Генерирование электрической энергии. Трансформаторы
В данной теме речь пойдёт о способах генерирования электрической энергии. А также изучим устройство простейшего трансформатора.
Электромагнитная индукция – это явление заключается в том, что при всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока. А полученный таким способом ток называется индукционным током.
Переменным называется ток, периодически изменяющийся со временем.
Для того чтобы в цепи существовал синусоидальный переменный ток, источник в этой цепи должен создавать переменное электрическое поле, изменяющееся синусоидально. На практике синусоидальная ЭДС создается генераторами переменного тока, работающими на электростанциях.
Генераторы — это электрические машины, преобразующие механическую энергию в электрическую
К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи и т.д.
В настоящее время также исследуются возможности создания принципиально новых типов генераторов. Так, например, разрабатываются и уже частично используются топливные элементы, в которых энергия, освобождающаяся в результате реакции водорода с кислородом, непосредственно превращается в электрическую.
Область применения различных генераторов различна и определяется их характеристиками. Так, например, электростатические машины создают высокую разность потенциалов, но они не способны создать в цепи сколько-нибудь значимую силу тока. Гальванические же элементы наоборот могут дать большой ток, но продолжительность их невелика.
В современной энергетике применяют индукционные генераторы переменного тока, в которых используется явление электромагнитной индукции. Такие генераторы позволяют получать большие токи при достаточно высоком напряжении.
В прошлой теме была рассмотрена простейшая модель такого генератора — рамка с током, вращающаяся в однородном магнитном поле вокруг своей оси.
В настоящее время имеется много различных типов индукционных генераторов. Но все они состоят из одних и тех же основных частей.
Ранее нами рассматривался пример получения индукционного тока в плоском контуре при его вращении в магнитном поле. На этом принципе и работает электромеханической генератор переменного тока. Неподвижная часть генератора, аналогичная магниту, называется статором, а вращающаяся, т. е. рамка, — ротором.
В мощных промышленных генераторах вместо постоянного магнита используется электромагнит.
Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока вектора магнитной индукции.
В рассмотренной нами ранее модели генератора, вращается проволочная рамка, играющая роль ротора.
Разумеется, можно было бы поступить и наоборот, т.е. вращать магнит, а рамку оставить неподвижной. В больших промышленных генераторах приводится во вращение именно электромагнит.
Статор промышленного генератора представляет собой стальную станину цилиндрической формы (станина — это основная несущая часть машины, на которой монтируются различные рабочие узлы, механизмы и прочее). Во внутренней его части прорезаются пазы, в которые укладывается толстый медный провод. Именно в них и индуцируется переменный электрический ток при изменении пронизывающего их магнитного потока. Магнитное поле создается ротором. Он представляет собой электромагнит: на стальной сердечник сложной формы надета обмотка, по которой протекает постоянный электрический ток. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток; а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Ток к этой обмотке подводится через щетки и кольца от постороннего источника постоянного тока, называемого возбудителем.
На рисунке представлена полная схема генератора переменного тока. При вращении ротора какой-либо внешней механической силой, создаваемое им магнитное поле тоже вращается. При этом магнитный поток, пронизывающий витки обмотки статора, периодически меняется, в результате чего в них индуцируется переменный ток.
На тепловых электростанциях ротор генератора вращается с помощью паровой турбины, на гидроэлектростанциях — с помощью водяной турбины.
Обратите внимание, что ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Чем больше пар полюсов, тем больше частота переменного электрического тока, вырабатываемого генератором при данной скорости вращения ротора. Поскольку скорость вращения водяных турбин обычно невелика, то для создания тока стандартной частоты используют многополюсные роторы.
Таким образом, электрическую энергию производят на электростанциях. Но ее каким-то образом надо передать потребителям, часто находящимся очень далеко от станции. Для этого между станцией и потребителем строят линии электропередач.
Однако при передаче электроэнергии неизбежны потери, связанные с нагреванием проводов. Чем дальше от электростанции находится потребитель тока, тем больше энергии тратится на нагревание проводов и тем меньше доходит до потребителя.
Уменьшение потерь электроэнергии при ее передаче от электростанций к потребителям является важной народнохозяйственной задачей. Из закона Джоуля-Ленца следует, что уменьшить потери можно либо за счет уменьшения сопротивления проводов, либо уменьшения силы тока в них. Сопротивление проводов будет тем меньше, чем больше площадь их поперечного сечения и чем меньше удельное сопротивление металла, из которого они изготовлены. Провода делают из меди или алюминия, так как среди относительно недорогих металлов они обладают наименьшим удельным сопротивлением.
