Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Изоляция электродвигателя

При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.


Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.


Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:


  1. подключить вывода или установить переключатель в положение “мегаомы”;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около “0”;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра – 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях – 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или “плавающих” показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.


Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.


Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора “звезда” или “треугольник” необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:


  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.


Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:


  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:


  • 220В – 1,85мОм;
  • 440В – 3,7мОм;
  • 660В – 5,45мОм.

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.


Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.


Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:


  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.


Сушка электродвигателя

Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать – снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.

Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.

После разборки осуществляется сушка одним из способов:


  • Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
  • Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.

Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.

Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.


www.ttaars.ru

Измерение сопротивления изоляции электродвигателя | ЭЛЕКТРОлаборатория

Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производится в целях проверки состояния изоляции и пригодности машины к проведению последующих испытаний. Рекомендуется производить измерение:

в практически холодном состоянии испытуемой машины — до начала ее испытания по соответствующей программе;

независимо от температуры обмоток — до и после испытаний изоляции обмоток на электрическую прочность относительно корпуса машины и между обмотками переменным напряжением.

Измерение сопротивления изоляции обмоток следует проводить: при номинальном напряжении обмотки до 500 В включительно — мегаомметром на 500 В; при номинальном напряжении обмотки свыше 500 В — мегаомметром не менее чем на 1000 В. При измерении сопротивления изоляции обмоток с номинальным напряжением свыше 6000 В, имеющих значительную емкость по отношению к корпусу, рекомендуется применять мегаомметр на 2500 В с моторным приводом или со статической схемой выпрямления переменного напряжения.

Измерение сопротивления изоляции относительно корпуса машины и между обмотками следует производить поочередно для каждой цепи, имеющей отдельные выводы, при электрическом соединении всех прочих цепей с корпусом машины.

Измерение сопротивления изоляции обмоток трехфазного тока, наглухо сопряженных в звезду или треугольник, производится для всей обмотки по отношению к корпусу.

Изолированные обмотки и защитные конденсаторы, а также иные устройства, постоянно соединенные с корпусом машины, на время измерения сопротивления их изоляции должны быть отсоединены от корпуса машины.

Измерение сопротивления изоляции обмоток, имеющих непосредственное водяное охлаждение, должно производиться мегаомметром, имеющим внутреннее экранирование; при этом зажим мегаомметра, соединенный с экраном, следует присоединять к водосборным коллекторам, которые при этом не должны иметь металлической связи с внешней системой питания обмоток дистиллятом.

По окончании измерения сопротивления изоляции каждой цепи следует разрядить ее электрическим соединением с заземленным корпусом машины. Для обмоток на номинальное напряжение 3000 В и выше продолжительность соединения с корпусом должна быть:

для машин мощностью до 1000 кВт (кВ·А) — не менее 15 с;

для машин мощностью более 1000 кВт (кВ·А) — не менее 1 мин.

При пользовании мегаомметром на 2500 В продолжительность соединения с корпусом должна быть не менее 3 мин независимо от мощности машины.

Измерение сопротивления изоляции заложенных термопреобразователей сопротивления следует проводить мегаомметром напряжением 500 В.

Измерение сопротивления изоляции изолированных подшипников и масляных уплотнений вала относительно корпуса следует проводить при температуре окружающей среды мегаомметром напряжением не менее 1000 В.

                                                                                                                           Таблица 2.

 

Таблица 3.

Таблица 4.

 

 Сопротивление изоляции Rиз является основным показателем состояния изоляции статора и ротора электродвигателя.

Одновременно с измерением сопротивления изоляции обмотки статора определяют коэффи­циент абсорбции. Измерение сопротивления изоляции ротора проводится у синхронных электро­двигателей и электродвигателей с фазным ротором на напряжение 3кВ и выше или мощностью бо­лее 1МВт. Сопротивление изоляции ротора должно быть не ниже 0,2МОм.

Коэффициент абсорбции в эксплуатации обязательно определять только для электродвигате­лей напряжением выше 3кВ или мощностью боле 1МВт.

Подготовить средства измерений:

Проверить уровень заряда батареи или аккумулятора для мегаомметра типа MIC-2500.

Установить значение испытательного напряжения.

В случае использования стрелочного прибора типа ЭСО202 установить его горизонтально.

Для ЭС0202 установить требуемый предел измерений, шкалу прибора и значение испытательного напряжения мегомметра.

Проверить работоспособность мегомметра. Для этого необходимо замкнуть между собой измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «0». Разомкнуть измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «104 МОм».

Перед проведением измерения необходимо открыть вводное устройство электродвигателя (борно), протереть изоляторы от пыли и загрязнения и подключить мегаомметр согласно схемы, приве­дённой на рисунке.

Рисунок. Измерение сопротивления изоляции обмоток электродвигателя.

На рисунке  А показана схема подключения мегаомметра к испытуемому электродвигателю, у ко­торого обмотки соединены в звезду или треугольник внутри корпуса и произвести рассоединение в борно невозможно. В этом случае мегаомметр подключает­ся к любому зажиму статора электродвигателя и со­противление изоляции измеряется у всей обмотки сразу относительно корпуса.

На рисунке  Б измерение сопротивление изо­ляции производится у электродвигателя по каждой из частей обмотки отдельно, при этом другие части обмотки (которые в данный момент не обрабаты­ваются) закорачиваются и соединяются на землю.

При измерении сопротивления изоляции отсчёт показаний мегаомметра производят каждые
15 секунд и результатом считается сопротивление, отсчитанное через 60 секунд после начала измерения, а отношение показаний R60/R15 считается коэффициентом абсорбции.

Для электродвигателей с номинальным на­пряжением 0,4кВ (электродвигатели до 1000В) одноминутное измерение изоляции мегаомметром на 2500В приравнивается к высоковольтному испытанию.

У синхронных электродвигателей при изме­рении сопротивления изоляции обмоток статора (обмотки статора) необходимо закоротить и за­землить обмотку ротора. Это необходимо сделать для исключения возможности повреждения изо­ляции ротора.

Сегодня статья – ответ на вопрос читателей.

Будут вопросы будут и новые статьи.

Успехов!!!

elektrolaboratoriy.ru

5 схем проверки электродвигателя мультиметром

Мне часто в последнее время друзья и соседи стали задавать вопрос: как проверить электродвигатель мультиметром? Вот я и решил написать небольшой обзор инструкцию для начинающих электриков.

Сразу замечу, что один мультиметр не позволяет выявить со 100% гарантией все возможные неисправности: мало его функций. Но порядка 90% дефектов им вполне можно найти.

Постарался сделать инструкцию универсальной для всех типов движков переменного тока. Эти же методики при вдумчивом подходе можно использовать в цепях постоянного напряжения.

Содержание статьи

Что следует знать о двигателе перед его проверкой: 2 важных момента

В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Устройство однофазного электродвигателя

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

  • разбитые подшипники;
  • попавшие внутрь механические частицы;
  • неправильная сборка и другие причины.

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

Съемник подшипников электродвигателя

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Коллекторные пластины

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Характеристики асинхронного двигателя

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Для бытовой сети 220 вольт могут использоваться двигатели:

  • коллекторные с щеточным механизмом;
  • асинхронные однофазные;
  • синхронные и асинхронные трехфазные.

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как проверить обмотку электродвигателя на статоре: общие рекомендации

Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.

Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.

Как прозвонить обмотки

Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.

Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.

Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.

Межвитковое замыкание тоже сказывается на величине активной составляющей.

Поэтому замеры активного сопротивления обмоток и их сравнение позволяют достоверно судить об исправности статорных цепей, делать вывод, что их целостность не нарушена.

Однофазный асинхронный двигатель: особенности статорных обмоток

Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.

Сопротивление обмоток двигателя

Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:

  • меньшая величина — рабочую обмотку;
  • средняя — пусковую;
  • большая — последовательное соединение первых двух.

Как найти начало и конец каждой обмотки

Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.

Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.

Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.

К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.

Как найти конец и начало обмотки

Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.

В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.

А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.

Личный опыт: проверка статорных обмоток асинхронного электродвигателя

Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.

Карманный мультиметр

Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.

Трехфазный двигатель в однофазной сети

Общая оценка состояния изоляции обмоток

Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.

Сопротивление изоляции обмоток

Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.

Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.

Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.

Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.

Как проверить изоляцию

Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.

Однако такая работа производится под действующим напряжением. Она опасна. Выполнять ее можно только тем работникам, кто имеет хорошие практические навыки электрика, имея минимум третью группу по технике безопасности.

Используя этот способ, учитывайте, что:

  • на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
  • даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
  • колба лампы может разбиться: ее надо держать в защитном чехле.

Замер активного сопротивления обмоток

Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.

Сопротивление обмоткиЭлектрическое сопротивление обмоткиСопротивление обмотки 3

Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.

Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.

Замер сопротивления изоляции между обмотками

Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.

Сопротивление изоляции между обмотками

Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.

Как проверить якорь электродвигателя: 4 типа разных конструкций

Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.

Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.

Синхронные модели с фазным ротором

На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.

Фазный ротор

Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.

Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.

Якорь асинхронного электродвигателя

В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.

Ротор асинхронного электродвигателя

Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.

Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.

Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.

Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.

Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.

Коллекторные электродвигатели: 3 метода анализа обмотки

Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.

Схема коллекторного электродвигателя

Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.

Схема коллекторного двигателя

Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.

Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.

Самый простой метод измерения

Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.

Ротор коллекторного двигателя

Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.

Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.

Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.

Способ №2: диаметральный замер

При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.

Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.

Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.

Способ №3: косвенный метод сравнения величин маленьких сопротивлений

Для измерения нам потребуется собрать схему, в которую входит:

  • аккумулятор на 12 вольт;
  • мощное сопротивление порядка 20 Ом;
  • мультиметр с концами и соединительные провода.

Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:

  • высокой емкости аккумулятора, обеспечивающей одинаковый уровень напряжения во время работы;
  • повышенная мощность резистора, исключающая его нагрев и отклонение параметров при токах до одного ампера;
  • короткие и толстые соединительные провода.

Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.

Косвенное измерение сопротивления

Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.

Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.

Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.

При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.

Проверка состояния обмоток ротора коллекторного двигателя сильно зависит от класса точности мультиметра в режиме омметра.

Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.

Двигатели постоянного тока

Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.

Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.

Заключительный этап: особенности проверок двигателей под нагрузкой

Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.

Включение подачей напряжения на холостой ход и проверка начала вращения ротора, как делают некоторые начинающие электрики, является типичной ошибкой.

Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.

Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.

Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.

electrikblog.ru

Испытания электродвигателей: перечень работ, периодичность, нормы

dvig per toka 1 Помимо проверки состояния механических элементов и смазки, при капитальных и текущих ремонтах электромоторов переменного тока производятся их электрические испытания, измеряются электрические характеристики.

Объем этих испытаний, условия их проведения, а также нормируемые предельные значения измеренных величин зависят от:

  • номинального напряжения;
  • мощности;
  • конструктивного исполнения и типа двигателей.

Рассмотрим по порядку, какие испытания проводятся, и ознакомимся с критериями исправности электродвигателей.

Измерение сопротивления изоляции электродвигателей

Такие измерения производятся не только при ремонте. Например, если в процессе эксплуатации требуется провести диагностику электродвигателя и питающего кабеля в случае отключения от защит. Также требуется измерять этот параметр перед пуском аппарата после его длительного простоя, особенно в неблагоприятных рабочих условиях.

Для измерения используется мегаомметр, напряжение которого зависит от номинального для испытуемого электродвигателя. Для аппаратов до 500 В используется мегаомметр на 500 В. Для номинала 500 — 1000 В — соответственно на 1000 В. Для высоковольтных электродвигателей используется мегаомметр, вырабатывающий напряжение 2500 В.

Для статоров низковольтных двигателей норма составляет 1 МОм, при этом температура испытуемого объекта находится в пределах 10-30˚С. При температуре 60˚С допустимая величина снижается до 0,5 МОм.

Аппараты напряжением выше 1000 В разделяются на две категории. Для мощностей обмотки статора 1 — 5 МВт предельные значения указаны в таблице.

dvig per toka 3
Для более мощных, свыше 5 МВт, моторов, подход к процессу более ответственный. Измерения производятся в строгом соответствии с инструкциями изготовителя.

У асинхронных машин с фазным ротором, в том числе синхронных, имеющих обмотку возбуждения, тестируется и изоляция обмотки ротора. Но только у высоковольтных движков, имеющих мощность свыше 1 МВт. Используется мегаомметр на 1000 В. Предельное значение — 0,2 МОм.

Мощные электродвигатели для предотвращения появления паразитных токов в валах, замыкающихся на установочной раме, имеют изоляцию опор с подшипниками. Также подшипники изолируются от маслопроводов, осуществляющих их смазку при работе. Состояние этого вида изоляции проверяется мегаомметром на 1000 В.

Этот параметр контролируется после капитальных ремонтов, связанных с выемкой ротора. Сопротивление должно иметь значение, отличное от нуля, и не снизиться резко относительно ранее полученных результатов. Более точного значения правилами не предусмотрено.

Измерение коэффициента абсорбции

Параметр характеризует степень увлажненности изоляции электродвигателей. Он измеряется только у высоковольтных аппаратов. Для этого на обмотку статора подключают испытательное напряжение от мегаомметра, держат его в течение минуты, засекая значения через 15 и 60 секунд. Разделив шестидесятисекундное значение на пятнадцатисекундное, получают искомую величину.

Нормативы зависят от материала изоляции двигателя. Если она термореактивная, то коэффициент не должен быть ниже 1,3. Для микалентной компаундированной – ниже 1,2.

Малый коэффициент абсорбции, особенно – близкий к единице, указывает на влажную изоляцию. Обмотку требуется просушить.

Испытание повышенным напряжением

Испытание проводится после окончания капитального ремонта двигателя, а для аппаратов до 1000 В может не проводиться вовсе. Решение принимает технический руководитель, что закрепляется соответствующим приказом.

Испытание заключается в подаче повышенного напряжения промышленной частоты от постороннего источника. Для этого применяются переносные или передвижные испытательные установки. Одно из важных требований – они должны быть рассчитаны на повышенные токи утечки. Поэтому не все из них, пригодные к испытаниям изоляции распределительных устройств, годятся для электродвигателей. Испытательные напряжения указаны в таблице.

dvig per toka 2

Напряжение выше номинального для изоляции является стрессом. Подъем его производится медленно и без рывков. Критерием исправности служит отсутствие разрядов внутри двигателя, наличие которых контролируется по показаниям миллиамперметра, включенного последовательно с испытуемым объектом. Сами же показания прибора не нормируются. Также не должно произойти срабатывания защиты установки.

При испытаниях схема соединения обмоток не разбирается, они испытываются относительно корпуса совместно. Но при пробое для поиска поврежденного участка придется не только разобрать схему звезды или треугольника, но и рассоединить все секции обмотки в поврежденной фазе. Неисправная секция меняется на новую.

Измерение сопротивления постоянному току

 Измерение проводят:

  • для статоров напряжением выше 3 кВ;
  • для роторов таких же аппаратов.

Для обмоток статоров значения, полученные для каждой фазы, не должны отличаться более, чем на ±2%. Во всех описанных случаях величины сопротивлений не должны различаться от измеренных ранее более, чем на ту же величину.

Для измерений используются микроомметры, рассчитанные на точное измерение малых величин сопротивления. Для исключения влияния сопротивления соединительных проводов и контактов в месте подключения используется мостовая (четырехпроводная) схема подключения прибора.

Для сравнения с предыдущими значениями, полученные данные нужно привести к той же температуре обмоток. Для чего ее, собственно, потребуется измерить. Формулы для приведения зависят от материала проводников обмоток.

Для меди формула выглядит так:

R2 = R1 (235 + t2)/(235 + t1).

Сопротивление R1 – измеренное при температуре t1. Сопротивление R2 – значение, приведенное к температуре t2.

Для алюминия меняется только числовой коэффициент:

R2 = R1 (245 + t2)/(245 + t1).

На основании измерений делается заключение о наличии витковых замыканий в проверяемой обмотке. При выявлении его наличия потребуется определить место замыкания и заменить поврежденный участок.

pue8.ru

Методика испытания и измерения электродвигателей переменного тока

Целью проведения пуско-наладочных работ является проверка возможности включения электродвигателей в работу без предварительной ревизии и сушки, а также снятие электрических характеристик на холостом ходу и под нагрузкой .

Применяемые приборы: Мегаомметры М4100/4, Ф4102/2, мост Р333, токоизмерительные клещи Ц4505, испытательная установка АИД-70, набор щупов.

Испытания и измерения электродвигателей переменного тока может производить бригада в составе не менее 2 человек из лиц ЭТЛ. Производитель работ при высоковольтных испытаниях и измерениях должен иметь группу по электробезопасности не ниже IV, а остальные не ниже III группы.

Перед началом испытаний должен быть проведен внешний осмотр электродвигателя. При этом проверяют состояние и целостность изоляции, отсутствие вмятин на корпусе, затяжку контактных соединений, а также комплектность машины (наличие всех деталей, паспортного и клеммного щитков и необходимых указаний на них; заполнение подшипников  до заданного уровня и отсутствие течи масла; состояние коллектора, токосъемных колец, щеткодержателей и щеток; наличие заземляющей проводки и качество соединения ее с электродвигателем).

 

1. Измерение сопротивления изоляции.

Для измерения сопротивления изоляции применяются мегаомметры на 250, 500, 1000 и 2500 В.

Измерение сопротивления изоляции вспомогательных измерительных цепей производят мегаомметром на 250 В.

Сопротивление изоляции измеряется при номинальном напряжении обмотки до 0,5 кВ включительно мегаомметром на напряжение 500 В, при номинальном напряжении обмотки свыше 0,5 кВ до 1 кВ мегаомметром на напряжение 1000 В, а при номинальном напряжении обмотки выше 1 кВ – мегаомметром на напряжение 2500 В.

Во время подключения прибора испытываемое оборудование должно быть заземлено. Отсчет производится через 15 и 60 секунд после нажатия кнопки «Высокое напряжение», или начала вращения рукоятки мегаомметра со скоростью 120 оборотов в минуту.

Измерение сопротивления изоляции производят при отсутствии электрического напряжения на обмотках машины по методике испытания изоляции.

После измерений сохранившийся на обмотке потенциал следует разделить на корпус проводником, предварительно соединенным с корпусом. Продолжительность разряда для обмоток с номинальным напряжением 3000 В и выше должна быть не менее 15 сек для машин до 1000 кВт и 60 сек для машин мощностью больше 1000 кВт.

Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производит поочередно для каждой электрически независимой цепи при соединении всех прочих цепей с корпусом машины.

Показания мегаомметра зависят от времени приложения напряжения к проверяемой обмотке. Чем больше время, предшествующее от момента приложения напряжения к изоляции до момента отчета (15 и 60с), тем больше получается измеренное значение сопротивления изоляции.

При измерении сопротивления изоляции необходимо измерять и температуру обмотки. С повышением температуры сопротивление изоляции уменьшается. Измерение изоляции следует выполнять при температуре обмотки, соответствующей номинальному режиму работы машины или привести к температуре 75°С. Температура обмотки, при которой производят измерения , не должна быть ниже 10°С. Если температура ниже указанной, то обмотку перед измерением необходимо подогреть.

Наименьшее значение сопротивления изоляции при рабочей температуре обмоток и через 60 сек. после приложения напряжения определяется по формуле:

R60 = Uн / (1000 + Pн / 100)

где      Uн – номинальное напряжение обмотки, В;

Pн – номинальная мощность, кВт, для машин переменного тока, кВА.

О степени влажности изоляции судят по величине коэффициента абсорбции, который представляет собой отношение показаний мегаомметра после приложения напряжения через 15 и 60 сек:

Ка = R60 / R15

Следует учесть, что величина Ка даже при хорошем состоянии изоляции в значительной степени зависит от температуры машины и вида применяемых изоляционных материалов. С повышением температуры коэффициент абсорбции для машин, имеющих неувлажненную изоляцию, уменьшается. Для неувлажненной обмотки при температуре 10-30 °С коэффициент абсорбции Ка = 1,3¸2,0, для увлажненной обмотки коэффициент абсорбции близок к единице.

Допустимые значения сопротивления изоляции и коэффициента абсорбции приводятся в таблицах 5.1.; 5.2.; 5.3. РД 34.45-51.

Электродвигатели переменного тока включаются без сушки, если сопротивления изоляции обмоток и коэффициента абсорбции не ниже указанных в табл. 5.1. – 5.3.

2. Испытание повышенным напряжением промышленной частоты.

Испытания электрической прочности изоляции обмоток относительно корпуса и между обмотками производят синусоидальным переменным напряжением частотой 50 Гц, используя установку АИД-70. Продолжительность испытания 1 минута.

Испытательное напряжение подводится к каждой фазе обмотки, при заземленном корпусе электродвигателя и двух других фазах. При невозможности выделить испытываемую фазу производится испытание всех 3х фаз одновременно, относительно корпуса электродвигателя. Испытательные напряжения для обмоток электродвигателей переменного тока приведены в табл. 5.4. РД 34.45-51.

Испытания должны проводить лица, прошедшие специальную подготовку и имеющие практический опыт проведения испытаний.

Перед началом испытания необходимо проверить стационарное заземление корпусов испытываемого оборудования и надежно заземлить испытательную установку. Место испытаний, а также соединительные провода , находящиеся под испытательным напряжением, должны быть ограждены или у места испытания должен быть выставлен наблюдающий.

Провод, с помощью которого повышенное напряжение от испытательной установки подводится к испытываемому оборудованию, должен быть надежно закреплен с помощью промежуточных изоляторов, изолирующих подвесок и т.п., чтобы было исключено случайное приближение этого провода к находящимся под рабочим напряжением токоведущим частям или сокращения воздушных промежутков, которые должны быть не менее следующих значений:

Испытательное напряжение, кВ                      до 20         30        40        50        60

Расстояние до заземленных предметов, см          5          10        20        25        30

до токоведущих частей, см                25        25        30        30        35

 

Присоединение установки к сети напряжением 380/220 В должно осуществляться через коммутационный аппарат с видимым разрывом, допускается присоединение через штепсельную вилку, расположенную у испытательной установки.

При сборке испытательной схемы, прежде всего, выполняются защитное и рабочее заземления испытательной установки. Перед присоединением испытательной установки к сети 380/220 В на вывод высокого напряжения установки накладывается заземление с помощью специальной заземляющей штанги. Сечение медного провода, с помощью которого заземляется вывод, должно быть не менее 4 мм2.

Перед подачей испытательного напряжения на испытательную установку производитель работ обязан:

—          проверить все ли члены его бригады находятся на местах, указанным им производителем работ, удалены ли посторонние лица, можно ли подавать испытательное напряжение на оборудование;

—          предупредить бригаду о подаче напряжения словами «Подано напряжение» и, убедившись, что предупреждение услышано всеми членами бригады, снять заземление с вывода испытательной установки и подать на нее напряжение 280/220 В.

С момента снятия заземления вся испытательная установка, включая испытываемое оборудование и соединительные провода считается находящейся под напряжением, и проводить какие-либо пересоединения в испытательной схеме и на испытываемом оборудовании запрещается.

После окончания испытаний производитель работ должен снизить напряжение испытательной установки до нуля, отключить ее от сети 380/220 В, заземлить (или дать распоряжение о заземлении) вывод установки и сообщить об этом бригаде словами «Напряжение снято». Только после этого можно пересоединять провода на испытательной установке или в случае полного окончания испытания отсоединить их и снимать ограждения.

До испытания изоляции, а также после испытания необходимо разрядить испытываемое оборудование на землю и убедиться в полном отсутствии на нем заряда. Наложение и снятие заземления заземляющей штангой, подсоединение и отсоединение проводов от испытательной установки и испытываемого оборудования должны проводиться одним и тем же лицом и выполняться в диэлектрических перчатках.

Провод, соединяющий испытательную установку с испытуемым оборудованием должен быть удален от электрооборудования, находящегося под рабочим напряжением до 10 кВ, на расстоянии не менее 1 м.

 

3. Измерение сопротивления обмоток постоянному току.

 

3.1. Общие замечания.

Измерение сопротивлений производят с целью проверки соответствия сопротивления расчетному значению, проверки надежности паек определения повышения температуры над температурой окружающей среды. Сопротивление может быть измерено в холодном и нагретом состоянии. Холодным состоянием считают такое состояние обмотки, при котором температура обмотки и окружающей среды отличается не больше чем на 3°С. нагретое состояние – это состояние обмоток при рабочей температуре. При определении температуры в холодном состоянии или необходимо за 30 мин до испытания заложить в машину термометры. В практике наладочных работ применяют следующие методы измерения сопротивления постоянному току: амперметра-вольтметра, одинарного моста и двойного моста. Основным методом измерения является метод амперметра-вольтметра.

Для измерения применяют электроизмерительные приборы магнитоэлектрической системы: вольтметры класса не ниже 0,5 со встроенными добавочными сопротивлениями или наружным добавочным сопротивлением класса 0,1 и милливольтметры класса не ниже 0,5 с шунтами класса не ниже 0,1.

По схеме 4 а производят измерение малых сопротивлений.

Точный расчет измеряемого сопротивления, Ом, производят по формуле:

Rx = U / (I – U/ Rв)

где      Rв – внутреннее сопротивление вольтметра.

Измерение больших сопротивлений рекомендуется производить по схеме 4 б. Сопротивление рассчитывают по формуле:

Rx = (U – IRа) / I

где      Rа – внутреннее сопротивление амперметра.

3.2. Измерений сопротивлений обмоток машин переменного тока.

Измерение сопротивлений многофазных обмоток при наличии выводов начала и конца всех фаз следует производить пофазно. В случае, если фазы обмотки статора соединены в «звезду» и не имеют вывода нулевой точки (рис. 5 а), то измерение сопротивления производится между каждыми двумя выводами (фазами).

Результат измерений дает сумму сопротивлений двух фаз:

r12 = r1 + r2; r23 = r2 + r3; r31 = r3 + r1.

Сопротивление каждой фазы в отдельности:

r1 = (r31 + r12 —  r23) / 2; r2 = (r12 + r23 — r31) / 2; r3 = (r23 + r31 — r12 ) / 2.

В случае соединения фаз в «треугольник» (рис. 5 б) сопротивление каждой фазы:

r1 = ½ [ 4 r23 r31 / (r23 + r31 — r12 ) – (r23 + r31 — r12 )];

r2 = ½ [ 4 r31 r12 / (r31 + r12 —  r23) – (r31 + r12 —  r23)];

r3 = ½ [ 4 r12 r23 / (r12 + r23 — r31) – (r12 + r23 — r31)].

Если расхождение измеренных значений не превышает 2 % при соединении фаз в “звезду” и 1,5 % при соединении фаз в «треугольник», то сопротивление одной фазы можно определить упрощенно:

При соединении в «звезду»

r1 = r2 + r3 = r / 2;

при соединении фаз в “треугольник”

r1 = r2 = r3 = 3 / 2  r,

где

r = r12 + r23 + r31 /3.

Измерение сопротивления обмотки ротора в двигателях с фазным ротором производят аналогично измерениям обмоток статора. Соединение обмоток ротора может быть в «звезду» и в «треугольник». Напряжение измеряют в контактных кольцах, чтобы исключить влияние переходного сопротивления контактов щеток.

Согласно ПУЭ предельно допустимые отклонения сопротивления постоянному току обмотки различных фаз статора для генераторов мощностью меньше 100 МВт не должны отличаться друг от друга больше чем на 2 %.

Измеренные сопротивления обмотки ротора не должны отличаться от заводских данных больше чем на 2 %. Сопротивления гашения поля пускорегулирующие сопротивления проверяют на всех ответвлениях. Значения сопротивлений не должны отличаться от заводских данных больше чем на 10 %.

 

4. Проверка электродвигателя на холостом ходу или с ненагруженным механизмом.

Проверка производится в электродвигателях напряжением 3 кВ и выше. Значение тока ХХ для вновь вводимых электродвигателей не нормируется.

Значение тока холостого хода после капитального ремонта электродвигателя не должно отличаться больше чем на 10 % от значения тока, измеренного перед его ремонтом, при одинаковом напряжении на выводах статора.

Продолжительность проверки электродвигателей должна быть не менее 1 часа.

 

5. Измерение воздушного зазора между сталью ротора и статора.

Измерение зазоров должно производиться, если позволяет конструкция электродвигателя. При этом у электродвигателей мощностью 100 кВт и более, у всех электродвигателей ответственных механизмов, а также у электродвигателей с выносными подшипниками скольжения величины воздушных зазоров в местах, расположенных по окружности ротора и сдвинутых друг относительно друга на угол 90°, или в местах, специально предусмотренных при изготовлении электродвигателя, не должны отличаться больше чем на 10 % от среднего значения.

 

 

6. Измерение зазоров в подшипниках скольжения.

Увеличение зазоров в подшипниках скольжения более значений, приведенных в табл. 5.5. РД 34.45-51, указывает на необходимость перезаливки вкладыша.

 

7. Измерение вибрации подшипников электродвигателя.

Измерение производится у электродвигателей напряжением 3 кВ и выше, а  также у всех электродвигателей ответственных механизмов.

 

8. Измерение разбега ротора в осевом направлении.

Измерение производится у электродвигателей, имеющих подшипники скольжения.

 

9. Проверка работы электродвигателя под нагрузкой.

Проверка производится при неизменной мощности, потребляемой электродвигателем из сети не менее 50 % номинальной, и при соответствующей установившейся температуре обмоток.

Проверяется тепловое и вибрационное состояние электродвигателя.

 

10. Гидравлическое испытание воздухоохладителя.

Испытание производится избыточным давлением 0,2-0,25 МПа в течение 5-10 мин, если отсутствуют другие указания завода –изготовителя.

 

11. Проверка исправности стержней короткозамкнутых роторов.

Проверка производится у асинхронных электродвигателей при капитальных ремонтах осмотром вынутого ротора или специальными испытаниями, а в процессе эксплуатации по мере необходимости – по пульсациям рабочего или пускового тока статора.

Измерения по п.п. 5-8, 10, 11 выполняют подразделения технологических служб, связанных  с монтажом и ремонтом электрических машин.

НТД и техническая литература:

  • Межотраслевые правила по охране труда (ПБ) при эксплуатации электроустановок.
  • ПОТ Р М — 016 — 2001. — М.: 2001.
  • Правила устройства электроустановок Глава 1.8 Нормы приемосдаточных испытаний Седьмое издание
  • Объем и нормы испытаний электрооборудования. Издание шестое с изменениями и дополнениями — М.:НЦ ЭНАС, 2004.
  • Наладка и испытания электрооборудования станций и подстанций/ под ред. Мусаэляна Э.С. -М.:Энергия, 1979.
  • Сборник методических пособий по контролю состояния электрооборудования. — М.: ОРГРЭС, 1997.

www.etlpro.ru

Электродвигатели переменного тока / ПУЭ 7 / Библиотека / Элек.ру

1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11.

Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11.

По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде.

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России.

2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8.

Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока.

Испытуемый объект

Напряжение мегаомметра, кВ

Сопротивление изоляции

Обмотка статора напряжением до 1 кВ

1

Не менее 0,5 МОм при температуре 10-30 °С

Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

0,5

Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

Термоиндикатор

0,25

Не нормируется

Подшипники синхронных электродвигателей напряжением выше 1 кВ

1

Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе.

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса.

Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин.

4. Измерение сопротивления постоянному току:

а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более.

Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%;

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%.

5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера.

Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока.

Испытуемый объект

Характеристика электродвигателя

Испытательное напряжение, кВ

Обмотка статора

Мощность до 1 МВт, номинальное напряжение выше 1 кВ

1,6Uном + 0,8

Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ

1,6Uном + 0,8

Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ

2Uном

Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ

1,6Uном + 2,4

Обмотка ротора синхронного электродвигателя

8Uном системы возбуждения, но не менее 1,2

Обмотка ротора электродвигателя с фазным ротором

1

Реостат и пускорегулировочный резистор

1

Резистор гашения поля синхронного электродвигателя

2

6. Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10.

7. Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниже:

Синхронная частота вращения электродвигателя, Гц

50

25

16,7

12,5 и ниже

Допустимая вибрация, мкм

50

100

130

160

8. Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2-4 мм.

9. Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2-2,5 кгс/см2). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании.

10. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч.

11. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования.

Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей.

Номинальный диаметр вала, мм

Зазор, мм, при частоте вращения, Гц

Менее 16,7

16,7-25

более 25

18-30

0,040-0,093

0,060-0,130

0,140-0,280

30-50

0,050-0,112

0,075-0,160

0,170-0,340

50-80

0,065-0,135

0,095-0,195

0,200-0,400

80-120

0,080-0,160

0,120-0,235

0,230-0,460

120-180

0,100-0,195

0,150-0,285

0,260-0,580

180-260

0,120-0,225

0,180-0,300

0,300-0,600

260-360

0,140-0,250

0,210-0,380

0,340-0,680

360-500

0,170-0,305

0,250-0,440

0,380-0,760

www.elec.ru

Измерение сопротивления в электродвигателе

Важной частью испытаний электродвигателя после ремонта или складского хранения являются измерение сопротивления изоляции и сопротивление обмоток постоянному току. Сопротивление изоляции производится для проверки отсутствия короткого замыкания и возможности подключения машины к сети. Сопротивление обмоток измеряется для проверки правильности намотки, отсутствия виткового замыкания и надёжности соединений.


Методы проверки изоляции

Перед подачей напряжения для предотвращения короткого замыкания необходимо проверить изоляцию между токоведущими частями и корпусом электромашины. В трёхфазных электродвигателях обмотки соединены между собой. Для проверки отсутствия замыкания между ними, при наличии возможности следует отключить обмотки друг от друга. Изоляция каждой из них проверяется относительно остальных катушек и корпуса машины. Проверка изоляции производится мегомметром. Для этого вывода к прибору подключаются на положение “мегаомы”. Концы прикладываются к выводам и части корпуса, зачищенному от краски.

Информация! Вместо корпуса вывод можно приложить к валу электромашины.

Измерение производится вдвоём – один человек прикладывает вывода прибора к измеряемым элементам, а второй крутит ручку устройства в течение минуты, затем, не прекращая вращения, снимаются показания. При сомнительном результате измерения следует повторить. Провода и обмотки обладают электрической ёмкостью и во время измерения заряжаются от мегомметра, поэтому после завершения испытаний или перед повторной проверкой вывода прибора и измеряемые детали необходимо разрядить закорачиванием.


Измерение сопротивления обмоток

Измерение сопротивления обмоток производится постоянным током. Этот вид измерений производится для проверки правильности намотки и качества соединений. 

Информация! Величина сопротивлений, за исключением обмоток параллельного возбуждения двигателей постоянного тока, составляет несколько Ом, а в электромашинах большой мощности менее 1 Ом 

Измерения производятся измерительным мостом или цифровым омметром. При проведении измерений важно обеспечить надёжный контакт выводов прибора с клеммами электромашины. Перед началом измерений вывода измерительного прибора замыкаются между собой, и производится установка “0”. В трехфазных машинах обмотки следует отключить друг от друга. При невозможности это сделать они измеряются попарно, через клеммы подключения. В коллекторных электродвигателях и машинах постоянного тока обмотки возбуждения разделены на две части и находятся по обе стороны ротора. Для проверки сопротивления их рассоединяют и измеряют по отдельности.


Температура электродвигателя

При изменении температуры сопротивление обмоток меняется, поэтому температура двигателя при измерении должна быть 20°С или сопротивление необходимо пересчитывать по специальным таблицам. Для измерения температуры используются встроенные или дополнительно устанавливаемые внутренние температурные датчики. Их количество зависит от мощности электромашины:


  • до 10кВт – 1шт;
  • 10-100кВт – 2шт;
  • 100кВт-1мВт – 3шт;
  • более 1мВт – 4шт.

Температурой аппарата считается среднее значение показаний. При измерении сопротивления двигателя, не работавшего длительное время, его температурой считается температура окружающей среды. При этом она не должна меняться в течение нескольких дней перед началом измерений больше, чем на 5°С. Измерения производят несколько раз с перерывом не менее 2 часов. Если результат меняется, то следует подождать до приобретения электромашиной температуры окружающей среды.


Измерения с помощью амперметра и вольтметра

Если измерительный мост или омметр отсутствуют, то допускается определить сопротивление обмоток методом измерения тока и напряжения:


  1. подключить параллельно обмотке вольтметр, а последовательно амперметр;
  2. подать в схему =5В;
  3. измерить ток и напряжение;
  4. по формуле R=U/I рассчитать сопротивление;
  5. повторить ещё два раза, меняя величину напряжения;
  6. рассчитать среднеарифметическое значение.


Важно! Если вместо постоянного использовать переменное напряжение, то можно обнаружить витковое замыкание между рядом расположенными витками. 

 
Проверка целостности коллекторных электрических машин 

Измерением сопротивления проверяется также исправность коллекторных машин переменного и постоянного тока. Делать это целесообразно стрелочным или цифровым омметром. Во время проверки показания прибора не должны меняться более чем на 10-15%. Измерения производятся между рядом расположенными пластинами коллектора или через щётки. Если при измерениях через щётки показания меняются, необходимо их снять и произвести измерения непосредственно на коллекторе.


Необходимая точность и результаты измерений

Точность и необходимый результат измерений определяется нормативными документами, такими, как ПУЭ, ПТЭЭР и другими, а также документацией к электродвигателю.


Необходимая точность при измерении сопротивления обмоток

Проводить измерения следует при температуре электромашины, равной температуре окружающей среде, до включения в работу. Разница между показаниями не должна превышать 2%, поэтому приборы, используемые для проверки должны обеспечивать необходимую точность:

  • до 1 Ом применяется двойной измерительный мост;
  • свыше 1 Ом – одинарный;
  • цифровой омметр необходимо переключить на соответствующий предел измерений.

Измерение изоляции

При проверке сопротивления изоляции температура значения не имеет, но мегомметр следует проверить до начала испытаний и после. Величина сопротивления зависит от мощности электромашины и определяется по формуле Rиз=Uном/(1000+0,1Рном), где:


  • Uном – напряжение сети;
  • Рном – мощность двигателя. На практике считается, что сопротивление изоляции статора должно быть не менее 1мОм, а в обмотках фазного ротора не должно быть короткого замыкания. При показаниях мегомметра ниже требуемых:
  • после перегрева электромашины она отправляется на ремонт;
  • после хранения или намокания аппарат разбирается и сушится, после чего производится повторная проверка. Инструменты, используемые для измерения сопротивления Для проведения измерений применяются различные приборы.

Мегомметр

Служит для измерения сопротивления изоляции. Электродвигатели с номинальным напряжением до 1кВт используются мегомметры 0,5 и 1кВт, высоковольтные аппараты проверяются мегомметрами 2,5кВт или специальными устройствами. Вывода плотно прижимаются к измеряемому объекту, и ручка прибора вращается равномерно, со скоростью 1,5-2 об/мин до тех пор, пока стрелка не остановится.

Внимание! На выводах мегомметра присутствует высокое напряжение – до 2,5кВт, в зависимости от конструкции, но очень маленький ток. Поэтому прикосновения к ним болезненные, но не опасные для жизни.


Измерительный мост и цифровой омметр

При измерении сопротивления обмоток используются измерительный мост или цифровой омметр. Измеряемые величины составляют несколько Ом, поэтому важно обеспечить надёжный контакт прибора и клемм электромашины.


Мультиметр

Для приблизительной оценки состояния электродвигателя можно использовать мультиметр. Он не обладает необходимой точностью измерений, но позволяет проверить целостность обмоток и отсутствие короткого замыкания.

Тщательная проверка сопротивлений обмоток и изоляции электродвигателей необходима после ремонта, длительного периода хранения и оценки возможности дальнейшей эксплуатации при перегреве.

www.ttaars.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *