд и счастлив, что мне доверили столь почетную миссию, но мои знания электроники на тот момент не дотягивали до «кандидатского минимума». Я умел отличать транзистор от диода и приблизительно представлял как они работают по отдельности, но как они работают вместе — для меня это было загадкой. Придя домой, я с благоговейным трепетом вскрыл небольшую металлическую коробочку. Внутри неё оказалась плата, состоящая из мультивибратора и генератора РЧ на транзисторе П416. Для меня это была вершина схемотехники. Самой загадочной деталью в данном устройстве была катушка задающего генератора (3,5МГц. ), намотанная на броневом сердечнике. Детское любопытство пересилило здравый смысл и острая металлическая отвертка впилась в броневой кожух катушки. «Хрясь» — раздался хруст и кусок броневого корпуса катушки, со стуком упал на пол. Пока он падал, мое воображение уже нарисовало картину моего расстрела руководителем нашего кружка…

У этой истории был счастливый конец, правда случился он через месяц. «Лису» я все-таки починил, хотя точнее сказать — сделал её заново. Плата радиомаяка, сделанная из фольгированного гетинакса, не выдержала пыток моим 100 ваттным паяльником, дорожки отслоились от постоянной перепайки деталей… Пришлось плату делать заново. Спасибо моему папе, что принес (достал где-то с большим трудом) фольгированный гетинакс, а маме — за дорогой французский красный лак для ногтей, который я использовал для рисования платы. Новый броневой сердечник мне достать не удалось, но зато удалось аккуратно склеить старый клеем БФ… Отремонтированный радиомаяк радостно послал в эфир свое слабое «ПИ-ПИ-ПИ», но для меня это было сравни запуску первого искусственного спутника Земли, возвестившего человечеству о начале космической эры таким-же прерывистым сигналом на частоте 20 и 40 МГц. Вот такая история…

Схема устройства

В мире существует огромное количество схем генераторов, способных генерировать колебания различной частоты и мощности. Обычно, это достаточно сложные устройства на диодах, лампах, транзисторах или других активных элементах. Их сборка и настройка требует некоторого опыта и наличия дорогих приборов. И чем выше частота и мощность генератора, тем сложнее и дороже нужны приборы, тем опытнее должен быть радиолюбитель в данной теме.

Но сегодня, мне бы хотелось рассказать о достаточно мощном генераторе ВЧ, построенном всего на одном транзисторе. Причем работать этот генератор может на частотах до 2ГГц и выше и генерировать достаточно большую мощность — от единиц до десятков ватт, в зависимости от типа применяемого транзистора. Отличительной особенностью данного генератора, является использование симметричного дипольного резонатора, своеобразного открытого колебательного контура с индуктивной и емкостной связью. Не стоит пугаться такого названия — резонатор представляет собой две параллельные металлические полоски, расположенные на небольшом расстоянии друг от друга.

Свои первые опыты с генераторами подобного вида я проводил ещё в начале 2000-х годов, когда для меня стали доступны мощные ВЧ-транзисторы. С тех пор я периодически возвращался к этой теме, пока в середине лета на сайте VRTP.ru не возникла тема по использованию мощного однотранзисторного генератора в качестве источника ВЧ-излучения для глушения бытовой техники (музыкальных центров, магнитол, телевизоров) за счет наведения модулированных ВЧ-токов в электронных схемах этих устройств. Накопленный материал и лег в основу данной статьи.

Схема мощного генератора ВЧ, достаточно проста и состоит из двух основных блоков:

  1. Непосредственно сам автогенератор ВЧ на транзисторе;
  2. Модулятор — устройство для периодической манипуляции (запуска) генератора ВЧ сигналом звуковой (любой другой) частоты.

Детали и конструкция

«Сердцем» нашего генератора является высокочастотный MOSFET-транзистор . Это достаточно дорогостоящий и мало распространенный элемент. Его можно купить за приемлемую цену в китайских интернет-магазинах или найти в высокочастотном радиооборудовании — усилителях/генераторах высокой частоты, а именно, в платах базовых станций сотовой связи различных стандартов. В своем большинстве эти транзисторы разрабатывались именно под данные устройства.
Такие транзисторы, визуально и конструктивно отличаются от привычных с детства многим радиолюбителям КТ315 или МП38 и представляют собой «кирпичики» с плоскими выводами на мощной металлической подложке. Они бывают маленькие и большие в зависимости от выходной мощности. Иногда, в одном корпусе располагаются два транзистора на одной подложке (истоке). Вот как они выглядят:


Линейка внизу, поможет вам оценить их размеры. Для создания генератора могут быть использованы любые MOSFET-транзисторы. Я пробовал в генераторе следующие транзисторы: MRF284, MRF19125, MRF6522-70, MRF9085, BLF1820E, PTFA211801E — все они работают. Вот как данные транзисторы выглядят внутри:


Вторым, необходимым материалом для изготовления данного устройства является медь . Необходимы две полоски данного металла шириной 1-1,5см. и длинной 15-20см (для частоты 400-500 МГц). Можно сделать резонаторы любой длинны, в зависимости от желаемой частоты генератора. Ориентировочно, она равна 1/4 длинны волны.
Я использовал медь, толщиной 0,4 и 1 мм. Менее тонкие полоски — будут плохо держать форму, но в принципе и они работоспособны. Вместо меди, можно использовать и латунь . Резонаторы из альпака (вид латуни) тоже успешно работают. В самом простом варианте, резонаторы можно сделать из двух кусочков проволоки, диаметром 0,8-1,5 мм.

Помимо ВЧ-транзистора и меди, для изготовления генератора понадобится микросхема 4093 — это 4 элемента 2И-НЕ с триггерами Шмитта на входе. Её можно заменить на микросхему 4011 (4 элемента 2И-НЕ) или её российский аналог — К561ЛА7 . Также можно использовать другой генератор для модуляции, например, собранный на таймере 555 . А можно вообще исключить из схемы модулирующую часть и получить просто ВЧ-генератор.

В качестве ключевого элемента применен составной p-n-p транзистор TIP126 (можно использовать TIP125 или TIP127, они отличаются только максимально допустимым напряжением). По паспорту он выдерживает 5А, но очень сильно греется. Поэтому необходим радиатор для его охлаждения. В дальнейшем, я использовал P-канальные полевые транзисторы типа IRF4095 или P80PF55 .

Сборка устройства

Устройство может быть собрано как на печатной плате, так и навесным монтажом с соблюдением правил для ВЧ-монтажа. Топология и вид моей платы приведены ниже:

Эта плата рассчитана на транзистор типа MRF19125 или PTFA211801E . Для него прорезается отверстие в плате, соответствующее размеру истока (теплоотводящей пластины).
Одним из важных моментов сборки устройства является обеспечение теплоотвода от истока транзистора. Я применил различные радиаторы, подходящие по размеру. Для кратковременных экспериментов — таких радиаторов достаточно. Для долговременной работы — необходим радиатор достаточно большой площади или применение схемы обдува вентилятором.
Включение устройства без радиатора, чревато быстрым перегревом транзистора и выходом из строя этого дорогостоящего радиоэлемента.

Для экспериментов, мною были изготовлены несколько генераторов по разные транзисторы. Также я сделал фланцевые крепления полосковых резонаторов, чтобы можно было их менять без постоянного нагрева транзистора. Представленные ниже фотографии помогут вам разобраться в деталях монтажа.































Запуск устройства

Перед запуском генератора, необходимо еще раз проверить правильность его соединений, чтобы у вас не образовалась весьма не дешёвая кучка транзисторов с надписью «Сгорел».


Первый запуск, желательно производить с контролем потребляемого тока. Этот ток, можно ограничить до безопасного уровня использовав резистор на 2-10 Ом в цепи питания генератора (коллектор или сток модулирующего транзистора).
Работу генератора можно проверить различными приборами: поисковым приемником, сканером, частотомером или просто энергосберегающей лампой. ВЧ-излучение, мощностью более 3-5 Вт, заставляет её светиться.

ВЧ-токи легко нагревают некоторые материалы вступающие с ними в контакт в т. ч. и биологические ткани. Так, что будьте осторожны, можно получить термический ожог прикоснувшись к оголенным резонаторам (особенно при работе генераторов на мощных транзисторах). Даже небольшой генератор на транзисторе MRF284, при мощности всего около 2-х ватт — легко сжигает кожу рук, в чем вы можете убедиться на этом видео:

При некотором опыте и достаточной мощности генератора, на конце резонатора, можно зажечь т.н. «факел» — небольшой плазменный шарик, который будет подпитываться ВЧ-энергией генератора. Для этого достаточно просто поднести зажженную спичку к острию резонатора.

Т.н. «факел» на конце резонатора.

Помимо этого, можно зажечь ВЧ-разряд между резонаторами. В некоторых случаях, разряд напоминает крошечную шаровую молнию хаотично перемещающуюся по всей длине резонатора. Как это выглядит вы можете увидеть ниже. Несколько увеличивается потребляемый ток и во всем доме «гаснут» многие каналы эфирного телевидения))).

Применение устройства

Помимо этого, наш генератор может быть применен для изучения воздействия ВЧ-излучения на различные устройства, бытовую аудио и радиоаппаратуру с целью изучения их помехоустойчивости. Ну и конечно, с помощью данного генератора можно послать сигнал в космос, но это уже другая история…

P.S. Не следует путать этот ВЧ-автогенератор с различными EMP-jammers. Там генерируются импульсы высокого напряжения, а наше устройство генерирует излучение высокой частоты.

Генераторы ВЧ

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать.

В нашем ненаглядном Интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем эту уйму.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

«Классика жанра».

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора,

R2 – задает смещение базы,

C1, L1 – колебательный контур,

C2 – кондер ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности.

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовай ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков:)

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.

Итак, смотрим схему генератора. Имеем:

Два инвертера (DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?
Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

РадиоМир 2008 №9

Предлагаемый ВЧ-генератор является попыткой заменить громоздкий промышленный Г4-18А более малогабаритным и надёжным прибором. Обычно при ремонте и налаживании КВ-аппаратуры необходимо “уложить” КВ-диапазоны с помощью LC-контуров, проверить прохождение сигнала по ВЧ- и ПЧ-тракту, настроить отдельные контура в резонанс и т.д. Чувствительность, избирательность, динамический диапазон и другие важные параметры КВ-устройств определяются схемотехническими решениями, так что для домашней лаборатории не обязательно иметь многофункциональный и дорогой ВЧ-генератор. Если генератор имеет достаточно стабильную частоту с “чистой синусоидой”, значит, он подходит радиолюбителю. Конечно, считаем, что в арсенал лаборатории также входят частотомер, ВЧ-вольтметр и тестер. К сожалению, большинство испробованных мной схем ВЧ-генераторов КВ-диапазона выдавало очень искажённую синусоиду, улучшить которую без неоправданного усложнения схемы не удавалось. ВЧ-генератор, собранный по приведённой на рис.1 схеме, зарекомендовал себя очень хорошо (получалась практически чистая синусоида во всём КВ-диапазоне). За основу взята схема из . В моей схеме вместо настройки контуров варикапом применён КПЕ, а индикаторная часть схемы не используется.

Рис.1 Схема ВЧ-генератора

В данной конструкции использован конденсатор переменной ёмкости типа КПВ-150 и малогабаритный переключатель диапазонов ПМ (11П1Н). С данным КПЕ (10…150 пФ) и катушками индуктивности L2…L5 перекрывается участок КВ-диапазона 1,7…30 МГц. По ходу работы над конструкцией были добавлены ещё три контура (L1, L6 и L7) на верхний и нижний участки диапазона. В экспериментах с КПЕ ёмкостью до 250 пФ весь КВ-диапазон перекрывался тремя контурами. ВЧ-генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 50×80 мм (рис.2). Дорожки и монтажные “пятачки” вырезаны ножом и резаком. Фольга вокруг деталей не удаляется, а используется вместо “земли”. На рисунке печатной платы для наглядности эти участки фольги условно не показаны. Конечно, можно изготовить и печатную плату, приведённую в .


Рис.2 Плата

Вся конструкция генератора вместе с блоком питания (отдельная плата со стабилизатором напряжения на 9 В по любой схеме) размещена на дюралевом шасси и помещена в металлический корпус подходящих размеров. Я использовал кассету от старой аппаратуры с размерами 130x150x90 мм. На переднюю панель выводятся ручка переключателя диапазонов, ручка настройки КПЕ, малогабаритный ВЧ-разъём (50-Омный) и светодиодный индикатор включения в сеть. При необходимости можно установить регулятор выходного уровня (переменный резистор сопротивлением 430…510 Ом) и аттенюатор с дополнительным разъёмом, а также проградуированную шкалу. В качестве каркасов катушек контуров использованы унифицированные секционные каркасы СВ и ДВ диапазонов от устаревших радиоприёмников. Количество витков каждой катушки зависит от ёмкости используемого КПЕ и первоначально берется “с запасом”. При налаживании (“укладке” диапазонов) генератора часть витков отматывается. Контроль ведётся по частотомеру. Катушка индуктивности L7 имеет ферритовый сердечник М600-3 (НН) Ш2,8х14. Экраны на катушки контуров не устанавливаются. Намоточные данные катушек, границы поддиапазонов и выходные уровни ВЧ-генератора приведены в таблице.

№№ п/п Диапазон, МГц Катушка Количество витков Провод (диаметер, мм) Каркас, сердечник Выходной уровень, В
1 80…30 L1 5 ПЭВ-2 (1,0) Бескаркасная диаметром 6 мм. L=12 мм 0,4…0,6
2 31…16 L2 12 ПЭВ-2 (0,6) Керамический диаметром 6 мм, L=12 мм 1,1…1,2
3 18…8 L3 3×15 ПЭЛ (0,22) Унифицированный
3-секционный
1,5…1,6
4 8,1…3,6 L4 3×35 ПЭЛ (0,22) -=- 1,7…1,9
5 3,8…1,7 L5 3×55 ПЭЛ (0,22) -=- 1,9…2,0
6 1,75…0,75 L6 3×75 ПЭЛ (0,22) -=- 1,8…2,2
7 1,1…0,46 L7 4×90 ПЭЛ (0,15) Унифицированный
4-секционный
1,7…2,2

В схеме генератора, кроме указанных транзисторов, можно применить полевые КП303Е(Г), КП307 и биполярные ВЧ-транзисторы BF324, 25С9015, ВС557 и т.д. Блокировочные ёмкости желательно использовать импортные малогабаритные. Конденсатор связи С5 ёмкостью 4,7…6,8 пФ – типа КМ, КТ, КА с малыми потерями по ВЧ. В качестве КПЕ очень желательно использовать высококачественные (на шарикоподшипниках), однако они дефицитны. Более доступны регулировочные КПЕ типа КПВ с максимальной ёмкостью 80…150 пФ, но они легко ломаются и имеют заметный “гистерезис” при вращении вперёд и назад. Тем не менее, при жёстком монтаже, качественных деталях и прогреве генератора в течение 10…15 минут можно добиться “ухода” частоты не более 500 Гц в час на частотах 20…30 МГц (при стабильной температуре в помещении). Форма сигнала и выходной уровень изготовленного ВЧ генератора проверялись по осциллографу С1-64А. На заключительном этапе наладки все катушки индуктивности (кроме L1, которая припаяна одним концом к корпусу) закрепляются клеем вблизи переключателя диапазонов и КПЕ.

Литература:
1. Коротковолновый ГИР – Радио, 2006, №11, С.72.

А.ПЕРУЦКИЙ, г.Бендеры, Молдова.

Генератор — это устройство, которое преобразует один вид энергии в другой вид энергии. В нашем случае генератор частот — это устройство, которое преобразует энергию источника питания в периодические колебания различной формы. Или простыми словами — это электротехнический прибор, который может выдавать различные по форме периодические сигналы.

Описание генератора частот

На моем рабочем столе не так давно прямиком из Китая появился вот такой генератор частоты:

Сзади него находятся вот такие выводы:

Давайте же более подробно разберем для чего они нужны. Итак USB — это просто питание, которое подается на генератор частоты. Один конец шнура втыкаем в этот разъем


а другой в блок питания, который шел в комплекте


Также в комплекте шли высокочастотные


Втыкаем в розетку блок питания и кнопочкой POWER запускаем генератор частот


Буковкой «F» принято обозначать частоту , от англ. frequency — частота. Hz — это Герцы (Hertz) — показывает количество колебаний в секунду. Следовательно и приставки «кило, мега, гига» могут также присутствовать перед Герцами. Что это за приставки, думаю, стыдно не знать. Снизу FUNCtion — функция (гребаная алгебра…) , WAVE — волна, в данном случае, форма сигнала. Представленный в данной статье генератор может формировать три формы сигналов — это синусоида (SIN), прямоугольная (SQR) и треугольная (TRI) форма. Почему такие интересные названия форм сигналов вы поймете далее.

Панель управления генератора частоты выглядит следующим образом:


Здесь мы с вами видим кнопку включения POWER, квадратную желтую кнопку WAVE, с помощью которой мы выбираем форму сигнала: синусоида, прямоугольный или пилообразный. SEL — переключение между режимами задания частоты и формой сигнала. ОК — без комментариев. Верхняя крутилка предназначена для установки частоты, средняя для среза сигнала, и нижняя для изменения величины амплитуды сигнала. Итак, теперь обо всем по порядку.

Какие сигналы умеет выдавать генератор

Для пробы вбиваем частоту 50 Герц


Цепляем кабель генератора частоты к выходу OUT, а зажимы кабеля цепляем к щупам осциллографа.


На осциллограмме наблюдаем вот такую картину:



Чистейшая синусоида 50 Герц!

Переключаем форму волны на треугольную


Вуаля!


Знаете кто это?

Так… Причем здесь Спанчбоб? На английском языке он пишется как Spanch Bob Square Pants — что в переводе Спанч Боб Квадратные штаны. Square — (с англ. квадрат, прямоугольник). Чтобы не запутаться в генераторе частоты или в другой какой-либо технике, вспомните СпанчБоба. SQR — прямоугольная форма сигнала.


А вот собственно и она на осциллограмме


Крутилкой OFFSET можно срезать форму сигнала сверху, снизу и сверху и снизу одновременно.



Скважность и коэффициент заполнения

Есть в электронике такой параметр, как скважность . Это параметр применяется к прямоугольной форме сигналов.

где S — скважность

T — период импульса, с

t — длительность импульса, с


Величина D (Duty) , обратная величине S, называется коэффициентом заполнения

Иллюстрация сигналов с различным коэффициентом заполнения

Вот так выглядит сигнал с коэффициентом заполнения 50%. У этого сигнала длительность импульса ровно в два раза меньше его периода, следовательно S=2, а D=50%. Такой сигнал прямоугольной формы называют


Меняем коэффициент заполнения D на 20%



то же самое, но на 80%



Выход TTL генератора частоты

Также в этом генераторе есть такие примочки, как выход TTL . TTL по-русски звучит, как транзисторно-транзисторная логика. Короче говоря — этот выход предназначен для тактирования импульсов на логические микросхемы. Еще более понятным языком — задает рабочую частоту для различных микросхем, чтобы они работали и выполняли свои функции. Здесь выходит прямоугольная форма сигнала амплитудой более 3 Вольт


и частотой в 1 килогерц.


Режим частотомера и счетчика импульсов

Теперь о примочках, которые китайский производители затолкали в этот генератор. Есть один интересный вывод — Ext.IN. Думаю, нетрудно догадаться. что IN — это вход. В этом генераторе частоты встроен частотомер и счетчик периодов сигнала. Для этих функций как раз и используется вывод Ext IN.


Я хочу измерить частоту электрического тока в розетке. Если вы помните, там переменный ток, который имеет частоту 50 Герц. Так ли это? Сейчас узнаем. Напряжение для входа Ext.IN должно быть от 0,5 и до 20 Вольт. В розетке же 220 Вольт, чтобы его убавить, используем . На выходе я получил напряжение в 2 Вольта. Чтобы вы увидели, что есть напряжение на вторичной обмотке трансформатора, я туда поставил светодиод. Цепляемся за выводы вторичной обмотки крокодильчиками нашего генератора частоты


И начинаем производить замеры. Опа на! Ровно 50 герц;-).



Характеристики генератора

Вот характеристики генератора частоты, кому интересно:

1. Signal Output function

waveforms Sine wave, Square wave and Triangle wave

amplitude ≥10Vp-p(signal output, no load)

impedance 50Ω±10%(signal output)

DC offset ±2.5V(no load)

Display LCD160

Resolution 0.01Hz

Frequency Stability ±1×10 -6

Frequency accuracy ±5×10 -6

Sine wave distortion ≤0.8% (reference frequency is 1kHz)

Trinagle linearity ≥98% (0.01Hz~10kHz)

Rise and fall time of square wave ≤100ns

Square Wave Duty range 1%~99%

2. TTL Output function

Frequency range 0.01Hz ~ 2MHz

Amplitude >3Vp-p

Fan Out >20 TTL loads

3. COUNTER function

Counter Range 0-4294967295

Frequency Meter Range 1Hz~60MHz

Input Voltage Range 0.5Vp-p~20Vp-p

Storage and transferred: 10 set of parameters with storage and recall functions.

Заключение

В заключении хотелось бы сказать пару слов. Как же правильно выбрать генератор частоты? Здесь, конечно, все зависит от функционала, а точнее от того, какую максимальную частоту может выдать генератор. Чем большую частоту может выдавать генератор, тем он дороже. Начинающему электронщику, думаю, 2 Мегагерца сигналов синуса, треугольного и прямоугольного хватит по самое не балуйся, да еще и частотомер+счетчик.

Стоит ли его брать? Думаю, нет. Лучше взять какой-нибудь один, но подороже. У меня сейчас вот такой генератор частоты


Где купить генератор частот

Я бы посоветовал Алиэкспресс. Здесь действительно можно подобрать приличный генератор.

Начиная от простых дешевых


Заканчивая полупрофессиональными


Выбирайте на ваш вкус и цвет!

Простой гетеродинный индикатор резонанса.

С замкнутой накоротко катушкой L2 ГИР позволяет определять резонансную частоту от 6 МГц

до 30 МГц. С подключенной катушкой L2 диапазон измерения частоты – от 2,5 МГц до 10 МГц.

Резонансную частоту определяют, вращая ротор С1 и, наблюдая на экране осциллографа

изменение сигнала.

Генератор сигналов высокой частоты.

Генератор сигналов высокой частоты предназначен для проверки и налаживания различных высокочастотныхустройств. Диапазон генерируемых частот 2 ..80 МГц разбит на пять поддиапазонов:

I – 2-5 МГц

II – 5-15 МГц

III – 15 – 30 МГц

IV – 30 – 45 МГц

V – 45 – 80 МГц

Максимальная амплитуда выходного сигнала на агрузке 100 Ом составляет около 0,6 В. В генераторе предусмотрена плавная регулировка амплитуды выходного сигнала, а также возможность

амплитудной и частотной модуляции выходного сигнала от внешнего источника. Питание генератора осуществляется от внешнего источника постоянного напряжения 9… 10 В.

Принципиальная схема генератора приведена на рисунке. Он состоит из задающего генератора ВЧ, выполненного на транзисторе V3, и выходного усилителя на транзисторе V4. Генератор выполнен по схеме индуктивной трехточки. Нужный поддиапазон выбирают переключателем S1, а перестраивают генератор конденсатором переменной емкости С7. Со стока транзистора V3 напряжение ВЧ поступает на первый затвор

полевого транзистора V4. В режиме ЧМ низкочастотное напряжение поступает на второй затвор этого транзистора.

Частотная модуляция осуществляется с помощью варикапа VI, на который подается напряжение НЧ в режиме FM. На выходе генератора напряжение ВЧ регулируется плавно резистором R7.

Генератор собран в корпусе, изготовленном из одностороннего фольгироваиного стеклотекстолита толщиной 1,5 мм., размерами 130X90X48 мм. На передней панели генератора установлены

переключатели S1 и S2 типа П2К, резистор R7 типа ПТПЗ-12, конденсатор переменной емкости С7 типа КПЕ-2В от радиоприемника «Альпинист-405», в котором используются обе секции.

Катушка L1 намотана на ферритовом магнитопроводе М1000НМ (К10Х6Х Х4,б) и содержит (7+20) витков провода ПЭЛШО 0,35. Катушки L2 и L3 намотаны на каркасах диаметром 8 и длиной 25 мм с карбонильными подстроенными сердечниками диаметром 6 и длиной 10 мм. Катушка L2 состоит из 5+15 витков провода ПЭЛШО 0,35, L3 – из 3 + 8 витков. Катушки L4 и L5 бескаркасные

диаметром 9 мм намотаны проводом ПЭВ-2, 1,0. Катушка L4 содержит 2+4 витка, a L5- 1 + 3 витка.

Налаживание генератора начинают с проверки монтажа Затем подают напряжение питания и с помощью ВЧ вольтметра проверяют наличие генерации на всех поддиапазонах. Границы

диапазонов уточняют с помощью частотомера, и при необходимости подбирают конденсаторы С1-С4(С6), подстраивают сердечниками катушек L2, L3 и изменяют расстояние между витками катушек L4 и L5.

Мультиметр-ВЧ милливольтметр.

Сейчас самым доступным и самым распространенным прибором радиолюбителя стал цифровой мультиметр серии М83х.

Прибор предназначен для общих измерений и потому у него нет специализированных функций. Между тем, если вы занимаетесь радиоприемной или передающей техникой вам нужно измерять

небольшие ВЧ напряжения (гетеродин, выход каскада УПЧ, и т. д.), настраивать контура. Для этого мультиметр нужно дополнить несложной выносной измерительной головкой, содержащей

высокочастотный детектор на германиевых диодах. Входная емкость ВЧ-головки менее 3 пФ., что позволяет её подключать прямо к контуру гетеродина или каскада. Можно использовать диоды Д9, ГД507 или Д18, диоды Д18 дали наибольшую чувствительность (12 мВ). ВЧ-головка собрана в экранированном корпусе, на котором расположены клеммы для подключения щупа или проводников к измеряемой схеме. Связь с мультиметром при помощи экранированного телевизионного кабеля РК-75.

Измерение малых емкостей мультиметром

Многие радиолюбители используют в своих лабораториях мультиметры, некоторые из них позволяют измерять и емкости конденсаторов. Но как показывает практика, этими приборами нельзя замерить емкость до 50 пф, а до 100 пф – большая погрешность. Для того, чтобы можно было измерять небольшие емкости, предназначена эта приставка. Подключив приставку к мультиметру, нужно выставить на индикаторе значение 100пф, подстраивая С2. Теперь при подключении конденсатора 5 пф прибор покажет 105. Остается только вычесть цифру 100

Искатель скрытой проводки

Определить место прохождения скрытой электрической проводки в стенах помещения поможет сравнительно простой искатель, выполненный на трех транзисторах (рис. 1). На двух биполярных транзисторах (VT1, VT3) собран мультивибратор, а на полевом (VT2) – электронный ключ.

Принцип действия искателя основан на том, что вокруг электрического провода образуется электрическое поле его и улавливает искатель. Если нажата кнопка выключателя SB1, но электрического поля в зоне антенного щупа WA1 нет либо искатель находится далеко от сетевых проводов, транзистор VT2 открыт, мультивибратор не работает, светодиод HL1 погашен. Достаточно приблизить антенный щуп, соединенный с цепью затвора полевого

транзистора, к проводнику с током либо просто к сетевому роводу, транзистор VT2 закроется, шунтирование базовой цепи транзистора VT3 прекратится и мультивибратор вступит в действие. Начнет вспыхивать светодиод. Перемещая антенный щуп вблизи стены, нетрудно проследить за пролеганием в ней сетевых проводов.

Прибор позволяет отыскать и место обрыва фазного провода. Для этого нужно включить в розетку нагрузку, например настольную лампу, и перемещать антенный щуп прибора вдоль проводки. В месте, где светодиод перестает мигать, нужно искать неисправность.

Полевой транзистор может быть любой другой из указанной на схеме серии, а биполярные – любые из серии КТ312, КТ315. Все

резисторы – МЛТ-0,125, оксидные конденсаторы – К50-16 или другие малогабаритные, светодиод – любой из серии АЛ307, источник питания батарея «Крона» либо аккумуляторная батарея напряжением 6…9 В, кнопочный выключатель SB1 – КМ-1 либо аналогичный. Часть деталей прибора смонтирована на плате (рис. 2) из одностороннего фольгированного стеклотекстолита. Корпусом искателя может стать пластмассовый пенал (рис. 3)

для хранения школьных счетных палочек. В его верхнем отсеке крепят плату, в нижнем располагают батарею. К боковой стенке верхнего отсека прикрепляют выключатель и светодиод, а к верхней стенке – антенный щуп. Он представляет собой кониче-

ский пластмассовый колпачок, внутри которого находится металлический стержень с резьбой. Стержень крепят к корпусу гайками, изнутри корпуса надевают на стержень металлический лепесток, который соединяют гибким монтажным проводником с резистором R1 на плате. Антенный щуп может быть иной конструкции, например, в виде петли из отрезка толстого (5 мм) высоковольтного провода, используемого в телевизоре. Длина

отрезка 80…100 мм, его концы пропускают через отверстия в верхнем отсеке корпуса и припаивают к соответствующей точке платы. Желаемую частоту колебаний мультивибратора, а значит, частоту вспышек светодиода можно установить подбором резисторов RЗ, R5 либо конденсаторов С1, С2. Для этого нужно временно отключить от резисторов RЗ и R4 вывод истока по-

левого транзистора и замкнуть контакты выключателя. Если при поиске места обрыва фазного провода чувствительность прибора окажется чрезмерной, ее нетрудно снизить уменьшением длины антенного щупа или отключением проводника, соединяющего щуп с печатной платой. Искатель может быть собран и по несколько иной схеме (рис. 4) с использованием биполярных транзисторов разной структуры – на них выполнен генератор. Полевой же транзистор (VT2) по-прежнему управляет работой генератора при попадании антенного щупа WA1 в электрическое поле сетевого провода.

Транзистор VT1 может быть серии

КТ209 (с индексами А-Е) или КТ361,

VT2 – любой из серии КП103, VT3 – любой из серий КТ315, КТ503, КТ3102. Резистор R1 может быть сопротивлением 150…560 Ом, R2 – 50 кОм…1,2 МОм, R3 и R4 с отклонением от указанных на схеме номиналов на ±15%, конденсатор С1 – емкостью 5…20 мкФ. Печатная плата для этого варианта искателя меньше по габаритам (рис. 5), но конструктивное оформление практически такое же, что и предыдущего варианта.

Любой из описанных искателей можно применять для контроля работы системы зажигания автомобилей. Поднося антенный щуп искателя к высоковольтным проводам, по миганию светодиода определяют цепи, на которые не поступает высокое напряжение, или отыскивают неисправную свечу зажигания.

Журнал«Радио»,1991,№8,с.76

Не совсем обычная схема ГИРа изображена на рисунке. Отличие-в выносном витке связи. Петля L1 выполнена из медного провода диаметром 1,8 мм, диаметр петли около 18 мм, длина ее выводов 50 мм. Петля вставляется в гнезда, расположеные на торце корпуса. L2 намотана на стандартном ребристом корпусе и содержит 37 витков провода диаметром 0,6 мм с отводами от 15, 23, 29 и 32-го витка Диапазон- от 5,5 до 60 мгц

Простой измеритель емкости

Измеритель емкости позволяет измерять емкость конденсаторов от 0,5 до 10000пФ.

На логических элементах ТТЛ D1.1 D1.2 собран мультивибратор, частота которого зависит от сопротивления резистора включенного между входом D1.1 и выходом D1.2. Для каждого предела измерения устанавливается определенная частота при помощи S1, одна секция которого переключает резисторы R1-R4 , а другая конденсаторы С1-С4.

Импульсы с выхода мультивибратора поступают на усилитель мощности D1.3 D1.4 и далее через реактивное сопротивление измеряемого конденсатора Сх на простой вольтметр переменного тока на микроамперметре Р1.

Показания прибора зависят от соотношения активного сопротивления рамки прибора и R6, и реактивного сопротивления Сх. При этом Сх зависит от емкости (чем больше, тем меньше сопротивление).

Калибровку прибора производят на каждом пределе при помощи подстроечных резисторов R1-R4 измеряя конденсаторы с известными емкостями. Чувствительность индикатора прибора можно установить подбором сопротивления резистора R6.

Литература РК2000-05

Простой функциональный генератор

В радиолюбительской лаборатории обязательным атрибутом должен быть функциональный генератор. Предлагаем вашему вниманию функциональный генератор, способный вырабатывать синусоидальный, прямоугольный, треугольный сигналы при высокой стабильности и точности. При желании, выходной сигнал может быть модулированным.

Диапазон частот разделен на четыре поддиапазона:

1. 1 Гц-100 Гц,

2. 100Гц-20кГц,

3. 20 кГц-1 МГц,

4. 150KHz-2 МГц.

Точно частоту можно выставить, используя потенциометры P2 (грубо) и P3(точно)

регуляторы и переключатели функционального генератора:

P2 – грубая настройка частоты

P3 – точная настройка частоты

P1 – Амплитуда сигнала (0 – 3В при питании 9В)

SW1 – переключатель диапазонов

SW2 – Синусоидальный/треугольный сигнал

SW3 – Синусоидальный(треугольный)/меандр

Для контроля частоты генератора сигнал можно снять непосредственно с вывода 11.

Параметры:

Синусоидальный сигнал:

Искажения: менее 1% (1 кГц)

Неравномерность: +0,05 дБ 1 Гц – 100 кГц

Прямоугольный сигнал:

Амплитуда: 8В (без нагрузки) при питании 9В

Время нарастания: менее 50 нс (при 1 кГц)

Время спада: менее 30ns (на 1 кГц)

Рассимметрия: менее 5%(1 кГц)

Треугольный сигнал:

Амплитуда: 0 – 3В при питании 9В

Нелинейность: менее 1% (до 100 кГц)

Защита сети от перенапряжения

Отношение емкостей C1 и составной С2 и С3 влияет на выходное напряжение. Мощности выпрямителя хватает для паралельного включения 2-3х реле типа РП21 (24в)

Генератор на 174ха11

На рисунке представлен генератор на микросхеме К174ХА11, частота которого управляется напряжением. При изменении емкости С1 от 560 до 4700пФ можно получить широкий диапазон частот, при этом настройка частоты производится изменением сопротивления R4. Так например автор выяснил что, при С1=560пФ частоту генератора можно изменять при помощи R4 от 600Гц до 200кГц, а при емкости С1 4700пФ от 200Гц до 60кГц.

Выходной сигнал снимается с вывода 3 микросхемы с выходным напряжением 12В, автор рекомендует сигнал с выхода микросхемы подавать через токоограничивающий резистор с сопротивлением 300 Ом.

Измеритель индуктивности

Предлагаемый прибор позволяет измерять индуктивности катушек на трех пределах измерения – 30, 300 и 3000 мкГн с точностью не хуже 2% от значения шкалы. На показания не влияют собственная ёмкость катушки и ее омическое сопротивление.

На элементах 2И-НЕ микросхемы DDI собран генератор прямоугольных импульсов, частота повторений которых определяется ёмкостью конденсатора C1, С2 или СЗ в зависимости от включенного предела измерений переключателем SA1. Эти импульсы через один из конденсаторов С4, С5 или С6 и диод VD2 поступают на измеряемую катушку Lx, которая подключена к клеммам XS1 и XS2.

После прекращения очередного импульса во время паузы за счет накопленной энергии магнитного поля ток через катушку продолжает протекать в том же направлении через диод VD3, его измерение осуществляется отдельным усилителем тока собранного на транзисторах Т1, Т2 и стрелочным прибором РА1. Конденсатор С7 сглаживает пульсации тока. Диод VD1 служит для привязки уровня импульсов, поступающих на катушку.

При налаживании прибора необходимо использовать три эталонные катушки с индуктивностями 30, 300 и 3000 мкГн, которые поочередно подключаются вместо L1, и соответствующим переменным резистором R1, R2 или R3 стрелка прибора устанавливается на максимальное деление шкалы. Во время эксплуатации измерителя достаточно выполнять калибровку переменным резистором R4 на пределе измерения 300 мкГн, используя катушку L1 и включив выключатель SB1. Питание микросхемы производится от любого источника напряжением 4,5 – 5 В.

Расход тока каждого элемента питания составляет по 6 мА. Усилитель тока для миллиамперметра можно не собирать, а параллельно конденсатору С7 подключить микроамперметр со шкалой 50мкА и внутренним сопротивлением 2000 Ом. Индуктивность L1 может быть составной, но тогда следует расположить отдельные катушки взаимно перпендикулярно или как можно дальше друг от друга. Для удобства монтажа все соединительные провода оснащены штекерами, а на платах установлены соответствующие им гнёзда.

Простой индикатор радиоактивности

Гетеродинный индикатор резонанса

  Г.Гвоздицкий

Принципиальная схема предлагаемого ГИРа приведена на рис.1. Его гетеродин выполнен на полевом транзисторе VT1, включенном по схеме с общим истоком. Резистор R5 ограничевает ток стока полевого транзистора. Дроссель L2 – элемент развязки гетеродина от источника питания по высокой частоте.

Диод VD1, подсоединенный к выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приближая ее к синусоидальной. Без диода положительная полуволна тока стока станет искажаться из-за увеличения коэффициента усиления транзистора с повышением напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина

Через конденсатор С5 напряжение радиочастоты поступает на вход высоко¬частотного вольтметра-индикатора, состоящего из детектора, диоды VD2 и VD4 которого включены по схеме удвоения напряжения, что повышает чувствительность детектора и стабильность работы усилителя постоянного токи на транзисторе VT2 с микроамперметром РА1 в коллекторной цели. Диод VD3 стабилизирует образцовое напряжение на диодах VD2,VD4. Переменным резистором R3 объединенным с выключателем питания SА1, устанавливают стрелку микроамперметра РА1 в исходное положение на крайнюю правую отметку шкалы

Если а каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключайте слюдяной конденсатор постоянной емкости.

Вариант катушек, выполненных на каркасах из лабораторных пробирок для забора крови, показаны на фото (рис.2) и подбираются радиолюбителем на желаемый диапазон

Индуктивность контурной катушки и емкость контура с учетом дополнительного конденсатора можно рассчитать по формуле

LC=25330/f²

где С- в пикофарадах, L – в микрогенри, f – в мегагерцах.

Определяя резонансную частоту иследуемого контура, к нему возможно ближе подносят катушку ГИРа и медленно вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка качнется влево, отмечают соответствующее положение ручки КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвращается в исходное положение. Та отметка на шкале, где наблюдается максимальный *провал* стрелки, как раз и будет соответстовать резонансной частоте исследуемого контура

В описываемом ГИРе нет дополнительного стабилизатора питающего напряжения, поэтому при работе с ним рекомендовано пользоваться источником с одним и тем же значением напряжения постоянного тока – оптимально сетевым блоком питания со стабилизированным выходным напряжением.

Делать одну общую шкалу для всех диапазонов нецелесообразно из-за сложности такой работы. Тем более, что точность полученной шкалы при различной плотности перестройки применяемых контуров затруднит пользование прибором.

Катушки L1 пропитаны эпоксидным клеем или НН88. На ВЧ диапазоны их желательно намотать медным посеребренным проводом диаметром 1,0 мм.

Конструктивно каждая контурная катушка размещена на основании распространенного разъема СГ-3. Он вклеен в каркас катушки.

Упрощенный вариант ГИРа

От ГИРа Г.Гвоздицкого отличается тем, о чем уже писалось в статье – наличие среднего вывода сменной катушки L1, применен переменный конденсатор фирмы «Тесла» с твердым диэлектриком, нет диода, формирующего форму синусоидальную сигнала. Отсутствует выпрямитель-удвоитель напряжения ВЧ и УПТ, что снижает чувствительность прибора.

Из положительных сторон следует отметить наличие «растягивающих» отключаемых конденсаторов С1, С2 и простейший верньер, совмещенный с двумя переключающимися шкалами, которые можно градуировать карандашом, питание включается кнопкой только в момент проведения измерений, что экономит батарею.

Для питания счетчика Гейгера В1 требуется напряжение 400В, это напряжение вырабатывает источник на блокинг-генераторе на транзисторе VT1. Импульсы с повышающей обмотки Т1 выпрямляются выпрямителем на VD3C2. Напряжение на С2 поступает на В1, нагрузкой которого является резистор R3. При прохождении через В1 ионизирующей частицы в нем возникает короткий импульс тока. Этот импульс усиливается усилителем-формирователем импульсов на VT2VT3. В результате через F1-VD1 протекает более длительный и более сильный импульс тока – светодиод вспыхивает, а в капсюле F1 раздается щелчок.

Счетчик Гейгера можно заменить любым аналогичным, F1 любой электромагнитный или динамический сопротивлением 50 Ом.

Т1 наматывается на ферритовом кольце с внешним диаметром 20 мм, первичная обмотка содержит 6+6 витков провода ПЭВ 0,2, вторичная 2500 витков провода ПЭВ 0,06. Между обмотками нужно проложить изоляционный материал из лакоткани. Первой наматывают вторичную обмотку, на нее поверхность, равномерно, вторичную.

Прибор для измерения емкости

Прибор имеет шесть поддиапазонов,верхние пределы для которых равны соответственно 10пф, 100пф, 1000пф, 0,01мкф, 0,1мкф и 1мкф. Отсчёт ёмкости производится по линейной шкале микроамперметра.

Принцип действия прибора основан на измерении переменного тока, протекающего через исследуемый конденсатор. На операционном усилителе DA1 собран генератор прямоугольных импульсов. Частота повторения этих импульсов зависит от ёмкости одного из конденсаторов С1-С6 и положения движка подстроечного резистора R5. В зависимости от поддиапазона, она меняется от 100Гц до 200кГц. Подстроечным резистором R1 устанавливаем симметричную форму колебаний (меандр) на выходе генератора.

Диоды D3-D6, подстроечные резисторы R7-R11 и микроамперметр PA1 образуют измеритель переменного тока. Для того,чтобы погрешность измерений не превышала 10% на первом поддиапазоне (ёмкость до10пФ),внутреннее сопротивление микроамперметра должно быть не более 3кОм.На остальных поддиапазонах паралельно PA1 подключают подстроечные резисторы R7-R11.

Требуемый поддиапазон измерений устанавливают переключателем SA1. Одной группой контактов он переключает частотозадающие конденсаторы С1-С6 в генераторе,другой – подстроечные резисторы в индикаторе. Для питания прибора необходим стабилизированный двуполярный источник на напряжение от 8 до 15В. Номиналы частотозадающих конденсаторов С1-С6 могут отличаться на 20%, но сами конденсаторы должны иметь достаточно высокую температурную и временную стабильность.

Налаживание прибора производят в следующей последовательности. Сначала на первом поддиапазоне добиваются симметричных колебаний резистором R1. Движок резистора R5 при этом должен быть в среднем положении. Затем, подключив к клеммам “Сх” эталонный конденсатор 10пф, подстроечным резистором R5 устанавливают стрелку микроамперметра на деление соответствующее ёмкости эталонного конденсатора (при использовании прибора на 100мка, на конечное деление шкалы).

Схема приставки

Приставка к частотомеру для определения частоты настройки контура и его предварительной настройки. Приставка работоспособна в диапазоне 400 кгц-30 мгц. Т1 и Т2 могут быть КП307, BF 245

LY2BOK

Простой генератор сигналов своими руками


Здравствуйте друзья Самоделкины! Многим из вас доводилось ремонтировать вышедшие из строя радиоприемники и усилители низкой частоты.

Очередная самоделка, которую я сделал, как раз пригодится для этих целей. Это простой генератор сигналов, которым можно проверять не только тракт звуковой частоты приемника, но и радиочастотный. Его схема показана на фото.


Это обычный мультивибратор, который генерирует колебания не одной какой-то основной частоты, но и еще много кратных частот, называемых гармониками, вплоть до частот коротковолнового диапазона.

Генератор состоит из двух транзисторов. Выходное напряжение, снимаемое с резистора R4 через разделительный конденсатор С3 подается на вход проверяемого нами усилителя или приемника. Если на выходе приемника или усилителя в его громкоговорителе слышится неискаженный звук тональности, соответствующей частоте колебаний генератора, то проверяемые нами устройства –исправны. А если звук искажен или отсутствует совсем, то это говорит о неисправности в их цепях. Для создания самоделки нам потребуются следующие детали и инструменты.

Это: два транзистора КТ 315А, Резисторы МЛТ – 0,25 вт 3 ком – 2шт, 47 ком – 2шт, конденсаторы 0,01мкф -2шт, 0,05 мкф – 1шт, любая малогабаритная кнопка, батарейка на 1,5 в, один зажим «крокодил».

Инструменты: паяльник, пинцет, припой, монтажные провода, кусачки, пассатижи, маленький корпус, иголка, винты и гайки М2, латунные пластинки – для держателя батарейки, монтажная печатная плата размером 1,5 см * 7 см.

Собираем следующим образом:

Шаг -1. Проверяем все радиодетали на их работоспособность мультиметром. Спаиваем всю схему на печатной плате. Проверяем правильность сборки.



Шаг -2. В имеющемся у нас корпусе закрепляем кнопку и держатели для батарейки.


Ставим батарейку в корпус, подключаем спаянную плату. К выходу «А – В» подключаем головной телефон, и проверяем работу генератора на столе. Если схема собрана правильно, то он начинает генерировать звуковые сигналы, которые слышны в наушнике.

Шаг -3. Закрепляем плату в корпус, припаиваем выход «А» к иголке, а выход «в» – выводим наружу черным проводом с припаянным на его конце зажимом «крокодил».


Закрываем корпус крышкой.

Основная частота сигнала около 1 кгц, сигнал на выходе –около 0,5 в, потребляемый ток не более 0,5 ма. Батарейки хватит на целый год.

Вот и все, самоделка готова. А нужна ли она вам – решайте сами.

Успехов вам всем в ваших делах. До новых встреч.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

NM8015 – Генератор сигналов высокочастотный

NM8015 – Генератор сигналов высокочастотный – набор для пайки купить в Мастер Кит. Драйвер, программы, схема, отзывы, инструкция, своими руками, DIY

NM8015 – Генератор сигналов высокочастотный – набор для пайки купить в Мастер Кит. Драйвер, программы, схема, отзывы, инструкция, своими руками, DIY

У нас Вы можете купить Мастер Кит NM8015 – Генератор сигналов высокочастотный – набор для пайки: цена, фото, DIY, своими руками, технические характеристики и комплектация, отзывы, обзор, инструкция, драйвер, программы, схема

Мастер Кит, NM8015, Генератор сигналов высокочастотный – набор для пайки, цена, описание, фото, купить, DIY, своими руками, отзывы, обзор, инструкция, доставка, драйвер, программы, схема

https://masterkit.ru/shop/1923264

Набор компонентов для сборки функционального генератора, который позволит вам формировать сигналы различной формы в диапазоне частот от 1 до 65 кГц. Доступные формы сигнала: синус, меандр, пила, обратная пила, треугольник, ЭКГ, шум. На приложенных фото генератор работает вместе с осциллографом NM8020 (см. Сопутствующие товары). Шаг регулировки частоты 1 Гц и может быть изменен на 10, 100, 1000 или 10 000 Гц. Дополнительный высокочастотный выход с импульсами прямоугольной формы 1, 2, 4, или 8 МГц для, например, восстановления микроконтроллеров с неправильно записанными фьюзами (fuses), но не только. Кроме удовольствия от самостоятельной сборки вы получите полезный прибор в свою лабораторию.

Есть в наличии


Как получить:

Стоимость и варианты доставки будут рассчитаны в корзине


Купить оптом

1 990

+ 100 бонусов на счет
Купить в 1 клик В корзину

в корзине 0 шт.


В избранное

Набор компонентов для сборки функционального генератора, который позволит вам формировать сигналы различной формы в диапазоне частот от 1 до 65 кГц. Доступные формы сигнала: синус, меандр, пила, обратная пила, треугольник, ЭКГ, шум. На приложенных фото генератор работает вместе с осциллографом NM8020 (см. Сопутствующие товары). Шаг регулировки частоты 1 Гц и может быть изменен на 10, 100, 1000 или 10 000 Гц. Дополнительный высокочастотный выход с импульсами прямоугольной формы 1, 2, 4, или 8 МГц для, например, восстановления микроконтроллеров с неправильно записанными фьюзами (fuses), но не только. Кроме удовольствия от самостоятельной сборки вы получите полезный прибор в свою лабораторию.



Особенности
  • Простые и доступные компоненты, качественно изготовленная и маркированная печатная плата.
  • Формы сигнала: синус, меандр, пила, обратная пила, треугольник, ЭКГ и шум.
  • Частотный диапазон основного выхода (DDS) 1-65 000 Гц, (находится слева).
  • Высокая частота вспомогательного выход (HS) сигнала – до 8 МГц (находится справа).
  • Выходной сигнал с возможностью регулировки амплитуды и смещения.
  • Меню на двухстрочном индикаторе с регулировкой контрастности.
  • Интуитивно понятное управление с помощью пяти кнопок.
  • Настраиваемый шаг установки частоты: 1, 10, 100, 1000, 10000Гц
  • Сохранение последней настройки после выключения генератора.

