Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments
проверка и измерение тока клещами в электрических цепях

Клещи для токоизмерения – это такие специальные устройства, которые повсеместно используются для замеров без потребности цепного разрыва, или же какого-либо дополнительного электрического контакта с ней. Вместо этого данное приспособление измеряет силу образовавшегося магнитного поля, которое и порождает ток.

Для корректной работы рекомендуется подбирать подходящий тип устройства, проверять их должным способом (о вариантах мы поговорим далее), а также примерно понимать принцип их устройства и работы. Рассмотрим основные нюансы.

Токоизмерительные клещи

Содержание статьи

Содержание

Проверка токоизмерительных клещей

Дабы рассматриваемые нами клещи позволяли получать максимально корректный результат, очень важно проводить их соответствующие поверки. Они представляют собой перечни операций, осуществляемых для подтверждения соответствия прибора установленным нормам.

При проведении проверки осуществления определение погрешности, которая в итоге должна быть сравнена с допустимой. Последняя указывается в документации устройства.

Проверка токоизмерительных клещей

Существует несколько типов поверкой токоизмерительный клещей, таких как:

  1. Первичные поверки. Они осуществляются несколько раз – в процессе выпуска устройства, при его ввозе в другую страну или же после проведенных ремонтов.
  2. Периодические поверки. Они являются плановыми. Проводятся такие исследования после истечения межповерочного интервала времени.
  3. Внеочередные поверки. Их следует проводить либо же в случае потери документов на устройство, либо же после нарушения целостности прибора вследствие того или иного механического воздействия на него.
  4. Инспекционные поверки. Они осуществляются непосредственно под метрологическим контролем. Для этого должно быть соответствующее решение государственного органа.
  5. Экспертные поверки. Они проводятся только в том случае, если существуют определенные разногласия по поводу получаемых результатов прибора.

Нормы и периодичность испытания токоизмерительных клещей:

Напряжение электроустановок, кВИспытательное напряжение, кВПродолжительность испытания, минПереодичность испытания
До 125Раз в 24 мес.
От 1 до 10405

Результаты поверки обязательно вносятся в паспорт токоизмерительных приборов. Если устройство было признано таким, что непригодно к использованию, должно быть соответствующее извещение об этом.

Типы клещей

Существует несколько типов токоизмерительных клещей. Прежде всего их делят по конструкции и напряжению эксплуатации. В этом плане приборы встречаются таких видов:

  • Одноручные токоизмерительные клещи. Они применяются по отношению к цепям, напряжение в которых явно не более чем 1 кВ. Такие приборы имеют вид небольшой по своим габаритам изолированной рукоятки. Для того чтобы осуществить раскрытие магнитопровода, достаточно использовать всего лишь одну руку. С ее помощью нужно выполнить нажатие на соответствующий рычаг.

Одноручные токоизмерительные клещи

  • Двуручные клещи для токоизмерения. Их используют в сетях с напряжением от 2 до 10 кВ. Для того чтобы эксплуатировать такой прибор, понадобится сразу две руки, так как у него производитель предусмотрел две рабочие рукоятки. Длина их изолированных частей при этом весьма значительная – свыше 38 сантиметров.

Двуручные клещи для токоизмерения

По своему внешнему виду приборы тоже могут быть разными. На рынке присутствуют такие их модели, как:

  1. Аналоговые токоизмерительные клещи. Они оснащены дисплеем со стрелкой, а также соответствующей ему измерительной шкалой. Для того чтобы подобные устройства работали, требуется соответствующий источник питания. Вследствие всех этих особенностей аналоговые приборы до сих пор пользуются спросом. Они быстро способны реагировать на изменения тока, предоставляя данные об этом весьма удобным способом.

Аналоговые токоизмерительные клещи

  1. Цифровые токоизмерительные клещи. Они оборудованы жидкокристаллическим экраном где и отражается определенное значение измеряемого тока. Для работы данного устройства обязательно необходимо использовать дополнительный источник питания.
  2. Клещи высоковольтного типа. Данные приборы отличаются прежде всего своей улучшенной изоляцией. Она позволяет предотвратить воздействие напряжения электроцепи на человека, измеряющего ток.

Дополнительно стоит отметить, что на рынке присутствуют токоизмерительные приборы, оборудованные датчиком Холла. Это уже более усовершенствованный механизм, который дает возможность с высокой точностью проводить замеры постоянной компоненты.

Принцип работы токоизмерительных клещей в электрических цепях

Отличительной особенностью клещей считается то, что в цепях они функционируют таким же образом, как и одновитковые трансформаторы. Первая их обмотка – провод, который потребовалось проанализировать, а вот вторичная обмотка находится на приборе. Именно к ней подключается амперметр, предоставляющий пользователю возможность получения того или иного значения.

Принцип работы токоизмерительных клещей

Для определения величины тока в начальной цепочке следует сразу узнать его максимальный уровень во вторичном типе обмотки. При этом принимается во внимание коэффициент трансформирования.

После того, как магнитопровод будет подключен к измеряемой сети, в нем возникает магнитное поле с переменным током. Именно он индуцирует ЭДС во вторичной обмотке. Ток, который появляется в этом месте, меряется корпусным амперметром. Его значение выдается после на экран.

Измерение клещами постоянного и переменного тока

Для измерения разных типов тока посредством клещей используется совершенно одинаковая методика. Главное – предварительно выбрать необходимый режим работы.

Перед тем, как пользоваться устройством, необходимо убедиться в том, что на прибор не влияют никакие посторонние источники напряжения.

К примеру, результаты устройства могут исказить некоторые асинхронные электрические двигатели, определенные виды трансформатора, аппараты для сварки, а также блоки питания (импульсные). Все они могут реализовать большие поля с электромагнитными волнами, что могут индуцировать наведенную ЭДС в магнитопроводе.

Для измерения тока при помощи клещей нужно:

  1. Постановка ручки переключателя в необходимое положение.
  2. Ввод проводника в пространство магнитопровода.
  3. Считывание результатов из дисплея прибора.

Измерение клещами тока

Таким образом, никаких особых навыков или же знаний для работы с клещами не нужно. На более новых моделях есть особый датчик IFLex, что применяется для замеров в весьма стесненных условиях.

Если начать анализировать два проводника вместе, их магнитные потоки должны сложиться вместе. На дисплее будет отображен общий результат. К примеру, токи в фазе и нуле без наличия утечек являются равными по величине и противоположными по значению.

В таких ситуациях прибор должен показать нулевой результат. Если он имеет какое-то значение, можно говорить о серьезных проблемах в сети электричества.

Как пользоваться токоизмерительными клещами

Если вы хотите измерить и узнать значение потребляемой электроэнергии в сетях 220 В (в квартире, доме), то можно расчитать по формуле:

P = A ⋅ V ⋅ cosφ

где, cosφ = 1

Пример:

Вам нужно измерить нагрузку потребляемой электроэнергии вашей квартиры, дома или какого-нибудь электроприбора. Переключатель диапазонов ставим в положение АСА 200. Раскройте клещи и охватите один провод из дух (желательно фазу). Через мгновение прибор покажет какое то значение, например, 8 А.

По формуле вычисляем потребляемую мощность:

P = 8 ⋅ 220 ⋅ 1 = 1760 Вт = 1,76 кВт

Видео о том, как пользаваться токовыми клещами:

Токоизмерительные клещи – это удобный специализированные устройства, которые позволяют быстро и легко осуществить замеры тока. На большинстве устройств имеется кнопка, которая отвечает за фиксацию полученного результата. Это упрощает работу в стесненных местах, где невозможно постоянно следить за дисплеем прибора.

принцип работы и инструкция по использованию

При работе с электрическими устройствами иногда возникает необходимость провести измерение силы тока. Известно правило о том, что для этого амперметр необходимо соединить последовательно.

токоизмерительные клещи

Определение

Токоизмерительные клещи – позволяют узнать силу тока или другие характеристики без разрыва в электрической цепи. Этот инструмент работает по другому принципу – он определяет характеристики электрического тока на основании параметров магнитного поля.

Конструкция

В токоизмерительных клещах можно указать два основных рабочих узла:

конструкцияКонструкция клещей
  1. В захватах находятся обмотки трансформатора.
  2. В ручке имеется амперметр или другой измерительный прибор.

В обмотках трансформатора наводится электрический ток, характеристики которого определяет встроенный измерительный прибор. Нужно учитывать, что наведённый ток имеет другую величину по сравнению с первоначальным. Для получения точной величины требуется выполнить пересчёт.

Принцип работы

Если между захватами клещей расположить проводник, то изменение тока, проходящего по нему окажет влияние на окружающее электромагнитное поле. Оно индуцирует в обмотках трансформатора ток. Затем он со вторичной обмотки будет измерен встроенным амперметром.

принцип работы

Важно отметить, что получаемое значение силы тока, хотя и соответствует проходящему по цепи, но не равно ему. Корректировка показаний амперметра происходит с учётом коэффициента измерения прибора.

В работе токоизмерительных клещей долгое время существовало важное ограничение — они были способны работать только с переменным током, ведь магнитное поле создаётся только в этом случае.

Были созданы более совершенные модели. Теперь с помощью токоизмерительных клещей имеется возможность работать не только с переменным, но и постоянным током. В настоящее время существуют модели, в которых присутствует мультиметр, который на основе полученных данных определяет нужные характеристики, не требуя пересчёта.

Современные модели токоизмерительных клещей способны решать следующие задачи:

  1. С их помощью возможно определить суммарную нагрузку электросети в квартире.
  2. Можно определить силу тока в конкретном проводнике, являющемся частью электрической цепи. Измерение можно проводить, не вмешиваясь в работу схемы.
  3. Можно определять мощность любого электроприбора в текущий момент времени. При необходимости возможно контролировать измерение этого параметра на протяжении нужного периода времени.
  4. Можно проконтролировать домашнюю электросеть на предмет подключения со стороны посторонних людей.
  5. Если имеется утечка тока на корпус прибора, то её можно определить с помощью этого инструмента.

Инструкция по использованию

Использование клещей для работы в ситуации, когда используется напряжение до 1000 Вольт ничем не отличается от тех, которые применяются в высоковольтных цепях. Далее будет рассмотрен порядок использования бытовых токоизмерительных клещей.

Использование рассматриваемого инструмента зависит от вида проводимых измерений. Обычно процедура выполняется следующим образом:

  1. Нужно в электрической схеме определить, с какого провода будут сниматься показания. Нужно помнить. Что если клещами обхватить не один, а большее количество проводов, то в результате будет получен неправильный результат.
  2. На тестирующем приборе требуется выставить нужный режим измерения. Его выбор зависит от поставленной задачи. При этом нужно будет определить не только вид измерения, но и необходимую шкалу. Если о ней не имеется информации, то выбирают самую большую.
  3. Клещи сначала нужно раскрыть, а затем обхватить проводник. Важно обеспечить перпендикулярность его расположения плоскости, в которой расположены клещи. Желательно, чтобы при этом проводник располагался в центре контура.
  4. Измерение произойдёт в автоматическом режиме. Результат можно будет увидеть на дисплее прибора.

Если ток имеет слишком маленькую величину и не получается его определить, то рекомендуется несколько раз его намотать на половинку клещей. В этом случае прибор измерит суммарный ток. Для получения нужной величины надо разделить это значение на количество сделанных витков.

Если на дисплее показана единица, значит ток превышает предельное значение этой величины. Чтобы точно определить искомую величину, нужно переключиться на больший диапазон.

Документ(откроется в новой вкладке): Руководство по эксплуатации токоизмерительных клещей

Классификация

Такие клещи можно классифицировать по используемому в них электроизмерительному прибору. В этом качестве может применяться:

  • мегаомметры;
  • амперметры;
  • ваттметры;
  • фазометры;
  • ампервольтметры;
  • мультиметры.

Популярные виды

Этот прибор выпускается в различных вариантах. Далее рассказано об основных разновидностях токоизмерительных клещей.

Стрелочные приборы

Этот вариант исполнения токоизмерительных клещей представляет собой аналоговый прибор. В нём применяется одновитковая разновидность трансформатора. Такого рода модели были одними из первых вариантов этого измерительного прибора. Амперметр подключён к вторичной обмотке.

стрелочныеСтрелочные

Такие модели обеспечивают наглядность процесса измерения. Однако аналоговые модели излишне чувствительны к механическим колебаниям. В такой ситуации показания могут быть искажены. Чтобы этого избежать, токоизмерительные клещи необходимо во время измерения тока зафиксировать на жёсткой поверхности.

Нужно учитывать, что для получения нужных данных необходимо пересчитывать полученные данные с учётом коэффициента преобразования прибора. Токоизмерительные клещи такого типа выпускается с расчётом использования определённой частоты электрического тока.

Цифровые клещи

У этой разновидности результат измерений будет выведен на дисплей. Важным достоинством этого способа является то, что перед выводом цифры уже будут пересчитаны. Этот прибор можно настроить таким образом, чтобы отображать мощность или силу тока.

цифровыеЦифровые

Совмещённые с мультиметром

Этот тип приборов удобен тем, что в него встроен мультиметр. Функциональность прибора определяется типом встроенного прибора. В таких моделях применяется датчик Холла, позволяющий проводить измерение параметров постоянного тока.

токоизмерительных клещей на основе датчика ХоллаТокоизмерительных клещей на основе датчика Холла

Высоковольтные токоизмерительные клещи

Их определяющей особенностью является выполнение измерений в сетях с напряжением более 1000 Вольт. В этих устройствах применяется более сильная изоляция. Иногда при их использовании токовые клещи устанавливают на диэлектрической штанге. Это позволяет оператору избежать слишком близкого приближения к высоковольтным проводам. Такие клещи являются специализированными и используются только для работы с переменным током.

Высоковольтные токоизмерительные клещиВысоковольтные токоизмерительные клещи

Преимущества и недостатки

При использовании токоизмерительных клещей можно отметить следующие достоинства:

  1. Компактность используемого инструмента и простота его использования.
  2. Имеется возможность использовать этот инструмент для проведения замеров в высоковольтных цепях. Для этой цели используются специализированные модели.
  3. Существуют различные разновидности таких устройств.

Такие клещи несложно интегрировать с радиоизмерительной аппаратурой.

При использовании можно столкнуться с такими недостатками:

  1. Поскольку при измерении используются характеристики создаваемого проводом магнитного поля, то при различном положении проводника результаты измерений могут отличаться. Чтобы избегнуть такой неоднозначности рекомендуется располагать провод перпендикулярно плоскости расположения клещей.
  2. Класс точности производимых измерений недостаточно высокий — второй или третий, в зависимости от конкретной модели.
  3. Иногда речь может идти о дополнительной наводке магнитного поля, создаваемой другими электроприборами. Чтобы этого избегнуть, необходимо контролировать их возможное наличие.
  4. Относительно простой принцип работы служит причиной изготовление некачественных вариантов таких инструментов.

Достоинства токоизмерительных клещей в значительной степени перевешивают их недостатки.

Требования к клещам

Необходимо использовать такой инструмент, который обеспечит нужный вид измерений и класс точности. Если есть необходимость в дополнительных опциях, то надо убедиться в их присутствии (например, будет лучше использовать дисплей большего размера). Важно убедиться, что приобретаемый экземпляр произведён известной фирмой, гарантирующей качество.

Проверка перед эксплуатацией

Для проверки достаточно произвести пробное измерение в соответствии с тем измерительным прибором, который встроен в клещи. Если результат соответствует предварительным данным — значит прибор исправен.

Как выбрать клещи

На рынке имеется много разновидностей токоизмерительных клещей, чтобы выбрать наиболее подходящий вариант. Необходимо обратить внимание на следующее:

  1. Исходить из своих потребностей. Нет смысла приобретать дорогой прибор с разнообразными возможностями, если в них нет необходимости.
  2. Учитывать, что обычно такие клещи приобретают для того, чтобы определять силу тока, его частоту или прозванивать провода.
  3. Убедиться в наличии полезных опций (возможность фиксировать результаты измерения нажатием кнопки, опция выставления ноля, автоматический выбор наиболее подходящего диапазона и другие).
  4. Важно учитывать качество материала, из которого сделан прибор.

Нужно, чтобы использовались элементы питания, которые несложно приобрести.

Как правильно работать токовыми клещами?

Как правильно работать токовыми клещами?

Узнайте, как правильно пользоваться токоизмерительными клещами. Порядок измерений и техника безопасности при работе инструментом.

Назначение большинства электроприборов известно многим людям: практически все знают, что измеряют вольтметром, а что амперметром. Мало у кого возникнет вопрос: «Для чего нужен паяльник?» Однако, даже не у каждого электрика в инструментарии есть токовые клещи. Этот инструмент является очень полезным и способен сильно сократить время электротехнических работ. Дополнительно этот прибор можно использовать для измерения напряжения и частоты тока в цепи. С его помощью также можно измерить мощность в цепи, фактическую нагрузку в сети и даже осуществить проверку электросчетчиков, например, сверку показаний с фактическим потреблением. В этой статье описывается принцип работы инструмента и рассказывается как пользоваться токоизмерительными клещами (ТК) на примере моделей DT 266 FT и Fluke. Эта инструкция будет применима практически ко всем подобным устройствам. Содержание:

Принцип работы

Как следует из названия ТК или клещи Дитце предназначены для измерения силы переменного тока в цепи без ее разрыва. В основе работы токоизмерительного инструмента лежит принцип простейшего трансформатора тока. В этом случае первичной обмоткой является шина или кабель с измеряемым током, а роль вторичной играет захват клещей, внутри которого расположена вторая многовитковая обмотка, намотанная на магнитопровод из ферромагнитного материала. Переменный ток в проводе (первичной катушке) создает переменное магнитное моле, силовые линии которого проходят через вторичную обмотку, возбуждая в ней ЭДС, пропорционально величине тока в первой катушке. Таким образом, измеряя возникающую ЭДС, можно найти силу тока в первой катушке (проводе).

Конструкция

Современные токоизмерительные клещи вне зависимости от производителя и модификации содержат следующие элементы: магнитопроводы с подвижной скобой-рычагом, переключатель диапазонов измерений, экран, выходные разъемы для щупов (в этом случае клещи могут быть использованы как обычный мультиметр) и кнопку фиксации токовых измерений (фото ниже).

Как правильно работать токовыми клещами?

Рисунок 1 – ТК S-line DT 266 FT

Большинство современных токовых измерителей также включают в себя внутренний трансформатор с диодным мостом. В этом случае выводы вторичной обмотки подключаются через шунт. В зависимости от диапазона измеряемых сил токов, токовые клещи могут быть одноручными (для напряжений до 1000 В) и двуручными с дополнительными изолированными ручками (для напряжений от 2 до 10 кВ включительно). Токоизмерительные устройства, предназначенные для измерений более 1 кВ, имеют длину изолятора на менее 38 см, а рукояток – не менее 13 см.

Как правило, на корпусе прибора указывается категория безопасности и максимальный измеряемый ток. Например:

  • CAT III 600 V – это означает, что прибор защищен от кратковременных бросков напряжения внутри оборудования при эксплуатации в стационарных сетях с напряжением до 600 В.
  • CATIV 300 V – это означает, что прибор защищен от бросков напряжения внутри оборудования первичного уровня электроснабжения напряжением до 300 В. Примером такого оборудования может служить обычный электрический счетчик.

Правила безопасности при работе

Токоизмерительные клещи разрешается использовать только в закрытых помещениях или на открытых пространствах в сухую погоду. Измерять силу тока можно как на кабелях, покрытых изоляцией, так и на оголенных. Перед использованием человеку необходимо надеть защитные перчатки, а под ноги подложить диэлектрическое основание и надеть специальные ботинки.

Порядок измерений

Как правило, использование токоизмерительных клещей не вызывает особых трудностей. Перед тем, как пользоваться инструментом, стоит уделить большое внимание технике безопасности, о чем было сказано ранее.

Как правильно работать токовыми клещами?

Как правильно пользоваться токоизмерительными клещами:

  1. Установить требуемый диапазон на переключателе.
  2. Нажать на кнопку раскрытия магнитопровода.
  3. Обхватить одиночный проводник в сети переменного или постоянного тока (если такая возможность поддерживается прибором).
  4. Расположить токовые клещи перпендикулярно направлению провода.
  5. Снять показания с дисплея.

Часто трудность использования токоизмерительных клещей заключается в выделении одиночного проводника: при попытке снять показания с обычного кабеля, идущего из розетки, на экране должен высветиться ноль. Это происходит потому, что токи фазного провода и нулевого проводника равны по величине и противоположны по направлению. Следовательно, магнитные потоки, создаваемые ими взаимно компенсируются. Если же токовые показания отличны от нуля, то это свидетельствует о наличии утечки тока в цепи, величина которой равна полученному значению. Поэтому для измерений нужно найти место, где провода разделяются и выделить одиночную жилу. В качестве такого места можно использовать распределительный щит или место подключения фазового провода к автоматическому выключателю. Тем не менее это не всегда можно сделать, что ограничивает область применения токоизмерительных клещей.

Если в процессе измерений на экране высвечивается единица, то это говорит о том, что значение силы тока в проводе находится за пределами диапазона измерений. В этом случае необходимо увеличить диапазон токовых измерений с помощью переключателя. При проведении измерений в труднодоступных местах можно использовать кнопку Hold. С ее помощью можно зафиксировать результат последнего измерения и посмотреть его, убрав клещи. Нажав на Hold второй раз, можно сбросить значение.

Наглядно увидеть, как работать токоизмерительными клещами, Вы можете на видео инструкции ниже:

Правильное использование инструмента

Полезная «хитрость»

Если требуется измерить малое значение силы тока, то необходимо сделать несколько витков провода на разомкнутом магнитопроводе, а переключатель диапазонов установить на минимум. После этого необходимо снять показания, а для определения фактического значения разделить полученное число на количество намотанных витков.

Пример использования

Приведем пример того, как пользоваться токоизмерительными клещами при измерении нагрузки в сети 220 В, например в квартире. В этом случае переключатель необходимо установить в положение AC 200. Далее необходимо токовыми клещами обхватить изолированный проводник и снять показания. После этого полученную величину силы тока нужно умножить на напряжение в сети 220 В. Например, если прибор показывает 5 А, то потребляемая мощность в сети составит P = U * I = 5 * 220 = 1100 Вт или 1.1 кВт. Полученное значение можно использовать для проверки работы приборов учета электроэнергии.

Напоследок предлагаем просмотреть видео, на котором наглядно показывается, как пользоваться токовыми клещами DT-266 и Fluke 302+, достаточно популярными на сегодняшний день:

DT-266

Fluke 302+

Вот и вся инструкция о том, как самому пользоваться токоизмерительными клещами. Как Вы видите, ничего сложного нет. Главное — соблюдать меры безопасности и внимательно подходить к измерениям. Надеемся, что наши советы и наглядная видео инструкция доступно объяснили Вам порядок действий!

Будет интересно прочитать:

  • Как использовать мультиметр – инструкция для чайников
  • Как проверить правильность работы счетчика электроэнергии
  • Список инструментов электрика

Правильное использование инструмента

DT-266

Fluke 302+


НравитсяКак правильно работать токовыми клещами?0)Не нравитсяКак правильно работать токовыми клещами?0)
Электроизмерительные клещи – принцип работы. Как пользоваться токовыми клещами

Клещи токоизмерительные представляют собой прибор, основным назначением которого является измерение электрического ток без разрыва электрической цепи и нарушения ее функционирования.

Дополнительно этот прибор способен измерять также напряжение, частоту, температуру (в некоторых моделях).

электроизмерительные клещи

В соответствии с измеряемыми величинами электроизмерительные клещи делятся на амперметры, вольтметры, ваттметры, фазометры, ампервольтметры.

К самым распространенным относятся клещевые амперметры для измерения переменного тока, получившие название токоизмерительных клещей. С их помощью можно быстро измерить ток в проводнике, не разрывая и не отключая электрическую цепь. Электроизмерительные клещи могут применяться в электроустановках до 10000В.

О назначении многих электрических приборов и инструментов известно любому обывателю – все знают, зачем нужен паяльник или электрическая дрель. Но далеко не у каждого, даже не на каждом предприятии найдутся токоизмерительные клещи.

Несмотря на это, токовые клещи предназначены для широкого использования, просто очень многие не знают о существовании такого прибора и не умеют ним пользоваться.

Где применяются электроизмерительные клещи?

Клещи токоизмерительные могут стать незаменимым помощником как для бытовых потребителей, так и на предприятиях различных масштабов. С их помощью возможно:

  • – определять фактическую нагрузку в сети. Чтобы определить нагрузку однофазной сети, осуществляется замер на вводном кабеле, полученное значение тока в амперах умножается на напряжение в сети и косинус угла между фазами (cos φ). Если отсутствует реактивная нагрузка (мощные индуктивные элементы, дроссели, двигатели), то последнее значение принимается равным единице (cos φ = 1).
  • – для измерения мощности различных приборов. В случае возникновения необходимости измеряется сила тока участка цепи с подключенным потребителем. Мощность определяется по вышеописанной формуле.
  • – для проверки функционирования приборов учета потребления электроэнергии, например, сверки показаний счетчиков с фактическим потреблением.

Конструкция и обозначения

В состав электроизмерительных клещей любой модификации входят следующие основные части: клещи-магнитопровод, переключатель диапазонов и функций, дисплей, выходные разъемы, кнопка фиксации измерений. В данной статье рассматриваются токовые клещи марки mastech M266.

обозначения на токовых клещах

Переключатель может быть установлен в одно из положений режимов измерений:

  1. – DCV – постоянное напряжение;
  2. – ACV – переменное напряжение;
  3. – DCA – постоянный ток;
  4. – ACA – переменный ток;
  5. – Ω – сопротивление;
  6. – значок диода – проверка диодов;
  7. – значок сигнала – прозвонка с зуммером.

измерительные клещи положения переключателя

Три входных разъема прибора имеют защиту от перегрузки. При подключении прибора черный провод щупов подсоединяется к разъему «COM», а красный – к разъему «VΩ». Третий разъем, обозначенный как «EXT», применяется для подключения измерителя изоляции.

Порядок измерения тока

Переключатель пределов устанавливается в положение, соответствующее необходимому диапазону измерения переменного тока. Токовые клещи подключаются к измеряемому проводнику.

Если на дисплее наблюдается только значение «1», то необходимо переключатель пределов установить на более высокое значение, так как возникла перегрузка.

Порядок измерения напряжения

Красный провод щупа подсоединить к разъему «VΩ», черный – к «COM». Переключатель пределов установить в положение, соответствующее измеряемому диапазону.

Щупы подсоединить к измеряемой нагрузке или источнику напряжения. На экране прибора будет наблюдаться измеряемое напряжение, а также его полярность. Если на экране наблюдается только значение «1», то переключатель пределов необходимо переключить на более высокое значение, так как возникла перегрузка.

Порядок измерения сопротивления

Щупы прибора так же, как и при измерении напряжения. Переключатель диапазонов установить на диапазон «Ω». Если прибор используется для прозвонки, то переключатель нужно установить в соответствующее положение. Если сопротивление измеряемого участка схемы меньше 50 Ом, то будет звучать сигнал зуммера.

Электроизмерительные клещи – принципы работы

В работу простейших токоизмерительных клещей переменного тока положен принцип одновиткового трансформатора тока.

Его первичная обмотка представляет не что иное, как провод или шину, в которой измеряется ток. Вторичная обмотка, имеющая больше количество витков, намотана на разъемный магнитопровод и находится в самих клещах. К вторичной обмотке подключен амперметр.

Измерив ток, который протекает во вторичной обмотке с учетом известного коэффициента трансформации измерительного трансформатора, можно получить величину тока, измеряемую в проводнике.

токовые клещи принцип работы

Заметим, что с помощью токоизмерительных клещей измерять ток (а по сути – нагрузку) в цепи совсем не сложно и очень удобно. Сам процесс измерения заключается в следующем.

С помощью рукоятки выставляется измеряемая величина. Клещи размыкаются, в них пропускается проводник, рукоятка отпускается и клещи замыкаются. Дальнейший порядок использования электроизмерительных клещей точно такой же, как и при обращении с обычным тестером.

Подсоединять клещи можно как к изолированному, так и неизолированному проводу. Самое главное – охватываться должна только одна шина. На индикаторе прибора отображается величина тока измеряемой цепи.

Чтобы обеспечить работу в труднодоступных местах, современные токовые клещи обычно оснащаются кнопкой, фиксирующей показания.

Таким образом, если охватить проводник и нажать кнопку, то после размыкания магнитокопровода на экране прибора сохранится зафиксированное измеренное показание прибора.

По токоведущей части, которая охвачена магнитопроводом, проходит переменный ток. В магнитопроводе создается переменный магнитный поток, в результате которого во вторичной обмотке возникает электромагнитная индукция – по ней (вторичной обмотке) начинает протекать ток, который измеряется амперметром.

Современные токоизмерительные клещи выполняются по схеме, в которой сочетается трансформатор тока и выпрямительный прибор. Она позволяет выводы вторичной обмотки присоединять к измерительному прибору через набор шунтов, а не напрямую.

Как пользоваться токоизмерительными клещами

Как измерить нагрузку сети в квартире?

Переключатель диапазонов устанавливается в положение АСА 200. Раскрыв токовые клещи, на вводе в квартиру охватить ними изолированный провод, зафиксировать показания, которые появились на экране прибора.

Полученная величина умножается на напряжение сети 220 В, косинус берется равным единице.

Пример. Допустим, прибор показывает 6А. Это значит, что нагрузка сети квартиры составляет:

Р = 6 · 220= 1320 Вт = 1.32 кВт.

По этим данным можно проверить правильность работы счетчика потребляемой электроэнергии, соответствие фактической нагрузке вводного кабеля и др.

Маленькая хитрость при измерениях

Как можно измерить небольшой ток с помощью электроизмерительных клещей?

Для того, чтобы измерить токоизмерительными клещами небольшую силу тока, необходимо провод, на котором нужно узнать ток, намотать несколько раз на разомкнутый магнитопровод. Предел измерений установить на минимальное значение.

клещи токоизмерительные

Для того, чтобы определить фактическое значение тока, необходимо показания прибора разделить на количество витков провода, намотанного на магнитопровод.

Необходимо понимать, что так можно делать, если провод изолирован. При этом наматывать нужно аккуратно не перегибая сам провод.

Похожие материалы на сайте:

Понравилась статья – поделись с друзьями!

Как пользоваться токоизмерительными клещами: видео с инструкцией

Назначение большинства электроприборов известно многим людям: практически все знают, что измеряют вольтметром, а что амперметром. Мало у кого возникнет вопрос: «Для чего нужен паяльник?» Однако, даже не у каждого электрика в инструментарии есть токовые клещи. Этот инструмент является очень полезным и способен сильно сократить время электротехнических работ. Дополнительно этот прибор можно использовать для измерения напряжения и частоты тока в цепи. С его помощью также можно измерить мощность в цепи, фактическую нагрузку в сети и даже осуществить проверку электросчетчиков, например, сверку показаний с фактическим потреблением. В этой статье описывается принцип работы инструмента и рассказывается как пользоваться токоизмерительными клещами (ТК) на примере моделей DT 266 FT и Fluke. Эта инструкция будет применима практически ко всем подобным устройствам.

Принцип работы

Как следует из названия ТК или клещи Дитце предназначены для измерения силы переменного тока в цепи без ее разрыва. В основе работы токоизмерительного инструмента лежит принцип простейшего трансформатора тока. В этом случае первичной обмоткой является шина или кабель с измеряемым током, а роль вторичной играет захват клещей, внутри которого расположена вторая многовитковая обмотка, намотанная на магнитопровод из ферромагнитного материала. Переменный ток в проводе (первичной катушке) создает переменное магнитное моле, силовые линии которого проходят через вторичную обмотку, возбуждая в ней ЭДС, пропорционально величине тока в первой катушке. Таким образом, измеряя возникающую ЭДС, можно найти силу тока в первой катушке (проводе).

Конструкция

Современные токоизмерительные клещи вне зависимости от производителя и модификации содержат следующие элементы: магнитопроводы с подвижной скобой-рычагом, переключатель диапазонов измерений, экран, выходные разъемы для щупов (в этом случае клещи могут быть использованы как обычный мультиметр) и кнопку фиксации токовых измерений (фото ниже).

ТК S-line DT 266 FT фото

Рисунок 1 – ТК S-line DT 266 FT

Большинство современных токовых измерителей также включают в себя внутренний трансформатор с диодным мостом. В этом случае выводы вторичной обмотки подключаются через шунт. В зависимости от диапазона измеряемых сил токов, токовые клещи могут быть одноручными (для напряжений до 1000 В) и двуручными с дополнительными изолированными ручками (для напряжений от 2 до 10 кВ включительно). Токоизмерительные устройства, предназначенные для измерений более 1 кВ, имеют длину изолятора на менее 38 см, а рукояток – не менее 13 см.

Как правило, на корпусе прибора указывается категория безопасности и максимальный измеряемый ток. Например:

  • CAT III 600 V – это означает, что прибор защищен от кратковременных бросков напряжения внутри оборудования при эксплуатации в стационарных сетях с напряжением до 600 В.
  • CATIV 300 V – это означает, что прибор защищен от бросков напряжения внутри оборудования первичного уровня электроснабжения напряжением до 300 В. Примером такого оборудования может служить обычный электрический счетчик.

Правила безопасности при работе

Токоизмерительные клещи разрешается использовать только в закрытых помещениях или на открытых пространствах в сухую погоду. Измерять силу тока можно как на кабелях, покрытых изоляцией, так и на оголенных. Перед использованием человеку необходимо надеть защитные перчатки, а под ноги подложить диэлектрическое основание и надеть специальные ботинки.

Порядок измерений

Как правило, использование токоизмерительных клещей не вызывает особых трудностей. Перед тем, как пользоваться инструментом, стоит уделить большое внимание технике безопасности, о чем было сказано ранее.Замер тока в распределительном щитке

Как правильно пользоваться токоизмерительными клещами:

  1. Установить требуемый диапазон на переключателе.
  2. Нажать на кнопку раскрытия магнитопровода.
  3. Обхватить одиночный проводник в сети переменного или постоянного тока (если такая возможность поддерживается прибором).
  4. Расположить токовые клещи перпендикулярно направлению провода.
  5. Снять показания с дисплея.

Часто трудность использования токоизмерительных клещей заключается в выделении одиночного проводника: при попытке снять показания с обычного кабеля, идущего из розетки, на экране должен высветиться ноль. Это происходит потому, что токи фазного провода и нулевого проводника равны по величине и противоположны по направлению. Следовательно, магнитные потоки, создаваемые ими взаимно компенсируются. Если же токовые показания отличны от нуля, то это свидетельствует о наличии утечки тока в цепи, величина которой равна полученному значению. Поэтому для измерений нужно найти место, где провода разделяются и выделить одиночную жилу. В качестве такого места можно использовать распределительный щит или место подключения фазового провода к автоматическому выключателю. Тем не менее это не всегда можно сделать, что ограничивает область применения токоизмерительных клещей.

Если в процессе измерений на экране высвечивается единица, то это говорит о том, что значение силы тока в проводе находится за пределами диапазона измерений. В этом случае необходимо увеличить диапазон токовых измерений с помощью переключателя. При проведении измерений в труднодоступных местах можно использовать кнопку Hold. С ее помощью можно зафиксировать результат последнего измерения и посмотреть его, убрав клещи. Нажав на Hold второй раз, можно сбросить значение.

Наглядно увидеть, как работать токоизмерительными клещами, Вы можете на видео инструкции ниже:

Правильное использование инструмента

Полезная «хитрость»

Если требуется измерить малое значение силы тока, то необходимо сделать несколько витков провода на разомкнутом магнитопроводе, а переключатель диапазонов установить на минимум. После этого необходимо снять показания, а для определения фактического значения разделить полученное число на количество намотанных витков.

Пример использования

Приведем пример того, как пользоваться токоизмерительными клещами при измерении нагрузки в сети 220 В, например в квартире. В этом случае переключатель необходимо установить в положение AC 200. Далее необходимо токовыми клещами обхватить изолированный проводник и снять показания. После этого полученную величину силы тока нужно умножить на напряжение в сети 220 В. Например, если прибор показывает 5 А, то потребляемая мощность в сети составит P = U * I = 5 * 220 = 1100 Вт или 1.1 кВт. Полученное значение можно использовать для проверки работы приборов учета электроэнергии.

Напоследок предлагаем просмотреть видео, на котором наглядно показывается, как пользоваться токовыми клещами DT-266 и Fluke 302+, достаточно популярными на сегодняшний день:

DT-266

Fluke 302+

Вот и вся инструкция о том, как самому пользоваться токоизмерительными клещами. Как Вы видите, ничего сложного нет. Главное — соблюдать меры безопасности и внимательно подходить к измерениям. Надеемся, что наши советы и наглядная видео инструкция доступно объяснили Вам порядок действий!

Будет интересно прочитать:

Правильное использование токоизмерительных клещей в наладке коммерческих и жилых объектов

fluke_clamp02.jpgМы все знаем, что токоизмерительные клещи используются для измерения нагрузки цепи. Но, проявив немного находчивости, вы сможете использовать токоизмерительные клещи для определения того, какой прерыватель контролирует разные выходы, а также для измерения индивидуальной нагрузки (как нагрузочного напряжения и тока заземления, при наличии). Это поможет быстро решить проблемы с нагрузкой и сохранит вашу репутацию мастера по устранению неисправностей. 

Токоизмерительные клещи измеряют ток, определяя магнитное поле вокруг токонесущего проводника. Другого практичного способа для измерения тока в системах с электрической проводкой просто не существует. Разрывать цепи для выполнения серии измерений не практично, и может положить конец вашей карьере, если по незнанию вы отсоедините критически важные нагрузки. Обычно измерения осуществляются на панели, измеряются нагрузка и баланс на трехфазных питающих линиях. В случае преобладания гармонических нагрузок, также обязательны измерения без напряжения в электрощите. Измерение тока можно также использовать для диагностики исправности двигателя.

Помимо основных измерений, для которых токоизмерительные клещи и были разработаны, современные цифровые измерительные клещи способны измерять напряжение и сопротивление. Это значит, что вы можете выполнять большинство, если не все, обычных, повседневных измерений при помощи токоизмерительных клещей. Если бы электрик мог взять с собой на объект всего один измерительный инструмент, то разумным выбором стали бы токоизмерительные клещи. Модель токоизмерительных клещей должна измерять истинные среднеквадратичные значения. Альтернативой может быть модель, измеряющая усредненные значения, менее дорогая, но не гарантирующая точных измерений тока. При наличии в цепи электронных нагрузок (компьютеры, телевизоры, освещение, приводы двигателей и т.д.) прибор, измеряющий усредненные значения, может быть недостаточно точным. И чем выше электронные нагрузки, тем выше погрешность. Токоизмерительные клещи с измерением истинных среднеквадратичных значений будут точными всегда (разумеется, если они откалиброваны). Поэтому, если вы знаете, что можете столкнуться с подобного рода нагрузками, приобретите токоизмерительные клещи с измерением истинных среднеквадратичных значений. Это позволит вам думать о работе, а не об измерительном инструменте. На коммерческих площадках точные токоизмерительные клещи с измерением истинных среднеквадратичных значений просто необходимы.

Токоизмерительные клещи при работе на жилых объектах

Электрикам, работающим на жилых объектах, токоизмерительные клещи необходимы для измерения нагрузок на индивидуальных ответвленных цепях в эксплуатационной панели. Хотя проверки на месте обычно достаточно, иногда она не предоставляет полной картины, поскольку нагрузки включаются и выключаются, проходят по циклам и т.д. Напряжение в электрической системе должно быть стабильным, но ток может быть очень динамичным. Для проверки пиковой или наиболее неблагоприятной нагрузки на цепь используйте токоизмерительные клещи с функцией минимума/ максимума, которая предназначена для определения высоких токов, существующих дольше 100 мс, или около восьми циклов. Эти токи приводят к возникновению прерывистой нагрузки, которая может стать причиной срабатывания прерывателей цепи.

Снимайте измерения на стороне нагрузки прерывателя цепи или предохранителя. Прерыватель размыкает цепь в случае возникновения случайного короткого замыкания. Это особенно важно при любых измерениях напряжения при прямом контакте. Несмотря на то, что зажимы клещей изолированы и таким образом имеют уровень защиты, которого нет при прямом измерении напряжения, лучше соблюдать осторожность.

Распространенной проблемой при работе на жилых объектах является соотнесение выходов с прерывателями. Клещи можно использовать для определения, к какой цепи относится определенный выход. Сначала снимите на электрощите показания линии временной развертки имеющегося в цепи тока. Затем переведите токоизмерительные клещи в режим минимума/максимума. Перейдите к интересующей вас розетке и подключите нагрузку (в идеале — фен) и включите ее на пару секунд. Проверьте зажим и посмотрите, изменилось ли максимальное значение тока. Обычно фен использует 10-13 ампер, поэтому разница должна быть заметной. Если показания остались без изменений, вы подключились не к тому прерывателю.

Токоизмерительные клещи на коммерческих объектах

fluke_clamp01.jpg

Токоизмерительные клещи используются в электрощитке для измерения нагрузки цепи на питающих линиях, а также на ответвленных цепях. Измерения на ответвленных цепях должны всегда выполняться со стороны нагрузки прерывателя или предохранителя.

  • Необходимо проверить питающие кабели на сбалансированность и нагрузку: ток во всех трех фазах должен быть примерно одинаковым, чтобы сократить обратный ток на нулевой точке.
  • Нулевую точку также необходимо проверить на предмет перегрузки. С гармоническими нагрузками допустимо, чтобы на нулевой точке было больше тока, чем на питающих линиях, даже если питающие линии сбалансированы.
  • Каждую ответвленную цепь также необходимо проверить на возможные перегрузки.
  • Наконец, необходимо проверить контур заземления. На “массе” ток должен быть минимальным.

Проверка на наличие токов утечки

Для проверки наличия тока утечки в ответвленной цепи поместите провод под напряжением и нейтраль в зажимы токоизмерительных клещей. Любой измеренный ток является током утечки, т.е. током, возвращаемым в контур заземления. Токи питания (черный провод) и возврата (белый провод) создают противодействующие магнитные поля. Токи должны быть равны (и противоположны), а противостоящие поля должны нейтрализовывать друг друга. Если это не так, значит имеется ток, называемый током утечки, который возвращается по другому пути, которым может являться только заземление.

Если вы обнаружили чистый ток между питанием и возвратом, установите природу нагрузки и цепи. В неправильно проложенном контуре почти половина тока нагрузки может оставаться в системе заземления. Если измеренный ток слишком высокий, возможно, существует проблема проводки.

Ток утечки также может быть вызван утечкой нагрузки или плохой изоляцией. Основными причинами этого являются изношенная обмотка двигателей или наличие влаги на контактах. Если вы подозреваете чрезмерную утечку, то проверка с отключенным питанием, выполненная при помощи мегомметра, поможет вам оценить целостность изоляции контура и поможет определить наличие проблемы и ее расположение.

Измерение индивидуальных нагрузок

Для измерения индивидуальных нагрузок можно использовать съемный провод на розетке. Он представляет собой простой удлинительный провод со снятой внешней изоляцией, таким образом, черный, белый и зеленый провода оголены. Это намного проще, чем извлекать переходник для того, чтобы достать нужный провод. Подключите нагрузку к кабелю, а кабель вставьте в розетку. Для измерения нагрузочного тока зажмите черный провод. Выполняйте проверку тока заземления напрямую на зеленом проводе или на черном и белом одновременно.

Двигатели и цепи управления двигателями

Одним из самых сложных мест для выполнения измерений тока является шкафчик цепи управления, особенно если в нем используются компоненты, отвечающие стандарту IEC. Европейские компоненты IEC гораздо более компактные, чем аналогичные им детали по стандарту NEMA, и провода могут быть проложены очень тесно. Конические зажимы и функция “подсветки” на токоизмерительных клещах Fluke серии 370 прекрасно подходят для выполнения такого рода измерительных задач.

Трехфазные асинхронные двигатели часто используются в коммерческих зданиях для приведения в движение вентиляторов и насосов. Двигатели могут управляться как электромагнитными стартерами, так и электронными приводами с регулируемой скоростью вращения. Приводы с регулируемой скоростью вращения становятся все более распространенными, поскольку они позволяют экономить значительное количество электроэнергии.

Fluke 376 — это идеальные токоизмерительные клещи для выполнения измерений на таких двигателях и приводах:

  • Нагрузка
    Потребление тока двигателем, измеренное как среднее значение трех фаз, не должно превышать значения тока полной нагрузки двигателя (определяет сервис-фактор). С другой стороны, двигатель с нагрузкой менее 60 процентов от тока полной нагрузки (а многие двигатели недогружены) становится малоэффективным и коэффициент мощности также снижается.
  • Баланс токов
    Небаланс токов может быть признаком наличия проблем с обмоткой двигателя (например, разницы в сопротивлениях на обмотке поля по причине внутренних замыканий). Проще говоря, небаланс должен быть ниже 10 процентов. (Для расчета небаланса, сначала рассчитайте среднее значение показаний трех фаз, затем найдите самое высокое отклонение от среднего значения и поделите его на среднее значение.) Максимальной точкой небаланса токов является одна фаза, когда ток отсутствует в одной из трех фаз. Обычно это вызвано открытым плавким предохранителем.
  • Пусковой ток
    Двигатели, запускаемые на линии (механическими стартерами) будут иметь пусковой ток (у приводов с регулируемой скоростью вращения нет пускового тока). Пусковой ток составляет приблизительно 500 процентов на старых двигателях и достигает 1200 процентов на энергоэффективных двигателях. Если пусковой ток слишком высокий, он является частой причиной просадки напряжения, а также вызывает срабатывание предохранителей. Уникальная функция “пуска” на токоизмерительных клещах Fluke 376 срабатывает на пусковой ток и фиксирует его истинное значение.
  • Пиковая нагрузка (шоковая нагрузка)
    Некоторые двигатели подвержены шоковым нагрузкам, которые могут вызвать достаточный скачок напряжения для срабатывания цепи зашиты от перегрузки в контроллере двигателя. Например, если пила натыкается на сучок. Функция максимума/минимума позволяет записывать самое высокое потребление тока во время шоковых нагрузок.

Токоизмерительные клещи являются незаменимым измерительным инструментом электрика при работе как на жилых, так и на коммерческих объектах.

Безопасная работа

Высокое напряжение и ток в электрических системах могут стать причиной серьезных травм, смерти или ожогов. Поэтому только обученные и опытные электрики, знакомые с электрическими системами и проверяемым оборудованием должны допускаться к проведению измерений и только они должны осуществлять изменения в электрических системах.

Fluke не может перечислить все необходимые меры предосторожности, необходимые для выполнения описываемых здесь измерений. Тем не менее, необходимо как минимум выполнить следующее:

  • Используйте соответствующее защитное оборудование, например, защитные очки, изолированные перчатки, изолирующие коврики и т.д.
  • Убедитесь, что питание отключено, заблокировано и помечено в случаях непосредственной работы с компонентами цепи. Убедитесь, что питание не может включить никто, кроме вас.
  • Внимательно ознакомьтесь со всеми необходимыми руководствами, перед тем как использовать информацию из этого указания по применению. Обратите особое внимание на все меры предосторожности и предупреждения в руководствах по эксплуатации.
  • Не используйте приборы в работе, для которой они не предназначены, помните, что если оборудование используется не тем способом, который указал производитель, защита обеспечиваемая оборудованием может быть ухудшена.
Измерение токов в 3 фазной сети клещами. Порядок измерения тока. Что измеряют токоизмерительными клещами

При оценке состояния действующих электроустановок или выполнении ремонтных работ под напряжением электрикам приходится замерять и сравнивать значения токов, протекающие по различным цепочкам. Это позволяет анализировать оперативную схему, своевременно устраненять возникающие неисправности.

Довольно часто все это необходимо выполнять без разрыва электрических цепей чтобы не нарушить технологический процесс питания потребителей электроэнергией.

Замерять токи нагрузок без прекращения электроснабжения можно двумя способами:

1. обыкновенными амперметрами, создавая через них вначале обходные шунтирующие цепочки и вводя в работу за счет искусственного разрыва тока в заранее подготовленном месте. По окончании замеров требуется восстанавливать электрическую схему, выполнить в обратном порядке все предыдущие технологические операции;

2. с помощью специально предназначенного для этого инструмента — токовых клещей.

Первый метод измерения сложен, трудоемок, опасен, требует высокой квалификации работников, хорошей предварительной подготовки. Поэтому им стараются пользоваться только в крайних случаях, а в повседневной практике измерения выполняют токовыми клещами.

Какие существуют типы токоизмерительных клещей

Чаще всего на практике встречаются с постоянным (выпрямленным) или переменным синусоидальным током. Для обоих этих видов созданы различные конструкции клещей, которыми можно измерять величину и даже направления протекания мощности без разрыва схемы питания потребителей в действующей электроустановке.

Фотография ниже демонстрирует замер отклонения угла вектора тока от направления базового напряжения в измерительных цепях защитных устройств.


Способ замера токов утечек через нарушенную изоляцию электрооборудования автомобиля с помощью клещей постоянного тока и амперметра показан на фотографии.


Используемая схема замера собрана таким способом, что сами клещи показывают ток, протекающий по проводу, подключенному к зажиму амперметра. Оба прибора демонстрируют одну и ту же величину, хоть и работают на различных диапазонах чувствительности.

Этот пример наглядно демонстрирует удобство и точность измерения различными приборами. Токовые клещи измерения постоянного тока менее распространены, чем конструкции для переменного, но в последнее время их производство значительно увеличилось.

Так же следует учитывать, что производители измерительного оборудования сейчас наладили выпуск клещей комбинированного использования, которыми можно работать в цепях постоянного и переменного тока. Такая конструкция, например, воплощена в модели Fluke 376 и ей подобных.


Приведенные на трех первых фотографиях токовые клещи обладают цифровым дисплеем, сразу отображающем первичные величины измеряемых параметров электрической схемы. Но, в арсенале измерительных средств электриков все еще работает большое количество приборов со стрелочными указателями и шкалой, состоящей из нескольких поддиапазонов.

При пользовании такими конструкциями необходимо внимательно снимать отсчет, а иногда и вводить поправочные коэффициенты.

По величине применяемого напряжения токовые клещи подразделяются на устройства, работающие:

    до 1000 вольт;

    или выше 1 кВ.

Они отличаются классом защиты применяемой изоляции и требуют разного соблюдения правил безопасности.

Чтобы правильно пользоваться любыми подобными приборами необходимо знать принцип их работы и конструкцию.

Как устроены токовые измерительные клещи

Устройство различных моделей может значительно отличаться в зависимости от сроков их изготовления и сложности внутренней схемы. Но принципы замера и органы управления практически везде идентичны. Поэтому за основу изучения примем модель Fluke 376, которая обладает большими возможностями и, соответственно, имеет увеличенное количество функций и органов управления ими.

Принципы работы, заложенные в конструкцию

В диэлектрическом корпусе любого прибора размещены:

    трансформатор тока с (а) разъемным магнитопрводом и системой рычагов его управления, (б) вторичной обмоткой;

    измерительная система с информационным табло;

    органы управления и переключения режимов работы;

    контактные гнезда.

Для питания токовых клещей может использоваться электрическая энергия измеряемой цепи или комплект автономных источников напряжения, например, двух батареек АА.


За основу работы принят обыкновенный трансформатор тока с разъемным магнитопроводом и вторичной обмоткой, витки которой пересекает магнитный поток, наводящий в них вторичный ток. Его величину, а в отдельных конструкциях и направление, определяет измерительная система, отображающая на дисплее конечный результат с учетом коэффициента трансформации в первичных амперах.

Чтобы выполнить замер необходимо проводник с током поместить внутрь магнитопровода. Для этого:

    нажатием на клавишу разводят подвижные элементы магнитопровода;

    вводят внутрь образовавшегося промежутка провод с током;

    отпускают клавишу и отслеживают полное соприкосновение подвижных контактов.


При работе внутри тесных шкафов с большим количеством электрического оборудования иногда бывает сложно продеть наконечник раздвижного магнитопровода через проводник с током. Для упрощения подобной операции на модели Fluke 376 предусмотрен дополнительный измерительный датчик. Он входит в состав комплекта прибора и при необходимости легко подготавливается для проведения замера.


Для безопасного выполнения работ под напряжением клещи комплектуются измерительными концами с изолирующим наконечниками и колпачками. При установке в корпус прибора они утапливаются в его конструкции. В совокупности с хорошо изолированными наконечниками это позволяет снизить возможные ошибки в работе, исключить несанкционированное создание случайных коротких замыканий и получение электрических травм.


Органы управления токовых клещей

Положения кругового переключателя режимов показаны вставками текса на третьей сверху картинке. Их работу дополняют кнопки управления, расположенные на корпусе.


Кнопка ZERO используется для переключения внутри режимов клещей, установленных центральным круглым переключателем, а MIN/MAX — позволяет уточнять предел измерения.

Кнопка INRUSH предназначена для оценки пускового тока. Удобство пользования прибором в условиях затемненного рабочего места значительно обеспечивает встроенная подсветка, которая вводится в работу нажатием на крайнюю правую кнопку внизу с изображением освещения.

Чтобы зафиксировать текущие показания на дисплее у боковой поверхности клещей установ

90000 Introducing the TICKscript language | InfluxData Documentation 90001 90002 Kapacitor uses a Domain Specific Language (DSL) named 90003 TICKscript 90004 to define 90003 tasks 90004 involving the extraction, transformation and loading of data and involving, moreover, the tracking of arbitrary changes and the detection of events within data. One common task is defining alerts. TICKscript is used in 90007 .tick 90008 files to define 90003 pipelines 90004 for processing data.The TICKscript language is designed to chain together the invocation of data processing operations defined in 90003 nodes 90004. The Kapacitor Getting Started guide introduces TICKscript basics in the context of that product. For a better understanding of what follows, it is recommended that the reader review that document first. 90013 90002 Each script has a flat scope and each variable in the scope can reference a literal value, such as a string, an integer or a float value, or a node instance with methods that can then be called.90013 90002 These methods come in two forms. 90013 90018 90019 90003 Property methods 90004 – A property method modifies the internal properties of a node and returns a reference to the same node. Property methods are called using dot ( ‘.’) Notation. 90022 90019 90003 Chaining methods 90004 – A chaining method creates a new child node and returns a reference to it. Chaining methods are called using pipe ( ‘|’) notation. 90022 90027 90002 In TICKscript the fundamental type is the 90003 node 90004.A node has 90003 properties 90004 and, as mentioned, chaining methods. A new node can be created from a parent or sibling node using a chaining method of that parent or sibling node. For each 90003 node type 90004 the signature of this method will be the same, regardless of the parent or sibling node type. The chaining method can accept zero or more arguments used to initialize internal properties of the new node instance. Common node types are 90007 batch 90008, 90007 query 90008, 90007 stream 90008, 90007 from 90008, 90007 eval 90008 and 90007 alert 90008, though there are dozens of others.90013 90002 The top level nodes, which establish the processing type of the task to be defined, 90007 stream 90008 and 90007 batch 90008, are simply declared and take no arguments. Nodes with more complex sets of properties rely on 90003 Property methods 90004 for their internal configuration. 90013 90002 Each node type 90003 wants 90004 data in either batch or stream mode. Some can handle both. Each node type also 90003 provides 90004 data in batch or stream mode. Some can provide both.This 90061 wants / provides 90062 pattern is key to understanding how nodes work together. Taking into consideration the 90061 wants / provides 90062 pattern, four general node use cases can be defined: 90013 90018 90019 90061 want 90062 a batch and 90061 provide 90062 a stream – for example, when computing an average or a minimum or a maximum. 90022 90019 90061 want 90062 a batch and 90061 provide 90062 a batch – for example, when identifying outliers in a batch of data. 90022 90019 90061 want 90062 a stream and 90061 provide 90062 a batch – for example, when grouping together similar data points.90022 90019 90061 want 90062 a stream and 90061 provide 90062 a stream – for example, when applying a mathematical function like a logarithm to a value in a point. 90022 90027 90002 The node reference documentation lists the property and chaining methods of each node along with examples and descriptions. 90013 90002 Every TICKscript is broken into one or more 90003 pipelines 90004. Pipelines are chains of nodes logically organized along edges that can not cycle back to earlier nodes in the chain.The nodes within a pipeline can be assigned to variables. This allows the results of different pipelines to be combined using, for example, a 90007 join 90008 or a 90007 union 90008 node. It also allows for sections of the pipeline to be broken into reasonably understandable self-descriptive functional units. In a simple TICKscript there may be no need to assign pipeline nodes to variables. The initial node in the pipeline sets the processing type for the Kapacitor task they define. These can be either 90007 stream 90008 or 90007 batch 90008.These two types of pipelines can not be combined. 90013 90106 Stream or batch? 90107 90002 With 90007 stream 90008 processing, datapoints are read, as in a classic data stream, point by point as they arrive. With 90007 stream 90008 Kapacitor subscribes to all writes of interest in InfluxDB. With 90007 batch 90008 processing a frame of ‘historic’ data is read from the database and then processed. With 90007 stream 90008 processing data can be transformed before being written to InfluxDB.With 90007 batch 90008 processing, the data should already be stored in InfluxDB. After processing, it can also be written back to it. 90013 90002 Which to use depends upon system resources and the kind of computation being undertaken. When working with a large set of data over a long time frame 90007 batch 90008 is preferred. It leaves data stored on the disk until it is required, though the query, when triggered, will result in a sudden high load on the database. Processing a large set of data over a long time frame with 90007 stream 90008 means needlessly holding potentially billions of data points in memory.When working with smaller time frames 90007 stream 90008 is preferred. It lowers the query load on InfluxDB. 90013 90106 Pipelines as graphs 90107 90002 Pipelines in Kapacitor are directed acyclic graphs (DAGs). This means that each edge has a direction down which data flows, and that there can not be any cycles in the pipeline. An edge can also be thought of as the data-flow relationship that exists between a parent node and its child. 90013 90002 At the start of any pipeline will be declared one of two fundamental edges.This first edge establishes the type of processing for the task, however, each ensuing node establishes the edge type between itself and its children. 90013 90018 90019 90007 stream 90008 → 90007 from () 90008 – an edge that transfers data a single data point at a time. 90022 90019 90007 batch 90008 → 90007 query () 90008 – an edge that transfers data in chunks instead of one point at a time. 90022 90027 90106 Pipeline validity 90107 90002 When connecting nodes and then creating a new Kapacitor task, Kapacitor will check whether or not the TICKscript syntax is well formed, and if the new edges are applicable to the most recent node.However full functionality of the pipeline will not be validated until runtime, when error messages can appear in the Kapacitor log. 90013 90002 90003 Example 1 – a runtime error 90004 90013 90156 90157 … [Cpu_alert: alert4] 2017/10/24 14:42:59 E! error evaluating expression for level CRITICAL: left reference value “usage_idle” is missing value [Cpu_alert: alert4] 2017/10/24 14:42:59 E! error evaluating expression for level CRITICAL: left reference value “usage_idle” is missing value … 90008 90159 90002 Example 1 shows a runtime error that is thrown because a field value has gone missing from the pipeline. This can often happen following an 90007 eval 90008 node when the property 90007 keep () 90008 of the 90007 eval 90008 node has not been set. In general Kapacitor can not anticipate all the modalities of the data that the task will encounter at runtime. Some tasks may not be written to handle all deviations or exceptions from the norm, such as when fields or tags go missing.In these cases Kapacitor will log an error. 90013 90002 90003 Example 2 – An elementary stream → from () pipeline 90004 90013 90156 90173 dbrp “telegraf”. “Autogen” stream | From () .measurement ( ‘cpu’) | HttpOut ( ‘dump’) 90008 90159 90002 The simple script in Example 2 can be used to create a task with the default Telegraf database. 90013 90156 90007 $ kapacitor define sf_task -tick sf.tick 90008 90159 90002 The task, 90007 sf_task 90008, will simply cache the latest cpu datapoint as JSON to the HTTP REST endpoint (e.g http: // localhost: 9092 / kapacitor / v1 / tasks / sf_task / dump). 90013 90002 This example contains a database and retention policy statement: 90007 dbrp 90008. 90013 90002 This example also contains three nodes: 90013 90018 90019 The base 90007 stream 90008 node. 90022 90019 The requisite 90007 from () 90008 node, that defines the stream of data points. 90022 90019 The processing node 90007 httpOut () 90008, that caches the data it receives to the REST service of Kapacitor. 90022 90027 90002 It contains two edges.90013 90018 90019 90007 stream 90008 → 90007 from () 90008 – sets the processing type of the task and the data stream. 90022 90019 90007 from () 90008 → 90007 httpOut () 90008 – passes the data stream to the HTTP output processing node. 90022 90027 90002 It contains one property method, which is the call on the 90007 from () 90008 node to 90007 .measurement ( ‘cpu’) 90008 defining the measurement to be used for further processing. 90013 90002 90003 Example 3 – An elementary batch → query () pipeline 90004 90013 90156 90173 batch | Query ( ‘SELECT * FROM “telegraf”.”Autogen” .cpu WHERE time> now () – 10s ‘) .period (10s) .every (10s) | HttpOut ( ‘dump’) 90008 90159 90002 The script in Example 3 can be used to define a task with the default Telegraf database. 90013 90156 90007 $ kapacitor define bq_task -tick bq.tick -dbrp “telegraf”. “Autogen” 90008 90159 90002 When used to create the 90007 bq_task 90008 with the default Telegraf database, the TICKscript in Example 3 will simply cache the last cpu datapoint of the batch of measurements representing the last 10 seconds of activity to the HTTP REST endpoint (e.g. http: // localhost: 9092 / kapacitor / v1 / tasks / bq_task / dump). 90013 90002 This example contains three nodes: 90013 90018 90019 The base 90007 batch 90008 node. 90022 90019 The requisite 90007 query () 90008 node, that defines the data set. 90022 90019 The processing node 90007 httpOut () 90008, that defines the one step in processing the data set. In this case it is to publish it to the REST service of Kapacitor. 90022 90027 90002 It contains two edges. 90013 90018 90019 90007 batch 90008 → 90007 query () 90008 – sets the processing style and data set.90022 90019 90007 query () 90008 → 90007 httpOut () 90008 – passes the data set to the HTTP output processing node. 90022 90027 90002 It contains two property methods, which are called from the 90007 query () 90008 node. 90013 90018 90019 90007 period () 90008 – sets the period in time which the batch of data will cover. 90022 90019 90007 every () 90008 – sets the frequency at which the batch of data will be processed. 90022 90027 90106 Where to next? 90107 90002 For basic examples of working with TICKscript see the latest examples in the code base on GitHub.90013 90002 For TICKscript solutions for intermediate to advanced use cases, see the Guides documentation. 90013 90002 The next section covers TICKscript syntax in more detail. Continue … 90013 .90000 Transformer Routine Test – Measurement Of No-Load Loss And Current 90001 90002 Introduction to test 90003 90004 The no-load losses are very much related to the operational performance of a transformer. As long as the transformer is operated, 90005 these losses occur 90006. For this reason, no load losses are very important for operational economy. No-load losses are also used in the heating test. 90007 90004 The no-load loss and current measurements of a transformer are made while one of the 90005 windings 90006 (usually the HV winding) 90005 is kept open 90006 and the other winding is supplied at the rated voltage and frequency.90007 90014 90014 Transformer Routine Test – Measurement Of No-Load Loss And Current (on photo: Power transformer – BEST) 90004 During this test the 90005 no-load current (Io) 90006 and the 90005 no-load losses (Po) 90006 are measured. 90007 90004 The measured losses depend heavily on the applied voltage waveform and frequency. For this reason, the waveform of the voltage should be 90005 very sinusoidal 90006 and 90005 at rated frequency 90006. 90007 90004 Normally, the measurements are made while the supply voltage is increased at equal intervals 90005 from 90% to 115% of the transformer rated voltage (Un) 90006 and this way the values ​​at the rated voltage can also be found.90007 90032 90033 No-load losses and currents 90034 90004 90005 The no-load losses of a transformer are grouped in three main topics: 90006 90007 90039 90040 90005 Iron losses 90006 at the core of the transformer, 90043 90040 90005 Dielectric losses 90006 at the insulating material and 90043 90040 The 90005 copper losses 90006 due to no-load current. 90043 90052 90004 The last two of them are very small in value and can be ignored. 90007 90004 90005 So, only the iron losses are considered in determining the no-load losses.90006 90007 90032 90033 Measuring circuit and performing the measurement 90034 90062 90062 Connection diagram for measuring no-load losses 90004 In general according to the standards, if there is less than 3% difference between the 90005 effective (U) value 90006 and the 90005 average (U ‘) value of the supply voltage 90006, the shape of the wave is considered as appropriate for measurements. 90007 90004 If the supply voltage is different than sinusoid, the measured no-load losses have to be corrected by a calculation.In this case, the 90005 effective (r.m.s.) value 90006 and 90005 the average (mean) value 90006 of the voltage are 90005 different 90006. If the readings of both voltmeter are equal, there is no need for correction. 90007 90004 During measurements, the supply voltage U’is supplied to the transformer by the average value voltmeter. In this way, the foreseen induction is formed and as a result of this, the hysteresis losses are measured correctly. The eddy-current losses should be corrected according to equation below.90007 90004 P 90081 m 90082 = P 90081 0 90082 · (P 90081 1 90082 + k · P 90081 2 90082) 90007 90004 90005 P 90081 m 90082 90006: Measured loss 90032 90005 P 90081 0 90082 90006: No-load losses where the voltage is sinusoidal 90007 90004 Here: 90005 P 90081 0 90082 = P 90081 h 90082 + P 90081 E 90082 = k 90081 1 90082 · f + k 90081 2 90082 · f 90113 2 90114 90006 90007 90004 90005 k = [U / U ‘] 90113 2 90114 90006 90007 90004 90005 P 90081 1 90082 90006: The hysteresis loss ratio in total losses 90005 (P 90081 h 90082) = k 90081 1 90082 · f 90006 90032 90005 P 90081 2 90082 90006: The eddy-curent loss ratio in total losses 90005 (P 90081 E 90082) = k 90081 2 90082 · f 90113 2 90114 90006 90007 90004 At 50 Hz and 60 Hz, in cold oriented sheet steel, 90005 P 90081 1 90082 = P 90081 2 90082 =% 50 90006.90005 So, the P 90081 0 90082 no-load loss becomes: 90006 90007 90004 P 90081 o 90082 = P 90081 m 90082 / (P 90081 1 90082 + k · P 90081 2 90082) where 90005 P 90081 1 90082 = P 90081 2 90082 = 0,5 90006 90007 90004 90005 According to IEC 60076-1: 90006 90005 P 90081 m 90082 = P 90081 0 90082 · (1 + d) 90006 where 90005 d = [(U ‘- U) / U’] 90006 90007 90004 During no-load loss measurement, the effective value of the no-load current of the transformer is measured as well.In general, in three phase transformers, evaluation is made according to the 90005 average of the three phase currents 90006. 90007 90004 Before the no-load measurements, the transformer might have been 90005 magnetised by direct current 90006 and it’s components (resistance measurement or impulse tests). 90007 90004 For this reason, the core has to be demagnetised. To do this, it has to be supplied by a voltage value (increasing and decreasing between the maximum and minimum voltage values ​​for a few minutes) higher than the rated voltage for a certain time and then the measurements can be made.90007 90004 The no-load currents are neither symmetrical nor of equal amplitude in three phase transformers. The phase angles between voltages and currents may be different for each of three phases. 90007 90004 90005 For this reason, the wattmeter readings on each of the three phases may not be equal. 90006 Sometimes one of the wattmeter values ​​can be 90005 0 90006 (zero) or 90005 negative 90006 (-). 90007 90004 90209 90005 Resource: 90006 Transformer Tests – BEST Transformers 90212 90007 .90000 Messung von Frequenzen – National Instruments 90001 90002 1. Eigenschaften von Frequenzen 90003 90004 90005 90006 Die Frequenz ist die Rate des Auftretens eines zyklischen oder periodischen Ereignisses. In der Physik lässt sich Periodizität bei Rotationen, Oszillationen und Wellenbewegungen beobachten. Bei einem analogen oder digitalen Signal kann die Signalperiode umgekehrt werden, um die Frequenz zu erhalten. Je kürzer also die Periode, desto höher die Frequenz, und umgekehrt. Dies wird in Abbildung 1 dargestellt: Das oberste Signal hat die niedrigste Frequenz und das unterste die höchste.90007 90006 90009 90010 90011 90009 90011 90007 90015 90016 90009 90018 90019 90011 90021 90022 Abbildung 1: Signale mit von oben nach unten ansteigender Frequenz 90023 90011 90021 90018 Die Frequenz wird meist als Kreisfrequenz 90027 ω 90028 in Bogenmaßen / Sekunde oder als 90027 f 90028 in Sekunden 90031 -1 90032, auch bekannt als die Einheit Hertz (Hz), angegeben. Außerdem kann die Frequenz mit Beats Pro Minute (BPM) oder Umdrehungen pro Minute (RPM, Revolutions Per Minute) angegeben werden.Die Kreisfrequenz 90027 ω 90028 (rad / sec) und ƒ (Hz) stehen über die Formel 90027 ω 90028 = 90027 2π 90028 ƒ in Bezug. Die Phase beschreibt einen Offset des Signals von einem spezifizierten Referenzpunkt zur Anfangszeit 90027 t 90040 0 90041 90028 und wird meist in Grad oder Bogenmaßen angegeben. Am Beispiel einer Sinuskurve erläutert wird die Signalfunktion im Hinblick auf die Zeit als 90043 ausgedrückt. Amplitude 90027 A 90028, Kreisfrequenz 90027 ω 90028 und Phase 90027 φ 90028 sind dabei Konstanten.90018 90011 90021 Periodische analoge Signale in realen Anwendungen sind komplex und können nur selten als einfache Sinuskurve dargestellt werden. Mithilfe der Fourier-Analyse werden komplexe Signale in eine Reihe einfacherer Funktionen aufgeteilt, entweder Sinus- oder Kosinuskurven bzw. komplexe Exponenzialfunktionen. Die Frequenzkomponenten, aus denen ein solches Signal besteht, sind oft die Eigenschaften, die von Interesse sind und deshalb wird diese Analyse Frequenzbereichs- oder Spektrumanalyse genannt.Diese Art von Analyse ist v. a. für Geräusch- und Schwingungsmessungen nötig und wird in diesem Beitrag nicht behandelt. 90018 90011 90021 Dagegen ist es recht einfach, die Frequenz eines Digitalsignals zu bestimmen. Bei einem einfachen Digitalsignal, wie in Abbildung 2, entspricht die Periode der Zeit zwischen zwei steigenden oder fallenden Flanken. 90011 90009 90058 90018 90022 Abbildung 2. Digitaler Signalverlauf 90023 90018 90011 90021 Variiert die Zeit zwischen steigenden oder fallenden Flanken leicht, kann mit einer größeren Anzahl von Samples der Durchschnitt und damit die Frequenz ermittelt werden.90011 90021 Nach oben 90011 90002 2. Messen einer Frequenz 90003 90021 Bei der Erfassung einer digitalen Frequenz ist dieser Prozess recht einfach. Für niederfrequente Signale reichen ein Zähler (Counter) und eine Zeitbasis. Die steigende Flanke des Eingangssignals löst die Zeitbasen-Ticks aus, die gezählt werden. Da die Zeitbasis eine bekannte Frequenz hat, kann man auf ihrer Grundlage die Frequenz des Eingangssignals problemlos berechnen (s. Abb. 3). 90011 90021 90011 90009 90022 90076 90023 90018 90022 90018 Abbildung 3: Digitalsignal in Bezug zu einer internen Zeitbasis (ein Zähler bei niedriger Frequenz) 90023 90018 90011 90021 Wenn die Frequenz des Digitalsignals sehr hoch ist oder schwankt, verwendet man besser eine der unten beschriebenen Methoden mit zwei Zählern.Für beide Methoden gelten dieselben Hardwarebeschränkungen. Das heißt, dass die gemessene Frequenz die maximal vom Zähler unterstützte Eingangsfrequenz nicht überschreiten kann, selbst wenn sie höher ist als die interne Zeitbasis. 90011 90021 90022 Hochfrequente Messungen mit zwei Zählern 90023 90011 90021 Für ein Signal mit hoher Frequenz werden zwei Zähler benötigt. Ein Zählerpaar erzeugt eine Impulsfolge mit einer benutzerspezifischen Periode, also einer “Messzeit” (s. Abb. 4), die viel größer ist, als die des gemessenen Signals, aber klein genug, um einen Zählerüberlauf zu vermeiden.90018 90011 90009 90094 90011 90021 90022 Abbildung 4: Frequenz eines Digitalsignals mit zwei Zählern gemessen (hohe Frequenz) 90023 90011 90021 90018 Die Messzeit des internen Signals 90027 (Internal Signal) 90028 sollte ein Vielfaches der internen Zeitbasis 90027 (Internal Timebase) 90028 sein. Die Anzahl von Ticks des Eingangssignals 90027 (Input Signal) 90028 wird dann über die bekannte Zeit hinweg gezählt, die vom internen Signal zur Verfügung gestellt wird. Teilt man nun die Anzahl der Ticks durch die bekannte Messzeit, erhält man die Frequenz des Eingangssignals.90011 90021 90022 Messungen mit zwei Zählern über große Bereiche 90023 90011 90021 Bei Signalen mit schwankender Frequenz bietet diese Methode mit zwei Zählern verbesserte Genauigkeit über den gesamten Bereich. Das 90027 Eingangssignal 90028 wird in diesem Fall durch einen bekannten Wert, oder Teiler, geteilt. Die Anzahl von Ticks der 90027 internen Zeitbasis 90028 wird während eines High-Pegels des geteilten Signals 90027 (Divided Down Signal) 90028 gezählt (s. Abb. 5). Daraus ergibt sich die Zeit des High-Pegels, das ein Produkt der gezählten Ticks und der Periode der 90027 internen Zeitbasis 90028 ist.Wird dies mit 2 multipliziert, erhält man die Periode des geteilten Signals (hoch und niedrig), die einem Vielfachen der Periode des 90027 Eingangssignals 90028 entspricht. Wird die Periode des 90027 Eingangssignals 90028 dann umgekehrt, ergibt sich seine Frequenz. 90011 90009 90128 90011 90021 90022 Abbildung 5: Frequenz eines Digitalsignals mit zwei Zählern gemessen (großer Bereich) 90023 90018 90011 90021 Diese Methode ähnelt der Ermittlung des Durschnittswerts über einen größeren Bereich, um die Signalschwankungen zu berücksichtigen.Sie kann aber auch zur Messung von Signalen genutzt werden, deren Frequenz höher ist als die Zeitbasis. 90011 90021 90022 Anbindung des Digitalsignals an ein Gerät zur Frequenzmessung 90023 90011 90021 Viele Geräte mit Hardware-Timing eignen sich für Zählermessungen. So z. B. auch ein NI-CompactDAQ-System wie in Abbildung 6. Die Hardware-Zeitbasis für NI CompactDAQ befindet sich auf der Backplane des Chassis und gilt nicht nur für die Module der C-Serie von NI. Beim Chassis cDAQ-9172 haben nur die Steckplätze 5 und 6 Zugriff auf die PFI-Kanäle für den Zählereingang.Deshalb muss ein korreliertes Digitaleingangs- oder Digitaleingangs – / – ausgangsmodul in Slot 5 oder 6 eines CompactDAQ-Chassis eingefügt werden, z. B. NI 9401. 90011 90021 90011 90009 90011 90009 90022 Abbildung 6: Das korrelierte DIO-Modul der C-Serie NI 9401 und ein NI-CompactDAQ-Chassis 90023 90011 90021 90018 Nachdem die Frequenzerfassung als Zähler-Task im Measurement & Automation Explorer (MAX) eingerichtet wurde, wird auf den PFI-Eingangsanschluss, mit dem das Signal verbunden werden sollte, hingewiesen (s.Abb. 7). 90011 90021 90011 90009 90157 90011 90021 90022 Abbildung 7: Screenshot der Konfiguration im Measurement & Automation Explorer (MAX) 90023 90018 90022 90023 90018 90011 90021 Nach oben 90011 90002 3. Messungen darstellen: NI LabVIEW 90003 90021 Nachdem das System konfiguriert ist, können Daten mit der grafischen Programmierumgebung NI LabVIEW erfasst und dargestellt werden (s. Abb. 8). 90018 90022 90023 90011 90009 90177 90018 90022 90018 Abbildung 8: Darstellung einer Frequenzmessung in LabVIEW 90023 90011 90021 Nach oben 90011 90185 4.Empfohlene Hardware und Software 90003 90021 90011 90021 Nach oben 90011 90002 5. Weitere Ressourcen zur Frequenzmessung 90003 90021 90011 90021 Nach oben 90011 90002 6. Leitfaden zum Download: “Wie erstelle ich ein Messsystem?” 90003 90021 90011 90021 90011 90021 90011 90021 90011 90207 90021 Zurück zum Informationsportal “Praktische Anleitungen für die gängigsten Messungen” 90018 90011 90021 90011 .90000 Measurement scale | statistical analysis 90001 90002 90003 Measurement scale 90004, in statistical analysis, the type of information provided by numbers. Each of the four scales (i.e., nominal, ordinal, interval, and ratio) provides a different type of information. Measurement refers to the assignment of numbers in a meaningful way, and understanding measurement scales is important to interpreting the numbers assigned to people, objects, and events. 90005 90006 Nominal scales 90007 90002 In nominal scales, numbers, such as driver’s license numbers and product serial numbers, are used to name or identify people, objects, or events.Gender is an example of a nominal measurement in which a number (e.g., 1) is used to label one gender, such as males, and a different number (e.g., 2) is used for the other gender, females. Numbers do not mean that one gender is better or worse than the other; they simply are used to classify persons. In fact, any other numbers could be used, because they do not represent an amount or a quality. It is impossible to use word names with certain statistical techniques, but numerals can be used in coding systems.For example, fire departments may wish to examine the relationship between gender (where male = 1, female = 2) and performance on physical-ability tests (with numerical scores indicating ability). 90005 90006 Ordinal scales 90007 90002 In ordinal scales, numbers represent rank order and indicate the order of quality or quantity, but they do not provide an amount of quantity or degree of quality. Usually, the number 1 means that the person (or object or event) is better than the person labeled 2; person 2 is better than person 3, and so forth-for example, to rank order persons in terms of potential for promotion, with the person assigned the 1 rating having more potential than the person assigned a rating of 2.Such ordinal scaling does not, however, indicate how much more potential the leader has over the person assigned a rating of 2, and there may be very little difference between 1 and 2 here. When ordinal measurement is used (rather than interval measurement), certain statistical techniques are applicable (e.g., Spearman’s rank correlation). 90005 90006 Interval scale 90007 90002 In interval scales, numbers form a continuum and provide information about the amount of difference, but the scale lacks a true zero.The differences between adjacent numbers are equal or known. If zero is used, it simply serves as a reference point on the scale but does not indicate the complete absence of the characteristic being measured. The Fahrenheit and Celsius temperature scales are examples of interval measurement. In those scales, 0 ° F and 0 ° C do not indicate an absence of temperature. 90005 Get exclusive access to content from our тисяча сімсот шістьдесят вісім First Edition with your subscription. Subscribe today 90006 Ratio scales 90007 90002 Ratio scales have all of the characteristics of interval scales as well as a true zero, which refers to complete absence of the characteristic being measured.Physical characteristics of persons and objects can be measured with ratio scales, and, thus, height and weight are examples of ratio measurement. A score of 0 means there is complete absence of height or weight. A person who is 1.2 metres (4 feet) tall is two-thirds as tall as a 1.8-metre- (6-foot-) tall person. Similarly, a person weighing 45.4 kg (100 pounds) is two-thirds as heavy as a person who weighs 68 kg (150 pounds). 90005 Jo Ann Lee 90006 Learn More in these related Britannica articles: 90007 90024 90025 90002 90003 statistics 90004 90005 90002 Statistics, the science of collecting, analyzing, presenting, and interpreting data.Governmental needs for census data as well as information about a variety of economic activities provided much of the early impetus for the field of statistics. Currently the need to turn the large amounts of data available in many applied … 90005 90032 90025 90002 90003 measurement 90004 90005 90002 Measurement, the process of associating numbers with physical quantities and phenomena.Measurement is fundamental to the sciences; to engineering, construction, and other technical fields; and to almost all everyday activities. For that reason the elements, conditions, limitations, and theoretical foundations of measurement have been much studied. See also measurement system … 90005 90032 90025 90002 90003 gender identity 90004 90005 90002 Gender identity, an individual’s self-conception as a man or woman or as a boy or girl or as some combination of man / boy and woman / girl or as someone fluctuating between man / boy and woman / girl or as someone outside those categories altogether.It is distinguished from actual biological sex-i.e., Male or female. For … 90005 90032 90049 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *