Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Микросхема К155ЛА3, импортный аналог - микросхема SN7400,схема расположения элементов.

Микросхема К155ЛА3, как и ее импортный аналог SN7400(или просто -7400, без SN), содержат в себе четыре логических элемента (вентиля) 2И - НЕ. Микросхемы К155ЛА3 и 7400 являются аналогами с полным совпадением распиновки и очень близкими рабочими параметрами. Питание осуществляется через выводы 7(минус) и 14(плюс), стабилизированным напряжением от 4,75 до 5,25 вольт.

Микросхемы К155ЛА3 и 7400 созданы на базе ТТЛ, поэтому - напряжение 7 вольт является для них абсолютно максимальным. При превышении этого значения прибор очень быстро сгорает.
Схема расположения выходов и входов логических элементов (распиновка) К155ЛА3 выглядит вот, таким образом.

На рисунке ниже - электронная схема отдельного элемента 2И-НЕ микросхемы К155ЛА3.

Параметры К155ЛА3.

1 Номинальное напряжение питания 5 В
2 Выходное напряжение низкого уровня не более 0,4 В
3 Выходное напряжение высокого уровня не менее 2,4 В
4 Входной ток низкого уровня не более -1,6 мА
5 Входной ток высокого уровня не более 0,04 мА
6 Входной пробивной ток не более 1 мА
7 Ток короткого замыкания -18...-55 мА
8 Ток потребления при низком уровне выходного напряжения не более 22 мА
9 Ток потребления при высоком уровне выходного напряжения не более 8 мА
10 Потребляемая статическая мощность на один логический элемент не более 19,7 мВт
11 Время задержки распространения при включении не более 15 нс
12 Время задержки распространения при выключении не более 22 нс

Схема гератора прямоугольных импульсов на К155ЛА3.

Очень легко собирается на К155ЛА3 генератор прямоугольных импульсов. Для этого можно использовать любые два ее элемента. Схема может выглядеть вот так.

Импульсы снимаются между 6 и 7(минус питания) выводами микросхемы.
Для этого генератора частоту(f) в герцах можно расчитать по формуле f= 1/2(R1 *C1). Значения подставляются в Омах и Фарадах.

На главную страницу
В начало

Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт "Электрика это просто".

elektrikaetoprosto.ru

Генераторы на цифровых микросхемах

радиоликбез

 

В этой статье приводятся описания генераторов на цифровых микросхемах ТТЛ-логики, таких как микросхемы серий К133, К155 и К555.

Схема одного из простейших генераторов с показана на рис. 1, а. Работа генератора, представлена на рис. 1, б.

 

Условимся, что на выходе "Выход 1" элемента D 1.1 высокий логический уровень. В это время на его входе "а" напряжение будет ниже порога переключения Uп (для микросхем серии К 155 это напряжение равно примерно 1,15 В), а на выходе элемента D1.2 "Выход 2" — низкий логический уровень.

По мере того как конденсатор С1 заряжается выходным током элемента D1.1, протекающим через резистор R2 (диод V2 в это время закрыт), напряжение в точке "в" несколько повышается, а в точке "б" уменьшается. Как только напряжение на входе элемента D1.2 станет равным напряжению Uп, этот элемент изменит свое состояние и на его выходе "г" станет высокий логический уровень.

Cкачок напряжения (с логического 0 на логическую 1) через конденсатор С2 поступит на вход элемента D1.1 и переключит его в состояние с низким логическим уровнем на выходе. Конденсатор С2 начнет заряжаться с выхода элемента D1.2. Конденсатор же С1 выходным током элемента D1.1 через диод V2 будет разряжаться. Как только напряжение на входе элемента D1.1 уменьшится до порога переключения, устройство примет исходное состояние, и цикл повторится.

Длительность импульсов на каждом из выходов устройства определяется емкостью конденсатора.

Рис. 1 Схема простого генератора с перекрестной обратной связью (а)
и диаграммы его работы (б) при R1 = R2 и С1 = С2

Для устойчивой работы мультивибратора необходимо, чтобы разрядка конденсаторов проходила быстрее их зарядки. Это достигается включением диодов V1, V2. При сопротивлении резисторов, равном 1,8 кОм, и изменении емкости конденсаторов (С1 = С2) от 100 пФ до 0,1 мкФ частота колебаний мультивибратора изменяется от 300 Гц до 2 МГц. Подбирая резисторы, надо иметь в виду, что при отсутствии колебаний они должны обеспечить уровень логической 1 на выходе элементов D1.1 и D1.2 (при напряжении на входах логического элемента, равном нулю, входной ток составляет примерно 1 мА). Однако если сопротивление резисторов небольшое, то происходит значительный перекос вершины генерируемых импульсов. Исходя, из этого, в мультивибраторе на ТТЛ элементах используют резисторы сопротивлением от 100 Ом до 1,8 кОм (хотя в большинстве случаев генератор устойчиво работает и при сопротивлениях до 4 кОм)

При равенстве емкостей конденсаторов скважность выходных импульсов равна 2. Подбором соотношения Сl/С2 при сопротивлнии резисторов Rl и R2 по 1.8 кОм можно получить устойчивую генерацию при скважности до 10 (при сопротивлении резисторов по 4 кОм-до 20).

Входы "Упр." служат для управления работой мультивибратора: генерация не возникает при напряжении на них меньше порога переключения Uп (от 0 до 1,15 В). Если управлять работой генератора не нужно, то входы

"Упр." желательно соединить через резистор сопротивлением 1 кОм с плюсовым выводом источника питания (или их подключить параллельно используемому входу логического элемента, но в этом случае несколько возрастает входной ток).

Для улучшения формы импульсов и устранения влияния нагрузки мультивибратора к каждому выходу следует подключить дополнительный инвертор,D1.3, D1.4.

В подобном устройстве при включении питания оба логических элемента могут оказаться в закрытом состоянии (на выходах — логическая 1), и колебания не возникнут. Чтобы этого не произошло, вводят также дополнительный инвертор.

Частоту генератора на цифровых микросхемах, можно регулировать не только изменением емкости и сопротивления времязадающих цепочки, но и изменением напряжения, подаваемого на вход логических элементов. В таком генераторе (рис. 2) чем больше (по абсолютной величине) управляющее напряжение, тем больше частота генерации. При изменении управляющего напряжения от 0 до —5 В частота изменяется по закону, близкому к линейному. При использовании конденсаторов С1 и С2 емкостью по 1000 пФ диапазон регулировки частоты составляет 120—750 кГц, а при емкости по 0,1 мкФ — от 1 до 8 кГц.

Рис.2 Схема генератора, управляемого напряжением

Широкое распространение на практике получил простой генератор (рис. 3, а)  ,  частота выходных импульсов которого определяется процессами перезарядки лишь одного конденсатора. Принцип его работы пояснен эрарами напряжений (рис. 3, б). Генератор вырабатывает импульсы в широком диапазоне частот — от единиц герц до нескольких мегагерц. Зависимость частоты f (в кГц) от емкости конденсатора С1 (в пФ) выражается приближенной формулой    f  =3*105 / С1. При уменьшении напряжения питания частота генерируемых импульсов уменьшается примерно на 20% на каждые 0,5 В), а при увеличении температуры окружающей среды — увеличивается (примерно вдвое при увеличении температуры на 100° С).

Рис.3 схема (а) и диаграмма напряжений (б)

В генераторе, собранном по схеме рис. 3, а, логические элементы имеют открытый коллектор. Скважность импульсного выходного напряжения практически равна двум.

В генераторе по схеме рис. 4 длительность импульсов можно регулировать резистором R2 (скважность изменяется от 1,5 до 3), а частоту—резистором R1. Например, при использовании конденсатора С1 емкостью 0,1 мкФ при отсутствии резистора R2 и изменении сопротивления резистора R1 от максимального значения до нуля частота генерируемых импульсов изменяется от 8 до 125 кГц. Для получения другого диапазона частот необходимо изменять номинал конденсатора С1.

Рис.4 Генератор с регулировкой частоты и скважности импульсов

Логические микросхемы позволяют собрать генератор без каких-либо других радиодеталей (конденсаторов, резисторов и т. п.). Принцип работы такого генератора основан на задержке переключения логических элементов.

Принципиальная схема одного из таких генераторов приведена на рис. 5, а. При подаче на управляющий вход логического 0 на выходе элемента D1.1 будет логическая 1 (на рис. 5, б время включения и выключения логических элементов принято одинаковым). При подаче на управляющий вход логической 1 все элементы поочередно изменяют свое состояние. Третий элемент (D1.3) переключится через промежуток времени, равный nt

зд, где n — число логических элементов, а tзд — среднее время задержки переключения одного элемента, равное полусумме времен задержки включения и выключения. Скачок напряжения с выхода генератора через цепь обратной связи поступает на вход элемента D1.1 и переключает его в первоначальное состояние. Вслед за ним возвращаются в исходное состояние и другие элементы.

Дальше процесс многократно повторяется. Таким образом, устройство будет генерировать высокочастотные импульсы с периодом, равным 2ntзд. Число элементов в генераторе должно быть нечетным (больше единицы).

Рис.5 Схема (а) и диаграмма работы генератора(б)

Для микросхем серии К155 среднее время задержки составляет около 20 нс. Следовательно, генератор, собранный по схеме рис. 5 а, будет вырабатывать импульсы с частотой следования около 8 МГц. Если генератор сразу не заработает, необходимо несколько уменьшить напряжение питания. Для уменьшения частоты следует увеличить число логических элементов.

В рассмотренных здесь примерах входы

"Упр." служат для управления работой генератора.
Мультивибратор, схема которого изображена на рис. 6, а, в зависимости от периода входного сигнала работает или в ждущем или в автоколебательном синхронизируемом режиме. Запуск мультивибратора осуществляется низким логическим уровнем или замыканием, например кнопкой, управляющей цепи с общим проводом.

Рис. 6. Схема (а) и диаграмма напряжений (б) генератора, работающего в зависимости от
длительности управляющих импульсов или в ждущем (верхние диаграммы), или в
автоколебательном синхронизируемом (нижние диаграммы) режимах

Элементы D1.2 и D1.3 образуют RS-триггер, служащий электронным ключом — при отсутствии входного сигнала (что соответствует подаче на вход "Упр." логической 1), он блокирует работу устройства. Если на управляющий вход подать логический 0, то триггер изменяет свое состояние. Элемент D1.2 при этом начинает работать как инвертор, образующий с элементами D1.1 и D1.4 импульсный генератор с автоматическим запуском. Если длительность отрицательного управляющего импульса Ти больше, чем постоянная времени цепи R1C1*3, то генерируются, по крайней мере, два выходных импульса с периодом, примерно равным 3R1C1 Причем начало первого из них совпадает с фронтом отрицательного входного импульса, а последний импульс независимо от момента окончания разрешающего сигнала имеет такую же длительность, что и предыдущие (равную R1 * C1).

При длительности управляющего импульса Ти меньшей, чем 3*R1C1 устройство генерирует импульс (Длительность которого равна R1C1) на каждый отрицательный управляющий импульс.

Сопротивление резистора R1 может быть в пределах 330 Ом—1,5 кОм, а емкость конденсатора С1 должна быть не меньше 50 пФ. Например, при сопротивлении резистора R = 1 кОм и емкости конденсатора С1 =100 мкФ генерируется импульс длительностью 100 мс или последовательность этих импульсов (в зависимости от периода входного сигнала).

Рис. 7. Схема генератора, в котором длительность последнего генерируемого
импульса не зависит от момента окончания управляющего сигнала

Генератор по схеме, приведенной на рис. 7, формирующий на выходе целое число периодов импульсов, также запускается фронтом отрицательного управляющего импульса. Элементы D1.2 и D1.3 образуют RC-генератор прямоугольных импульсов, частоту следования которых от 4 до 25 кГц можно регулировать переменным резистором R2. При поступлении логического 0 на вход элемента D1.1 с его выхода на все остальные элементы подается разрешающий сигнал — логическая 1. Поэтому перепад напряжения на выходе устройства формируется одновременно (не считая времени задержек переключения элементов) с фронтом отрицательного импульса на управляющем входе элемента D1.1. Даже если этот сигнал прекращается (т. е. на вход "Упр." подается логическая 1) при низком логическом уровне на выходе генератора, то, благодаря цепи обратной связи, на выходе элемента D1.1 сохраняется логическая 1, и устройство генерирует последний импульс полной длительности. Поэтому период всегда будет равен предыдущему.

Обычно во времязадающйе цепи мультивибраторов включают конденсаторы большой емкости и резисторы малых сопротивлений, что ограничивает диапазон плавной регулировки частоты следования импульсов. В генераторе, схема которого изображена на рис. 8. а, подобный недостаток устранен включением на вход микросхемы транзисторного ключа с малыми входным током и порогом переключения. Частота такого мультивибратора может изменяться в 200 раз(!). Генерация происходит при подаче на вход "Упр." логической 1.

Рис. 8. Схема (а) и диаграммы напряжений (б) генератора, частоту которого
переменным резистором можно изменять в 200 раз

Рассмотрим процесс генерации, начиная с момента начала зарядки конденсатора С1 (см. рис. 8, б). В этот момент транзистор V1 открыт и напряжение на его коллекторе близко к нулю. На другом входе элемента D1.1 — логическая 1, на выходе элемента D1.2 — логический 0. Конденсатор С1 заряжается выходным током элемента D1.1 через резистор R1 и параллельно соединенные входное сопротивление транзистора V1 и резисторы R2, R3. По мере зарядки конденсатора C1 напряжение на нем экспоненциально возрастает, а ток через него уменьшается по такому же закону. Коллекторный ток транзистора V1 при этом также уменьшается, и когда он станет равным входному току переключения элемента D1.1, на выходе этого элемента будет логический 0, который переключит элемент D1.2. Отрицательный перепад напряжения в точке а, закрывающий в этот момент транзистор, образуется за счет прохождения фронта импульса с выхода элемента D1.1 через конденсатор С1.

Дальше происходит разряд конденсатора через резисторы Rl — R3 выходным током логических элементов. Когда напряжение в точке а станет достаточным для открывания транзистора, то он откроется. При этом изменится состояние элемента D1.1, начнется зарядка конденсатора С1, и цикл повторится.

Рис. 9. Схема (а) и диаграммы напряжении (б) генератора с полевым транзистором

Время зарядки и время разрядки конденсатора, определяющие период и длительность выходных импульсов, при статическом коэффициенте передачи тока транзистора около 100 определяют по приближенным формулам t3 ≈ 3,5*10-3 C 1, tp ≈ 6*10-7 (R 2 + R 3)C 1 (емкость выражена в пикофарадах, сопротивление в омах, время в микросекундах).

При использовании элементов, указанных на принципиальной схеме, и суммарного сопротивления резисторов R2 и R3 20 кОм время зарядки составляет около 5,7 мкс, а время разрядки — около 18 мкс. Резистор R1 позволяет улучшить форму фронта импульсов. (В принципе, этого резистора может и не быть.)

Мультивибратор способен генерировать импульсы как с малой (меньше 2), так и с большой (больше 100) скважностью. При изменении емкости конденсатора С1 от 20 пФ до 10 мкФ частота выходных колебаний изменяется от 3 МГц до долей герца.

Частоту генератора, собранного по схеме, приведенной на рис, 9, а, можно изменять в 50 тысяч раз. Это достигнуто применением полевого транзистора. При относительно небольших емкостях конденсатора возможно получение ультранизких частот. Например, при максимальных значениях, указанных на схеме элементов, частота выходных импульсов генератора равна 0,5 Гц.

Принцип работы устройства иллюстрирует рис. 9, б. В моменты времени, когда элемент D1.3 переходит в состояние с логической 1 на выходе, отрицательный перепад напряжения с выхода элемента D1.2 проходит через конденсатор С1 и в точке а образуется отрицательное напряжение. Затем конденсатор начинает перезаряжаться через резистор R1 выходным током элементов D1.2 и D1.3 (входным током полевого транзистора можно пренебречь). Изменение напряжения на затворе приводит к соответствующему изменению напряжения в точке ,б. Й когда это напряжение достигает порога переключения элемента D1.1, он изменяет свое состояние и тем самым переключает остальные логические элементы генератора.

Рис. 10. Схема генератора с кварцевой стабилизацией частоты

В периоды времени, когда на выходе устройства логический 0, конденсатор С1 разряжается до момента, когда напряжение в точке (б) уменьшится до порога переключения элемента D1.1, что вызывает последовательное переключение логических элементов (возврат их в исходное состояние).

Длительность выходных импульсов регулируют резистором R2. Резистор a служит для ограничения тока через транзистор. Частоту слеледования выходных импульсов можно опрееить по формуле f=1/ 2*R1*C1.В частности, если емкость конденсатора С1= 0,01 мкФ и сопротивление резистора R1 — 1 МОм частота импульсов равна 50 Гц; при емкости 150 пФ и сопротивлении 120 кОм — 22,5 кГц. Верхняя граница частоты генератора около 10 МГц. Для плавной регулировки частоты целесообразно, чтобы переменный резистор R1 был многооборотным.

Как уже указывалось выше, частота колебаний генераторов на микросхемах при изменении напряжения Питания и температуры окружающей среды изменяется довольно значительно. Если необходима высокая стабильность частоты, в генераторы вводят кварцевые резонаторы. Примером может служить генератор, собранный по схеме рис. 10. Он генерирует импульсы в диапазоне частот 0,1—2 МГц (в зависимости от используемого резонатора В1). При соответствующем кварце возможна генерация импульсов частотой от 1 до 10 МГц. В этом случае конденсатор С1 надо исключить, емкость конденсатора С2 должна быть 0,01 мкФ, а сопротивления резисторов по 470 Ом. Скважность генерируемых импульсов около 2.

В таком устройстве резисторы R1 и R2 обеспечивают устойчивый режим генерации, а элемент D1.3 выполняет функцию буферного каскада. Конденсатор С2 осуществляет развязку по постоянному току. Конденсатор С1 предотвращает высокочастотные колебания на фронтах и спадах импульсов, обусловленные высшими гармониками.

С. Минделевич

Смотрите также: Генератор-пробник на К155ЛА3


radiopolyus.ru

Одновибратор на логических элементах К155ЛА3

Одновибратором именуют генератор, вырабатывающий одиночные электрические импульсы. Алгоритм работы одновибратора таков: при поступлении на вход одновибратора электрического сигнала, схема выдает на выходе короткий импульс, продолжительность которого определяется номиналами RC цепи.

После окончания формирования выходного  импульса, одновибратор вновь возвращается в свое первоначальное состояние, и процесс повторяется при поступлении нового сигнала на его входе. Поэтому данный одновибратор еще именуют ждущим мультивибратором.

На практике применяется множество разновидностей одновибраторов, таких как одновибратор на транзисторах, операционных усилителях и одновибратор на логических элементах.

Описание работы одновибратора на логических элементах

Одновибратор состоит из двух логических элементов микросхемы К155ЛА3: первый из них применен в роли 2И-НЕ элемента, второй подключен как инвертор. Подача входного сигнала осуществляется посредством кнопки SA1. Кнопка в данной схеме применяется только в качестве имитации входного сигнала. В действующих же устройствах на данный вход обычно поступает сигнал с каких-либо узлов схемы.

Для наглядности работы одновибратора, к его выходу можно подключить светодиод через токоограничивающий резистор. Чтобы видеть свечение светодиода, нужно чтобы выходной импульс был достаточно продолжительный, поэтому выберем конденсатор емкостью 500 мкф.

Подадим питание и замерим стрелочным вольтметром напряжение на выводах логических элементов DD1.1 и DD1.2 микросхемы К155ЛА3. На выходе логического элемента DD1.1 микросхемы К155ЛА3 должен быть логический ноль (не более 0,4 вольта) и  единица (более 2,4 вольта) на его входе 2. Так же на выходе 6 логического элемента DD1.2 будет единица и соответственно единица на выводе 1  на DD1.1.

Подключив вольтметр к выводу 6 логического элемента DD1.2 , как уже было сказано до этого,  на нем лог. 1. Теперь нажмем кратковременно кнопку SA1. Стрелка вольтметра резко отойдет практически до нуля. Примерно через 1-2 секунды она опять стремительно примет исходное положение. По такому движению стрелки можно сделать вывод, что мы наблюдали сигнал низкого уровня.

Одновременно с этим процессом загорится и светодиод, подсказывая нам, что на выходе одновибратора появился одиночный импульс высокого уровня. Если параллельно конденсатору С1 подключить конденсатор такой же емкости, то мы заметим, что продолжительность импульса возросла вдвое. Так же изменяя сопротивление резистора R1 можно добиться изменения длительности импульса.

Подведем итог:  Чем выше емкость конденсатора C1 и сопротивление R1, тем продолжительнее выходной импульс вырабатываемый одновибратором на К155ЛА3.

В данной схеме одновибратора сопротивление R1 и емкость Cl представляют собой времязадающую RC цепь. При малых значениях C1 и R1 длительность импульса будет настолько короткой, что визуально обнаружить его с помощью вольтметра или светодиода не реально. В этом случае наличие импульса можно зафиксировать с помощью осциллографа или логического  пробника.

В  ждущем состоянии вывод 2 микросхемы К155ЛА3 никуда не подсоединен, поскольку контакты SA1 еще незамкнуты. По сути, на входе находится единица. Зачастую вход в таком случае соединяют с плюсом питания через сопротивление 1 кОм.

Из-за подключенного сопротивления R1, на входе логического элемента DD1.2 находится лог. 0, а на его выходе лог. 1. Поскольку на обоих выводах конденсатора лог. 0, он полностью разряжен.

В момент нажатия SA1, на вход 2 логического элемента DD1.1 поступает электрический сигнал  низкого уровня. Поэтому на выводе 3 логического элемента DD1.1 единица. Положительный фронт через C1 подается на вход DD1.2. Соответственно с выхода его логический 0 поступит на вход DD1.1 и он будет присутствовать там даже после отпускания кнопки.

Одновременно через резистор происходит заряд конденсатора. И по окончании заряда напряжение на резисторе упадет и это переведет выход элемента DD1.2 в лог. 1. Одновибратор вернется в исходное состояние — в ждущий режим.

Следует заметить, то входной сигнал (нажатие кнопки) должен быть меньше по продолжительности, чем выходной иначе выходных импульсов не будет.

Источник: «Энциклопедия начинающего радиолюбителя»,  Никулин С.А.

www.joyta.ru

Генераторы импульсов на элементах ТТЛ, КМОП и ЭСЛ

В принципе, электрических колебаний представляет собой один или несколько усилительных каскадов, охваченных обратной связью с частотно-зависимыми сопротивлениями, которые и обеспечивают генерацию на требуемой частоте. В качестве частотіно-задающих элементов генераторов используют RC, LC, RLC-цепи, а также пьезокерамические и кварцевые резонаторы.

Схема генератора с RC частотно-задающей цепью и временные диаграммы, поясняющие его работу, приведены на рис. 24. Принцип его работы основан на процессе зарядки-разрядки конденсатора С через резистор R. Через этот резистор осуществляется ООС по постоянному току, а через конденсатор—ПОС по переменному. Предположим, что в начальный момент конденсатор разряжен, на выходе элемента DD1.2 действует напряжение низкого уровня — начнется заряд конденсатора (рис. 24, участок а). По мере его зарядки напряжение на нем увеличивается, а на выходе элемента DDL1—уменьшается (рис. 24, участок б). Когда напряжение на выходе элемента DD1.1 станет соответствовать низкому уровіню, выходное напряжение элемента DD1.2 начнет увеличиваться. Этот прирост напряжения через конденсатор поступает на вход элемента DD1.1, что приводит к резкому уменьшению его выходного напряжения, значит, к резкому увеличению выходного напряжения элемента DD1.2, что, в свою очередь, приводит к резкому уменьшению напряжения на выходе элемента DD1.1 и т. д. Таким образом, устройство скачком переключается в другое состояние — с напряжением высокого уровня на выходе элемента DD1.2 (рис. 24, участок в),

С этого момента начнется перезаряд конденсатора, в результате «его напряжение на входе элемента DDil.l уменьшается; а на его выходе — увеличивается (рис. 24, участок г). Когда напряжение на выходе элемента DD1.1 достигает напряжения высокого уровня, устройство скачком переключается в исходное состояние и процесс повторяется.

В таком генераторе можно использовать элементы ТТЛ, КМОП и ЭСЛ, но, в зависимости от конкретных элементов, на нее накладываются определенные ограничения. Для элементов КМОП сопротивление резистора может быть от единиц килоом до десятков мегаом, а емкость конденсатора — от десятков пикофарад до сотен микрофарад, а вот для элементов ТТЛ сопротивление резистора ограничено более узкими рамками, о чем уже говорилось ранее.

Рис. 24. Генератор с RC частотно-задающей цепью (а) и графики (б), поясняющие его работу

Частоту , генерации можно определить по приближенной формуле

Учитывая, что элементы КМОП имеют ограничения по частотному диапазону, рекомендовать их можно для генераторов на частоты до 2...4 МГц. Для более высокочастотных генераторов следует применять элементы ТТЛ или ЭСЛ. Перестройку частоты генераторов можно осуществлять с помощью переменных резистора или конденсатора. Температурная стабильность таких генераторов невысока и для ее повышения используют конденсаторы с определенным ТКЕ.

Устройство, собранное по схеме рис. 24, генерирует прямоугольные импульсы со скважностью примерно равной 2 (скважность — отношение периода следования импульсов к их длительности). Если же скважность импульсов необходимо изменять, сохраняя при этом частоту их следования, надо синхронно изменять цепи зарядки и разрядки конденсатора. Как это реализовать, показано на рис. 26. Здесь для регулировки скважности импульсов используют потенциометр R1. В среднем положении его движка, когда время зарядки и разрядки конденсатора СІ примерно одинаково, скважность близка к 2. При перемещении движка в ту или иную сторону время зарядки будет, например, уменьшаться, а разрядки — увеличиваться, это приведет к изменению скважности, при этом частота следования будет изменяться незначительно. В таком генераторе можно регулировать скважность примерно от 1,01 до 100.

Если необходимо получить сигнал синусоидальной формы или повысить стабильность частоты, то в часготно-задающей цепи надо использовать LC-контур, который будет выполнять еще и фильтрующую функцию, подавляя гармонические составляющие высших порядков. Схема такого варианта генератора [8] приведена на рис. 26,а, его удобно использовать для частот более 3 ... 5 МГц. Сигнал снимают с катушки L2, он имеет синусоидальную форму. Катушка U1 имеет отвод от середины, а соотношение витков этих катушек должно быть как 1 :7. Схема генератора на элементе ТТЛ с частогно-задающей цепью на последовательном LC-контуре приведена на рис. 26,б [43].

Простой генератор на элементах КМОП и LC-контуре можно собрать по схеме рис. 27. В нем через резистор R1 и катушку индуктивности L1 осуществляется ООС ло постоянному току, благодаря чему при изменении питающего напряжения обеспечивается устойчивая работа генератора в широких пределах. Так как входное сопротивление элемента составляет сотни килоом — единицы мегаом, он слабо шунтирует контур C1L1C2, поэтому добротность контура будет достаточно большой, что обеспечивает хорошую форму сигнала. Чтобы нагрузка не оказывала существенного влияния на частоту генератора, связь с ней осуществляется через конденсатор СЗ небольшой емкости.

Рис. 25. Принципиальная схема генератора с регулируемой скважностью импульсов

Общий недостаток описанных выше генераторов—сравнительно невысокая стабильность генерируемой частоты (10-3... 10-4 1/град). Для повышения стабильности применяют пьезокерамические и кварцевые резонаторы, включая их, например, вместо конденсатора в цепи ПОС (см. рис. 24), чем обеспечивают мягкий режим самовозбуждения. Однако при таком способе включения резонаторов возможно возникновение генерации на частотах, отличных от собственной частоты резонатора. Чтобы этого не произошло, используют различные способы фазовой или амплитудной селекции нужной частоты.

На рис. 28 приведена схема генератора с кварцевой стабилизацией частоты в диапазоне 2 ... 10 МГц [9, 10]. Здесь конденсаторы С1 и G2 служат для подавления возможной паразитной генерации на частотах, отличных от частоты кварцевого резонатора BQ1. Для устранения влияния нагрузки на частоту генератора применен буферный элемент DD1.3. Настройка заключается в установке генерируемой частоты с помощью подбора емкости конденсатора СЗ. В табл. 2 приведены данные элементов для разных диапазонов частот. 

Рис. 26. Принципиальные схемы LC-генераторов на элементах ТТЛ

Для повышения добротности контура емкость конденсатора С2 следует выбирать в 2—4 раза больше емкости конденсатора С1. Частоту генерации можно определить по формуле:

 

Рис. 27. Принципиальная схема генератора на LC-контуре и элементе КМОП

 

Рис. 28. Генератор на элементах ТТЛ с кварцевой стабилизацией частоты

 

Генератор с кварцевой стабилизацией частоты можно собрать всего на одном элементе КМОП (рис. 29). В нем резистор R1 выводит элемент DD1.1 на линейный участок передаточной характеристики. Резистор R2 выполняет одновременно несколько функций: обеспечивает дополнительный сдвиг фаз в цепи ООС по переменному току, предотвращает возможность паразитного самовозбуждения, снижает мощность, рассеиваемую на кварцевом резонаторе, что благотворно сказывается на стабильности частоты, а также ослабляет шунтирующее действие элемента на кварцевый резонатор, что также повышает стабильность частоты. Благодаря этому генератор на частоту 500 кГц, собранный на элементе микросхемы К176ЛА7, имеет нестабильность частоты не более ±0,1 ... 0,5-10_6 при изменении напряжения источника питания в пределах ±10 %.

Сопротивление резистора R1 может быть 0,1 ... 20 МОм, причем при большем его сопротивлении увеличивается влияние паразитных наводок, а при меньшем — ухудшается стабильность частоты. Сопротивление резистора R2 может быть от единиц до десятков килоом. Конденсаторы С1 и С2 емкостью от нескольких пикофарад до долей микрофарады должны быть с минимально возможным ТКЕ. Для повышения стабильности іна выходе генератора полезно установить буферный каскад на элементе DD1.2.

Рис. 29. Генератор на элементах КМОП с кварцевой стабилизацией частоты

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.

www.qrz.ru

ПРОСТОЙ ГЕНЕРАТОР ЗВУКА НА МИКРОСХЕМЕ

   Такое устройство будет очень полезно при испытаниях звуковых цепей усилителей ресиверов, телевизоров и другой промышленной и самодельной аппаратуры. Схема генератора приводится по книге В. Г. Борисова «Юный радиолюбитель» (с 145-146 в 8-м издании), с незначительными изменениями.

Схема генератора ЗЧ

   Генератор собран на микросхеме К155ЛА3 (можно использовать К555ЛА3), которая представляет собой 4 элемента 2И-НЕ. Непосредственно генератор образуют последовательно соединенные логические элементы DD1.1, DD1.2, DD1.3, включенные инверторами. Конденсатор C1, емкостью 0,47 мкФ, создает положительную обратную связь между выходом DD1.2 и входом DD1.1. В принципе, сигнал можно снимать с выхода DD1.3, элемент DD1.4 просто их инвертирует. Частоту импульсов можно менять резистором переменным R1. Резистор R2 служит регулятором уровня выходного сигнала. Сопротивление резистора R1 680 Ом, R2 10 кОм, переменные резисторы могут быть любого типа. При указанных в схеме параметрах радиодеталей, частоту импульсов можно менять в пределах 500 – 5000 Гц. Диод VD1 служит для защиты от подачи питания неправильной полярности, в качестве него подойдет любой маломощный диод, например Д220. Схема смонтирована на небольшой макетной плате. Но благодаря малому количеству деталей можно выполнить схему навесным монтажом.

Генератор в сборе

   Штатное напряжение питания микросхем К155 и К555 составляет 5 В, но генератор работоспособен при питании схемы от «квадратной» батареи напряжением 4,5 В (батарея типа 3336 по старой номенклатуре), падение напряжения на диоде VD1 не влияет на работоспособность устройства. Устройство можно использовать для проверки работы усилителей звуковой частоты.

el-shema.ru

Синусоидальный генератор на цифровой микросхеме

Генераторы

 Несомненным достоинством предлагаемой схемы является её простота. Несмотря на свои необычный внешний вид, схема вполне надежна, автор пользуется ею уже около 2 лет.

 

Основным элементом генератора является микросхема К155ЛА3. Кольцевое соединение трех инверторов DD1.1...DD1.3 представляет собой неустойчивую структуру, склонную к возбуждению на максимальной рабочей частоте. Резистор R1 задает рабочую точку микросхемы вблизи порога переключения. Благодаря наличию у ТТЛ-схем “мертвой зоны” (диапазона напряжений между порогами логического “0” и логической “1”) ИМС переходит в активный режим. Контур L1-C1 создает условия для возбуждения на собственной резонансной частоте. Добротность контура большого значения не имеет, схема уверенно запускается и с низкодобротными контурами.

Стабильность частоты зависит исключительно от стабильности контура и достаточно высока. Амплитуда выходного напряжения зависит от добротности контура и может достигать 2,5 В. При максимальной частоте (около 10...15 МГц) амплитуда импульсов раза в 2 меньше, и микросхема начинает греться.

Выходной сигнал можно снимать как с катушки L1, так и с конденсатора С1. Однако лучше снимать его с катушки, в этом случае емкость нагрузки (даже весьма значительная) оказывает минимальное влияние на рабочую частоту. Несмотря на это, нагрузку лучше подключать через буфер. Это может быть эмиттерный или истоковый повторитель, буфер на ОУ или катушка связи — все зависит от выходной частоты. Очевидно, что на частоте 1 кГц следует отдать предпочтение ОУ, а на 5 МГц — катушке связи.

Налаживание схемы сводится к подбору рабочей точки ИМС при помощи резистора R1. Для этого к выходу генератора подключают осциллограф и, вращая R1, добиваются появления устойчивой генерации с максимальной амплитудой. R1 лучше взять многооборотный, типа СП3-39.

Устройство работоспособно с любыми инверторами ТТЛ- и ТТЛШ-серий. От применения КМОП-микросхем лучше отказаться, т.к. добиться устойчивой генерации на них практически невозможно.

А.УВАРОВ,

 


radiopolyus.ru

Микросхемы.

Микросхемы ТТЛ (74...).

На рисунке показана схема самого распространенного логического элемента — основы микросхем серии К155 и ее зарубежного аналога — серии 74. Эти серии принято называть стандартными (СТТЛ). Логический элемент микросхем серии К155 имеет среднее быстродействие tзд,р,ср.= 13 нс. и среднее значение тока потребления Iпот = 1,5...2 мА. Таким образом, энергия, затрачиваемая этим элементом на перенос одного бита информации, примерно 100 пДж.

Для обеспечения выходного напряжения высокого уровня U1вых. 2,5 В в схему на рисунке потребовалось добавить диод сдвига уровня VD4, падение напряжения на котором равно 0,7 В. Таким способом была реализована совместимость различных серий ТТЛ по логическим уровням. Микросхемы на основе инвертора, показанного на рисунке (серии К155, К555, К1533, К1531, К134, К131, К531), имеют очень большую номенклатуру и широко применяются.

Динамические параметры микросхем ТТЛ серии

ТТЛ серия Параметр Нагрузка
Российские Зарубежные Pпот. мВт. tзд.р. нс Эпот. пДж. Cн. пФ. Rн. кОм.
К155 КМ155 74 10 9 90 15 0,4
К134 74L 1 33 33 50 4
К131 74H 22 6 132 25 0,28
К555 74LS 2 9,5 19 15 2
К531 74S 19 3 57 15 0,28
К1533 74ALS 1,2 4 4,8 15 2
К1531 74F 4 3 12 15 0,28

При совместном использовании микросхем ТТЛ высокоскоростных, стандартных и микромощных следует учитывать, что микросхемы серии К531 дают увеличенный уровень помех по шинам питания из-за больших по силе и коротких по времени импульсов сквозного тока короткого замыкания выходных транзисторов логических элементов. При совместном применении микросхем серий К155 и К555 помехи невелики.

Взаимная нагрузочная способность логических элементов ТТЛ разных серий

Нагружаемый
выход
Число входов-нагрузок из серий
К555 (74LS) К155 (74) К531 (74S)
К155, КM155, (74) 40 10 8
К155, КM155, (74), буферная 60 30 24
К555 (74LS) 20 5 4
К555 (74LS), буферная 60 15 12
К531 (74S) 50 12 10
К531 (74S), буферная 150 37 30

Выходы однокристальных, т. е. расположенных в одном корпусе, логических элементов ТТЛ, можно соединять вместе. При этом надо учитывать, что импульсная помеха от сквозного тока по проводу питания пропорционально возрастет. Реально на печатной плате остаются неиспользованные входы и даже микросхемы (часто их специально «закладывают про запас») Такие входы логического элемента можно соединять вместе, при этом ток Ioвх. не увеличивается. Как правило, микросхемы ТТЛ с логическими функциями И, ИЛИ потребляют от источников питании меньшие токи, если на всех входах присутствуют напряжения низкого уровня. Из-за этого входы таких неиспользуемых элементов ТТЛ следует заземлять.

Статические параметры микросхем ТТЛ

Параметр Условия измерения К155 К555 К531 К1531
Мин. Тип. Макс. Мин. Тип. Макс. Мин. Тип. Макс. Мин. Макс.
U1вх, В
схема
U1вх или U0вх Присутствуют на всех входах 2 2 2 2
U0вх, В
схема
0,8 0,8 0,8
U0вых, В
схема
Uи.п.= 4,5 В 0,4 0,35 0,5 0,5 0,5
I0вых= 16 мА I0вых= 8 мА I0вых= 20 мА
U1вых, В
схема
Uи.п.= 4,5 В 2,4 3,5 2,7 3,4 2,7 3,4 2,7
I1вых= -0,8 мА I1вых= -0,4 мА I1вых= -1 мА
I1вых, мкА с ОК
схема
U1и.п.= 4,5 В, U1вых=5,5 В 250 100 250
I1вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, U1вых= 2,4 В на входе разрешения Е1 Uвх= 2 В 40 20 50
I0вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, Uвых= 0,4 В, Uвх= 2 В -40 -20 -50
I1вх, мкА
схема
U1и.п.= 5,5 В, U1вх= 2,7 В 40 20 50 20
I1вх, max, мА U1и.п.= 5,5 В, U1вх= 10 В 1 0,1 1 0,1
I0вх, мА
схема
U1и.п.= 5,5 В, U0вх= 0,4 В -1,6 -0,4 -2,0 -0,6
Iк.з., мАU1и.п.= 5,5 В, U0вых= 0 В -18 -55 -100 -100 -60 -150

www.microshemca.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о