Функции
  • Все действия отображаются на индикаторе.
  • Меню управляется 5-ю кнопками, расположенными ниже.
  • Кнопки «Вверх» и «Вниз» используются для движения по пунктам меню. «Влево» и «Вправо» для изменения частоты генератора или шага изменения частоты.
  • При нажатии центральной кнопки генератор стартует с заданными параметрами. Повторное нажатие центральной кнопки останавливает генератор и вы можете выбрать другой пункт меню.
  • Важно запомнить, что есть отдельный пункт меню для установки шага изменения частоты генерации при настройке. Войдите в пункт Freq Step и установите нужное вам значение 1, 10, 100, 1 000 или 10 000 Гц. Это удобно, для быстрого изменения частоты в нужном вам диапазоне.

Что потребуется для сборки
  • Набор поставляется в виде набора компонентов, печатной платы и инструкции по сборке, поэтому вам понадобятся:
  • паяльник и немного припоя с флюсом или спиртовым раствором канифоли
  • пинцет и бокорезы
  • мультиметр
  • защитные очки
  • час-два свободного времени

Порядок сборки
  • Изучите полностью инструкцию и руководство пользователя. Разложите компоненты по группам.
  • Монтаж начинайте с наиболее мелких и низких компонентов, постепенно переходя к более крупным.
  • Места установки компонентов на плате подписаны так же как и сами компоненты, все компоненты устанавливаются на одной – верхней части платы.
  • У панелек для микросхем и самих микросхем при установке надо соблюсти направление установки ключа – небольшой вырез или точка на одной из боковых сторон.
  • Пайку производите аккуратно, не перегревая место пайки и сами компоненты.
  • Удалите бокорезами лишние части ножек компонентов с обратной стороны платы.

Подготовка к эксплуатации
  • Для работы генератора потребуется источник питания с тремя выходными напряжениями: +5 В, -12 В, +12 В. Изготовить самостоятельно такой источник можно по схеме, размещенной в Руководстве пользователя.
  • Если сборка произведена без ошибок, то прибор начинает работать сразу. Для проверки лучше всего использовать осциллограф, но можно подать сигнал на линейный вход звукового усилителя, предварительно установив минимальную громкость.

Меры предосторожности
  • Используйте защитные очки при монтаже для избежания поражения глаз обрезками ножек или горячим припоем.
  • Не перегревайте места пайки выше разумного предела, необходимого для качественной пайки, используйте канифоль или ее спиртовой раствор для лучшей обтекаемости припоем.
  • При включении прибор должен лежать на диэлектрической поверхности, например, на листе картона, во избежание короткого замыкания через проводящую поверхность.

Вопросы и ответы
  • Добрый день! Подскажите, пожалуйста, какой кабель использовать для данного генератора?
    • От осциллографа с байонетным разъемом
  • Спасибо за ответ на вопрос про кабель. Про BNC разъем я понял, а сопротивление какое 50 Ом или 75 Ом?
  • NM8015 Вопрос автору (конструктору )набора. Каким образом прошить генератор для возможности выдавать форму сигнала задаваемую пользователем, дополнительно или взамен формы сигнала экг. Или получить программу управления(прошивки) форм сигналов генератора с компьютера или планшета по заданному пользователем в графическом или точечном формате (BMP. JPG, TIFF) или табличном формате XLS для прошивки внутренней пзу генератора . Благодарю заранее за оказанное внимание. С уважением Владимир Петрович. г.Омск 7-983-112-93-76
    • Разработчик данного прибора в Мастер Ките не работает. Это покупное изделие. С некоторой вероятностью исходники этого проекта можно найти в Интернете.
  • Проводим чемпионат WSR Junior и решили применить данный набор для блока сборки. Но столкнулись с отсутствием монтажной схемы, перечня компонентов и трудно читаемой схемой электрической принципиальной. Можете выслать данные материалы на эту почту. С уважением, Эксперт WSR Junior по компетенции электроника Ставицкий Илья Владимирович
    • Все доступно на странице устройства нашего сайта https://masterkit.ru/zip/nm8015.pdf

Аналогичные устройства

С этим товаром покупают Copyright www.maxx-marketing.net

Генератор радиочастотных сигналов 150 МГц для испытательного стенда


Когда наш интерес к электронике пробуждается, наш инвентарь начинает расти – сначала знания, полученные с помощью книг и избранных статей, затем небольшой инвентарь деталей и несколько единиц базового испытательного оборудования. Обычно мы начинаем с простого цифрового мультиметра и какого-то источника питания. Со временем мы накапливаем изрядное количество базового оборудования. Однако ни один испытательный стенд не будет полным, пока на нем не будет источника радиочастотного сигнала какого-либо типа.То, что я представлю здесь, – это милый маленький универсальный генератор ВЧ-сигналов, который не займет много места на стенде, заполнит этот недостающий пробел и может быть построен довольно дешево.

Позвольте мне начать с краткого обзора того, что там есть. Генераторы сигналов бывают самых разных сортов. Начиная с самого верха, будет генератор, который колеблется только на одной очень точной частоте, например, такой, который может использоваться NIST (Национальным институтом стандартов). Это основные стандарты частоты и временные базы, на которые ссылаются все остальные частоты.Они обладают невероятной точностью и могут стоить более 100 000 долларов. Следующими на очереди будут генераторы очень высокого класса с супер-характеристиками точности и стабильности, а также с любым доступным типом модуляции. Сегодня эти моды могут быть довольно сложными. Затем мы переходим к генераторам среднего уровня, которые, хотя и имеют отличные характеристики, будут в большей степени ориентированы на конкретное приложение (ограниченные полосы частот и т. Д.), А не на «универсальные». Многие из них работают медленно из-за программирования и множества кнопок.Как только вы выберете выбранную частоту, они работают отлично, но могут стоить от 1000 до 10 000 долларов.

Одна корпорация, в которой я работал, использовала очень сложный микроволновый генератор с отличными характеристиками и множеством функций, и – хотя с ним можно было выполнить практически любой тест, связанный с частотой – также было медленно добраться до каждой конкретной точки интереса. Руководство пользователя было толщиной 3 дюйма, и, вероятно, потребуется год, чтобы полностью освоить этот генератор.Еще одна вещь заключалась в том, что, как сообщается, он продавался по цене 38000 долларов.

В самом низу кучи находится генератор общего назначения, который может работать от 200 долларов и выше. Они в основном предназначены для обслуживания потребительских товаров и некритических проектных работ. Хотя им не хватает функций и качества генераторов более высокого класса, у них есть несколько очевидных преимуществ: простота использования, скорость работы во всем диапазоне выходных сигналов, плюс (самое большое достоинство) очень низкая стоимость. Здесь нет набора кнопок или программирования.Просто нажмите переключатель, поверните ручку и быстро доберитесь туда, куда хотите. Их предполагаемый рынок ориентирован на операторов радиолюбителей, любителей или людей, которые любят возиться с электроникой, то есть таких же людей, как мы. Попробовав несколько коммерческих генераторов общего назначения на протяжении многих лет, я почувствовал, что можно добиться лучшей производительности, что подготовило почву для разработки одного с нуля. Эти генераторы оценивались в диапазоне от 180 до 250 долларов.

Тот, который я представляю в этой статье, будет иметь превосходную производительность во всех спецификациях и (при условии, что у сборщика есть умеренный набор компонентов) может быть построен примерно за 50 долларов.Сюда не входит коммерческое жилье, которое будет стоить как минимум 75 долларов и выше. Как я объясню позже в этой статье, существует процедура создания вашего собственного.

Теория работы

Сердце этого устройства – радиочастотная дека. Если вы прочитали мою статью в выпуске за декабрь 2013 года ( 180 МГц Sweep Generator ), вы увидите здесь очень похожий дизайн. Я достаточно подробно рассмотрел теорию этого раздела в этой статье, поэтому сейчас не буду на этом останавливаться. Я использовал этот стиль в семи или восьми различных конструкциях на протяжении многих лет, которые управляли диапазоном от простых генераторов одной частоты до сложных синтезаторов с фазовой синхронизацией, и он всегда был надежным исполнителем.

Начнем с , рис. 1 , радиочастотная дека основана на изумительном чипе, разработанном Motorola в начале 70-х. (На самом деле настолько популярны, что производятся до сих пор – почти 40 лет спустя!) ИС представляет собой микропроцессор MC1648. Однако текущие версии имеют форму SMD и называются MC100EL 1648, но по-прежнему доступны в версии DIP. Эта микросхема является членом семейства ECL (эмиттерно-связанной логики) и в основном представляет собой схему высокоскоростного LC-генератора. Он может охватывать широкий диапазон частот от СЧ, ВЧ и до ОВЧ-диапазонов радиочастотного спектра.Он прост в использовании и имеет встроенную АРУ (автоматическая регулировка усиления), которая может быть адаптирована к вашим конкретным потребностям.

РИСУНОК 1.


В этой конструкции различные резисторы (R13-R16) включаются при переключении полос частот. Импеданс цепи резервуара будет изменяться в огромном диапазоне, когда значение настройки фиксированной емкости используется для всех диапазонов, но за счет подстройки смещения АРУ для каждого диапазона он отлично справится с поддержанием выровненного выходного сигнала амплитуды из цепи резервуара.Он также имеет выходной буферный усилитель, который я использую нетрадиционным способом для внешнего счетчика.

Цепь LC-резервуара состоит из переключаемых катушек индуктивности L1-L8 и емкости варакторных диодов VD1 и VD2 (которые фактически представляют собой два диода в одном корпусе). Варакторные диоды демонстрируют изменяющуюся емкость PN-перехода с изменяющимся постоянным отрицательным напряжением смещения на этом переходе. Серия SMV 1404 относится к типу Hyper-Abrubt и имеет наивысший коэффициент Tr (коэффициент настройки) по отношению к напряжению смещения и линейность среди всех различных стилей варакторов.У них есть Tr 16: 1 или выше и диапазон настройки в одну октаву, что дает превосходную линейность.

На мой взгляд, серия варакторов 1404 – лучший варактор, когда-либо созданный для подобных проектов, поскольку они охватывают диапазоны частот от СЧ до ОВЧ. Как назло, их также труднее всего достать.

Вместо того, чтобы брать выходной сигнал из обычного порта усилителя, который может быть несколько искажен, я решил взять его прямо из подключенной цепи резервуара LC, которая имеет очень чистую форму волны, таким образом сохранив порт усилителя для операции внешнего счета.Создавая его таким образом, он требует большой буферизации от высокоомной цепи резервуара до 50-омного входа конечного усилителя MMIC (монолитная микроволновая интегральная схема). Это работа Q1, Q2 и Q3. Все это каскадные эмиттерные повторители, начинающиеся с Q1, который имеет очень низкую входную емкость.

Поскольку высокочастотные повторители с индуктивным элементом в их базовой цепи иногда могут быть непредсказуемыми и вызывать колебания, к основному входу был последовательно добавлен «стопорный резистор» R2.Это приводит к снижению «Q» паразитных элементов этой области и гарантирует отсутствие каких-либо паразитных колебаний. Q2 добавляет еще больше буферизации, а Q3 настроен для управления конечным усилителем (MMIC 1). С добавлением R9 это дает хорошее согласование импеданса 50 Ом, которое здесь требуется.

Усилитель MMIC относится к семейству микросхем, известных как блоки усиления. Их входное и выходное сопротивление всегда составляет 50 Ом, и они имеют фиксированное усиление без возможности управления этой функцией, кроме добавления аттенюаторов для регулировки входного или выходного уровня.Этот конкретный имеет коэффициент усиления 20 дБ (напряжение X10) и очень плоский от постоянного тока до диапазона ГГц. Недостаток отсутствия внутреннего регулятора усиления полностью затмевается их исключительной простотой: просто припаяйте и вперед!

FB1 и FB2 представляют собой ферритовые шарики, которые «поглощают» любые высокочастотные компоненты на этих выводах, поскольку мы хотим, чтобы эти провода были очень тихими. Усилитель GALI-55 хочет, чтобы к нему подавался постоянный ток 50 мА, а не постоянное напряжение (примерно 4,5 В постоянного тока). Вам может быть интересно, почему я спроектировал его источник питания так, как он показан, что совершенно неэффективно для подачи 50 мА на устройство с низким напряжением.Все это связано с соотношением пропускной способности, а не только с пропускной способностью.

Если бы я проектировал генератор, скажем, для выходной частоты от 1 ГГц до 1,15 ГГц, для этого все равно потребовалась бы полоса пропускания 150 МГц. Однако тогда я мог бы использовать один ВЧ-дроссель для нагрузки, и он оставался бы относительно постоянным при этом соотношении изменений. Для питания MMIC при токе 50 мА потребуется всего пять вольт из-за очень низкого падения постоянного тока в этом дросселе. Несмотря на то, что я покрываю ту же полосу пропускания с помощью представленного генератора сигналов, этот метод не сработает.Причина: коэффициент пропускной способности.

Передаточное число более высокоскоростного генератора составляет 1,15: 1, и один дроссель будет представлять постоянную нагрузку в этом диапазоне. Мой генератор имеет соотношение 500: 1 (0,3-150 МГц). Ни один дроссель не мог даже приблизиться к постоянной нагрузке в таком диапазоне. Итак, я придерживаюсь резистивной нагрузки для единообразия во всем диапазоне.

Произведя некоторые вычисления, я определил, что оптимальное значение приблизительно 392 Ом является минимальным, насколько мне хотелось бы.Если продолжить, 392 Ом / 50 мА = 19,6 В и добавление еще 4,4 В на MMIC приводит к необходимости источника питания 24 В постоянного тока. Да, расточительно, но это одна из цен, которую вы платите за усилитель с широкой полосой пропускания. Производитель настоятельно рекомендует, чтобы не использовала для источник постоянного тока в этой цепи.

Рисунок 2 – это схема управления и элементы управления на передней панели, которые довольно просты и понятны. IC1a управляет выводом 5 АРУ MC1648 непосредственно для модуляции AM.Поскольку это конфигурация ведомого типа, его амплитуда будет оставаться постоянной, несмотря на изменение нагрузок, так как секция АРУ переключателя диапазонов представляет разные нагрузки в зависимости от своего местоположения. Диоды D1 и D2 ограничивают цепь входного сигнала для максимального уровня сигнала 1,4 вольта P-P. Это сделано для защиты от перегрузки P5 MC1648.

РИСУНОК 2.


R1 ограничивает ток в периоды сильного зажима. Внешний AM-сигнал подается на входной разъем модуляции для регулятора уровня P1 и через переключатель модуляции S2 в положении AM.Для модуляции FM сигнал проходит по тому же пути, кроме положения переключателя S2. Оттуда он переходит в точку суммирования IC1b. Когда модуляция не требуется, S2 устанавливается в положение CW (непрерывная волна), а входные конденсаторы модуляции C2 и C7 заземляются, чтобы эти линии оставались бесшумными.

IC1b имеет несколько функций: он суммирует все входы напряжения для управления грубой настройкой, управления точной настройкой и входа модуляции FM (если используется). Сумматоры операционного усилителя хороши для такого типа добавления, поскольку нет абсолютно никакого взаимодействия между входами, питающими его.Как видно, элементы управления настройкой хорошо отфильтрованы, чтобы эта линия оставалась максимально тихой. Для выхода IC1b требуется последовательно подключенный к нему резистор R8 на 100 Ом из-за необходимости управлять большой емкостью фильтра при вводе соединения Vt на ВЧ плате. Операционные усилители могут работать нестабильно, вызывая большие нагрузки; R8 – лекарство от этого. Поскольку диапазон настройки Vt должен охватывать диапазон от -6,1 до +0,6 вольт, для его начальной точки необходимо смещение на выходе операционного усилителя на +0,6 В. Это достигается с помощью R9, R10, R11 и D3 на его положительном входе.

D3 обеспечивает удобный источник 0,6 В, но также выполняет еще одну функцию. Он имеет падение на PN-переходе 2 мВ / градус Цельсия, что является полной противоположностью варакторного диода Vd1, Vd2 в баковой цепи. Это помогает стабилизировать частоту генератора в этом отношении (температура окружающей среды) за счет небольшого сдвига Vt в зависимости от температуры. Это не идеально, но помогает.

Блок питания, показанный на Рис. 3 , довольно прост и не требует подробного объяснения. Это может показаться излишним, но это лучшее, что я мог придумать, учитывая разнообразие требуемых источников напряжения.Когда дело доходит до конструкции операционных усилителей, я большой поклонник сплит-систем. Источник питания 5 В может обеспечивать гораздо больший ток, чем требуется для ВЧ-деки, но я усилил его, чтобы покрыть параметры счетчика и предварительного делителя частоты. Его также можно использовать для питания разъема на задней панели для питания дополнительных внешних цепей. Кроме того, я разделил 5 В на два разных регулятора, чтобы минимизировать помехи в линиях питания, питающих аналоговую часть (ВЧ-дека) и цифровую часть (счетчик и т. Д.).

РИСУНОК 3.


Строительство

Прежде чем я углублюсь в этот раздел, я не буду вдаваться в подробности всех аспектов строительства, поскольку для обсуждения всего, что связано с ним, потребуется слишком много места в журнале. Не бойтесь, тем не менее, для тех, кто желает построить этот генератор, у меня есть огромный пакет информации, который я могу отправить вам по электронной почте. Это будет включать полноэкранные изображения, шаблоны сверления в натуральную величину, подробные схемы, советы по строительству, некоторые иллюстрации и множество технических данных.Большая часть этого включена в файлы для загрузки в конце этой статьи.

В это шасси будут установлены только два основных узла: блок RF и блок источника питания. Схема управления настолько минимальна, что я построил ее на небольшой печатной плате (PCB) и прикрутил к плате источника питания. Это упрощает сборку и тестирование перед окончательной установкой каждого блока.

Радиочастотная дека, показанная на , рис. 4 была построена на односторонней печатной плате размером 2 x 2-1 / 2 дюйма с использованием типичной конструкции прототипа радиочастот.MC1648 и R1, Q1, Q2 и Q3 – единственные компоненты, монтируемые на ламинированной стороне платы. Обязательно используйте гнездо для IC. Поскольку в этом 14-контактном чипе используется только восемь контактов, перед установкой можно удалить семь контактов.

РИСУНОК 4.


Они удобно расположены, как и любой другой контакт, и значительно упрощают пайку компонентов на нижней стороне. После просверливания всех сквозных отверстий все отверстия, кроме заземляющих, расширяются более крупным сверлом примерно 5/32 дюйма для обеспечения зазора между проводом и медной фольгой.GALI-55 потребует двух небольших островков для входных и выходных подключений. Варактор SMV1404 довольно маленький и, несмотря на пайку SMD, я нашел простой способ их установить.

Сначала я отрезаю кусок пластикового ламината (формика и т. Д.) До размеров 3/8 ”x 1/4”, а затем прикрепляю варактор к ламинату пятном суперклея. Убедитесь, что варактор лежит на спине так, чтобы его «ножки» были направлены вверх, так как это облегчает окончательную пайку. Эта сборка – один из последних компонентов, которые я установил, и снова нанесение клея помогает прикрепить ее к печатной плате.Когда все выводы, которые идут к этому устройству, будут припаяны к их правильным узлам, отрежьте свободный конец до точной длины; Затем установка завершается быстрым припоем к выводам микросхемы. Я использую здесь проволоку № 24 или № 26.

Вставляются остальные активные компоненты, а их выводы используются в качестве точек пайки. Все остальные узлы схемы над землей припаиваются к изолированным стойкам. Две стойки (A и B) рядом с контактами 10 и 12 MC1648 будут использоваться для первичного тестирования и окончательного подключения переключателя диапазона S1.При построении ВЧ-цепи всегда помните о двух вещах: заземление ВЧ-сигнала необходимо, а длина проводов должна быть небольшой. Насколько коротко? Что ж, у инженеров-разработчиков RF есть старая поговорка: «Если вы видите провода, они слишком длинные». Невозможно в реальном мире, но вы поняли. Печатная плата монтируется на шасси с тремя металлическими стойками 1/2 дюйма. Это шасси будет иметь отверстие 3/8 дюйма в вертикальной части для установки переключателя диапазона. Отложите пока этот узел в сторону; дальнейшее тестирование будет сделано позже.

Переключатель радиочастотного диапазона (S1), показанный на , рис. 5 – двухполюсный восьмипозиционный межфланцевый переключатель. Я использовал старый керамический переключатель Centra-Lab 4, который был у меня под рукой. Все деки удерживаются на месте длинными винтами № 4-40 и распорками. Эти переключатели легко разбирать и переделывать. На всех пластинах есть полные 12 позиций, и один металлический кронштейн с изгибающимися язычками используется для фиксации упора для фактического количества желаемых позиций.

РИСУНОК 5.


Количество колод на коммутаторе значения не имеет, но вам нужно как минимум две деки. Ненужные колоды выбрасываются, а вал вафли обрезается, так что он управляет только двумя пластинами. Поскольку катушки цепи резервуара на ВЧ-панели имеют напряжение смещения +1,6 В постоянного тока, нам необходимо ВЧ-заземление на их стороне низкого напряжения, которое должно быть изолировано от постоянного тока. Это достигается путем вырезания части односторонней печатной платы примерно по форме пластины переключателя. Затем он совмещается с пластиной, а позиционные выступы и положения монтажных болтов переносятся на пластину заземления.

Поскольку здесь нет движущихся частей, пластина не требует соединения приводного вала. Монтажные отверстия будут просверлены для зазора № 4-40, а отверстия для ввода катушки будут примерно 0,050 дюйма. Пластина заземления будет установлена ​​стороной с фольгой к задней части. Когда катушки готовы к установке, один конец продвигают через язычок положения переключателя до упора, затем другой конец обрезают, чтобы он прошел через пластину заземления. Отцентрируйте катушку и припой и подрежьте выступающие концы.

При покупке коммутатора следует учитывать несколько моментов. Обратите внимание на конструкцию монтажных болтов и полные 12-позиционные выступы на каждой платформе. Также ищите наименьшее количество металлических скоб, которые кажутся ненужными. Количество дек не имеет значения, если у него не менее двух, как упоминалось, потому что коммутатор в конечном итоге будет переработан, чтобы иметь две переключаемые пластины (S1A и S1B) и одну пластину заземления. Затем в коммутаторе должны быть две пластины, настроенные на восемь положений, путем регулировки пластины с выступами; вал обрезан до длины, достаточной для работы с этими пластинами при необходимости; и два болта № 4-40 и распорки, чтобы скрепить все вместе.

Поскольку трудно найти болты № 4-40 длиной более 2 дюймов, при необходимости можно использовать стержень с резьбой. Мне потребовалось два отрезка 1/8 дюйма на переключателе, и, зайдя в местный хозяйственный магазин, я нашел стержень с резьбой. Опять же, отложите пока готовый переключатель в сторону.

Конструкция платы источника питания / управления довольно проста и – с , рис. 3, , и , – рис. 7, , не требует дополнительных пояснений. Я использовал кусок толстого ламината (Formica), просверленный для отверстий для вывода компонентов после того, как я сделал узор макета.Основные компоненты были помещены на плату с помощью точки суперклея, а затем проводились двухточечные соединения. Уродливо, да, но его никогда не увидят, а с блоками питания у меня редко возникали проблемы. Было бы неплохо, если бы я мог найти один трансформатор с вторичными обмотками высокого и низкого напряжения, чтобы упростить задачу, но когда я поискал, ничего не обнаружилось.

Однако в последнее время я использую трансформаторы Tamura во многих своих проектах. Они бывают практически любого уровня напряжения / мощности и по очень разумной цене.Плата управления частотой / модулем содержит почти все компоненты, показанные на рис. 2 , рис. . На передней панели находятся только потенциометры и переключатели, а также несколько компонентов, которые напрямую соединяют эти части. Регулятор уровня модуляции (P1), показанный в списке деталей , является немного меньшей версией P2 и P3, и был выбран только потому, что его размер лучше вписывается в доступное пространство панели.

Корпус был сформирован из четырех кусков алюминиевого листа и примерно одной ножки из алюминиевого угла 1/2 дюйма.Размеры примерно 9 дюймов в ширину, 4 дюйма в высоту и 6 дюймов в глубину. Первым сформированным элементом была крышка. Затем были вырезаны все остальные детали, а именно: передняя панель, задняя панель и нижняя часть. Я обычно делаю нижнюю часть и заднюю часть из цельного куска, вырезанного по размеру, а затем в моем местном магазине по производству листового металла я делаю необходимый изгиб на 90 градусов, но я был в середине снежной бури и действительно хотел закончить это. Итак, я вырезал две части и соединил их под углом 1/2 дюйма, используя заклепки и винты №6-32, как показано на Рис. 7 .

РИСУНОК 7.


Крышка, передняя и задняя панель изготовлены из алюминия 1/16 дюйма, а нижняя часть – из алюминия 1/8 дюйма; все материалы класса # 5052. Этот сплав легко сгибается и при этом обладает хорошей обрабатываемостью. Его очень легко можно разрезать настольной пилой с твердосплавным полотном, и, фактически, большинство деревообрабатывающих инструментов с твердосплавными фрезами могут обрабатывать этот сплав. Я сгибаю детали в тисках с деревянными брусками, поддерживающими область линии сгиба, но я могу сгибать только ложу толщиной до 1/16 дюйма.Кроме того, я иду к своему парню, работающему с листовым металлом. Крышка и передняя панель прикрепляются к нижней пластине с помощью шести угловых скоб 3/4 дюйма (как показано на , рис. 7, ) почти так же, как и задняя панель. Затем обработайте переднюю панель и произведите художественные работы, покрасьте спреем крышку в цвет по вашему выбору и прикрепите ножки. Теперь все готово.

Я просверлил отверстие 3/8 дюйма в задней панели для установки разъема BNC для внешнего подсчета частоты. Как видно из , рис. 7 , выключатель питания на 120 В переменного тока установлен прямо над входным шнуром питания.Я полюбил этот метод за последние несколько лет, поскольку он экономит место на передней панели и сохраняет 120 В переменного тока и его поля сосредоточенными в одном месте, поэтому мне не нужно изгибать его повсюду, чтобы поместить его на переднюю панель. (Как упоминалось ранее, у меня есть дополнительная информация по этому поводу.)

Заключительная проверка и эксплуатация

На этом этапе мы готовы провести заключительное тестирование узлов и проверить их перед установкой на постоянной основе в шасси. Начиная с блока источника питания, подключите к нему 120 В переменного тока и проверьте правильность полярности и напряжения на выходах.Если здесь все в порядке, вы можете использовать это для питания ВЧ-деки для тестирования. Когда радиочастотная дека установлена ​​в ее подшасси, как показано на рис. 6 , временно прикрепите резистор 15 кОм от входа AGC (нижний конец R12) к земле только для этих тестов.

РИСУНОК 6.


Для управления настройкой вы можете временно подключить потенциометр и резистор ко входу Vt на этой деке. Не устанавливайте переключатель диапазона в это время. Также не подключайте питание 24 В постоянного тока в это время.Подключите +5 В постоянного тока к деке. На данный момент вам понадобятся все ваши катушки, а также 100 мкГн, 10 мкГн и 1 мкГн для этих тестов. Для каждого из них прикрепляйте по одной катушке к стойкам A и B. С осциллографом и частотомером, прикрепленным к эмиттеру Q3, вы должны увидеть приблизительно 360 мВ чистой синусоидальной волны с каждой используемой катушкой. Не беспокойтесь о точной амплитуде, поскольку она будет скорректирована на более позднем этапе тестирования.

С любой установленной катушкой измените диапазон настройки, и вы должны увидеть чуть больше одной октавы диапазона частот для каждой катушки.Точная частота здесь не важна, но каждая катушка должна давать сдвиг частоты примерно 3: 1 при увеличении индуктивности катушки. Отключите питание деки и временно подключите резистор 51 Ом 1/4 Вт от выходного ВЧ разъема к земле. Включите и осмотрите эту точку. Здесь должно быть около 2000 мВ P-P чистой синусоидальной волны. Если все в порядке, выключите питание и снимите катушку.

Подготовьте переключатель, припаяв кусок провода диаметром 1 дюйм к контакту дворника S2B. Также стоит добавить тонкую квадратную шайбу размером 1 дюйм из луженой меди с отверстием 3/8 дюйма в центре, вставленную в болт крепления переключателя.Это значительно упрощает установку резисторов AGC, обеспечивая удобную точку заземления. Теперь установите переключатель так, чтобы контакт стеклоочистителя S2B располагался прямо над изолированной стойкой A. Он должен быть примерно на 1/2 дюйма выше стойки.

Затяните гайку крепления переключателя. Припаяйте провод стеклоочистителя и установите проводку от пластины заземления RF на переключателе к выводу B. Добавьте провод с FB1 от контакта стеклоочистителя S1a к нижнему концу R12. Теперь будут установлены индивидуальные ленточные катушки.

Начиная с самого нижнего диапазона и по мере установки каждой катушки, будет производиться проверка частоты на предмет диапазона и правильности обозначенной полосы пропускания.Индуктор ленты 8 (см. Перечень деталей ) представляет собой всего лишь кусок оголенного провода №22 размером 1-1 / 2 дюйма. Начните с отрезка чуть длиннее 2 дюймов, затем при необходимости подрежьте его, выполняя тесты ленты. После того, как вы отрежете его до нужной длины, просто намотайте одну или две свободные петли, если это необходимо, чтобы уместиться в оставленном пространстве. Это практически не изменит индуктивность, в отличие от прямого провода.

Катушки, которые вы используете, могут отличаться от моих из-за допусков деталей, и здесь необходимо учитывать множество допусков.SMV-1404 – это очень повторяемый компонент, в то время как катушки могут отличаться на 5% и более. Резисторы, потенциометры и этот список можно продолжить. Законы вероятности гласят, что половина допусков будет положительной, другая половина – отрицательной, и они будут компенсировать друг друга. Закон Мерфи гласит, что все допуски добавляются в одном направлении и делают конструкцию бесполезной. В реальном мире никогда не бывает так плохо, но все же есть о чем знать.

При покупке катушек было бы неплохо получить разнообразие, близкое к значениям Список деталей , а некоторые – около 5% от указанных значений.Я заказал 50 штук для этого проекта, поскольку это был новый дизайн. Детали очень дешевы, и было бы обидно, если бы не хватило денег и пришлось бы заказывать катушки на 80 центов за 6 долларов почтовых расходов. Кроме того, вы всегда можете использовать доп в других проектах.

Давайте вернемся к установке змеевиков резервуара и к тому, чего вы здесь хотите достичь. Постарайтесь получить диапазон, необходимый для маркировки панели (показан с некоторым отклонением) на каждом конце этого диапазона. В итоге я получил в среднем 5% на концах, но некоторые были близки к 1%.Установка резистора AGC и прогрев сместят этот диапазон на очень небольшую величину. Фактический общий диапазон частот должен составлять от 0,3 МГц до 150 МГц без промежутков между полосами. Мой работает от 0,295 МГц до 162 МГц. Наличие большого количества перерегулирований – это нормально, но наиболее важным аспектом является то, что метки переключения диапазона гарантируют заявленную пропускную способность. Не можете уместить все в мою маркировку? Вы всегда можете настроить напряжение Vt, чтобы оно подходило. Максимальное напряжение не должно превышать +0,7 В на нижнем конце из-за R9 и R10 на плате управления, и -7.0 вольт на верхнем конце настроечных горшков, изменив R3. Все еще не можете подогнать все по размеру? Затем сделайте то, что я сделал: измените изображение на этикетках передней панели.

Когда все настроено и выполнено с этой частью тестирования и у вас есть минимальный период прогрева (10 минут), вы можете теперь отрегулировать напряжение АРУ для каждого диапазона. Сначала начните с самой нижней полосы. Надеюсь, у вас есть блок замены резистора для подключения к дворнику S1A и заземлению. Загрузите на выход резистор на 51 Ом и подключите осциллограф в этой точке.Проходя через каждую полосу, отрегулируйте сопротивление на выходе +10 дБм (2000 мВ P-P) и убедитесь, что вы настроились через полосу, чтобы выбрать лучшую общую равномерность. Обратите внимание на значение R для каждой полосы по мере продвижения.

