История развития ЭВМ кратко
4.5
Средняя оценка: 4.5
Всего получено оценок: 466.
4.5
Средняя оценка: 4.5
Всего получено оценок: 466.
Развитие электронной вычислительной техники тесно связано с совершенствованием элементной базы. Кратко об истории создания ЭВМ и этапах ее развития написано в данной статье.
Когда началась история развития ЭВМ
История развития ЭВМ берет свое начало в тридцатых годах 20 века. Эволюция электронно-вычислительных машин тесно связана с модернизацией элементной базы: от электромеханических реле и электронных ламп до современных высокоскоростных микропроцессоров.
Машины на электронных реле
В середине 30-х годов прошлого века была разработана модель первого вычислителя, построенного на электромеханических реле. Разработка вычислительной машины, работающей на двоичном принципе и умеющей обрабатывать числа с плавающей запятой немецкого инженера Конрада Цузе, получила признание и поддержку со стороны Исследовательского института аэродинамики и с успехом применялась при выполнении расчетов для управляемых ракет.
Параллельно германским разработкам в США также проводились работы по созданию релейных вычислительных машин. Так американский математик Джордж Штибитц предложил идею создания вычислительной модели на телефонных реле для выполнения операций с комплексными числами. Другой американец Говард Айкен совместно с группой инженеров фирмы IBM разработал рабочий вариант компьютера «Марк – 1».
Рис. 1. Конрад Цузе, Джордж Штибиц, Говард Айкен.Вычислительные машины на электронных лампах
В 40-х годах прошлого столетия был разработан и внедрен к использованию первый компьютер, построенный на электронных лампах с программным управлением ENIAC.
Рис. 2. Электронно-вычислительная машина ENIAC.Проект вычислительного устройства был разработан американским физиком Джоном Моучли, и при поддержке Баллистической исследовательской лаборатории армии США были начаты работы по созданию вычислительного комплекса ENIAC. Данные в такое устройство вводились с помощью перфокарт, а команды программы набирались на специальных панелях ввода через штекерное соединение.
ENIAC занимал целое помещение площадью свыше 130 квадратных метров и в своем составе насчитывал более 18 тысяч электронных ламп.
ЭВМ на полупроводниковых устройствах
Первым полупроводниковым компьютером считается машина TX-0 (tixo) с 16-битной адресацией, созданная в 1955 году. Tixo была полностью выполнена на транзисторной базе с памятью на магнитных сердечниках.
Наиболее производительными компьютерами на транзисторной логике считались британский «Atlas» американские «Stretch» и CDC-6600 и наш советский БЭСМ-6.
Компьютеры на микросхемах и микропроцессорах
Самыми лучшими характеристиками вычислительной мощности и эффективности обработки больших массивов информации обладают компьютеры, выполненные на интегральных микросхемах.
Микропроцессоры – основа современных компьютеров. Первые микропроцессорные компьютеры базировались на 8-разрядных процессорах — Intel-8080.
Создание персонального компьютера в привычном для нас виде связано с именем предпринимателя Стивена Джобса. При его участии было налажено массовое производство персонального компьютера Apple II.
Компьютер Apple II пользовался огромным успехом у покупателей и приносил колоссальный доход производителям в течение 15 лет.
Рис. 3. Компьютер Apple II.Компьютеры в современном виде далеко ушли от своих прародителей. Современные технологии позволяют предъявлять высокие требования как к производительности, так и дизайну компьютерных вычислительных устройств.
Что мы узнали?
История развития ЭВМ берет свое начало с 30 годов прошлого столетия с создания вычислительных устройств, собранных на электромагнитных реле. Первые компьютеры имели низкую производительность и имели огромные размеры. С совершенствованием элементной базы улучшались характеристики компьютеров. Самыми высокопроизводительными компьютерами являются ЭВМ на микропроцессорах.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
Ирина Смирнова
5/5
Любочка Маричева
5/5
Nikita Repey
5/5
Анна Чернышова
5/5
Оценка статьи
4. 5
Средняя оценка: 4.5
Всего получено оценок: 466.
А какая ваша оценка?
История развития вычислительной техники : поколения ЭВМ
Историю развития вычислительной техники условно делят на 5 поколений.
1-е поколение (1945-1954 гг.) — время становления машин с фон-неймановской архитектурой (Джон фон Нейман), основанной на записывании программы и ее данных в память вычислительной машины. В этот период формируется типовой набор структурных элементов, входящих в состав ЭВМ. Типичная ЭВМ должна состоять из следующих узлов: центральный процессор (ЦП), оперативная память (или оперативное запоминающее устройство — ОЗУ) и устройства ввода-вывода (УВВ). ЦП, в свою очередь, должен состоять из арифметико-логического устройства (АЛУ) и управляющего устройства (УУ). Машины этого поколения работали на ламповой элементной базе, из-за чего поглощали огромное количество энергии и были очень ненадежны. С их помощью, в основном, решались научные задачи. Программы для этих машин уже можно было составлять не на машинном языке, а на языке ассемблера.
2-е поколение (1955-1964 гг.). Смену поколений определило появление новой элементной базы: вместо громоздкой лампы в ЭВМ стали применяться миниатюрные транзисторы, линии задержки как элементы оперативной памяти сменила память на магнитных сердечниках. Это в конечном итоге привело к уменьшению габаритов, повышению надежности и производительности ЭВМ. В архитектуре ЭВМ появились индексные регистры и аппаратные средства для выполнения операций с плавающей точкой. Были разработаны команды для вызова подпрограмм. Появились языки высокого уровня — Algol, FORTRAN, COBOL, — создавшие предпосылки для появления переносимого программного обеспечения, не зависящего от типа ЭВМ. С появлением языков высокого уровня возникли компиляторы для них; библиотеки стандартных подпрограмм и другие хорошо знакомые нам сейчас вещи: Важное новшество — это появление процессоров ввода-вывода. Эти специализированные процессоры позволили освободить ЦП от управления вводом-выводом и осуществлять ввод-вывод с помощью специализированного устройства одновременно с процессом вычислений. Для эффективного управления ресурсами машины стали использоваться операционные системы (ОС).
3-е поколение (1965-1970 гг.). Смена поколений вновь была обусловлена обновлением элементной базы: вместо транзисторов в различных узлах ЭВМ стали использоваться интегральные микросхемы различной степени интеграции. Микросхемы позволили разместить десятки элементов на пластине размером в несколько сантимметров. Это, в свою очередь, не только повысило производительность ЭВМ, но и снизило их габариты и стоимость. Увеличение мощности ЭВМ сделало возможным одновременное выполнение нескольких программ на одной ЭВМ. Для этого нужно было научиться координировать между собой одновременно выполняемые действия, для чего были расширены функции операционной системы. Одновременно с активными разработками в области аппаратных и архитектурных решений растет удельный вес разработок в области технологий программирования. В это время активно разрабатываются теоретические основы методов программирования, компиляции, баз данных, операционных систем и т. д. Создаются пакеты прикладных программ для самых различных областей жизнедеятельности человека. Наблюдается тенденция к созданию семейств ЭВМ, то есть машины становятся совместимы снизу вверх на программно-аппаратном уровне. Примерами таких семейств была серия IBM System 360 и наш отечественный аналог — ЕС ЭВМ.
4-е поколение (1970-1984 гг.). Очередная смена элементной базы привела к смене поколений. В 70-е годы активно ведутся работы по созданию больших и сверхбольших интегральных схем (БИС и СБИС), которые позволили разместить на одном кристалле десятки тысяч элементов. Это повлекло дальнейшее существенное снижение размеров и стоимости ЭВМ. В начале 70-х годов фирмой Intel был выпущен микропроцессор (МП) i4004. И если до этого в мире вычислительной техники были только три направления (суперЭВМ, большие Э.ВМ (мэйнфреймы) и мини-ЭВМ), то теперь к ним прибавилось еще одно — микропроцессорное.
Процессором называется функциональный блок ЭВМ, предназначенный для логической и арифметической обработки информации на основе принципа микропрограммного управления. По аппаратной реализации процессоры можно разделить на микропроцессоры (полностью интегрирующие все функции процессора) и процессоры с малой и средней интеграцией. Конструктивно это выражается в том, что микропроцессоры реализуют все функции процессора на одном кристалле, а процессоры других типов реализуют их путем соединения большого количества микросхем.
5-е поколение можно назвать микропроцессорным. В 1976 году фирма Intel закончила разработку 16-разрядного микропроцессора i8086. Он имел достаточно большую разрядность регистров (16 бит) и системной шины адреса (20 бит), за счет чего мог адресовать до 1 Мбайт оперативной памяти. В 1982 году был создан i80286. Этот микропроцессор представлял собой улучшенный вариант i8086. Он поддерживал уже несколько режимов работы: реальный, когда формирование адреса производилось по правилам i8086, и защищенный, который аппаратно реализовывал многозадачность и управление виртуальной памятью, i80286 имел также большую разрядность шины адреса — 24 разряда против, 20 у i8086, и поэтому он мог адресовать до 16 Мбайт оперативной памяти. Первые компьютеры на базе этого микропроцессора появились в 1984 году. В 1985 году фирма Intel представила первый 32-разрядный микропроцессор i80386, аппаратно совместимый снизу вверх со всеми предыдущими микропроцессорами этой фирмы. Он был гораздо мощнее своих предшественников, имел 32-разрядную архитектуру и мог прямо адресовать до 4 Гбайт оперативной памяти. Микропроцессор i386 стал поддерживать новый режим работы — режим виртуального i8086, который обеспечил не только большую эффективность работу программ, разработанных для i8086, но и позволил осуществлять параллельную работу нескольких таких программ.
Назад: Представление данных и архитектура ЭВМ
Поколения компьютеров – Основы компьютеров
Современный компьютер приобрел свою форму с приходом вашего времени. Эволюция компьютеров началась примерно в 16 веке. Первоначальный компьютер претерпел множество изменений, очевидно, в лучшую сторону. Он постоянно совершенствовался с точки зрения скорости, точности, размера и цены, чтобы стать модным повседневным компьютером. Этот длительный период часто удобно делить на последующие фазы, называемые компьютерными поколениями:
- Компьютеры первого поколения (1940-1956)
- Компьютеры второго поколения (1956-1963)
- Компьютеры третьего поколения (1964-1971 гг.)
- Компьютеры пятого поколения (современные и будущие)
Прежде чем появились графические калькуляторы, электронные таблицы и системы компьютерной алгебры, математики и изобретатели искали решения, облегчающие бремя вычислений.
Ниже представлены 8 механических калькуляторов до изобретения современных компьютеров.
1. Счеты (ок. 2700 г. до н.э.)
2. Калькулятор Паскаля (1652)
3. Ступенчатый счетчик (1694)
4. Арифмометр (1820)
6. Разностная машина (1822)
7. Аналитическая машина (1834)
8. Миллионер (1893)
Компьютеры первого поколения: электронные лампы (1940-1956)
В основе компьютеров первого поколения лежало хрупкое стеклянное устройство, которое называлось вакуумными трубками. Эти компьютеры были очень тяжелыми и очень большими по размеру. Они были не очень надежными, и программирование на них было очень утомительной задачей, поскольку они использовали язык программирования низкого уровня и не использовали ОС. Компьютеры первого поколения использовались для вычислений, хранения и управления. Они были слишком громоздкими и большими, чтобы нуждаться в полной комнате и потреблять гниль электричества.
Основные компьютеры первого поколения:
- ENIAC: Электронный числовой интегратор и компьютер, созданный Дж. Преспером Эккертом и Джоном В. Мочли, был компьютером общего назначения. Он был очень тяжелым, большим и содержал 18 000 электронных ламп.
- EDVAC: Электронный автоматический компьютер с дискретными переменными был разработан фон Нейманом. Он мог хранить данные также как инструкции, и, таким образом, скорость была увеличена.
- UNIVAC: Универсальный автоматический компьютер был разработан в 1952 Эккерта и Мочли.
Основные характеристики компьютеров первого поколения:
Основной электронный компонент | Вакуумная лампа. | |||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Язык программирования | Машинный язык. | |||||||||||||||||||||||||||||||||||||||||||||
Основная память | Магнитные ленты и магнитные барабаны. | |||||||||||||||||||||||||||||||||||||||||||||
Устройства ввода/вывода | Бумажная лента и перфокарты. | |||||||||||||||||||||||||||||||||||||||||||||
Скорость и размер | Очень медленный и очень большой по размеру (часто занимает всю комнату). | |||||||||||||||||||||||||||||||||||||||||||||
Примеры первого поколения | IBM 650, IBM 701, ENIAC, UNIVAC1 и т.д. чем громоздкие вакуумные лампы. Еще одной особенностью было основное хранилище. Транзистор может быть устройством, состоящим из полупроводникового материала, которое усиливает знак или открывает или закрывает цепь. В Bell Labs были изобретены транзисторы. Применение транзисторов позволяло работать мощно и с должным быстродействием. Это уменьшило размеры и цену, а также, к счастью, теплоту, которую генерировали вакуумные лампы. Центральный процессор (ЦП), память, язык программирования и устройства ввода и вывода также вошли в силу во втором поколении. Язык программирования был переведен с высокого уровня на язык программирования, что сделало программирование сравнительно простой задачей для программистов. Языками, использовавшимися для программирования в то время, были FORTRAN (1956), АЛГОЛ (1958) и КОБОЛ (1959). Основные характеристики компьютеров второго поколения:
|