Поэтому существенного снижения потерь можно добиться только за счет уменьшения силы тока. Но приданной мощности уменьшение силы тока возможно лишь при увеличении напряжения. Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.
Так, электроэнергия Волжской ГЭС передается в Москву при напряжении 500 кВ, от Саяно-Шушенской ГЭС — при напряжении 750 кВ. Хотя на самих электростанциях генераторы вырабатывают электрическую энергию при напряжениях, не превышающих 20 кВ.
Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатора — устройства, служащего для преобразования силы и напряжения переменного тока при неизменной частоте.
Первый трансформатор был изобретен в 1876 году русским ученым Павлом Николаевичем Яблочковым для питания изобретенных им электрических свечей — нового в то время источника света. А первый технический трансформатор впервые создал Иван Филиппович Усагин в 1882 г.
В основе работы трансформатора лежит явление электромагнитной индукции. Простейший трансформатор представляет собой две изолированные друг от друга катушки (их еще называют обмотками), намотанные на общий замкнутый сердечник. По одной из обмоток (первичной) пропускается преобразуемый переменный ток, а вторичная обмотка соединяется с потребителем.
Переменный ток в первичной обмотке создает в сердечнике переменный магнитный поток, который возбуждает ЭДС индукциив витках каждой обмотки. Сердечник из трансформаторной стали концентрирует магнитное поле так, что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях.
Мгновенное значение ЭДС индукции во всех витках первичной или вторичной обмотки одинаково. Согласно закону Фарадея, оно будет определяться формулой
e = –Ф’
где Ф’ — производная потока магнитной индукции по времени.
Если первичная обмотка имеет N1 витков, а вторичная N2 витков, то в обмотках индуцируются (без учета потерь на рассеивание магнитного потока) соответственно e1 и e2, а их отношение будет равно
Т.е. возникающие в катушках ЭДС индукции (или самоиндукции) пропорциональны числу витков в них.
Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах первичной обмотки примерно равен модулю суммарной ЭДС индукции.
При разомкнутой вторичной обмотке трансформатора ток в ней не идет, поэтому суммарная ЭДС индукции равна напряжению на зажимах вторичной обмотки.
Изменение мгновенных значений ЭДС происходит так, что они одновременно достигают максимума и одновременно проходят через ноль, т.е. изменяются синфазно. Поэтому их отношения можно заменить отношением действующих значений этих ЭДС или отношением действующих значений напряжений.
Отношение числа витков в первичной обмотке к числу витков во вторичной называют
В зависимости от того, какое значение принимает коэффициент трансформации, различают повышающий и понижающий трансформатор.
Его обычно определяют при холостом ходе трансформатора, т.е. при разомкнутой цепи вторичной обмотки.
Если коэффициент трансформации меньше единицы, то трансформатор называется повышающим, а если больше единицы — то понижающим.
При включении во вторичную цепь какой-либо нагрузки (это рабочий ход трансформатора) в ней начинает проходить ток нагрузки (он переменный и такой же частоты). Этот ток создает в сердечнике магнитный поток, направленный по правилу Ленца навстречу потоку первичной обмотки. В результате суммарный поток магнитной индукции в первичной катушке уменьшается, уменьшается и ЭДС, а, следовательно, сила тока будет увеличиваться. Это увеличение силы тока в первичной цепи приводит к увеличению магнитного потока, ЭДС индукции и силы тока во вторичной цепи. Но, как мы знаем, увеличение тока во вторичной цепи сопровождается увеличением тока самоиндукции и, следовательно, уменьшением магнитного потока который только что возрастал.
В конце концов, при постоянной нагрузке устанавливаются определенные магнитный поток, ЭДС индукции во вторичной цепи и ток в первичной цепи. Получается, что трансформатор сам, автоматически регулирует потребление энергии в зависимости от нагрузки во вторичной цепи.
При рабочем ходе трансформатора происходит непрерывная передача энергии из первичной цепи во вторичную.
Мощность, потребляемая в первичной цепи, будет определяться формулой
а выделяемая на нагрузке
Коэффициент полезного действия трансформатора будет определяться отношением выделяемой мощности на нагрузке к потребляемой мощности в первичной цепи.
Однако не вся энергия, вырабатываемая генератором, передается потребителю. При работе трансформатора имеются потери на нагревание обмоток трансформатора, на рассеивание магнитного потока в пространство, на вихревые токи Фуко в сердечнике и его перемагничивание.
Для уменьшения этих потерь принимаются следующие меры:
1) обмотка низкого напряжения делается большего сечения, так как по ней проходит ток большей силы;
2) сердечник делают замкнутым, что уменьшает рассеивание магнитного потока;
3) сердечник делают из изолированных пластин для уменьшения токов Фуко.
Благодаря этим мерам коэффициент полезного действия современных трансформаторов достигает 95—99%, а сдвиг фаз между колебаниями силы тока и напряжения близки к нулю.
Если иногда можно пренебречь потерями в трансформаторе, т.е. считать его коэффициент полезного действия равным 100%, то мощность, потребляемая в первичной цепи, будет равна мощности, выделяемой на нагрузке. Тогда отношение силы тока в первичной обмотке к силе тока во вторичной обмотке будет обратно пропорционально соответствующим напряжениям. А это значит, что увеличивая с помощью трансформатора напряжение, во столько же раз будем уменьшать силу тока и наоборот.
В настоящее время трансформаторы нашли широкое применение, как в технике, так и в быту. Например, для передачи электроэнергии на большие расстояния используются как повышающие, так и понижающие трансформаторы (об этом, кстати, мы более подробно будем говорить в одном из следующих уроков). При подзарядке сотового телефона имеющийся в зарядном устройстве трансформатор понижает напряжение, полученное из осветительной сети до 5.5 В, пригодного для телефона. В телевизоре имеется несколько трансформаторов (как понижающих, так и повышающих), поскольку для питания различных его узлов требуется напряжение от 1,5 В до 25 кВ и так далее.
Основные выводы:
– Генератор переменного тока – устройство, преобразующее механическую энергию в электрическую.
– В современной энергетике применяются индукционные генераторы, работа которых основана на явлении электромагнитной индукции, и позволяющие получить большие токи при достаточно высоком напряжении.
– Конструкций индукционных генераторов существует достаточное количество, однако, неизменными в каждом из них, остаются ротор — подвижная часть генератора, и статор — неподвижная часть генератора.
– Трансформатор – устройство, служащее для преобразования силы и напряжения переменного тока при неизменной частоте.
– Трансформатор характеризуется коэффициентом трансформации, т.е. отношением числа витков в первичной обмотке к числу витков во вторичной обмотке.
– В зависимости от значения этого коэффициента, различают повышающий и понижающий трансформаторы.
Физика Генерирование электрической энергии. Трансформатор
Материалы к уроку
Конспект урока
Электрическая энергия обладает огромными преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на большие расстояния с малыми потерями и удобно распределять между потребителями. Главное, электроэнергию с помощью достаточно простых устройств легко превратить в любые другие формы: механическую, внутреннюю, световую.
Особенно большая необходимость в трансформации напряжения и тока возникает при передаче электроэнергии на большие расстояния. Переменный ток, его напряжение и силу можно в очень широких пределах преобразовывать почти без потерь энергии, то есть трансформировать. Такие преобразования необходимы во многих электро-и радиотехнических устройствах.
Прежде всего ознакомимся с генераторами – устройствами, преобразующими энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи и тому подобное оборудование.
Сегодня исследуются возможности создания принципиально новых типов генераторов. Например, термобатареи, где используется свойство двух контактов разнородных материалов создавать ЭДС за счет разности температур контактов. Разрабатываются так называемые топливные элементы, в которых энергия, освобождающаяся в результате реакции водорода с кислородом, непосредственно превращается в электрическую энергию.
Область применения каждого из перечисленных типов генераторов электроэнергии определяется их характеристиками. К примеру, машины создают высокую разность потенциалов, но неспособны создать в цепи значительную силу тока. Гальванические элементы могут дать большой ток, но их рабочее время невелико. Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока. Так как только благодаря им сегодня вырабатывается потребляемая человечеством электрическая энергия.
В этих генераторах механическая энергия превращается в электрическую энергию. Их действие основано на явлении электромагнитной индукции, и они имеют сравнительно простое устройство, что позволяет получать большие токи при достаточно высоком напряжении.
В настоящее время имеется много различных типов индукционных генераторов. Но все они состоят из одних и тех же основных частей: электромагнит или постоянный магнит, создающий магнитное поле, и обмотка, в которой индуцируется переменная ЭДС. Простейшая модель генератора – это вращающаяся рамка из проводникового материал в магнитном поле).
Так как ЭДС, наводимые в последовательно соединенных витках складываются, то амплитуда ЭДС индукции в рамке пропорциональная числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока через каждый виток.
Для получения большого магнитного потока в генераторах применяют магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется электродвижущая сила, – в пазах другого. Внутренний сердечник вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называется статором. Для увеличения потока магнитной индукции зазор между сердечниками статора и ротора делают маленьким.
В изображенной на этом рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной.
В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, находятся неподвижно в пазах статора. Подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь нужно при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки. Неподвижные щетки из пластин прижаты к кольцам и осуществляют связь обмотки ротором с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Генерируемый ток снимают с неподвижных обмоток, а через скользящие контакты подводят сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока – возбудителем, который находится на том же валу.
Постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель. В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны. Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, возникающее из-за изменения магнитного потока при вращении ротора.
Современный генератор электрического тока – это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. Важнейшие детали генераторов изготовляются с точностью до миллиметра. Очень точное сочетание движущихся частей, которые порождают электрическую энергию непрерывно и экономично.
ЭДС мощных генераторов электростанций довольно велика. Между тем в практике чаще всего нужно не слишком высокое напряжение. Напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов.
Трансформатор – это электрический аппарат, предназначенный для преобразования электрической энергии одного напряжения в электрическую энергию другого напряжения при условии сохранения частоты.
Действие трансформатора основано на явлении взаимной индукции.
Павел Николаевич Яблочков положил начало техническому использованию трансформаторов, разработав однофазный трансформатор с разомкнутым сердечником и в 1876 году и впервые применил его для осветительной установки с электрическими свечами.
Трансформатор состоит из замкнутого стального сердечника, собранного из пластин, на который надеты две (иногда и более) катушки с проволочными обмотками.Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Другая обмотка, к которой присоединяют нагрузку, т. е. приборы и устройства, потребляющие электроэнергию, называется вторичной.
Условное обозначение трансформатора таково.
Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает электродвижущую силу индукции в каждой обмотке. Сердечник из трансформаторной стали концентрирует магнитное поле, так что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях.
Мгновенное значение ЭДС индукции в любом витке первичной или вторичной обмотки одинаково. Согласно закону Фарадея значение ЭДС есть производная потока магнитной индукции по времени. Если поток магнитной индукции эф выразить как произведение амплитуды переменного магнитного потока на синус или косинус фазы частоты колебаний и времени, то, следовательно, мгновенное значение ЭДС определяется произведением амплитуды ЭДС в одном витке на синус фазы частоты колебаний и времени.
Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен модулю ЭДС индукции. При разомкнутой вторичной обмотке трансформатора ток в ней не течет. В первичной обмотке, имеющей эн-1 витков с индукцией е-1, полная ЭДС индукции равна эн-1-е-1. Во вторичной обмотке витков эн-2, индукция е-2 полная ЭДС индукции равна эн-2-е-2.
Мгновенные значения ЭДС е1 и е2 изменяются синфазно. Это означает, что они одновременно достигают максимума и одновременно проходят через нуль. Поэтому их отношение можно заменить отношением действующих знаний этих электродвижущих сил. Получаем равенство отношений напряжений, значений ЭДС и витков на первичной и вторичной обмотках, которые можно обозначить переменной ка. Величина ка называется коэффициентом трансформации. При ка большим чем 1 трансформатор является понижающим, а при Ка меньше 1 трансформатор является понижающим.
Трансформатор состоит из нескольких катушек (обмоток), намотанных на каркас изолированным проводом, которые размещаются на магнитопроводе из тонких пластин специальной стали. Переменный электрический ток, текущий по одной из обмоток, называемой первичной, создает вокруг нее и в магнитопроводе переменное магнитное поле, пересекающее витки другой — вторичной — обмотки трансформатора, возбуждая в ней переменную электродвижущую силу. Достаточно к выводам вторичной обмотки подключить лампу накаливания, и в получившейся замкнутой цепи потечет переменный ток. Электрическая энергия передается из одной обмотки трансформатора в другую за счет связывающего обмотки переменного магнитного поля без непосредственного их соединения.
Если обе обмотки имеют равное число витков, то во вторичной обмотке наведется такое же напряжение, какое подводится к первичной. Например, если подать на первичную обмотку трансформатора переменный ток напряжением 220 вольт, то и во вторичной обмотке тоже возникнет ток напряжением 220 вольт. Если обмотки разные — тогда и напряжение во вторичной обмотке не совпадает с напряжением, подаваемым на первичную обмотку. В повышающем трансформаторе вторичная обмотка содержит больше витков, чем первичная, поэтому и напряжение на ней больше, чем на первичной. В понижающем трансформаторе, наоборот, вторичная обмотка содержит меньше витков, чем первичная, поэтому и напряжение на ней меньше. Если к концам вторичной обмотки присоединить цепь, потребляющую электроэнергию, или, как говорят, нагрузить трансформатор, то сила тока во вторичной обмотке уже не будет равной нулю. Появившийся ток создает в сердечнике свой переменный магнитный поток, который уменьшает изменения магнитного потока в сердечнике. Но уменьшение амплитуды колебаний результирующего магнитного потока должно, в свою очередь, уменьшить ЭДС индукции в первичной обмотке. Однако это невозможно. Поэтому при замыкании цепи вторичной обмотки автоматически увеличивается сила тока в первичной обмотке. Его амплитуда возрастает таким образом, чтобы восстановить прежнее значение амплитуды колебаний результирующего магнитного потока. Увеличение силы тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии: отдача электроэнергии в цепь, присоединенную ко вторичной обмотке трансформатора, сопровождается потреблением от сети такой же энергии первичной обмоткой. Мощность в первичной цепи при нагрузке трансформатора приблизительно равна мощности во вторичной цепи. Значит, если повышать с помощью трансформатора напряжение в несколько раз, во столько же раз уменьшается сила тока (и наоборот).
Задача
Сила тока в первичной обмотке трансформатора 6 десятых ампер, напряжение на её концах 120 вольт. Сила тока во вторичной обмотке 4 целые и 8 десятых ампер, напряжение 12 вольт. Рассчитать КПД трансформатора. Решение. КПД трансформатора определяется отношением мощности электрического тока на первичной обкладке к мощности тока на вторичной обкладке. Мощность определяется произведением силы тока на напряжение. Получаем, что КПД трансформатора составляет 25%.
Задача
Сколько витков содержится во вторичной обмотке трансформатора, понижающего напряжение с 120 вольт до 30 вольт, если в его первичной обмотке 200 витков? Решение.
Напряжение на концах обмотки трансформатора пропорционально количеству витков провода на обмотке. Составив и решив пропорцию, получаем, что во вторичной обмотке трансформатора находится 50 витков.
Трансформатор преобразует переменный электрический ток таким образом, что произведение силы тока на напряжение приблизительно одинаково в первичной и вторичной обмотках.
В настоящие время для высоковольтных линий электропередач применяются силовые трансформаторы с масляным охлаждением напряжением 330, 500 и 750 киловольт, мощностью до 1200 – 1600 мегавольт-ампер. Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на входе и выходе преобразователя используют преобразовательные трансформаторы.
В наше время уровень производства и потребления энергии – один из важнейших показателей развития производственных сил общества. При этом сама энергия не исчезает. Задача энергетики состоит лишь в получении энергии в форме наиболее удобной для потребления. Если потребление энергии в мире увеличивается в 2 раза примерно за 25 лет, то увеличение потребления электроэнергии в 2 раза происходит в среднем за 10 лет. Это означает, что все больше и больше процессов переводится на электроэнергию. Производится электроэнергия на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Существуют два основных типа электростанций: тепловые и гидроэлектрические. Различаются эти электростанции двигателями, вращающими роторы генераторов. На тепловых электростанциях источником энергии служит топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами для двигателей внутреннего сгорания.
аиболее экономичными являются крупные тепловые паротурбинные электростанции (сокращенно, ТЭС). Большинство ТЭС нашей страны использует в качестве топлива угольную пыль. Для выработки 1 киловатт-час электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора. Паровые турбогенераторы весьма быстроходны: число оборотов составляет несколько тысяч в минуту. КПД тепловых двигателей увеличивается с повышением начальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру – почти до 5500 С и давление – до 25 мегапаскаль. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром. Тепловые электростанции – так называемые теплоэлектроцентрали (ТЭЦ) – позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд (для отопления и горячего водоснабжения). В результате КПД ТЭЦ достигает 60-70%. В настоящее время в нашей стране ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией и теплом несколько сот городов. На гидроэлектростанциях (ГЭС) используется для вращения роторов генераторов потенциальная энергия воды. Роторы электрических генераторов приводятся во вращение гидравлическими турбинами. Мощность станции зависит от создаваемой плотиной разности уровней воды (напор) и от массы воды, проходящей через турбину в секунду (расход воды). Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии. Значительную роль в энергетике играют атомные электростанции (АЭС). В настоящее время АЭС нашей страны дают около 10% электроэнергии. Нетрадиционные типы выработки электроэнергии осуществляют, используя энергию ветра, приливов и отливов, солнца, недр Земли, морских течений, космоса. Альтернативными (или возобновляемыми) источниками энергии (ВИЭ) называют источники энергии, позволяющие получать энергию без использования традиционного ископаемого топлива (нефти, газа, угля и т.п.). Приливная электростанция (ПЭС) — особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 13 метров. Принцип действия ветряных электростанций прост: ветер крутит лопасти ветряка, приводя в движение вал электрогенератора. Генератор в свою очередь вырабатывает электрическую энергию. Геотермальные электростанции (ГеоТЭС) преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электричество. Солнечная электростанция (СЭС) — инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Посмотрим на сравнительный анализ разных типов электростанций.
Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от государственных электростанций для производственных и бытовых нужд. О применении электроэнергии для освещения жилищ и в бытовых электроприборах знает каждый. Большая часть используемой электроэнергии сейчас превращается в механическую энергию. Почти все механизмы в промышлености приводятся в движение электрическими двигателями. Они удобны, компактны, допускают возможность автоматизации производства. Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.). Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города при аварии парализует его жизнь.
Остались вопросы по теме? Наши репетиторы готовы помочь!
Подготовим к ЕГЭ, ОГЭ и другим экзаменам
Найдём слабые места по предмету и разберём ошибки
Повысим успеваемость по школьным предметам
Поможем подготовиться к поступлению в любой ВУЗ
Выбрать репетитора
Энергия – Производство электроэнергии – Данные ОЭСР
Производство электроэнергии определяется как электроэнергия, вырабатываемая из ископаемого топлива, атомных электростанций, гидроэлектростанций (за исключением гидроаккумулирующих), геотермальных систем, солнечных батарей, биотоплива, ветра и т. д. Сюда входит электроэнергия, произведенная только на электростанциях, а также на комбинированных теплоэлектростанциях. электростанции. Включены как производители основного вида деятельности, так и заводы-производители собственных продуктов, если имеются данные. Производители основной деятельности производят электроэнергию для продажи третьим сторонам в качестве своей основной деятельности. Автопроизводители производят электроэнергию полностью или частично для собственного использования в качестве деятельности, поддерживающей их основную деятельность. Оба типа заводов могут находиться в частной или государственной собственности. Этот показатель измеряется в гигаватт-часах и в процентах от общего объема выработки электроэнергии.
Последняя публикация
Публикация статистики мировой энергетики (2019 г.)
Индикаторы
- Первичное энергоснабжение
- Добыча сырой нефти
- Производство электроэнергии
- Возобновляемая энергия
- Атомные электростанции
- Цены на импорт сырой нефти
Показывать:
- Диаграмма
- карта
- Стол
- полноэкранный режим
- доля
скачать
- Только выбранные данные (. csv)
- Полные данные индикатора (.csv)
Моя доска объявлений
- Добавить это представление
- Перейти к пинборду
Определение
Производство электроэнергии
Производство электроэнергии определяется как электроэнергия, вырабатываемая из ископаемого топлива, атомных электростанций, гидроэлектростанций (за исключением гидроаккумулирующих), геотермальных систем, солнечных батарей, биотоплива, ветра и т. д. Сюда входит электроэнергия, произведенная на электростанциях и в комбинированных электростанциях. теплоэлектростанции. Включены как производители основного вида деятельности, так и заводы-производители собственных продуктов, если имеются данные. Производители основной деятельности производят электроэнергию для продажи третьим сторонам в качестве своей основной деятельности. Автопроизводители производят электроэнергию полностью или частично для собственного использования в качестве деятельности, поддерживающей их основную деятельность. Оба типа заводов могут находиться в частной или государственной собственности. Этот показатель измеряется в гигаватт-часах и в процентах от общего объема выработки электроэнергии.
Ссылка
Укажите этот показатель следующим образом:
ОЭСР (2022 г.), Производство электроэнергии (индикатор). doi: 10.1787/c6e6caa2-en
Исходная база данных
ОЭСР – Производство электроэнергии и теплаБаза данных МЭА Информационная статистика по электроэнергии
Хранилище данныхБаза данных OECD.Stat
Дополнительные показатели, относящиеся к энергетике
Валовой внутренний продукт (ВВП) Индикатор
Грузовые перевозки Показатель
Контейнерные перевозки Показатель
Выбросы в атмосферу и парниковые газы Показатель
Другие публикации, связанные с энергетикой
Публикация World Energy Outlook (2022)
Публикация Key World Energy Statistics (2021)
Публикация данных по ядерной энергии (2022)
Производство электроэнергии в Калифорнии
Производство электроэнергии в Калифорнии, общее производство, по типу ресурсов(Гигаватт-часы)
Общая выработка
Категории энергии | 2011 ГВтч | 2012 ГВтч | 2013 ГВтч | 2014 ГВтч | 2015 ГВтч | 2016 ГВтч | 2017 ГВтч | 2018 ГВтч | 2019 ГВтч | 2020 ГВтч | 2021 ГВтч |
---|---|---|---|---|---|---|---|---|---|---|---|
Электрогенерация общей системы | 293 780 | 302 184 | 296 280 | 296 147 | 295 878 | 290 790 | 292 076 | 285 757 | 277 964 | 273 169 | 277 205 |
Общее поколение в штате | 201 353 | 199 650 | 199 616 | 199 501 | 196 859 | 198 464 | 206 372 | 195 110 | 200 735 | 191 506 | 193 569 |
Total CA Hydroelectric | 42 737 | 27 461 | 24 101 | 16 482 | 13 946 | 28 986 | 43 303 | 26 293 | 38 494 | 21 414 | 14 566 |
CA Крупная гидроэлектростанция | 35 682 | 22 737 | 20 319 | 13 739 | 11 569 | 24 410 | 36 920 | 22 043 | 33 145 | 17 938 | 12 036 |
СА Малая ГЭС | 7 055 | 4 724 | 3 782 | 2 742 | 2 377 | 4 576 | 6 383 | 4 250 | 5 349 | 3 476 | 2 531 |
CA ядерная | 36 666 | 18 491 | 17 860 | 17 027 | 18 525 | 18 931 | 17 925 | 18 268 | 16 163 | 16 280 | 16 477 |
Уголь CA | 2 096 | 1 263 | 824 | 802 | 311 | 324 | 305 | 296 | 250 | 317 | 303 |
Масло СА | 36 | 49 | 39 | 45 | 54 | 37 | 33 | 35 | 36 | 30 | 39 |
СА Природный газ | 91 065 | 121 778 | 120 866 | 121 858 | 117 568 | 98 886 | 89 593 | 90 717 | 86 157 | 92 329 | 97 350 |
CA Геотермальная | 12 685 | 12 733 | 12 510 | 12 186 | 11 994 | 11 582 | 11 745 | 11 528 | 10 967 | 11 345 | 11 116 |
CA Биомасса | 6 066 | 6 211 | 6 559 | 6 785 | 6 367 | 5 905 | 5 843 | 5 919 | 5 952 | 5 693 | 5 439 |
Калифорния Ветер | 7 598 | 9 242 | 11 964 | 13 104 | 12 191 | 13,499 | 12 867 | 14 087 | 13 688 | 13 708 | 14 216 |
Солнечная электростанция CA | 223 | 1 020 | 3 791 | 9 143 | 13 050 | 17 376 | 21 886 | 24 992 | 26 314 | 27 728 | 31 614 |
Солар Термал СА | 889 | 867 | 686 | 1 624 | 2 446 | 2 548 | 2 464 | 2 545 | 2 303 | 2 277 | 2 065 |
CA Нефтяной кокс | 1 024 | 318 | 194 | 208 | 229 | 207 | 246 | 207 | 191 | 197 | 204 |
CA Отработанное тепло | 267 | 217 | 222 | 237 | 177 | 182 | 163 | 223 | 220 | 187 | 178 |
Чистый импорт* | 92 427 | 102 535 | 96 664 | 96 646 | 99 019 | 92 326 | 85 704 | 90 648 | 77 229 | 81 663 | 83 636 |
* Примечание.