Вы, вероятно, обнаружите, что одно и то же значение сопротивления будет работать для нескольких диапазонов, минимизируя количество необходимых резисторов. Одно предостережение: я использую осциллограф Tektronix с полосой пропускания 350 МГц -3 дБ, но она идеально ровная только до 100 МГц. Кроме того, он скатывается типичным гауссовским способом.Тем не менее, я откалибровал его для синусоидальных волн вплоть до 500 МГц в среде с сопротивлением 50 Ом. Теперь у меня есть справочная таблица, так что независимо от того, что отображает осциллограф, таблица сообщает мне, какой должен быть коэффициент коррекции. Большинство осциллографов справятся с работой на частотах до 40 МГц или 50 МГц, но если вы не доверяете своему прицелу за пределами этой точки, используйте значения AGC, показанные на распечатке для диапазона 8. На этом этапе вы можете завершить установку и закрой это.

Заключительные ноты

Выходной сигнал этого генератора имеет исключительную амплитудную характеристику ± 0.1 дБ в диапазонах с 1 по 7 и ± 0,5 дБ в диапазоне 8. Это связано со встроенными схемами АРУ MC1648. Я не проводил БПФ на выходе, но после просмотра синусоидальных сигналов осциллографа в течение более 40 лет я развил довольно хорошее чутье на искажения и оценил паразитные составляющие и гармоники как хорошие на 30 дБ ниже выходного уровня. Это чистая синусоида и очень респектабельная для такого типа генератора. LC-генераторы не обладают долговременной стабильностью, как их «старшие братья» с кварцевыми ссылками, и обычно дрейфуют на 500 ppm или более за заданное время.Хотя этот не является исключением из этого правила, он намного превосходит эти цифры.

После часовой разминки я провел множество тестов на краткосрочную стабильность 15-минутных периодов. Я проделал это для каждой полосы на нижнем, среднем и верхнем концах их диапазонов – всего 24 теста. В лучшем случае за это время дрейф составлял 2 ppm, а в худшем – 98 ppm. Остальные колеблются от 20 до 80 ppm, при этом 50 ppm является хорошим общим средним значением. Итак, я мог бы консервативно определить общую краткосрочную стабильность при 100 ppm, что неплохо для LC-генератора.Я также был приятно удивлен тем, что я мог легко ввести сигнал на вход узкополосного наземного мобильного приемника на частоте 155 МГц и удерживать этот вход довольно долгое время – хотя он действительно показал чувствительность к изменениям нагрузки на этих частотах.

Вход внешней модуляции был произвольно установлен на 800 мВ P-P для всех входов. В режиме AM можно получить модуляцию 50% до того, как произойдет мягкое ограничение, а затем жесткое ограничение. Эта функция имеет хороший показатель линейности 3% и около 15 мВ P-P для каждого процента чувствительности модуляции.Схема зажима предотвращает повреждение MC1648 из-за случайного перенапряжения на входе. Без зажима он имеет такую ​​же линейность до 90% мод. Если вам не повезет, не игнорируйте эту функцию. Стандартный тестовый сигнал для AM составляет 30%, так что это достигается и немного.

Вход FM-модуляции немного ослаблен в суммирующем усилителе и не так подвержен перенапряжению. При полном P-P 800 мВ он будет давать отклонение примерно 0,5% от несущей частоты.Калиброванное отклонение FM очень трудно достичь и потребует вдвое большей схемы, чем весь генератор со специально обработанными переключателями, поэтому он даже не рассматривался для этой конструкции. Однако, если у вас есть несколько «домашних» частот, для которых вы хотели бы получить известное отклонение, есть один способ добиться этого. Установите генератор на желаемую несущую частоту и осторожно подайте нулевое постоянное напряжение на стыке C7 и R7 на плате управления, при этом модуль управления модулем установлен для работы в режиме FM.Обратите внимание на частоту и медленно увеличивайте напряжение постоянного тока до тех пор, пока несущая частота не увеличится на требуемую величину отклонения. Напряжение AC P-P, которое совпадает с этим напряжением постоянного тока, теперь будет давать точную величину отклонения, которую вы хотите. Если вы будете делать это часто, подключенный к этой точке разъем на задней панели упростит задачу. Просто имейте в виду, что постоянный ток в конечном итоге попадает на линию Vt к варактору, потому что на этом пути нет блокирующего конденсатора.

Я внес несколько изменений, которые не показаны на изображениях.На ВЧ плате я продлил выводы R10 до 1/2 дюйма на обоих концах, чтобы установить его выше над платой, и немного отогнул от платы. Этот резистор рассеивает один ватт и рассеивает много тепла в медной фольге. Это единственное исключение из правила «коротких заявок». Добавленная индуктивность выводов повлияет только на полосу 8 за счет увеличения импеданса нагрузки MMIC. Эффект настолько минимален, что его можно игнорировать. Он по-прежнему связывает нагрев с платой и – наряду с перевернутым монтажом MC1648, добавляющим еще больше нагрева платы – они поднимают температуру платы примерно на 13 градусов по Фаренгейту выше температуры окружающей среды в рабочей зоне.

Конечно, часть этого тепла вырабатывается трансформаторами, регуляторами и т.п. Вот почему для стабилизации требуется около часа разминки. Однако уже через пару минут генератор готов к работе. Просто дайте ему прогреться в течение часа, прежде чем выполнять критическую работу, такую ​​как выравнивание ПЧ и т. Д. Другим изменением было добавление 1-дюймового квадрата тонкого алюминия к выступу регулятора 7824 в блоке питания, поскольку без этого он имел тенденцию перегреваться.

Я не проектировал радиочастотный аттенюатор в этом устройстве, чтобы уменьшить его площадь, занимаемую им, насколько это возможно.Несколько лет назад я купил на eBay очень дешевый аттенюатор HP. Он будет ослаблять 0–130 дБ с шагом 1 дБ и с качеством HP. Я обнаружил, что использую этот аттенюатор даже с оборудованием, в которое он встроен, из-за его широкой полосы пропускания и точности.

В статье о генераторе развертки, упомянутой ранее, я показываю конструкцию аттенюатора, который не повредит ваш кошелек. Он имеет приличную производительность до 200 МГц и точность около 5%. Это четыре шага 0-40 дБ с шагом 3 дБ. Его можно расширить до 0-100 дБ с шагом 1 дБ, используя 27 резисторов 5% 1 / 4Вт и девять мини-переключателей DPDT, а также некоторые двусторонние печатные платы для корпуса по цене около 30 долларов.Переключатели могут быть установлены вертикально в одну колонку на левой стороне панели.

В любом случае вам придется добавить еще 1-1 / 2 дюйма к ширине панели, чтобы уместить их. (Я мог бы включить это в пакет электронной почты.) Если вы отчаянно нуждаетесь в аттенюаторе, «дешевой и грязной» версии, показанной на рис. 2 , будет достаточно, если потребуется больше / меньше мощности. Кроме того, будут вносимые потери 3 дБ (для защиты MMIC), и они не будут откалиброваны. За пять долларов по частям он вас обойдется.

Что касается того, что я могу изменить в будущем: замена потенциометра R2 для точной настройки на трехоборотный горшок для еще более точной настройки; и добавление внутреннего тонального генератора с выходом P-P 800 мВ. Затем я подключил его к разъему на передней панели с помощью миниатюрного тумблера SPDT.

Я всегда меняю дизайн к лучшему по мере появления новых идей и компонентов. У меня есть внешний вид генератора часов для этого генератора, включенный в пакет электронной почты. Он работает ровно на половине частоты выходного радиочастотного сигнала, питающего его, и имеет идеальную прямоугольную волну с временами нарастания и спада в малые наносекунды.При выполнении этого проекта не торопитесь и дважды проверяйте соединения по мере продвижения. А главное, получайте удовольствие! NV


ПЕРЕЧЕНЬ ДЕТАЛЕЙ

ТОВАР ОПИСАНИЕ / ЧАСТЬ № ИСТОЧНИК
Все резисторы изготовлены из углеродной пленки мощностью 1/4 Вт, 5%. Все конденсаторы в микрофарадах. Специальные детали перечислены ниже.
ПАЛУБА РФ :
IC1 MC1648 DIP MC100EL1648 SMD
VD1, VD2 СМВ1404-09
S1 Двухполюсный восьмипозиционный межфланцевый переключатель
1 квартал 2N5179
2 квартал, 3 квартал 2N3904
MMIC ГАЛИ-55
ФБ-1 FB43-226-RC Дж. В. Миллер
ФБ-2 FB43-287-RC Дж. В. Миллер
R11 47K, 1/8 Вт опционально
R2 390 Ом, 1/8 Вт дополнительно
R10 392 Ом, два Вт CPF2392R00FKR36 Вишай / Дейл
КАТУШКИ: BOURNS ИЛИ FASTRON CONFORMAL COATED
* См. Текст
L1 2500 мкГн
L2 680 мкГн
L3 150 мкГн
L4 38 мкГн
L5 9 мкГн
L6 1.8 мкГн
L7 0,33 мкГн
L8 * 40 нГн
ПАНЕЛЬ УПРАВЛЕНИЯ И ПЕРЕДНЯЯ ПАНЕЛЬ:
IC1 TLO82 или TLO72
D1, D2, D3 1N916 или эквивалент
Л1 10K АЛЬФА RV24AF-10-40R1-B10K
P2, P3 10K АЛЬФА RV16AF-10-20R1-B10K
S2 АЛЬФА четырехполюсная трехпозиционная вафля SR2511F-0403-19ROB-E9-N-W
C1 1.0 МФД 200 В (или настолько низкое напряжение, с которым вы чувствуете себя в безопасности)
Потенциометры и переключатель доступны на сайте Mouser.com.
ИСТОЧНИК ПИТАНИЯ:
Т1 120 В: 24 В при 0,25 А 3FS-424 ТАМУРА
Т2 120 В: 8 В / [защита электронной почты] 0,3 A 3FS-316 ТАМУРА
РЕГУЛЯТОРЫ:
7824
78L12
79L12
78L05
7805
MC1648
MC100EL1648 Mouser, Digi-Key
VD1, VD2 Связаться с автором ( [адрес электронной почты] )
ГАЛИ-55 МИНИ-ЦЕПИ.COM
Катушки Mouser (обычно 0,2-0,4 долл. США за штуку)
Резисторы Mouser Electronics
S1
ФБ-1, ФБ-2 Mouser Electronics
Трансформаторы – Mouser или Digi-Key ( www.digikey.com )
Регуляторы – почти везде
MC1648: Таблицы данных легко получить через Google.
GALI-55: Datasheets на MINI-CIRCUITS.COM.
SMV1404-09: Я их храню.

Загрузки

Что в молнии?
Дополнительные изображения и схемы

Очень дешевое РЧ испытательное оборудование для DIY-инженера или студента (

За последние несколько лет достижения в области полупроводниковой технологии и РЧ-дизайна позволили создать множество высокочастотного испытательного оборудования, доступного по цене для обычного инженера, любителя или студента приобрести для личного пользования и / или обучения.В настоящее время доступен векторный анализатор цепей примерно за 50 долларов, а генераторы сигналов, анализаторы спектра и осциллографы – за несколько сотен долларов. Ниже приведен список различного высокочастотного испытательного оборудования, включая векторные анализаторы цепей, анализаторы сигналов, анализаторы спектра и осциллографы по цене менее 1000 долларов, в большинстве случаев менее 500 долларов. Не стесняйтесь покупать один для своего любимого инженера, студента естествознания или любителя электроники на праздники и поощряйте людей исследовать мир высокочастотной электроники.

ВАЦ

AURSINC NanoVNA работает от 10 кГц до 1.5 ГГц с V3.4. Он охватывает HF, VHF, UHF, имеет антенный анализатор, измеряющий S-параметры, КСВН, фазу, задержку и диаграмму Смита. Частотный диапазон от 50 кГц до 300 МГц прямого выхода si5351 обеспечивает динамический диапазон лучше 70 дБ, в то время как расширенный диапазон от 300 до 900 МГц обеспечивает динамику лучше 60 дБ, а диапазон от 900 МГц до 1,5 ГГц лучше 40 дБ динамический диапазон. Цена потрясающая – 60-70 долларов.

miniVNA Tiny – это векторный анализатор цепей на базе ПК, который имеет множество функций и хорошо подходит для проверки антенн и радиочастотных цепей радиолюбителей и коммерческих пользователей.Он производится Mini Radio Systems и работает в диапазоне от 1 МГц до 3 ГГц с шагом в десять Гц. Диапазон Z может составлять от 1 до 1000 Ом, а выходная мощность составляет -6 дБм при 500 МГц. Динамический диапазон составляет до 70 дБ при 500 МГц, питание осуществляется через USB-соединение. Цена <500 долларов США.

Карманный анализатор цепей Pocket VNA питается от USB и охватывает диапазон частот от 500 кГц до 4 ГГц с динамическим диапазоном 80 дБ в диапазоне МГц и 40 дБ в диапазоне ГГц. Это двухпортовый двунаправленный блок с программным обеспечением для Windows, MacOS, Linux, Android (альфа), Raspberry Pi и открытым программным API для доступа к оборудованию с помощью стороннего программного обеспечения.Цена <500 долларов США.

Mini-Circuits объединилась с Vayyar Imaging , чтобы предложить студентам набор DIY VNA kit . Комплект микроволнового приемопередатчика UVNA-63 включает в себя все, что нужно студентам для создания полнофункционального векторного анализатора цепей и преодоления разрыва между теоретической теорией в классе и практическими измерениями в реальных условиях в лаборатории. В комплект входит приемопередатчик Vayyar, работающий на частотах до 6 ГГц, и соединители, кабели и инструменты для сборки устройства.Студенты могут разрабатывать алгоритмы измерения S-параметров в реальном времени с помощью Python или Matlab®. Хотя это выходит за рамки нашего ценового диапазона, мы подумали, что это хороший образовательный комплект, который стоит включить, цена <3000 долларов (для тех, кто имеет право, есть образовательные скидки в размере 500 долларов).

Генераторы сигналов

ERASynth Micro – это очень доступный генератор сигналов с открытым исходным кодом. Он может питаться от порта USB и оснащен ЖК-интерфейсом для автономного использования без компьютера или телефона.Он может генерировать РЧ-сигналы с низким фазовым шумом в диапазоне от 12,5 МГц до 6,4 ГГц с архитектурой с двойной ФАПЧ. Он может генерировать сигналы от -50 до +15 дБм с фазовым шумом -115 дБн / Гц на выходе 1 ГГц (смещение 10 кГц) и временем переключения 1 мс (типичное). Цена около 250 долларов.

Генератор ВЧ сигналов размером с флэш-накопитель SynthUSB3 , работающий в диапазоне от 12,5 МГц до 6,4 ГГц с шагом 0,01 Гц. Он может регулировать калиброванную амплитуду с разрешением 0,2 дБ до +8 дБмВт и более чем в 50 дБ диапазона.Цена около 350 долларов.

Signal Hound VSG25A представляет собой векторный генератор сигналов от 100 МГц до 2,5 ГГц с 12-битным генератором сигналов произвольной формы основной полосы частот I / Q, который может синхронизироваться практически на любой частоте от 54 кГц до 180 МГц и включает в себя 4 096 × 16 буфер битовой последовательности для встроенной или настраиваемой модуляции . Выходной сигнал составляет от -40 до +10 дБмВт в частотном диапазоне и диапазоне импульсов от 6 нс до 25 мс, длительность от 12 нс до 1 секунды. Цена около 500 долларов (также доступна модель на 6 ГГц).

Генераторы BPSG Aaronia обеспечивают радиочастотные сигналы для тестирования защиты от электромагнитных помех и измерений EMI / RFI. Они доступны в четырех различных версиях, охватывающих диапазоны частот от 23,5 МГц до 6 ГГц. Они имеют максимальный уровень мощности до +18 дБмВт и динамический диапазон до 63 дБ, серия BPSG устанавливает новые стандарты для генераторов сигналов с батарейным питанием. Цена от 600 долларов.

Анализаторы спектра

TinySA AURSINC имеет вход MF / HF / VHF UHF для 0.От 1 до 350 МГц, вход УВЧ от 240 МГц до 960 МГц и генератор сигналов с 2,8-дюймовым сенсорным аккумулятором. Интерфейс USB реализует протокол Serial over USB (CDC), и есть большой набор команд, которые можно вызывать через последовательный интерфейс. Цена 90 долларов.

LATNEX SPA-6G – это комбинированный радиочастотный проводник и анализатор спектра. Это портативный портативный цифровой анализатор частоты любительского радио-WiFi-сети-звука-аудио-сигнала, который покрывает диапазон от 15 МГц до 2,7 ГГц (3G Combo и WSUB1G) и 4.От 85 до 6,1 ГГц (6G Combo). Цена 365 долларов.

OSCIUM WiPry 2500x – это анализатор спектра Wi-Fi для 2,4 и 5 ГГц, а также просмотр всех помех, включая ZigBee, Bluetooth, радионяни и т. Д. Он поддерживает Android, iOS, Mac, ПК и может сканировать / устранять неполадки Сигналы Wi-Fi. Цена 650 долларов.

Signal Hound USB-SA44B – это программно определяемый приемник, оптимизированный как узкополосный анализатор радиочастотного спектра в реальном времени. Это компактный, простой в использовании и эффективный инструмент для поиска и устранения неисправностей для обычных лабораторий, студентов инженерных специальностей, радиолюбителей и любителей электроники.Он работает в диапазоне от 9 кГц до 6 ГГц и имеет динамический диапазон от -151 дБм до +10 дБм с полосой разрешения от 0,1 Гц до 250 кГц и 5 МГц. Это был почти единственный анализатор спектра, который мы смогли найти примерно за 1000 долларов.

Осциллографы

Rigol серии 1000 включают осциллографы серий B, D и E. Серия E представляет собой недорогую модель с моделями 50 или 100 МГц, которые включают два канала и 1 миллион точек памяти. В серии D добавлен низкоскоростной цифровой захват, обеспечивающий базовый анализ смешанных сигналов в экономичном пакете.Серия B обеспечивает большую скорость и мощность, включая их экономичную четырехканальную модель DS1204B с частотой 200 МГц, обеспечивающую дискретизацию 2 Гвыб / с. С такими функциями, как БПФ, запись и воспроизведение, режим прокрутки, альтернативный режим запуска и регулируемая чувствительность запуска, серия 1000 является осциллографом начального уровня. Цена от 260 долларов и выше.

OWON SDS1000 2-канальные серии – это очень экономичные цифровые осциллографы с полосой пропускания от 20 до 100 МГц, частотой дискретизации от 100 до 1 Гвыб / с с 7-дюймовым ЖК-дисплеем высокого разрешения, включая SCPI и поддержку LabVIEW.Цена от 260 долларов и выше.

Hantek DSO4004C Series – это четырехканальный осциллограф с одним канальным генератором сигналов произвольной / функциональной формы, независимыми клавишами осциллографа и генератором сигналов с полосой пропускания от 80 до 250 МГц, минимальным диапазоном измерения 500 мкВ / дел, цифровой частотой дискретизации 1 Гвыб / с система запуска, высокая чувствительность запуска, низкий уровень джиттера запуска и 7-дюймовый цветной TFT-экран высокого разрешения. Цена от 279 долларов.

Oscium имеет интересный осциллограф – iMSO-204x превращает смартфон или планшет в осциллограф смешанных сигналов.Он имеет два аналоговых и четыре цифровых канала, частоту дискретизации 50 Мвыб / с и полосу пропускания 5 МГц. Цена составляет 399,97 долларов.

Keysight Technologies InfiniiVision 1000 Осциллографы серии X – это приборы начального уровня с полосой пропускания от 50 до 200 МГц, 2 или 4 аналоговыми каналами и скоростью обновления до 200 000 осциллограмм в секунду. Они могут выполнять профессиональные измерения, графики Боде (только для моделей G), маску, тестирование, математику, БПФ, аналоговую шину и запуск / декодирование протокола (все стандартные). Хорошо подходит для преподавателей, которые легко настраиваются в учебных лабораториях с помощью бесплатного набора ресурсов для преподавателей.Цена от 480 долларов.

Осциллограф Tektronix TBS1000C разработан для образовательных учреждений, разработчиков встраиваемых систем и сообщества производителей. Он включает в себя 7-дюймовый цветной WVGA-дисплей с частотой дискретизации до 1 Гвыб / с, полосой пропускания от 50 до 200 МГц и пятилетней гарантией. Его система учебного курса объединяет лабораторные упражнения с пошаговыми инструкциями для студентов. Цена начинается от 500 долларов.

Осциллографы Teledyne LeCroy T3DSO1000 / 1000A имеют двухканальные и четырехканальные модели.2-канальная модель доступна с полосой пропускания 100, 200 или 350 МГц, с одним АЦП с максимальной частотой дискретизации до 2 Гвыб / с и памятью для дискретизации до 28 Мбайт. Когда все каналы включены, каждый канал имеет частоту дискретизации 500 Мвыб / с и стандартную длину записи 7 Мвыб. Когда активен только один канал на АЦП, максимальная частота дискретизации составляет 1 Гвыб / с, а максимальная длина записи – 14 Мбит. Цена от 725 долларов.

Rohde & Schwarz Осциллографы R & S®RTC1000 имеют полосу пропускания от 50 МГц до 300 МГц, макс.частота дискретизации 2 Гвыб / с, макс. глубина памяти два миллиона отсчетов, 8 цифровых каналов (опционально, дооснащение) и генератор шаблонов 4-битных шаблонов до 50 Мбит / с. Цена от 980 долларов и выше.

Instek MDO-2000A GW имеет выбираемую полосу пропускания от 100 до 300 МГц. Частота дискретизации составляет 2 Гвыб / с, а глубина памяти – 20 МБ / канал. Доступны дисплеи от 5,7 до 8 дюймов TFT. Он имеет глубину памяти 20M на канал и технологию отображения формы сигнала VPO. Цена составляет около 1000 долларов и выше.

SIGLENT SDS1000DL + серия – двухканальная модель 50 МГц.Он включает в себя память на 30 кбайт с 7-дюймовым ЖК-экраном TFT. Наряду с частотой дискретизации 500 Мвыб / с SDS1000DL + поддерживает измерение 32 параметров и общие математические операции для ускорения сложных / повторяющихся измерений. Цена начинается от 260 долларов и выше для более широкой полосы пропускания.

Сообщите нам, если вы найдете других, которые можно добавить в список.

DIY Генератор ВЧ сигналов – Доктор Скотт М. Бейкер

ВЧ-генератор с осциллографом

Некоторые проекты просты.Это не был один из тех проектов.

Это началось, когда я прочитал статью в июньском номере журнала Nuts and Volts за 2014 год. Это казалось отличной идеей – вместо того, чтобы тратить сто пятьдесят долларов на генератор радиосигналов для настройки моих радиоприемников, я мог бы просто построить его и кое-чему научиться в процессе.

Я не собираюсь предоставлять полную схему радиочастотного генератора, который я построил, потому что это будет нарушением прав собственности Nuts and Volts и автора статьи.Я покажу несколько фрагментов некоторых модификаций, которые я сделал, но если вы хотите увидеть весь дизайн или понять, как все это работает, я рекомендую вам купить журнал. Если я правильно помню, покупка подписки дает вам электронный доступ к предыдущим выпускам. За эти годы у меня появилось несколько хороших идей от Nuts & Volts, там есть хорошее вдохновение.

Модификация конструкции – ОУ с однополярным питанием

В ВЧ-генераторе автора использовалось несколько трансформаторов для подачи различных напряжений.Корпус, который у меня был, был немного мал, и я решил попробовать переделать схему, чтобы использовать только один трансформатор 24 В переменного тока с центральным отводом.

Первое изменение, которое я сделал, заключалось в использовании обычного катодного варакторного диода вместо обычного анодного варакторного диода. В то время как автору статьи в N&V требовалось использовать отрицательное напряжение для управления своим ГУН, я мог обойтись положительным напряжением для управления моим. Я остановился на варакторном диоде MACOM 4ST079CK-287T, главным образом потому, что кто-то продавал их на ebay, 15 из них по 10 долларов.SMV1404-09, используемый в статье N&V, напротив, сделан из унобтаниума. Насколько я могу судить, их не существует (хотя я думаю, что у автора все еще есть запасы).

Поиск в техническом описании MA4ST079CK-287T показывает параметры. Емкость диода варьируется от 87,4 пФ при 1 В до 11,8 пФ при 8 В. Кажется, что я могу добиться чуть большей производительности при напряжении ниже одного и выше восьми вольт.

Хорошо, поэтому использование общего катодного диода позволяет нам подавать на наш ГУН положительное напряжение.Это устраняет одну из потребностей в поставке с двумя направляющими. Другая потребность заключалась в буферизации сигнала амплитудной модуляции (AM). Когда я начал этот проект, я мало знал об операционных усилителях и развязке переменного тока. Я знал, что мой AM-сигнал может изменяться от -0,7 В до + 0,7 В, и я подумал, что вы хотите усилить сигнал, который может стать отрицательным, тогда вам понадобится операционный усилитель, который может стать отрицательным. Не так! Достаточно использовать делитель напряжения, чтобы поднять сигнал переменного тока до диапазона, с которым может справиться операционный усилитель с однополярным питанием. Позвольте мне проиллюстрировать схематическим фрагментом:

Секция модуляции AM

Сделанная мной модификация – это добавление R7, R8 и C8.AM-сигнал поступает на JP5 и соединяется по переменному току с помощью C4. Он ограничен диодами D1 и D2 примерно до 1,4 В (размах). C8 AC снова объединяет сигнал, и делитель напряжения R7 и R8 подтягивает сигнал примерно до 6 В. Мой операционный усилитель TLC272 питается от 12 В, так что 6 В находится в центре рабочего диапазона. Затем сигнал снова подключается по переменному току через C5.

Итак, что делает эта муфта переменного тока? Конденсатор связи переменного тока пропускает сигнал переменного тока, но блокирует составляющую постоянного тока. Итак, допустим, у нас есть синусоидальная волна с размахом 1 В, которая идет от -0.От 5 В до +0,5 В. Мы передаем это через конденсатор связи переменного тока на делитель напряжения R7 / R8. У нас все еще есть сигнал переменного тока, который составляет 1 вольт от пика до пика, но вместо его перехода от -0,5 В до + 0,5 В теперь он изменяется с + 5,5 В до + 6,5 В. Идеально! Это устраняет необходимость в двухканальном операционном усилителе. Мы можем запитать наш TLC272 от одного источника питания 12 В.

Есть изменение, не показанное на схеме выше – мне пришлось добавить резистор 100 Ом непосредственно перед конечным разделительным конденсатором C5. В противном случае TLC272 стал слишком нестабильным.

Я пробовал использовать в этой схеме множество операционных усилителей. LM358N показался довольно шумным. TL072 неплохо работает как операционный усилитель с двумя направляющими, но не работает как операционный усилитель с однополярным питанием. TLC272 был победителем, так как он был менее шумным, чем LM358N, но предлагал дизайн с одним источником питания, который может работать практически на всех уровнях. У меня есть заказ TLC2272, который должен быть даже лучше.

Конструктивное изменение – Блок питания

Теперь, когда мы можем обойтись операционным усилителем с одним источником, я смог значительно изменить конструкцию блока питания:

источник питания – 24В, 12В, 5В

Как видите, с блоком питания нет ничего особенного – это обычные регуляторы 78xx.Мне удалось запустить все это от одного трансформатора с центральным ответвлением 24 В переменного тока. Причина, по которой есть два источника питания 12 В, заключается в том, что мне нужен один чистый источник для операционного усилителя и отдельный источник для модуля частотомера.

Поиск компонентов

Для этого проекта требовалось множество компонентов, которых у меня не было.

  • Катушки индуктивности. Вам понадобится много индукторов для главного переключателя диапазона. В итоге я использовал 4,7 мГн, 2,2 мГн, 1 мГн, 680 мкГн, 150 мкГн, 47 мкГн, 10 мкГн, 2,2 мкГн и 330 нГн. Первые 8 из них поступили от одного продавца ebay в Китае.Я заказал «Индуктор колеса цвета 20value 200pcs 0410 DIP» за девять баксов. Да, именно 200 катушек индуктивности за 9 баксов. Это была неплохая сделка, и остался миллион индукторов. катушка индуктивности 330 нГн пришла от digikey 70F337AP-RC-ND.
  • Селекторный переключатель. Вам нужен селекторный переключатель с минимум 10 остановками. Они обычно доступны в версиях 3, 4, 6 и 12. В итоге я выбрал «ALPS 2-Wafer 2-Pole 12-Position Cycling Rotary Switch» от ebay. Jameco также продает 12-позиционный поворотный переключатель, хотя он только однополюсный, и автор призвал к двухполюсному.
  • Микросхема VCO MC1648. Нашел их на ebay.
  • Ферритовые бусины. Я заказал их с ebay, но это оказалось глупо с моей стороны. Автор назвал конкретные номера деталей, которые вы можете получить от digikey. Я все равно заказал их, так как ферритовые бусины ebay неизвестного состава странного размера оказались бесполезными.
  • ГАЛИ-55 усилитель. Я купил десять из них на ebay примерно за двенадцать долларов. Mini-circuit (производитель) также любезно прислал мне четыре бесплатных образца.Вам нужен только один, но из-за своей некомпетентности я в значительной степени преуспел в их уничтожении.
  • 2-ваттные резисторы для смещения GALI. Автор требует резистора мощностью 2 Вт на 392 Ом. Я попробовал это, и стало очень жарко. Я закончил тем, что вместо этого подключил два резистора на 840 Ом параллельно. Это немного не соответствует спецификации и немного снизит мощность GALI, но я обнаружил, что это сработало.
  • Светодиодный индикатор частоты. Я купил «Blue-0-1-60MHz-20MHz-2-4GHz-RF-Signal-Frequency Counter-Cymometer-Tester» на ebay.Это обошлось мне примерно в 10 долларов плюс доставка.

Вам также понадобится много маленьких конденсаторов – 1 мкФ, 0,1 мкФ, 0,047 мкФ и т. Д. Я предлагаю приобрести их ассортимент на ebay. Выбирайте монолитные конденсаторы. Приблизительно за десять долларов вы получите достаточно конденсаторов, чтобы прослужить долгое время. Вам понадобятся другие мелочи, например, резисторы. Вам также понадобятся регуляторы напряжения (7805, 7812, 7824). Вам понадобится 10K линейных горшков. Я предполагаю, что каждый, кто способен построить ВЧ-генератор, способен найти обычные резисторы и конденсаторы.

Имейте в виду, что доставка запчастей из Китая займет некоторое время, поэтому заказывайте их заранее и заказывайте дополнительные принадлежности на случай, если вы что-нибудь сломаете.

Проектирование печатных плат

Мне нравится проектировать печатные платы, даже если я новичок, использующий маршрутизатор Eagle. Вот и выложил такой дизайн:

Печатная плата генератора ВЧ, первая редакция

Эта плата оказалась очень плохой, пример того, чего нельзя делать. В частности, обратите внимание на длинные тонкие дорожки в выходной секции RF с левой стороны.Острые прямые углы. След в никуда, когда не установлен дополнительный резистор R13. Когда мы перейдем к разделу «Проблемы», мы поговорим о том, почему они были плохими.

Проблема №1 – регуляторы напряжения работали неправильно

В конструкции используются две потенциометры для грубой и точной настройки напряжения. Мой радиочастотный генератор был действительно странным – я мог регулировать частоту примерно до 80 МГц, а затем ручка начала очень быстро менять частоту. Ну, вы помните, как я сказал выше, что вам нужны «линейные горшки 10K»? Как вы уже догадались, мне удалось вместо этого запаять логарифмические звуковые горшки 10K.Я даже не знаю, откуда они взялись; Я мог бы поклясться, что никогда не покупал аудио-горшки. К счастью, у меня также было несколько линейных горшков, и это было несложно.

Проблема №2 – нет выигрыша

В моем первом видео я прихожу к выводу, что все очень хорошо, потому что внешний частотомер показал ожидаемые радиочастоты. Ну, не все было круто. Напротив, все было совершенно напортачено.

Оказывается, усиления от усилителя ГАЛИ-55 вообще не было.Я получал только несколько сотен милливольт на выходном разъеме RF. Проверяя схему, он даже загружал сигнал с транзистора, который ее питал. Каким-то образом этот GALI был поврежден. В блоге есть отдельный пост, в котором подробно рассказывается о моем разочаровании по поводу усилителя GALI-55, главным образом потому, что я не знал, что, черт возьми, я делал, когда дело доходило до создания ВЧ схем.

Короче говоря, мы (я заручился помощью автора статьи N&V) думали, что моя плохая компоновка печатной платы вызвала паразитные колебания в GALI-55.Этот чип способен генерировать колебания в диапазоне гигагерц, а мой осциллограф хорош только до сотни мегагерц. Если бы он действительно начал улавливать гигагерцевые колебания, я бы никогда не смог их увидеть, но они испортили бы мой коэффициент усиления. В конечном итоге я решил вырезать все дорожки на печатной плате, которые вели к GALI, и припаять выводы конденсатора непосредственно к GALI.

Переделал RF PCB:

Печатная плата РФ, исп.2

Как видите, я сдвинул выходные компоненты RF намного ближе друг к другу.Я добавил дополнительную плоскость заземления вверху. Я добавил больше шунтирующих и разделительных конденсаторов. Он по-прежнему не работал ни черта. Вот фотография, показывающая, как я припаял колпачки прямо к GALI-55:

Печатная плата РФ с припаянными к GALI-55 заглушками

Вы также можете увидеть множество заглушек байпаса, припаянных непосредственно к резистору смещения. Это была одна из моих многочисленных попыток унять помехи.

Проблема №3 – перепутался импеданс

У автора было хорошее описание ступенчатого аттенюатора, который вы можете построить.Я решил, что в моем случае это не подходит, поэтому просто использовал горшок. Автор использовал горшок (в дополнение к своему аттенюатору), поэтому, конечно, я мог просто взять любой старый горшок и использовать его. Мой аттенюатор состоял из потенциометра на 500 Ом.

Что происходит, когда вы это делаете, так это то, что вы теряете сопротивление линии передачи до осциллографа. Это вызывает отражение РЧ-энергии и приводит к дополнительным отраженным волнам на выходе. Я не был полностью идиотом по этому поводу, я знал, что это произошло, но привлекательность использования 0 долларов.79 горшок из мусорного ящика вместо того, чтобы строить какой-то сложный аттенюатор, стоил риска. Я вырезал горшок из схемы и вместо этого подключил выход RF напрямую к разъему BNC.

У меня есть ступенчатый аттенюатор 0-10 дБ, заказанный на ebay. Это будет моим «прекрасным» РЧ-контролем. Я планирую установить это вместе с тумблером аттенюатора на 20 дБ. Это даст мне аттенюацию 0–10 или 20–30 дБ. Ступенчатый аттенюатор на заказ с ebay стоил 30 долларов. Будем надеяться, что он хороший, и надеемся, что он подходит.

Проблема №4 – изменение частоты на 80–100 МГц.

ВЧ-генератор был великолепен, пока я не увеличил частоту примерно до 80 МГц, а затем начали происходить всякие странные чуши. Сначала это была одна волна расходящейся частоты. Потом были всевозможные дополнительные паразитные волны. В этом диапазоне выход был бесполезен. И снова автор N&V дал мне несколько советов. Он указал на проблему с землей, в частности, вблизи селекторного переключателя RF.

Селекторный переключатель, который я использовал, состоит из множества металлических деталей.«Носик» переключателя металлический, как и пластина на его задней стороне. Переключатель был установлен на алюминиевой передней панели, и эта передняя панель проводила шум прямо в узел переключателя. Решение оказалось двойным:

  1. Заземлите сам коммутатор. Я припаял заземляющий провод к металлической задней панели переключателя. Роберт предложил использовать конденсатор на 0,001 мкФ. Я пробовал разные конденсаторы, но в итоге просто подключил корпус переключателя к земле.
  2. Очень хорошо заземлите корпус.Когда я впервые начал этот проект, я совершил ошибку, попытавшись изолировать корпус от цепи, используя изолированные ВЧ разъемы, изолированные стойки и т. Д. Мой корпус был полностью изолирован от заземления цепи. В то время это казалось отличной идеей, но я думаю, что на самом деле корпус был отличной антенной и проводил шум прямо в переключатель RF. Чтобы успокоить его, я заменил изолированный ВЧ-разъем на неизолированный и добавил к корпусу заземляющие провода от платы питания, операционного усилителя и ВЧ-плат.

Проблема № 5 – при закрытии крышки ВЧ генератор сходит с ума

Я думал, у меня все работает. Затем я пошел устанавливать крышку, и все сигналы ниже 10 МГц получили всевозможные неприятные искажения. Простое сгибание крышки или перемещение ее вперед и назад существенно повлияет на форму волны. Дерьмо. Простое движение рукой внутри футляра может вызвать искажения. Я подумал, что буду заземлять крышку, и поэтому проблем не возникнет.Нет уж.

Проблема оказалась в радиочастотных помехах, опять же из-за моего отсутствия опыта работы с радиочастотными схемами. Я был достаточно умен, чтобы использовать коаксиальный кабель для своих ВЧ-кабелей, но я принял решение использовать разъемы 0,100 пин / сокет, так как я знаком с ними из моих цифровых проектов. Они упрощают подключение и отключение плат. Что ж, * да *, есть причина, по которой люди используют экранированные коаксиальные разъемы. Этот маленький 0,100-контактный разъем и 0,100-контактный разъем делают отличную антенну для радиовещания. Радиочастотная энергия выстреливает из него, отскакивает от стенок корпуса, отражается обратно в генераторы и т. Д.Это беспорядок.

В итоге я экранировал свой заголовок 0,100, обмотав его лентой из медной фольги и прикрепив эту фольгу к оплетке коаксиального кабеля. Это принесло мне около 80% при подавлении помех.

Остальные 20% ремонта пришлось на добавление экрана RF прямо над печатной платой. В итоге я использовал олово и еще немного медной ленты. Теперь я могу накрыть ВЧ-генератор крышкой, чтобы он не сходил с ума.

ERASynth Micro – генератор радиочастотных сигналов с открытым исходным кодом

ERASynth Micro – недорогой генератор радиочастотных сигналов с открытым исходным кодом с питанием от USB от ERA Instruments.

ERASynth Micro – генератор сигналов с открытым исходным кодом и впечатляющими характеристиками. Это может позволить себе каждый, включая производителей, хакеров, студентов, радиолюбителей и пользователей SDR. ERASynth Micro может получать питание от порта USB и оснащен ЖК-интерфейсом для автономного использования без компьютера или телефона. Он может генерировать РЧ-сигналы с низким фазовым шумом в диапазоне от 12,5 МГц до 6,4 ГГц с архитектурой с двойной ФАПЧ.

Характеристики и характеристики

  • Архитектура: Двойной контур ФАПЧ с дробным коэффициентом деления
  • Диапазон частот: 12.От 5 МГц до 6,4 ГГц
  • Диапазон амплитуд: от -50 до +15 дБм
  • Фазовый шум: -115 дБн / Гц на выходе 1 ГГц и отстройке 10 кГц
  • Время переключения частоты: 1 мс (типичное)
  • Артикул: Сверхнизкий уровень шума 50 МГц VCXO с синхронизацией до ± 500 частей на миллиард TCXO
  • MCU: ATMEGA32U4 (такой же, как в Arduino Micro)
  • Интерфейсы:
    • Модуль сенсорного дисплея (Nextion NX4024T032 3,2 дюйма)
    • Micro-USB для ввода питания и последовательного доступа
    • REF В (SMA) для внешнего опорного сигнала
    • REF Out (SMA) для 10 МГц опорного выхода
    • RF выход (SMA)
    • Разъем расширения: вход внешнего триггера, вход внешней модуляции, вход микрофона, GPIO (I2C) и SPI
  • Модуляция: AM, FM, импульсная (внутренняя и внешняя)
  • Размер: 57 мм x 118 мм x 23 мм
  • Вес: <120 г (включая ЖК-экран)
  • Потребляемая мощность: 5 В
  • Потребляемая мощность: <2 Вт
  • Корпус: Литой пластиковый корпус
  • Открытый исходный код: схема , встроенный код Arduino, исходный код ЖК-экрана и набор команд RS-232
Создателей / Хакеров:
Генераторы ВЧ сигналов

– это дорогостоящее испытательное оборудование, используемое в основном профессиональными инженерами.ERASynth Micro стремится устранить ценовой барьер и сделать качественный синтез радиочастотных сигналов доступным для всех, особенно для производителей.

Студенты:

ERASynth Micro предназначен для всех, кто хочет узнать, как работают генераторы сигналов. Поскольку это открытый исходный код и открытая схема, студенты или все, кому интересно узнать о внутренних деталях синтеза сигналов, могут извлечь выгоду из ERASynth Micro. Вы можете узнать намного больше с помощью реверс-инжиниринга и взлома, чем вы можете выучить за год инженерной школы стоимостью 50 тысяч долларов в год.Изучение конструкции испытательного оборудования превратило Джима Уильямса в одного из лучших аналоговых инженеров в мире. Усовершенствованный дизайн ERASynth Micro, безусловно, научит вас нескольким приемам работы с радиочастотами.

Специалистов:

Профессиональные инженеры сочтут ERASynth Micro очень хорошей альтернативой многим существующим генераторам сигналов.

Проект размещен на CrowdSupply, до его реализации осталось 26 дней. ERASynth Micro Early Bird стоит 189 долларов.

Как построить генератор сигналов | Custom

Как работает генератор сигналов?

Первой ступенью генератора сигналов является ГУН, что означает генератор, управляемый напряжением.Этот ГУН состоит из операционных усилителей U3A и U3B, где U3A настроен как интегратор, а U3B настроен как триггер Шмитта. Когда входное напряжение подается на ГУН (через RV4), интегратор U3A интегрирует это постоянное напряжение, в результате чего выходной сигнал U3A имеет устойчивый нисходящий наклон (задний фронт треугольной формы волны). В конце концов, выходной сигнал интегратора опускается ниже нижнего порога инвертирующего триггера Шмитта (U3B), что приводит к переключению выхода триггера Шмитта на 5 В.Когда это происходит, Q1 полностью насыщается, что приводит к разрядке C1 (через R3). Когда это происходит, выходной сигнал интегратора начинает расти (нарастающий фронт треугольной формы сигнала). В конце концов, этот выход пересекает верхний порог инвертирующего триггера Шмитта, что приводит к переключению выхода триггера Шмитта на 0 В. Это отключает Q1 и приводит к падению выхода интегратора, начиная весь процесс заново.

Сигнал ШИМ генерируется путем подачи сигнала треугольной формы (обнаруженного на выходе U3A) в операционный усилитель (U1A), сконфигурированный как компаратор.Положительный вход компаратора подключен к потенциометру (RV1), а отрицательный вход подключен к источнику треугольной формы сигнала. Когда треугольная форма волны превышает напряжение потенциометра, выход переключается на 5 В. Когда треугольная форма волны опускается ниже напряжения потенциометра, выход переключается на 0 В. Регулируя потенциометр, операционный усилитель U1A будет включаться и выключаться на разных уровнях, что приводит к прямоугольной волне ШИМ.

Каждый источник сигнала дополнительно подключается к буферу единичного усиления, за которым следует потенциометр.Буфер единичного усиления предотвращает влияние других цепей на ГУН, а потенциометр регулирует амплитуду выходной волны. Затем каждая форма сигнала подключается к другому буферу единичного усиления в конце для улучшения выходного сопротивления.

Конструкция

Эта схема может быть изготовлена ​​с использованием стандартных методов сборки, включая беспаечные макеты, монтажные платы и печатные платы. К файлам проекта прилагается информация ЧПУ, необходимая для фрезерования вашего собственного генератора сигналов, включая код автоматического выравнивания.Рекомендуется использовать этот проект вместе с коробкой для проекта или кожухом, если вы собираетесь создать собственный стендовый инструмент. Показанный здесь пример представляет собой открытый корпус, демонстрирующий методы внутренней проводки и конструкции.

Генератор радиочастотных сигналов

– Джош Джонсон

Генератор ВЧ сигналов (перед проводами корпуса)…

После сборки недорогого векторного анализатора цепей в прошлом году у меня возникло желание добавить в свою ВЧ лабораторию, и с оставшимися у меня частями простой генератор ВЧ сигналов казался очевидным выбором.Конечный результат показан выше, и он обеспечивает качание в диапазоне от 23,5 МГц до 6 ГГц с выходной мощностью от -35 до +15 дБмВт (гарантировано от -25 до +10).

Хотя я думал о том, чтобы сделать его одноплатным устройством со встроенным микроконтроллером, из-за повсеместного распространения форм-фактора Adafruit Feather я решил спроектировать его как «Feather Wing», чтобы его можно было подключить к нескольким различные основные платы, которые позволили бы использовать его в сочетании с WiFi, BLE или даже Circuit Python, и все это путем отключения платы, к которой она подключена, и написания новой прошивки.

Однако после того, как я изо всех сил пытался настроить MAX2871 на моем анализаторе цепей по ряду причин, все из которых существовали между клавиатурой и стулом, я хотел иметь возможность перенести как можно больше моей прошивки на любое устройство Feather I. использовал. Хотя STM32F405 Feather был бы идеальным вариантом (поскольку я использовал STM32F373 в моем VNA), он был недоступен при запуске этого проекта, поэтому я разработал STM32F103 Feather, который, за исключением драйвера ADC, мог запускать все мои ранее разработанная прошивка VNA.

STM32F103 Перо

Другой целью этого проекта было написать для него графический интерфейс, так как у меня не хватило времени на VNA, и я хотел получить некоторый опыт разработки дружественного интерфейса для устройства. После первого написания сценария python, который обрабатывает правильный синтаксический анализ аргументов и проверку ошибок (оба отсутствуют в прошивке), я разработал графический интерфейс в PyQt5, который будет вызывать сценарий python и, в свою очередь, отправлять правильные команды генератору сигналов через COM. порт. Будучи первым настоящим проектом, который я использовал QT, я получил много опыта по обучению, но конечный результат был довольно приятным, с простым графическим интерфейсом, позволяющим устанавливать частоту и мощность, а также настраивать частотную развертку.

Графический интерфейс генератора сигналов

Что дальше с генератором сигналов? Существует ряд функций, включая выбор PLL Int / Frac-N, свипирование мощности и несколько ошибок с использованием интерфейса командной строки, которые необходимо добавить / исправить, однако для некоторых из них потребуется переписать прошивку для обработки этих параметров, так как код, перенесенный из VNA, был очень узким. В настоящее время я искал проект, в котором можно было бы поиграть с ОСРВ, и этот проект был бы идеальным для этого, так как существует ряд ограничений из-за однопоточной конструкции текущей прошивки.Однако, потратив последний месяц и немного поработав прошивку и программное обеспечение, мне нужен перерыв, чтобы спроектировать какое-то оборудование, поэтому я продолжу этот проект позже. Если вы хотите узнать больше о проекте, просмотреть файлы дизайна или создать свой собственный, вся информация находится на GitHub. Не стесняйтесь обращаться, если есть какие-либо вопросы.

433 МГц выход Sig Gen на мой HackRF One. Шпоры на 410 и 850 МГц являются внутренними для HackRF.

The Essential Signal Generator Guide – Solid RF Foundations

Страна или регион * –Выберите – United StatesUnited KingdomCanadaIndiaNetherlandsAustraliaSouth AfricaFranceGermanySingaporeSwedenBrazilAfghanistanÅland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrit / Индийский океан Terr.Бруней-ДаруссаламБолгарияБуркина-ФасоБурундиКамбоджаКамерунКанарские островаКапо-ВердеКаймановы островаЦентральноафриканская РеспубликаЧадЧилиКитайОстров РождестваКокос (Килинг) островаКолумбияКоморские островаКонгоКонго, The Dem. Республика OfCook IslandsCosta RicaCôte d’IvoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFrench GuianaFrench PolynesiaFrench Южный Terr.GabonGambiaGeorgiaGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-BissauGuyanaHaitiHeard / McDonald ISL,.HondurasHong Kong, ChinaHungaryIcelandIndonesiaIranIraqIrelandIsraelItalyJamaicaJapanJordanKazakhstanKenyaKiribatiKorea (Северная) Корея (Южная) KuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacauMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontserratMoroccoMozambiqueMyanmarN. Марьяна Isls.NamibiaNauruNepalNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalauPalestinian край, OccupiedPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint Киттс и NevisSaint LuciaSamoaSan MarinoSao Фолиант / PrincipeSaudi ArabiaSenegalSerbia и MontenegroSerbiaMontenegroSeychellesSierra LeoneSlovak RepublicSloveniaSolomon IslandsSomaliaSpainSri LankaSt.HelenaSt. Пьер и Микелон Винсент и GrenadinesSudanSurinameSvalbard / Ян Майен Isls.SwazilandSwitzerlandSyriaTaiwan, ChinaTajikistanTanzaniaThailandTimor-LesteTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks / Кайкос Isls.TuvaluUgandaUkraineUnited Arab EmiratesUS Экваторияльная Is.UruguayUzbekistanVanuatuVatican CityVenezuelaViet NamVirgin острова (Британские) Виргинские острова поле (США) Уоллис / Футуна Isls.Western SaharaYemenZambiaZimbabweRequired

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *