Ионистор. Что такое и зачем нужен?
Устройство, характеристики и применение ионисторов
Сравнительно недавно в широкой продаже появились так называемые ионисторы. По-иному их ещё называют суперконденсаторами. По размерам они сравни обычным электролитическим конденсаторам, но обладают по сравнению с ними, гораздо большей ёмкостью.
Ионистор – это некий гибрид конденсатора и аккумулятора. В зарубежной литературе ионистор называют сокращённо EDLC, что расшифровывается как Electric Double Layer Capacitor, что по-русски означает: конденсатор с двойным электрическим слоем. Работа ионистора основана на электрохимических процессах.
Устройство ионистора.
Отличие ионистора от конденсатора заключается в том, что между его электродами нет специального слоя из диэлектрика. Взамен этого электроды у ионистора сделаны из веществ, обладающими противоположенными типами носителей заряда.
Как известно, электрическая ёмкость конденсатора зависит от площади обкладок: чем она больше, тем больше ёмкость. Поэтому электроды ионисторов чаще всего делают из вспененного углерода или активированного угля. Благодаря этому приёму удаётся получить большую площадь своеобразных “обкладок”. Электроды разделяются сепаратором и всё это находятся в электролите. Сепаратор необходим исключительно для защиты электродов от короткого замыкания. Электролит же выполняется на основе растворов кислот и щелочей и является кристаллическим и твёрдым.
Например, с помощью твёрдого кристаллического электролита на основе рубидия, серебра и йода (RbAg4I5) возможно создание ионисторов с низким саморазрядом, большой ёмкостью и выдерживающие низкие температуры. Также возможно изготовление ионисторов на основе электролитов растворов кислот, таких как H2SO4. Такие ионисторы обладают низким внутренним сопротивлением, но и малым рабочим напряжением около 1 В. В последнее время ионисторы на основе электролитов из растворов щелочей и кислот почти не производят, так как такие ионисторы содержат токсичные вещества.
В результате электрохимических реакций небольшое количество электронов отрывается от электродов. При этом электроды приобретают положительный заряд. Отрицательные ионы, которые находятся в электролите, притягиваются электродами, которые заряжены положительно. В итоге всего этого процесса и образуется электрический слой.
Заряд в ионисторе сохраняется на границе раздела электрода из углерода и электролита. Толщина электрического слоя, который образован анионами и катионами, составляет очень малую величину порой равную 1…5 нанометрам (нм). Как известно, с уменьшением расстояния между обкладками ёмкость возрастает.
К основным положительным качествам ионисторов можно отнести:
Малое время заряда и разряда. Благодаря этому ионистор можно быстро зарядить и использовать, тогда, как на заряд аккумуляторных батарей уходит значительное время;
Количество циклов заряд/разряд – более 100000;
Не требуют обслуживания;
Небольшой вес и габариты;
Для заряда не требуется сложных зарядных устройств;
Работает в широком диапазоне температур (-40…+700C). При температуре больше +700С ионистор, как правило, разрушается;
Длительный срок службы.
К отрицательным свойствам ионисторов можно отнести всё ещё высокую стоимость, а также довольно малое напряжение на одном элементе ионистора. Номинальное рабочее напряжение ионистора зависит от типа используемого в нём электролита.
Чтобы увеличить рабочее напряжение ионистора их соединяют последовательно, также как и при соединении батареек. Правда, для надёжной работы такого составного ионистора нужно каждый отдельный ионистор шунтировать резистором. Делается это для того, чтобы выровнять напряжение на каждом отдельном ионисторе. Это связано с тем, что параметры отдельных ионисторов отличаются. Ток, который течёт через выравнивающий резистор, должен быть в несколько раз больше тока утечки (саморазряда) ионистора. Значение тока саморазряда у маломощных ионисторов составляет десятки микроампер.
Также стоит помнить, что ионистор – это полярный компонент. Поэтому при подключении его в схему нужно соблюдая полярность.
Кроме этого стоит избегать короткого замыкания выводов ионистора. И хотя ионисторы достаточно устойчивы к короткому замыканию, оно может привести к чрезмерному повышению температуры сверх максимального вследствие теплового действия тока, а это приведёт к порче ионистора.
Ионисторы прекрасно работают в цепях постоянного и пульсирующего тока. Правда, в случае протекания через ионистор пульсирующего тока высокой частоты он может нагреваться из-за высокого внутреннего сопротивления на высоких частотах. Как уже говорилось, увеличение температуры электродов ионистора выше максимально допустимой приводит к его порче.
В документации на ионистор, как правило, указывается значение его внутреннего сопротивления на частоте 1 кГц. Например, для ионистора DB-5R5D105T ёмкостью 1 Фарада внутреннее сопротивление на частоте 1 кГц составлет 30Ω. Также существуют ионисторы с ещё меньшим внутренним сопротивлением. Они маркируются как Low resistance или Low ESR. Такие ионисторы заряжаются быстрее.
Для постоянного тока же внутреннее сопротивление ионистора мало и составляет единицы миллиом – десятки ом.
Обозначение ионистора на схеме.
На схемах ионистор обозначается также как и электролитический конденсатор. Тогда же встаёт вопрос: “А как же определить, что на принципиальной схеме изображён именно ионистор?”
Определить, что на схеме изображён ионистор можно по значению номинальных параметров. Если рядом с обозначением указано, например, 1F * 5,5 V, то тут сразу станет понятно, что это ионистор. Как известно, электролитических конденсаторов ёмкостью 1 Фарада не существует, а если и существует, то габариты у него немалые . Также сразу бросается в глаза номинальное напряжение в 5,5 V. Как уже говорилось, ионисторы в принципе не рассчитаны на большое рабочее напряжение.
Где применяются ионисторы?
Очень часто ионисторы можно встретить в цифровой аппаратуре. Там они выполняют роль автономного или резервного источника питания для микроконтроллеров (IC’s), микросхем памяти (RAM’s), КМОП-микросхем (CMOS’s) или электронных часов (RTC). Благодаря этому даже при отключенном основном питании электронный прибор сохраняет заданные настройки и ход часов. Так, например, в кассетном аудиоплеере Walkman используется миниатюрный ионистор.
При замене аккумуляторов или батареек в плеере он полностью обесточивается, что неизбежно приводит к стиранию настроек (например, частот радиостанций, установок эквалайзера, сброс хода электронных часов). Но этого не происходит благодаря тому, что электронную схему в “ждущем” режиме питает заряженный ионистор. И хотя ёмкость его несоизмеримо меньше, чем ёмкость аккумулятора или батареи этого хватает для сохранения настроек и работы часов в течение нескольких суток!
Ионистор является достаточно новым электронным компонентом. Впервые ионистор был разработан в Соединённых штатах в 1960-х годах. А позднее, в 1978 году, ионисторы появились и в СССР под маркой К58-1. Это был первый отечественный ионистор. Далее промышленность стала выпускать ионисторы марок К58-15 и К58-16.
Как можно применить ионистор в самодельных конструкциях? Его можно использовать в качестве аварийного источника питания, например, в конструкциях на микроконтроллерах. Вот простейшая схема включения ионистора в цепь питания электронного устройства.
Диод VD1 служит для предотвращения разряда ионистора С1, когда напряжение питания равно 0 (Uпит=0). В качестве диода VD1 лучше применить диод Шоттки, например, 1N5817 и аналогичные, так как у них малое падение напряжения на открытом переходе. Резистор R1 препятствует перегрузке источника питания, ограничивая зарядный ток ионистора. Его можно не устанавливать, если источник питания выдерживает ток нагрузки 100 – 250 мА. R н – это сопротивление нагрузки (питаемое устройство, например, микроконтроллер).
Под занавес сего повествования хочется показать какое-нибудь видео. Видео не моё, нашёл в YouTube. Показано, как можно запитать светодиод от заряженного ионистора ёмкостью в 0,047 Ф. Ионистор на 5,5 V, поэтому если решите повторить эксперимент, то заряжайте его 3 вольтами, иначе можно нечаянно спалить светодиод.
Кстати, у меня оказывается, точно такой же ионистор в запаснике завалялся. А у Вас есть ионистор?
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Ионистор.Устройство и применение.Работа. Авто-пусковое устройство
В прошлом веке американский химик Райтмаер получил патент на устройство, сохраняющее электрическую энергию с двойным электрическим слоем. Сегодня такое устройство называется ионистор. В разных источниках они могут иметь различные названия: суперконденсаторы, ультраконденсаторы. По размерам и внешнему виду они похожи на электролитические конденсаторы, с отличием, заключающимся в большой емкости.
В зарубежных странах они имеют короткое обозначение – EDLC, что в переводе с английского значит: конденсатор, обладающий двойным электрическим слоем. По сути дела ионистор является своеобразным гибридом аккумулятора и конденсатора.
Устройство и принцип действия
Если сравнивать устройство ионистора с конструкцией конденсатора, то разница заключается в отсутствии слоя диэлектрика у ионистора. В качестве обкладок выступают вещества, имеющие носители заряда противоположных знаков.
Емкость любого конденсатора, так же как ионистора зависит от размера обкладок. Поэтому у ионистора обкладки сделаны из активированного угля или вспененного углерода. Таким способом получают значительную площадь модифицированных обкладок. Выводы ионистора разделены сепаратором, помещенным в электролит. Они предназначены для предотвращения возможного короткого замыкания. Состав электролита: щелочи и кислоты в твердом и кристаллическом виде.
Если использовать кристаллический твердый электролит на основе йода, серебра и рубидия, то можно изготовить ионистор, обладающий большой емкостью, низким саморазрядом и способный функционировать при пониженных температурах. Возможно производство аналогичных ультраконденсаторов, на базе электролита из раствора серной кислоты. Такие устройства имеют малое внутреннее сопротивление, но также небольшое рабочее напряжение 1 вольт. В настоящее время ионисторы, содержащие электролиты из кислот и щелочей практически не изготавливают, так как они обладают повышенными токсичными свойствами.
В результате протекания электрохимических реакций незначительное число электронов отрывается от полюсов устройства, обеспечивая им положительный заряд. Находящиеся в электролите отрицательные ионы притягиваются полюсами, имеющими положительный заряд. В результате создается электрический слой.
Заряд в ультраконденсаторе сохраняется на границе углеродного полюса и электролита. Электрический слой, образованный катионами и анионами, имеет очень малую толщину, равную от 1 до 5 нанометров, что позволяет значительно повысить емкость ультраконденсатора.
Классификация
- Идеальные. Это ионные конденсаторы с идеально поляризуемыми электродами, состоящими из углерода. Такие суперконденсаторы работают не за счет электрохимических реакций, а благодаря переносу ионов между электродами. Электролиты могут состоять из щелочи калия, серной кислоты, а также органических веществ.
- Гибридные. Это суперконденсаторы с идеально поляризуемым электродом, изготовленным из углерода, и слабо поляризуемым анодом или катодом. В их работе частично используется электрохимическая реакция.
- Псевдоконденсаторы. Это устройства, накапливающие заряд путем использования обратимых электрохимических реакций на поверхности электродов. Они обладают повышенной удельной емкостью.
Рабочие параметры ионисторов:
- Емкость.
- Наибольший ток разряда.
- Внутреннее сопротивление.
- Номинальное напряжение.
- Время разряда.
В инструкции на суперконденсатор обычно указывается величина внутреннего сопротивления при частоте тока 1 килогерц. Чем меньше их внутреннее сопротивление, тем быстрее происходит заряд.
Изображение на схемах
На электрических схемах ионисторы изображаются по типу электролитического конденсатора, и отличить его можно только по величине номинальных параметров.
Если, например, на схеме указана величина емкости 1 Фарада, то сразу ясно, что изображен ионистор, так как таких емких электролитических конденсаторов не бывает. Напряжение ультраконденсатора также может говорить об его отличии от электролитического конденсатора, так как обычно это незначительная величина в несколько вольт (от 1 до 5 В). Ионисторы не способны функционировать при большом напряжении.
Преимущества
- Если сравнивать ультраконденсаторы с аккумуляторами, то первые из них способны обеспечить значительно большее число циклов заряда и разряда.
- Цикл заряда и разряда происходит за очень короткое время, что дает возможность применять их в таких ситуациях, когда нельзя установить аккумуляторы, ввиду их длительной зарядки.
- Устройства такого вида имеют намного меньшую массу и габаритные размеры.
- Для выполнения заряда не требуется специального зарядного устройства, что упрощает обслуживание.
- Срок работы ультраконденсаторов значительно выше, по сравнению с батареями аккумуляторов и силовыми конденсаторами.
- Широкий интервал эксплуатационной температуры от -40 до +70 градусов.
Недостатки
- Малая величина номинального напряжения. Этот вопрос решают путем соединения нескольких ультраконденсаторов по последовательной схеме, так же, как соединяют несколько гальванических элементов для увеличения напряжения.
- Повышенная цена на такие устройства способствует удорожанию изделий, в которых они используются. По заверению ученых, скоро эта проблема станет неактуальной, так как технологии постоянно развиваются, и стоимость подобных устройств снижается.
- Ионисторы не способны накопить большое количество энергии, так как имеют незначительную энергетическую плотность, и не могут обладать мощностью, сравнимой с аккумуляторами. Это негативно влияет на область их использования. Эта проблема может частично решиться путем подключения нескольких ионисторов вместе, по параллельной схеме.
- Необходимость соблюдения полярности при подключении.
- Не допускается короткое замыкание между электродами, так как от этого сильно возрастет температура ультраконденсатора, и он может выйти из строя.
- Ионисторы хорошо работают в цепях пульсирующего и постоянного тока. Но при высокочастотном пульсирующем токе они сильно нагреваются ввиду их большого внутреннего сопротивления, что часто приводит к выходу из строя.
Применение
Ионисторы часто встречаются в устройстве цифрового оборудования. Они играют роль запасного источника питания микроконтроллера, микросхемы и т.д. С помощью такого источника при выключенном основном питании аппаратура способна сохранять настройки и обеспечивать питание встроенных часов. Например, в некоторых аудиоплеерах применяется миниатюрный ионистор.
В момент замены батареек или аккумуляторов в плеере могут сбиться настройки частоты радиостанции, часов. Благодаря встроенному ионистору этого не происходит. Он питает электронную схему. Его емкость значительно меньше аккумулятора, но его хватает на несколько суток, чтобы сохранить работу часов и настроек.
Также ультраконденсаторы используются для работы таймеров телевизора, микроволновой печи, сложного медицинского оборудования.
Были случаи опытного использования ионисторов, например, для проектирования электромагнитной пушки, которую называют Гаусс оружием.
В быту ионисторы используются в схемах маломощных светодиодных фонариков. Его зарядка может выполняться от солнечных элементов.
Автомобильное пусковое устройство
Популярным примером использования мощного ионистора можно назвать пусковое устройство для двигателя автомобиля.
Эта схема выполняется на легковых автомобилях любой марки с напряжением сети 12 вольт.
- 1 – положительный контакт аккумуляторной батареи.
- 2 – контакт массы (отрицательный полюс).
- 3 – клемма замка зажигания.
- В1 – аккумулятор.
- Кс – замок зажигания.
- К1 и К1.1 – контактор с ключом управления.
- С – ионистор.
- Rс – сопротивление для ограничения зарядного тока ультраконденсатора.
В схеме применяется ионистор со следующими параметрами:
- Максимальное напряжение 15 вольт.
- Внутреннее сопротивление 0,0015 Ом.
- Емкость 216 Фарад.
- Рабочий ток 2000 ампер.
Такого пускового устройства достаточно, чтобы запустить двигатель мощностью до 150 л. с. ультраконденсатор способен получить полный заряд за пять секунд. Такое устройство можно найти в продаже, но сделать его самостоятельно намного дешевле.
Похожие темы:
electrosam.ru
Ионисторы или суперконденсаторы большой мощности: как сделать своими руками
Человечество с каждым днём всё более нуждается в качественных источниках резервного питания. Аккумуляторы – довольно сложные в обслуживании приборы и ограниченные в объёме электрического заряда. Требовался мощный накопитель электроэнергии. Такой прибор был изобретён. Ионистор – что это такое? Это суперконденсатор (Supercapacitor), электролит которого может состоять, как из органических, так и неорганических веществ. По функциональным возможностям ионистор можно определить не только как конденсатор, но и как химический источник тока.
Ионисторы
Концепция
Ионистор большой ёмкости – это конденсатор, объём которого может составлять несколько фарад напряжением от 2 до 10 вольт. Накопителем заряда является двойной электрический слой (ДЭС) на линии соприкосновения электрода и электролита. Если обычные ёмкости измеряются в микро,- и пикофарадах, то становится понятно, что эти ионисторы являются суперконденсаторами. Концепция ионистора построена на том, что за счёт тонкости ДЭС и большой поверхности пористых обкладок и электродов удаётся достичь колоссального объёма заряда.
История изобретения ионистора
Американской компанией Дженерал Электрик в 1957 году был запатентован простой ионистор с ДЭС, электроды которого были сделаны из активированного угля. Теоретически предполагалось накопление энергии в порах поверхности электродов.
Уже в 1966 году компанией Стандарт Ойл Огайо был получен патент на компонент, который обеспечивал накопление энергии в ДЭС. Потерпев убытки, связанные с низкой реализацией ёмких конденсаторов, фирма передала права на изготовление этих устройств компании Nec. Новый владелец лицензии сумел значительно увеличить спрос на свою продукцию под названием суперконденсатор (Supercapacitor). Устройство значительно понизило энергозависимость электронной памяти, что стимулировало развитие компьютерных технологий.
1978 год ознаменовался появлением на рынке электротехники Золотого конденсатора (Gold Cap) ведущей японской электрокомпании Панасоник. Это уже было устройство более высокого качества. Ионисторы нашли своё применение в системах питания электронной памяти.
В том же году первое упоминание о том, что такое ионисторы в СССР, было опубликовано в пятом номере журнала «Радио». В статье был описан первый советский ионистор КИ1-1. Его устройство предполагало предельный объём заряда до 50 фарад. Недостатком суперконденсатора было его высокое внутреннее сопротивление (ВС), что препятствовало полноценной отдаче электрической энергии.
Суперконденсаторы с малым ВС появились только в 1982 году. Новая конструкция была разработана специалистами компании PRI для особо мощных схем, где применяют ионистор «PRI Ultracapacitor».
Важно! Прогресс в совершенствовании суперконденсаторов приведёт к тому, что ионисторы полностью заменят традиционные аккумуляторы.
Разновидности суперконденсаторов
Ионисторы делятся на три вида:
- Идеальный ионистор. Название было присвоено ионному конденсатору, в котором электроды из углерода поляризовались на 100%. При полном отсутствии электрохимических процессов энергия накапливается благодаря ионному переносу электронов с одного на другой электрод. Электролитом в «идеальных» ионисторах служат растворы основания KOH и серной кислоты h3SO4.
- Гибридные ионисторы – это конденсаторы со слабо поляризуемыми электродами. Скопление энергии в ДЭС происходит на поверхности одного из электродов.
- Псевдоионисторы обладают высокой удельной ёмкостью. На поверхности электродов происходят возвратные электрохимические реакции.
Устройство ионистора
Сравнение положительных и отрицательных сторон
Ионисторы стали использовать не только, как преобразователи параметров электрической цепи, но и как поставщики электроэнергии. Они стали широко применяться вместо одноразовых аккумуляторных элементов питания в электронных системах хранения информации.
Обратите внимание! Несмотря на превосходные технические характеристики ионисторов, ими ещё нельзя полноценно заменить аккумулятор на автомобиле.
По сравнению с гальваническими элементами и аккумуляторами, ионисторы имеют свои недостатки и преимущества.
Недостатки
- Массовое внедрение ионисторов тормозит их высокая стоимость.
- Зависимость напряжения от уровня зарядки конденсатора.
- В момент короткого замыкания возникает риск выгорания электродов в ионисторах большой ёмкости при крайне низком ВС.
- Высокий показатель саморазряда суперконденсаторов ёмкостью в несколько фарад.
- Небольшая скорость отдачи энергии, в отличие от обычных конденсаторов.
Достоинства
- Возможность устанавливать максимально большой ток зарядки и получать разряд той же величины.
- Высокая стойкость к деградации. Многочисленные исследования показали, что даже после 100 тыс. циклов заряда-разрядки у ионисторов не наблюдалось ухудшение характеристик.
- Оптимальное внутреннее сопротивление не допускает быстрый саморазряд, не приводит к перегреву устройства и его разрушению.
- В среднем ионистор может прослужить около 40 тыс. часов при минимальном снижении ёмкости.
- Ионистор обладает небольшим весом, в отличие от электролитических конденсаторов аналогичной ёмкости.
- Ионистор отлично функционирует и в мороз, и в жаркое время года.
- Достаточная механическая прочность позволяет устройству переносить значительные нагрузки.
Материалы изготовления
Электроды традиционно изготавливают из активированного угля. В некоторых случаях используют вспененный металл. Именно эти материалы обладают повышенной пористостью, что необходимо для получения больших площадей поверхности. Это особенность позволяет хранить энергию в больших объёмах.
Плотность энергии
Ионисторы не отличаются повышенной плотностью энергии. У ионистора весом 500 граммов плотность энергии равна 20 кДж/кг. Это почти в 8 раз меньше показателя обычного кислотного аккумулятора. Однако этот параметр суперконденсаторов в несколько десятков раз превышает показатель простых конденсаторов.
Практическое использование ионисторов
Современные модели суперконденсаторов стали использоваться в сферах транспорта и бытовой электроники.
Транспортные средства
С недавнего времени в схему питания электротранспорта всё чаще стали встраивать мощные ионистры.
Тяжёлый и общественный транспорт
На улицах мегаполисов мира стали появляться электробусы. В Москве можно увидеть общественный транспорт, работающий на энергии бортовых ионисторов. Отечественные электрические автобусы вышли на городские маршруты столицы в мае нынешнего года.
На тяжёлых транспортных средствах суперконденсаторы используются как вспомогательный источник питания.
Автомобили
Ведущие производители электромобилей, такие как Тесла и Ниссан, пользуясь международными выставками, представляют каждый раз новые модели, системы питания которых построены на ионисторах. Российский опытный образец Ё-мобиль использует суперконденсатор как основной источник энергии.
Автомобильный ионистор
Дополнительная информация. На автомобилях, работающих на жидком топливе, стали устанавливать ионисторы для обеспечения лёгкого пуска двигателя в условиях Крайнего Севера.
Суперконденсатор с АКБ для облегчённого пуска двигателя
Автогонки
Для пропаганды и рекламы автомобилей, работающих на ионисторах, ведущие автоконцерны постоянно проводят автогонки на таких автомашинах. Зрители на таких мероприятиях проявляют большой интерес к перспективе развития электрического индивидуального транспорта.
Бытовая электроника
Суперконденсаторы стремительно ворвались в сферу бытовой электроники. Их можно заметить в блоках резервного питания ноутбуков, смартфонов. Ионисторы встроены в операционные блоки персональных компьютеров. Они предохраняют от потери данных во время аварийных отключений от постоянного источника электроэнергии.
Ионистор для бесперебойного питания ПК
Перспективы развития
Специалисты предсказывают повсеместную замену традиционного общественного транспорта на гибридные модели. Троллейбусы смогут преодолевать трудные участки дороги без троллей с использованием питания бортовых ионисторов. Учёные во всём мире ведут поиски новых материалов для изготовления сверхмощных суперконденсаторов.
Обозначение ионистора на схеме
Суперконденсаторы на схемах обозначают в виде прямоугольников или треугольников, в поле которых присутствуют две латинские литеры IC.
Обозначение ионистора на схеме
Ионистор своими руками
Для изготовления суперконденсатора своими руками потребуются:
- фольга, можно взять вкладку из пачки сигарет, она будет диэлектриком;
- таблетка активированного угля, это будет электрод;
- клей ПВА в качестве электролита.
Изготавливают простейший ионистор своими руками следующим образом:
- Мелко размолотый уголь перемешивают с клеем ПВА.
- Кистью наносят смесь на один отрезок фольги.
- После каждой просушки наносят следующий клеевой слой. Трех слоев вполне достаточно для изготовления ионистора.
- На высушенную поверхность накладывают второй отрезок фольги после обработки клеем ПВА.
- Приложив с двух сторон модели проводки от батарейки, заряжают самодельный ионистор.
Самодельный ионистор
Продемонстрировать возможности самоделки можно, услышав сигнал подсоединённого маломощного динамика, или, если применить его для свечения светодиода.
Частота, с которой создаются новые модели суперконденсаторов, настолько большая, что порой трудно запоминать новые названия. Специалисты ожидают скорого появления высоковольтных иониксов, которые совершат технологическую революцию во всех сферах деятельности человека.
Видео
amperof.ru
Ионисторы большой емкости своими руками. Ионисторы (суперконденсаторы) – устройство, виды, применение
При проектировании современных электронных приборов и устройств перед разработчиком довольно часто встает вопрос резервного или автономного питания своего устройства. Как правило, в зависимости от характера потребления электроэнергии и задач, в этом случае используют электролитические конденсаторы, аккумуляторы или батареи. Однако использование вышеприведенных устройств или их комбинации, в силу специфики каждого устройства, не всегда в полной мере позволяет решить поставленную задачу.
При реализации автономного питания довольно часто также необходимо реализовать начальные большие кратковременные токи (например, ручной электроинструмент с аккумуляторным питанием), и обойтись только аккумулятором не представляется возможным. Тогда используют комбинацию аккумулятор (или батарея)/электролитический конденсатор. Аккумулятор или батарея реализуют долговременное энергонезависимое питание, а электролитический конденсатор – кратковременный большой ток в нагрузку. Относительно недавно появился новый класс приборов – ионисторы. В отличие от батарей, аккумуляторов или электролитических конденсаторов, где используются необратимые, обратимые химические реакции или классический заряд конденсатора соответственно, в ионисторах применяется механизм образования «двойного электрического слоя». Ионисторы обладают рядом преимуществ по сравнению с вышеприведенными устройствами: это широкий температурный диапазон, большая емкость, высокое сопротивление изоляции (низкие токи утечки), длительный срок службы, отсутствие необходимости контроля процесса зарядки, до нескольких десятков тысяч циклов заряд/разряд.
Сегодня ионисторы выпускаются многими производителями, как отечественными, так и зарубежными. В данной статье использованы материалы компании Panasonic, и на примере ионисторов данной компании, получивших фирменное название Gold Capacitors (Gold Cap), мы рассмотрим их физику и принцип работы, возможные варианты конструкции и эквивалентной схемы, характеристики и параметры, а также рекомендации по возможному применению.
Физико-химические основы работы ионистора
Известно, что обычные конденсаторы имеют многослойный или монолитный диэлектрик между двумя обкладками. В алюминиевом электролитическом конденсаторе, например, в качестве диэлектрического слоя используется пленка оксида алюминия, а в танталовом конденсаторе – пленка оксида тантала. Ионистор же не имеет диэлектрического слоя, в нем применяется физический механизм образования двойного электрического слоя, который работает аналогично заряженному диэлектрику. Процесс зарядки/разрядки происходит в слое ионов, сформированном на поверхностях положительного и отрицательного электродов, к примеру, из активированного угля (рис. 1). Под действием приложенного напряжения анионы и катионы движутся к соответствующему электроду и накапливаются на поверхности электрода, образуя, таким образом, с зарядом электрода двойной электрический слой. Вследствие этого и появилось название «конденсатор с двойным электрическим слоем» (electric double layer capacitor – EDLC).
Рис. 1. Образование двойного электрического слоя на поверхностях положительного и отрицательного электродов, к примеру, из активированного угля
Принцип работы и возможные конструкции
Существует два типа электролитов, которые чаще всего используются сейчас производителями ионисторов: водные (водорастворимые) и органические (водонерастворимые). Безводный электролит позволяет прикладывать напряжение до 3 В к ячейке ионистора, что в два раза выше по сравнению с водорастворимым электролитом, для которого это напряжение не превышает 1,5 В. В данном случае двойной электрический слой работает как изолирующий и при приложении постоянного внешнего напряжения не позволяет протекать сквозному току. При конкретном уровне напряжения определенной полярности за счет электрохимически
offlink.ru
Где применяют ионистор? Типы ионисторов, их назначение, преимущества и недостатки
Ионистор – это электрохимические конденсаторы с двойным слоем или суперконденсаторы. Их металлические электроды покрыты очень пористым активированным углем, традиционно изготовленным из скорлупы кокосового ореха, но чаще всего из углеродного аэрогеля, других наноуглеродных или графеновых нанотрубок. Между этими электродами находится пористый сепаратор, который удерживает электроды друг от друга, при наматывании на спираль, все это пропитано электролитом. Некоторые инновационные формы ионистора имеют твердый электролит. Они заменяют традиционные батареи в источниках бесперебойного питания вплоть до грузовиков, где применяют ионистор в качестве источника питания.
Принцип работы
Ионистор использует действие двойной прослойки, сформированного на границе между углем и электролитом. Активированный уголь применяется в качестве электрода в твердой форме, а электролит в жидкой. Когда эти материалы контактируют друг с другом, положительные и отрицательные полюса распределяются относительно друг друга на очень коротком расстоянии. При приложении электрического поля в качестве основной конструкции используется электрический двойной слой, который образуется вблизи поверхности угля в электролитической жидкости.
Преимущество конструкции:
- Обеспечивает емкость в небольшом устройстве, нет нужды в специальных схемах зарядки для контроля во время разрядки в устройствах, где применяют ионистор.
- Перезарядка или чрезмерно частая разрядка не оказывает негативного влияния на срок службы, как в типовых батареях.
- Технология чрезвычайно «чистая» с точки зрения экологии.
- Нет проблем с нестабильными контактами, так у обычных батарей.
Недостатки конструкции:
- Продолжительность работы ограничена из-за использования электролита в устройствах, где применяют ионистор.
- Электролит может протекать, если конденсатор эксплуатируется неправильно.
- По сравнению с алюминиевыми конденсаторами эти ионисторы имеют высокие сопротивления и поэтому не могут использоваться в цепях переменного тока.
Используя преимущества, описанные выше, электрические ионисторы широко применяются в таких приложениях, как:
- Резервирование памяти для таймеров, программ, питание е-мобиля и т. д.
- Видео и аудио оборудование.
- Резервные источники при замене батарей для портативного электронного оборудования.
- Источники питания для оборудования, использующего солнечные элементы, такие как часы и индикаторы.
- Стартеры для малых и мобильных двигателей.
Окислительно-восстановительные реакции
Аккумулятор заряда расположен на границе раздела между электродом и электролитом. Во время процесса зарядки электроны, движутся от отрицательного электрода к положительному по внешнему контуру. Во время разряда электроны и ионы движутся в обратном направлении. В суперконденсаторе EDLC нет переноса заряда. В этом типе суперконденсатора окислительно-восстановительная реакция возникает на электроде, генерирующем заряды и переносе заряда через двойные слои конструкции, где применяют ионистор.
Из-за окислительно-восстановительной реакции, происходящей в этом типе, существует потенциал с меньшей плотностью мощности, чем EDLC, поскольку системы Faradaic медленнее, чем нефарадевидные системы. Как правило, псевдокапакторы обеспечивают более высокую удельную емкость и плотность энергии, чем EDLC, из-за того, что они относятся к фарадеитовой системе. Тем не менее правильный выбор суперконденсатора зависит от приложения и доступности.
Материалы на основе графена
Ионистор характеризуется способностью быстрого заряда, гораздо быстрее, чем у традиционной батареи, но он не способен хранить столько же энергии, как батарея, так как имеет более низкую плотность энергии. Повышение эффективности у них достигается благодаря использованию графеновых и углеродных нанотрубок. Они помогут в будущем ионисторам полностью вытеснить электрохимические батареи. Нанотехнология сегодня является источником многих нововведений, особенно в е-мобиле.
Графен увеличивает емкость ионисторов. Этот революционный материал состоит из листов, толщина которых может быть ограничена толщиной атома углерода и атомная структура которого является ультраплотной. Такие характеристики способны заменить кремний в электронике. Пористый сепаратор помещается между двумя электродами. Однако вариации механизма хранения и выбор материала электрода приводят к различным классификациям ионисторов большой емкости:
- Электрохимические двухслойные конденсаторы (EDLC), которые по большей части используют высокоуглеродистые углеродные электроды и сохраняют свою энергию за счет быстрой адсорбции ионов на границе раздела электрода/электролита.
- Psuedo-конденсаторы, основаны на фагадическом процессе переноса заряда на поверхности электрода или вблизи него. В этом случае проводящие полимеры и оксиды переходных металлов остаются электрохимическими активными материалами,например, как в электронных часах на батарейках.
Гибкие устройства на основе полимеров
Ионистор набирает и сохраняет энергию с высокой скоростью, образуя электрохимические двойные слои зарядов или посредством поверхностных окислительно-восстановительных реакций, что приводит к высокой плотности мощности с длительной циклической стабильностью, низкой стоимостью и защитой окружающей среды. PDMS и ПЭТ являются в основном используемыми субстратами при реализации гибких суперконденсаторов. В случае пленки PDMS может создавать гибкие и прозрачные тонкопленочные ионисторы в часах с высокой циклической стабильностью после 10 000 циклов при изгибе.
Однослойные углеродные нанотрубки могут быть дополнительно включены в пленку PDMS для дальнейшего улучшения механической, электронной и термической стабильности. Аналогичным образом, проводящие материалы, такие как графен и УНТ, также покрываются пленкой ПЭТ для достижения, как высокой гибкости, так и электропроводности. Помимо ПДМС и ПЭТ другие полимерные материалы также привлекают растущие интересы и синтезируются различными методами. Например, локализованное импульсное лазерное облучение использовалось для быстрого преобразования первичной поверхности в электрическую проводящую пористую углеродную структуру с заданной графикой.
Природные полимеры, такие как нетканые материалы из древесных волокон и бумаги, также могут использоваться в качестве подложек, которые являются гибкими и легкими. УНТ наносится на бумагу для получения гибкого УНТ бумажного электрода. Из-за высокой гибкости бумажной подложки и хорошего распределения УНТ удельная емкость и плотность мощности и энергии меняется менее чем на 5% после изгиба на 100 циклов при радиусе изгиба 4,5 мм. Кроме того, из-за более высокой механической прочности и лучшей химической стабильности бактериальные наноцеллюлозные бумаги также используться для изготовления гибких суперконденсаторов, например для кассетного плеера walkman.
Производительность суперконденсаторов
Она определяется с точки зрения электрохимической активности и химических кинетических свойств, а именно: электронной и ионной кинетикой (транспортировкой) внутри электродов и эффективностью скорости переноса заряда на электрод/электролит. Для высокой производительности при использовании материалов на основе углерода с EDLC важна удельная площадь поверхности, электропроводность, размер пор и отличия. Графен с его высокой электропроводностью, большой площадью поверхности и межслойной структурой привлекателен для использования в EDLC.
В случае псевдоконденсаторов, несмотря на то что они обеспечивают превосходную емкость по сравнению с EDLC, они все же ограничены плотностями малой мощностью микросхемы кмоп. Это объясняется плохой электропроводностью, ограничивающей быстрое электронное движение. Кроме того, окислительно-восстановительный процесс, который ведет процесс зарядки/разрядки, может повредить электроактивные материалы. Высокая электропроводность графена и его отличная механическая прочность делают его пригодным в качестве материала в псевдоконденсаторах.
Исследования адсорбции на графене показали, что она происходит в основном на поверхности графеновых листов с доступом к большим порам (т.е. межслойная структура является пористой, обеспечивая легкий доступ к ионам электролита). Таким образом, для лучшей производительности следует избегать агломерации графена без пор. Производительность может быть дополнительно улучшена путем модификации поверхности путем присоединения функциональных групп, гибридизации с электропроводящими полимерами и путем образования композитов графена/оксида металла.
Сравнение конденсаторов
Ионисторы идеальны, когда требуется быстрая зарядка для удовлетворения краткосрочных потребностей в мощности. Гибридная батарея удовлетворяет обе потребности и снижает напряжение, что обеспечивает более длительный срок службы. В приведенной ниже таблице показано сравнение характеристик и основных материалов в конденсаторах.
Электрический двухслойный конденсатор, обозначение ионистора | Алюминиевый электролити-ческий конденсатор | Аккумулятор Ni-cd | Свинцовая герметичная батарея | |
Использовать диапазон температур | От -25 до 70 °C | -55 до 125 °C | -20 до 60 °C | От -40 до 60 °C |
Электроды | Активированный уголь | Алюминий | (+) NiOOH (-) Cd | (+) PbO2 (-) Pb |
Электролитическая жидкость | Органический растворитель | Органический растворитель | KOH | H2SO4 |
Метод электродвижущей силы | Использование естественного электрического двухслойного эффекта в качестве диэлектрика | Использова-ние оксида алюминия в качестве диэлектрика | Использова-ние химической реакции | Использова-ние химической реакции |
Загрязнение | Нет | Нет | CD | Pb |
Количество циклов зарядки / разрядки | > 100 000 раз | > 100 000 раз | 500 раз | От 200 до 1000 раз |
Емкость на единицу объема | 1 | 1/1000 | 100 | 100 |
Характеристика заряда
Время заряда 1-10 секунд. Первоначальный заряд может быть выполнен очень быстро, а заряд верхней части займет дополнительное время. Необходимо предусмотреть ограничение пускового тока при зарядке пустого суперконденсатора, поскольку он будет вытягивать все возможное. Ионистор не подлежит перезарядке и не требует обнаружения полной зарядки, ток просто перестает течь при заполнении. Сравнение производительности между ионистором для автомобиля и Li-ионом.
Функция | Ионистор | Литий-ионный (общий) |
Время заряда | 1-10 секунд | 10-60 минут |
Жизненный цикл часов | 1 млн или 30 000 | 500 и выше |
Напряжение | От 2,3 до 2,75 В | 3,6 В |
Удельная энергия (Вт / кг) | 5 (типичный) | 120-240 |
Удельная мощность (Вт / кг) | До 10000 | 1000-3000 |
Стоимость за кВтч | 10 000 $ | 250-1,000 $ |
Срок службы | 10-15 лет | От 5 до 10 лет |
Температура зарядки | От -40 до 65 °C | От 0 до 45 °C |
Температура нагнетания | От -40 до 65 °C | От -20 до 60 °C |
Преимущества устройств для зарядки
Транспортные средства нуждаются в дополнительном энергетическом рывке для ускорения, и именно в этом подходят ионисторы. Они имеют ограничение общего заряда, но они способны передать его очень быстро, что делает их идеальным аккумуляторами. Преимущества их по отношению к традиционным батареям:
- Низкий импеданс (ESR) увеличивает импульсный ток и нагрузку при параллельном соединении с батареей.
- Очень высокий цикл – разряд занимает миллисекунды до нескольких минут.
- Падение напряжения по сравнению с устройством, работающим от батареи, без суперконденсатора.
- Высокая эффективность при 97-98%, а эффективность DC-DC в обоих направлениях составляет 80% -95% в большинстве приложений, например, видеорегистратора с ионисторами.
- В гибридном электрическом транспортном средстве эффективность кругового движения на 10% больше, чем у батареи.
- Хорошо работает в очень широком температурном диапазоне, обычно от -40 C до + 70 C, но может быть и от -50 C до + 85 C, есть специальные версии, достигающие 125 C.
- Небольшое количество тепла, выделяемого во время зарядки и разряда.
- Длительный срок службы цикла с высокой надежностью, что снижает затраты на обслуживание.
- Небольшая деградация в течение сотен тысяч циклов и длится до 20 миллионов циклов.
- Они теряют не более 20% своей емкости после 10 лет, а продолжительность жизни составляет 20 лет и более.
- Не подвержены износу и старению.
- Не влияет на глубокие разряды, в отличие от батарей.
- Повышенная безопасность по сравнению с батареями – нет опасности перезарядки или взрыва.
- В конце эксплуатации не содержит опасных материалов для удаления, в отличие от многих батарей.
- Соответствует экологическим стандартам, поэтому нет сложной утилизации или переработки.
Сдерживающая технология
Суперконденсатор состоит из двух слоев графена с слоем электролита посередине. Пленка сильная, чрезвычайно тонкая и способна выпустить большое количество энергии за короткий промежуток времени, но тем не менее, есть определенные пока неразрешенные проблемы, которые сдерживают технический прогресс в этом направлении. Недостатки ионистора перед перезаряжаемыми батареями:
- Низкая плотность энергии – обычно занимает от 1/5 до 1/10 энергии электрохимической батареи.
- Линейный разряд – неспособность использовать полный энергетический спектр, в зависимости от применения, доступна не вся энергия.
- Как и в случае с батареями, ячейки имеют низкое напряжение, необходимы последовательные соединения и балансировка напряжения.
- Саморазряд часто выше, чем у аккумуляторов.
- Напряжение изменяется с сохраненной энергией – для эффективного хранения и восстановления энергии требуется сложное электронное контрольно-коммутационное оборудование.
- Обладает самым высоким диэлектрическим поглощением из всех типов конденсаторов.
- Верхняя температура использования обычно составляет 70 C или менее и редко превышает 85 C.
- Большинство из них содержат жидкий электролит, уменьшающий размер, необходимый для предотвращения непреднамеренного быстрого разряда.
- Высокая стоимость электроэнергии на ватт.
Гибридная система хранения
Специальная конструкция и встроенные технологии силовой электроники были разработаны для производства модулей ионисторов с новой структурой. Поскольку их модули должны быть изготовлены с использованием новых технологий, они могут быть интегрированы в панели кузова автомобиля, такие как крыша, двери и крышка багажника. Кроме того, были изобретены новые технологии балансировки энергии, которые уменьшают потери энергии и размеры схем балансировки энергии в системах устройств и хранения энергии.
Также были разработаны серии связанных технологий, таких как контроль зарядки и разрядки, а также соединения с другими системами хранения энергии. Модуль ионистора с номинальной емкостью 150F, номинальным напряжением 50 В может быть размещен на плоских и криволинейных поверхностях с площадью поверхности 0,5 кв. м и толщиной 4 см. Приложения применимо к электромобилям и может быть интегрировано с различными частями транспортного средства и к другим случаям, когда требуются системы хранения энергии.
Применение и перспективы
В США, России и Китае есть автобусы без тяговых батарей, все работы выполняются ионисторами. General Electric разработала пикап с суперконденсатором, заменяющим аккумулятор, аналогичное произошло в некоторых ракетах, игрушках и электроинструментах. Испытания показали, что суперконденсаторы превосходят свинцово-кислотные батареи в ветровых турбинах, что было достигнуто без плотности энергии суперконденсаторов, приближающейся к концентрации свинцово-кислотных батарей.
Теперь очевидно, что ионисторы похоронят свинцово-кислотные батареи в течение следующих нескольких лет, но это лишь часть истории, поскольку их параметры улучшаются быстрее, чем конкуренция. Поставщики, такие как Elbit Systems , Graphene Energy, Nanotech Instruments и Skeleton Technologies, заявили, что превышают плотность энергии свинцово-кислотных аккумуляторов с их суперконденсаторами и супербактериями, некоторые из которых теоретически соответствуют плотности энергии литий-ионов.
Тем не менее, ионистор в электромобиле – это один из аспектов электроники и электротехники, который игнорируется прессой, инвесторами, потенциальными поставщиками и многими людьми, живущими старыми технологиями, несмотря на стремительный рост многомиллиардного рынка. Например, для наземных, водных и воздушно аппаратов насчитывается около 200 серьезных производителей тяговых двигателей и 110 серьезных поставщиков тяговых батарей по сравнению с несколькими производителями суперконденсаторов. В целом в мире насчитывается не более 66 крупных производителей ионисторов, большинство из которых сосредоточили свое призводство на более легких моделях для потребительской электроники.
fb.ru
Ионисторы Справочники Любительская Радиоэлектроника
Ионисторы
В последние годы появился класс новых приборов, функционально близких к конденсаторам очень большой емкости; по существу – занимающих положение между конденсаторами и источниками питания. Это – ионисторы, конденсаторы с двойным электрическим слоем.
Номинальное напряжение ионистра зависит от вида используемого в нем электролита и является для него максимально допустимым. Для получения более высокого рабочего напряжения ионисторы соединяют последовательно. Но делать это самостоятельно не рекомендуется – параметры ионистров в такой связке должны быть очень близкими.
Внутреннее сопротивление Rвн ионистора может быть расчитано по формуле: Rвн=U/Iкз, где Rвн – в омах; U – напряжение на ионисторе, В; Iкз – ток короткого замыкания, А. Для ионистора К58-3 (японский аналог DC-2R4D225) Rвн=10…100 Ом.
Электрическую емкость ионистора расчитывают по формуле: C=I*t/Uном, где C – емкость, Ф; I – постоянный ток разрядки, А; Uном – номинальное напряжение ионистора, В; t – время разрядки от Uном до нуля, с.
Важнейший параметр ионистора – ток утечки. Особенно при использовании его в качестве резервного источника питания.
Габариты некоторых ионисторов, выпускаемых в России, показаны на рис. 1. Ионистор К58-9А представляет собой залитый компаундом ионистор К58-3 с приваренными проволочными выводами (“+” маркирован черной точкой). Ионисторы К58-9Б и К58-9В (японский аналог DB-5R5D105) на напряжение 5 и 6,3 В состоят, соответственно, из двух и трех соединенных последовательно ионисторов К58-3.
Рис. 1. Ионисторы
В принципе ионистор – неполярный прибор. Вывод “+” указывают для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.
Основные характеристики отечественных ионисторов приведены в таблице 1. Их рабочие температуры – -25…+70°C; отклонения емкости от номинальной – -20…+80%.
Таблица 1
Тип ионистора | Емкость, Ф | Номинальное напряжение, В | Внутреннее сопротивление, Ом | Габариты a-b-c-d-e, мм | Масса, г |
58-3 | 2,00 | 2,5 | 30 | 18,3-*-*-*-2,7 | 2,0 |
58-9А | 0,47 | 2,5 | 80 | 10,5-14-5-26-4,5 | 0,5 |
” | 2,00 | 2,5 | 30 | 19-23-5-38-5,5 | 2,0 |
58-9Б | 0,62 | 5,0 | 60 | 27-22,5-10-35-13 | 11,0 |
” | 1,00 | 5,0 | 60 | 27-22,5-10-35-13 | 11,0 |
” | 0,62 | 6,3 | 90 | 27-22,5-10-35-13 | 11,0 |
58-9В | 1,00 | 5,0 | 60 | 21,5-8-5-4-* | 8,0 |
” | 0,62 | 6,3 | 90 | 21,5-10,5-5-16,5-* | 10,0 |
Долговечность ионистора зависит от условий эксплуатации. Так, при работе под напряжением Uном при температуре окружающей среды +70°C гарантированная долговечность составит 500 часов. При работе под напряжением 0,8Uном она увеличивается до 5000 часов. Если же напряжение на ионисторе не превышает 0,6Uном, а температура окружающей среды – +40°C, то ионистор будет исправно работать не менее 40000 часов.
Рис. 2. Типовые разрядные характеристики ионисторов
На рис. 2 показаны типовые разрядные характеристики ионисторов. Зависимость емкости ионистора от тока разряда (для температур +25°C и +70°C) показана на рис. 3.
Рис. 3. Зависимость емкости ионистора от тока разряда
На рис. 4 показана зависимость тока зарядки от времени зарядки ионистора (для температур -15°C, +25°C и +80°C).
Рис. 4. Зависимость тока зарядки от времени зарядки ионистора
Зависимость тока утечки ионистора от рабочего напряжения приведена на рис. 5, а от температуры окружающей среды – на рис. 6.
Рис. 5. Зависимость тока утечки ионистора от рабочего напряжения
Рис. 6. Зависимость тока утечки от рабочего напряжения
Обычная схема включения ионистора в качестве резервного источника питания приведена на рис. 7. Диод VD1 предотвращает разряд ионистора C1 при Uпит=0. Резистор R1 ограничивает зарядный ток ионистора, защищая источник питания от перегрузки при включении. Он не потребуется, если источник питания выдерживает кратковременную нагрузку током 100…250 мА
Рис. 7. Включение ионистора в качестве резервного источника питания
Во многих случаях ионистор с успехом заменяет встраиваемые в прибор резервные источники питания. Весьма перспективен ионистор в качестве накопителя энергии при работе совместно с солнечными батареями. Здесь особенно ценна его некритичность к режиму заряда, практически неограниченное число циклов заряд-разряд.
Ионистор не требует ухода в течении всего срока службы.
vicgain.sdot.ru