Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Действующие значения тока и напряжения формулы. Эффективное, действующее напряжение, сила тока

Как известно, переменная э.д.с. индукции вызывает в цепи переменный ток. При наибольшем значении э.д.с. сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального значения, имеются приборы, с помощью которых можно замерить силу переменного тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и могут быть такими же, как и при постоянном токе. К таким действиям можно отнести тепловое. К примеру, переменный ток протекает через проводник с заданным сопротивлением. Через определенный промежуток времени в этом проводнике выделится какое-то количество тепла. Можно подобрать такое значение силы постоянного тока, чтобы на этом же проводнике за то же время выделялось этим током такое же количество тепла, что и при переменном токе. Такое значение постоянного тока называется действующим значением силы переменного тока.

В данное время в мировой промышленной практике широко распространен трехфазный переменный ток , который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными э.д.с. с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода. Каждая такая цепь называется фазой.

Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора. Пример такой системы показан на рис. 3.4.б.

Согласно вышеперечисленным условиям, выясняется, что э.д.с., возникающая во втором генераторе, не будет успевать измениться, по сравнению с э.д.с. первого генератора, т. е. она будет опаздывать на 120°. Э.д.с. третьего генератора также будет опаздывать по отношению ко второму на 120°.

Однако такой способ получения переменного трехфазного тока весьма громоздкий и экономически невыгодный. Чтобы упростить задачу, нужно все статорные обмотки генераторов совместить в одном корпусе. Такой генератор получил название генератор трехфазного тока (рис. 3.4.а). Когда ротор начинает вращаться, в каждой обмотке возникает


а) б)

Рис. 3.4. Пример трехфазной системы переменного тока

а) генератор трёхфазного тока; б) с тремя генераторами;

изменяющаяся э.д.с. индукции. Из-за того что происходит сдвиг обмоток в пространстве, фазы колебаний в них также сдвигаются относительно друг друга на 120°.

Для того чтобы подсоединить трехфазный генератор переменного тока к цепи, нужно иметь 6 проводов. Для уменьшения количества проводов обмотки генератора и приемников нужно соединить между собой, образовав трехфазную систему. Данных соединений два: звезда и треугольник. При использовании и того и другого способа можно сэкономить электропроводку.

Соединение звездой

Обычно генератор трехфазного тока изображают в виде 3 статорных обмоток, которые располагаются друг к другу под углом 120°. Начала обмоток принято обозначать буквами А, В, С , а концы – X, Y, Z . В случае, когда концы статорных обмоток соединены в одну общую точку (нулевая точка генератора), способ соединения называется «звезда». В этом случае к началам обмоток присоединяются провода, называемые линейными (рис. 3.5 слева).


Точно так же можно соединять и приемники (рис. 3.5., справа). В этом случае провод, который соединяет нулевую точку генератора и приемников, называется нулевой. Данная система трехфазного тока имеет два разных напряжения: между линейным и нулевым проводами или, что то же самое, между началом и концом любой обмотки статора. Такая величина называется фазным напряжением (). Поскольку цепь трехфазная, то линейное напряжение будет в

v3 раз больше фазного, т. е.: Uл = v3Uф.

Рассмотрим следующую цепь.

Она состоит из источника переменного напряжения, соединительных проводов и некоторой нагрузки. Причем индуктивность нагрузки очень мала, а сопротивление R очень велико. Эту нагрузку мы раньше называли сопротивлением. Теперь будем называть её активным сопротивлением.

Активное сопротивление

Сопротивление R называют активным, так как если в цепи будет нагрузка с таким сопротивлением, цепь будет поглощать энергию, поступающую от генератора. Будем считать, что напряжение на зажимах цепи подчиняется гармоническому закону:

U = Um*cos(ω*t).

Мгновенное значение силы тока можем вычислить по закону Ома, оно будет пропорционально мгновенному значению напряжения.

I = u/R = Um*cos(ω*t)/R = Im*cos(ω*t).

Сделаем вывод: в проводнике с активным сопротивлением разность фаз между колебаниями напряжения и силы тока отсутствует.2) = Um/√2.

Теперь подставим действующие значения силы тока и напряжения, в выражение Im = Um/R. Получим:

Данное выражение является законом Ома для участка цепи с резистором, по которому течет переменный ток. Как и в случае механических колебаний, в переменном токе нас мало будут интересовать значения силы тока, напряжении в какой-то отдельный момент времени. Гораздо важнее будет знать общие характеристики колебаний – такие, как амплитуда, частота, период, действующие значения силы тока и напряжения.

Кстати, стоит отметить, что вольтметры и амперметры, предназначенные для переменного тока, регистрируют именно действующие значения напряжения и силы тока.

Еще одним преимуществом действующих значений перед мгновенными является то, что их можно сразу использовать для вычисления значения средней мощности P переменного тока.

,

После подстановки значения тока i и последующих преобразований получим, что действующее значение переменного тока равно:

Аналогичные соотношения могут быть получены также для напряжения и ЭДС:

Большинство электроизмерительных приборов измеряют не мгновенные, а действующие значения токов и напряжений.

Учитывая, например, что действующее значение напряжения в нашей сети составляет 220В, можно определить амплитудное значение напряжения в сети: U m =U Ö2=311В. Соотношение между действующим и амплитудным значениями напряжений и токов важно учитывать, например, при проектировании устройств с применением полупроводниковых элементов.

Действующее значение переменного тока

Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел.

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются

периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, – периодом Т. Для периодического тока имеем

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i – мгновенное значение тока ;

u – мгновенное значение напряжения ;

е – мгновенное значение ЭДС ;

р – мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом

m ).

Амплитуда тока;

Амплитуда напряжения;

Амплитуда ЭДС.

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

,

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е 1 и е 2 соответствуют уравнения:

Значения аргументов синусоидальных функций и называются фазами синусоид, а значение фазы в начальный момент времени (t =0): и начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называют угловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть , где f– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют

углом сдвига фаз .

Для синусоидальных ЭДС е 1 и е 2 угол сдвига фаз:

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное ) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е 1 и е 2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токов и двух ветвей:

Каждый из этих токов синусоидален и может быть представлен уравнением

Результирующий ток также будет синусоидален:

Определение амплитуды и начальной фазы этого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин. Значительно проще это осуществляется с помощью векторной диаграммы. На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов дляt =0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

.

Построение векторной диаграммы в масштабе позволяет определить значения и из диаграммы, после чего может быть записано решение для мгновенного значения путем формального учета угловой частоты: .

Действующее и среднее значения переменного тока и напряжения.

Среднее или среднеарифметическое значение Fcp произвольной функции времени f (t )за интервал времени Т оп­ределяется по формуле:

Численно среднее значение Fср равно высоте прямоугольника, равновели­кого по пло­щади фигуре, ограниченной кривой f (t ), осью t и преде­лами интег­ри­рования 0 – Т (рис. 35).

Для синусоидальной функции среднее значение за полный период Т (или за целое число полных периодов) равно нулю, так как площади положи­тельной и отрицательной по­луволн этой функции равны. Для переменного си­нусоидаль­ного напряжения определяют среднее по модулю значение за полный период Т или среднее значение за половину периода (Т /2) между двумя нулевыми значе­ниями (рис. 36) :

Ucp = Um∙ sinwt dt = 2R . Таким образом, количественные параметры электрической энергии на переменном токе (количество энергии, мощность) определяются действующими значениями напряжения U и тока I . По этой при­чине в электроэнергетике все тео­ретические расчеты и экспериментальные из­мерения принято выполнять для действую­щих значений токов и напряжений. В радиотехнике и в технике связи, наобо­рот, оперируют максимальными значе­ниями этих функций.

Приведенные выше формулы для энергии и мощности переменного тока полностью совпадают с аналогичными формулами для постоянного тока. На этом основании можно ут­верждать, что энергетически постоянному току экви­валентно действующее значение пере­менного тока.

Что берется за действующее значение силы переменного тока и переменного напряжения

что берется за действующее значение силы переменного тока и переменного напряжения?

Боевое яйцо

Переменный ток, в широком смысле электрический ток, изменяющийся во времени. Обычно в технике под П. т. понимают периодический ток, в котором среднее значение за период силы тока и напряжения равно нулю.

Переменные токи и переменные напряжения постоянно изменяются по величине. В каждое другое мгновение у них другая величина. Возникает вопрос, как же их измерять? Для их измерения введено понятие действующее значение.

Действующим или эффективным значением переменного тока называют величину такого постоянного тока, который по своему тепловому действию равноценен данному переменному току.

Действующим или эффективным значением переменного напряжения называют величину такого постоянного напряжения, которое по своему тепловому действию равноценно данному переменному напряжению.

Все переменные токи и напряжения в технике измеряются в действующих значениях. Приборы измеряющие переменные величины показывают их действующее значение.

Вопрос: напряжение в электросети 220 В, что это значит?

Это значит, что источник постоянного напряжения с напряжением 220 В оказывает такое же тепловое действие как и электросеть.

Действующее значение тока или напряжения синусоидальной формы в 1,41 раз меньше амплитуды этого тока или напряжения.

Пример: Определить амплитуду напряжения электросети с напряжением 220 В.

Амплитуда равна 220 * 1,41=310,2 В.

Значения действующего напряжения и силы тока. Определение. Соотношение с амплитудой для разной формы. (10+)

Понятие эффективных (действующих) значений напряжения и силы тока

Когда мы говорим о переменных напряжении или силе тока, особенно сложной формы, то встает вопрос о том, как их измерять. Ведь напряжение постоянно меняется. Можно измерять амплитуду сигнала, то есть максимум модуля значения напряжения. Такой метод измерения нормально подходит для сигналов относительно гладкой формы, но наличие коротких всплесков портит картину. Еще одним критерием выбора способа измерения является то, для каких целей делается измерение. Так как в большинстве случаев интерес представляет мощность, которую может отдать тот или иной сигнал, то применяется действующее (эффективное) значение.

Вашему вниманию подборка материалов:

Действующее (эффективное) значение для сигналов стандартной формы

Синусоидальный сигнал (синус, синусоида) [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 2 ]

Прямоугольный сигнал (меандр) [Действующее значение ] = [Амплитудное значение ]

Треугольный сигнал [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 3 ]

Закон Ома и мощность для действующих значений напряжения и силы тока

Эффективное значение напряжения измеряется в Вольтах, а силы тока в Амперах.

Для эффективных значений верен закон Ома: = / [Сопротивление нагрузки, Ом ]

[Рассеиваемая на омической нагрузке мощность, Вт ] = [Действующее значение силы тока, А ] * [Действующее значение напряжения, В ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Микроконтроллеры – пример простейшей схемы, образец применения. Фузы (…
Самая первая Ваша схема на микро-контроллере. Простой пример. Что такой фузы?…

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….

Силовой резонансный фильтр для получения синусоиды от инвертора…
Для получения синусоиды от инвертора нами был применен самодельный силовой резон…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…


Принцип работы, самостоятельное изготовление и наладка импульсного силового прео…

Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…

Электрическое напряжение. Амплитуда сигнала. Амплитудное. Вольт. Volt….
Понятие напряжения и разности электрических потенциалов. Амплитуда. Единицы изме…


>> Активное сопротивление. Действующие значения силы тока и напряжения

§ 32 АКТИВНОЕ СОПРОТИВЛЕНИЕ. ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ СИЛЫ ТОКА И НАПРЯЖЕНИЯ

Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения.

Сила тока в цени с резистором. Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением.

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряже ния (рис. 4.11), а амплитуда силы тока определяется равенством

Мощность в цепи с резистором. В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощ ностъ тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найчи среднюю мощность за один период. Под средней за период, мощностью переменного тока понимают отношение суммарной энергии , поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

P = I 2 R. (4.18)

На протяжении очень малого интервала времени переменный ток можно считать практически постоянным.

Поэтому мгновенная моoность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

P = i 2 R. (4.19)

Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение

График зависимости мгновенной мощности от времени изображен на рисунке 4.12, а. Согласно графику (рис. 4.12, б.), на протяжении одной восьмой периода, когда , мощность в любой момент времени больше, чем . Зато на протяжении следующей восьмой части периода, когда cos 2t

Средняя мощность равна, таким образом, первому члену в формуле (4.20):


Действующие значения силы тока и напряжения .
Из формулы (4.21) видно, что величина есть среднее за период значение квадрата силы тока:

Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы неременного тока. Действующее зртачепие силы неременного тока обозначается через I:

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты , что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично действующему значению силы тока:

Заменяя в формуле (4.17) амплитудные значения силы тока и напряжения на их действующие значения, получаем

Это закон Ома для участка цепи переменного тока с резистором.

Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Кроме того, действующие значения удобнее мгновенных значений еще и потому, что именно они непосредственно определяют среднее значение мощности Р переменного тока:

P = I 2 R = UI.

Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

1. Чему равна амплитуда напряжения в осветительных сетях переменного тока, рассчитанных на напряжение 220 В!
2. Что называют действующими значениями силы тока и напряжения!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. – 17-е изд., перераб. и доп. – М. : Просвещение, 2008. – 399 с: ил.

Библиотека с учебниками и книгами на скачку бесплатно онлайн , Физика и астрономия для 11 класса скачать , школьная программа по физике, планы конспектов уроков

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Действительное значение тока. Эффективное, действующее напряжение, сила тока. Значение

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, – периодом Т. Для периодического тока имеем

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i – мгновенное значение тока ;

u – мгновенное значение напряжения ;

е – мгновенное значение ЭДС ;

р – мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ).

Амплитуда тока;

Амплитуда напряжения;

Амплитуда ЭДС.

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е 1 и е 2 соответствуют уравнения:


Значения аргументов синусоидальных функций иназываютсяфазами синусоид, а значение фазы в начальный момент времени (t =0): и –начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называютугловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть, гдеf– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз .

Для синусоидальных ЭДС е 1 и е 2 угол сдвига фаз:

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное ) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е 1 и е 2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.


Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токовидвух ветвей:

При расчете цепей переменного тока обычно пользуются понятием действующих (эффективных) значений переменного тока, напряжения и э. д. с.

Действующие значения тока, напряжения и э. д. с. обозначаются прописными буквами .

На шкалах измерительных приборов и технической документации также указываются действующие значения величин.

Действующее значение переменного тока равно значению такого эквивалентного постоянного тока, который, проходя через то же сопротивление, что и переменный ток, выделяет в нем за период то же количество тепла.

Количество тепла, выделенное переменным током в со противлении за бесконечно малый промежуток времени

а за период переменного тока Т

Приравняв Полученное выражение количеству тепла выделенному в том же сопротивлении постоянным током за то же время Т, получим:

Сократив общий множитель , получим действующее значение тока

Рис. 5-8. График переменного тока и квадрата тока.

На рис. 5-8 построена кривая мгновенных значений тока i и кривая квадратов мгновенных значений Площадь, ограниченная последней кривой и осью абсцисс, представляет собой в некотором масштабе величину, определяемую выражением Высота прямоугольника равновеликого площади, ограниченной кривой и осью абсцисс, равная среднему значению ординат кривой представляет собой квадрат действующего значения тока

Если ток изменяется по закону синуса, т. е.

Аналогично для действующих значений синусоидальных напряжений и э. д. с. можно написать:

Кроме действующего значения тока и напряжения, иногда пользуются еще понятием среднего значения тбка и напряжения.

Среднее значение синусоидального тока за период равно нулю, так как в течение первой половины периода определенное количество электричества Q проходит через поперечное сечение проводника в прямом направлении. В течение второй половины периода то же количество электричества проходит через сечение проводника в обратном направлении. Следовательно, количество электричества, прошедшее через сечение проводника за период, равно нулю, равно нулю и среднее за период значение синусоидального тока.

Поэтому среднее значение синусоидального тока вычисляют за полупериод, в течение которого ток остается положительным. Среднее значение тока равно отношению количества электричества, прошедшего через сечение проводника за половину периода, к продолжительности этого полупериода.

Лекции по ТОЭ/ №13 Действующее значение переменного тока.

Понятие действующего значения тока вводится в связи с необходимостью производства измерений. Что измерять у переменного тока? Если бы мы имели дело только с синусоидами – кривыми одной формы, то можно было бы измерять амплитуды. Но на практике встречаются самые разные кривые, и может оказаться так, что два различных по форме тока имеют одинаковые амплитуды, хотя очевидно, что на электрическую цепь они будут оказывать разное воздействие.

Поэтому наиболее целесообразно оценивать величину тока по той работе, которую он совершает. При такой оценке действие переменного тока сравнивается с аналогичным действием постоянного тока. Например, если некоторый переменный ток выделяет на участке цепи такое же количество тепла, что и постоянный ток силой 10 ампер, то говорят, что величина этого переменного тока составляет 10 ампер. Это значение тока и называют действующим.

Итак, действующим значением переменного тока называется численное значение такого постоянного тока, который за время, равное одному периоду, выделяет в сопротивлении такое же количество тепла, что и ток переменный..

Таким образом, для оценки величины переменного тока мы должны сделать следующее.

1.Определить количество теплоты, выделяющейся в сопротивлении R за время Т при протекании переменного тока i. Это количество теплоты равно:

2.Подобрать такой постоянный ток I, который за то же время Т в том же сопротивлении R выделяет такое же количество тепла. При постоянном токе оно равно: W=I 2 RT.

3. Приравнять W=W:

Последняя формула и определяет действующее значение переменного тока.

Пример 2.1. На вход некоторой цепи подается импульсное напряжение треугольной формы (рис. 2.4, а). Чему равно его действующее значение?


Пример 2.2. На рис. 2.4, б показана кривая напряжения на выходе схемы однофазного однополупериодного выпрямления. Чему равно действующее значение напряжения, если его амплитудное значение Um составляет 311 В?


Пример 2.3. Определить действующее значение синусоидального тока i=I m sin(ωt):


Рассмотренные примеры показывают, что действующее значение переменного тока зависит от его формы.

Желаем удачного изучения материала и успешной сдачи!

Значения действующего напряжения и силы тока. Определение. Соотношение с амплитудой для разной формы. (10+)

Понятие эффективных (действующих) значений напряжения и силы тока

Когда мы говорим о переменных напряжении или силе тока, особенно сложной формы, то встает вопрос о том, как их измерять. Ведь напряжение постоянно меняется. Можно измерять амплитуду сигнала, то есть максимум модуля значения напряжения. Такой метод измерения нормально подходит для сигналов относительно гладкой формы, но наличие коротких всплесков портит картину. Еще одним критерием выбора способа измерения является то, для каких целей делается измерение. Так как в большинстве случаев интерес представляет мощность, которую может отдать тот или иной сигнал, то применяется действующее (эффективное) значение.

Вашему вниманию подборка материалов:

Действующее (эффективное) значение для сигналов стандартной формы

Синусоидальный сигнал (синус, синусоида) [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 2 ]

Прямоугольный сигнал (меандр) [Действующее значение ] = [Амплитудное значение ]

Треугольный сигнал [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 3 ]

Закон Ома и мощность для действующих значений напряжения и силы тока

Эффективное значение напряжения измеряется в Вольтах, а силы тока в Амперах.

Для эффективных значений верен закон Ома: = / [Сопротивление нагрузки, Ом ]

[Рассеиваемая на омической нагрузке мощность, Вт ] = [Действующее значение силы тока, А ] * [Действующее значение напряжения, В ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Микроконтроллеры – пример простейшей схемы, образец применения. Фузы (…
Самая первая Ваша схема на микро-контроллере. Простой пример. Что такой фузы?…

Время переключения полевого транзистора. Емкость затвор – сток, исток….
Переключение полевого транзистора. Входные емкости. Встроенный диод. …

Повышающий импульсный преобразователь напряжения. Силовой ключ – бипол…
Как сконструировать повышающий импульсный источник питания. Как выбрать мощный т…

Удлинитель пульта дистанционного управления, ду, инфракрасного, ик…
Пульт ДУ работает только в условиях прямой видимости с дистанционно управляемым…

Цветомузыка, цветомузыкальное оборудование своими руками. Схема ЦМУ, к…
Как самому сделать цвето-музыку. Оригинальная конструкция цвето-музыкальной сист…

Магнитный усилитель – проектирование, формулы, расчет онлайн (online)….
Расчет магнитного усилителя. Формулы для проектирования….


Как сконструировать обратноходовый импульсный преобразователь. Как выбрать часто…

Пушпульный импульсный преобразователь напряжения. Выбор ключа – биполя…
Как сконструировать пуш-пульный импульсный источник питания. Как выбрать мощные…


Как определяются действующие значения тока и напряжения

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения . В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Действующее значение переменного тока – это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого переменным током, мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект мгновенной мощности I 2 r за целый период или среднее значение от ( Im х sin ω t ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (- i ) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I 2 m . Следовательно, М = 1/2I 2 m

Так как действующее значение I переменного тока равно I = √ M , то окончательно I = Im / √ 2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 E= Em / √ 2

Действующие значения переменных величин обозначаются прописными буквами без индексов ( I , U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого расположение векторов на диаграмме не изменяется.

Действующее (эффективное) значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.

В современной литературе чаще используется математическое определение этой величины — среднеквадратичное значение переменного тока.<2>dt>>.>

Содержание

Действующее значение в типичных случаях [ править | править код ]

Приведены формулы для электрического тока. Аналогичным образом определяются действующие значения ЭДС и напряжения.

Синусоида [ править | править код ]

I = 1 2 ⋅ I m ≈ 0,707 ⋅ I m , <displaystyle I=<frac <1><sqrt <2>>>cdot I_approx 0<,>707cdot I_,>

Прямоугольная форма [ править | править код ]

Для тока, имеющего форму однополярного прямоугольного импульса, действующее значение тока зависит от скважности:

I = I m D , <displaystyle I=I_<sqrt >,>

В частности, для тока, имеющего форму однополярного меандра (коэффициент заполнения 0,5):

I = I m 0 , 5 ≈ 0 , 707 ⋅ I m . <displaystyle I=I_<sqrt <0,5>>approx 0,707cdot I_.>

Для тока, имеющего форму двухполярного меандра:

I = I m . <displaystyle I=I_.>

Треугольная форма [ править | править код ]

Для тока треугольной и пилообразной формы (независимо от того, меняется ли направление тока):

I = 1 3 ⋅ I m ≈ 0,577 ⋅ I m . <displaystyle I=<frac <1><sqrt <3>>>cdot I_approx 0<,>577cdot I_.>

Трапециевидная форма [ править | править код ]

Для тока трапециевидной формы действующее значение можно определить разбив период на отрезки положительного фронта, действия максимального значения и отрицательного фронта:

I = I m t 1 + 3 t 2 + t 3 3 T , <displaystyle I=I_<sqrt <frac +3t_<2>+t_<3>><3T>>>,> 1>

Дугообразная форма [ править | править код ]

Для тока имеющего форму дуги (половины окружности):

I = I m 2 3 ≈ 0,816 ⋅ I m . <displaystyle I=I_<sqrt <frac <2><3>>>approx 0<,>816cdot I_.>

Дополнительные сведения [ править | править код ]

В англоязычной технической литературе для обозначения действующего значения употребляется термин effective value — эффективное значение. Также применяется аббревиатура RMS или rmsroot mean square — среднеквадратичное (значение).

Электроизмерительные приборы (амперметры, вольтметры) для измерения в цепях переменного тока обычно градуируются так, чтобы их показания соответствовали действующему значению синусоидального тока или напряжения. При измерении несинусоидальных токов и напряжений приборы различных систем могут давать разные показания [1] .

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения . В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Действующее значение переменного тока – это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого переменным током, мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект мгновенной мощности I 2 r за целый период или среднее значение от ( Im х sin ω t ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (- i ) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I 2 m . Следовательно, М = 1/2I 2 m

Так как действующее значение I переменного тока равно I = √ M , то окончательно I = Im / √ 2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 E= Em / √ 2

Действующие значения переменных величин обозначаются прописными буквами без индексов ( I , U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого расположение векторов на диаграмме не изменяется.

Действующие значения тока и напряжения. Эффективные значения тока и напряжения

Рассмотрим следующую цепь.

Она состоит из источника переменного напряжения, соединительных проводов и некоторой нагрузки. Причем индуктивность нагрузки очень мала, а сопротивление R очень велико. Эту нагрузку мы раньше называли сопротивлением. Теперь будем называть её активным сопротивлением.

Активное сопротивление

Сопротивление R называют активным, так как если в цепи будет нагрузка с таким сопротивлением, цепь будет поглощать энергию, поступающую от генератора.2) = Um/√2.

Теперь подставим действующие значения силы тока и напряжения, в выражение Im = Um/R. Получим:

Данное выражение является законом Ома для участка цепи с резистором, по которому течет переменный ток. Как и в случае механических колебаний, в переменном токе нас мало будут интересовать значения силы тока, напряжении в какой-то отдельный момент времени. Гораздо важнее будет знать общие характеристики колебаний – такие, как амплитуда, частота, период, действующие значения силы тока и напряжения.

Кстати, стоит отметить, что вольтметры и амперметры, предназначенные для переменного тока, регистрируют именно действующие значения напряжения и силы тока.

Еще одним преимуществом действующих значений перед мгновенными является то, что их можно сразу использовать для вычисления значения средней мощности P переменного тока.


Переменный синусоидальный ток в течение периода имеет разные секундные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, также при электронных измерениях неловко воспользоваться моментальными либо амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Не считая того, об электронном эффекте временами изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Более комфортным оказалось введение понятий так именуемых действующих значений тока и напряжения . В базу этих понятий положено термическое (либо механическое) действие тока, не зависящее от его направления.

— это значение неизменного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки деяния, производимого переменным током, мы сравним его деяния с термическим эффектом неизменного тока.

Мощность Р неизменного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект моментальной мощности I 2 r за целый период либо среднее значение от (Im х sinωt ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность неизменного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I именуется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим последующим образом.

Построим синусоидальную кривую конфигурации тока. Возведя в квадрат каждое секундное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, потому что отрицательные значения тока (-i ) во 2-ой половине периода, будучи построены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное с помощью высшей арифметики, будет равно 1/2I 2 m . Как следует, М = 1/2I 2 m

Потому что действующее значение I переменного тока равно I = √ M , то совсем I = Im / √ 2

Аналогично зависимость меж действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 , E= Em / √ 2

Действующие значения переменных величин обозначаются строчными знаками без индексов (I , U, Е).

На основании произнесенного выше можно сказать, что действующее значение переменного тока равно такому неизменному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, демонстрируют действующие значения тока либо напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого размещение векторов на диаграмме не меняется.

Школа для электрика

В механической системе вынужденные колебания возникают при действии на нее внешней периодической силы. Аналогично этому вынужденные электромагнитные колебания в электрической цепи происходят под действием внешней периодически изменяющейся ЭДС или внешнего изменяющегося напряжения.

Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток .

  • Переменный электрический ток – это ток, сила и направление которого периодически меняются.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:

\(~u = U_m \cdot \sin \omega t\) или \(~u = U_m \cdot \cos \omega t\) ,

где u – мгновенное значение напряжения, U m – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

\(~i = I_m \cdot \sin (\omega t + \varphi_c)\) ,

где φ c – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Исходя из этого можно дать еще такое определение:

  • Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Генератор переменного тока

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими гармонические колебания.

  • Генератором переменного тока называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

ЭДС индукции генератора изменяется по синусоидальному закону

\(e={\rm E}_{m} \cdot \sin \omega \cdot t,\)

где \({\rm E}_{m} =B\cdot S\cdot \omega\) – амплитудное (максимальное) значение ЭДС. При подключении к выводам рамки нагрузки сопротивлением R , через нее будет проходить переменный ток. По закону Ома для участка цепи сила тока в нагрузке

\(i=\dfrac{e}{R} =\dfrac{B \cdot S \cdot \omega }{R} \cdot \sin \omega \cdot t = I_{m} \cdot \sin \omega \cdot t,\)

где \(I_{m} = \dfrac{B\cdot S\cdot \omega }{R}\) – амплитудное значение силы тока.

Основными частями генератора являются (рис. 1):

  • индуктор – электромагнит или постоянный магнит, который создает магнитное поле;
  • якорь – обмотка, в которой индуцируется переменная ЭДС;
  • коллектор со щетками – устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Неподвижная часть генератора называется статором , а подвижная – ротором . В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

На современных гидроэлектростанциях вода вращает вал электрогенератора с частотой 1-2 оборота в секунду. Таким образом, если бы якорь генератора имел только одну рамку (обмотку), то получался бы переменный ток частотой 1-2 Гц. Поэтому, для получения переменного тока промышленной частоты 50 Гц якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока. Для паровых турбин, ротор которых вращается очень быстро, используют якорь с одной обмоткой. В этом случае частота вращения ротора совпадает с частотой переменного тока, т.е. ротор должен делать 50 об/с.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

Из истории . Первоначально Фарадей обнаружил лишь едва заметный ток в катушке при движении вблизи нее магнита. «Какая от этого польза?» – спросили его. Фарадей ответил: «Какая может быть польза от новорож­денного?» Прошло немногим более половины столетия и, как сказал американский физик Р. Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

*Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией \(\vec{B}\) (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля \(\vec{B}\) и нормали к плоскости рамки \(\vec{n}\) меняется со временем по линейному закону. Если в момент времени t = 0 угол α 0 = 0 (см. рис. 1), то

\(\alpha = \omega \cdot t = 2\pi \cdot \nu \cdot t,\)

где ω – угловая скорость вращения рамки, ν – частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

\(\Phi \left(t\right)=B\cdot S\cdot \cos \alpha =B\cdot S\cdot \cos \omega \cdot t.\)

Тогда согласно закону Фарадея индуцируется ЭДС индукции

\(e=-\Phi “(t)=B\cdot S\cdot \omega \cdot \sin \omega \cdot t = {\rm E}_{m} \cdot \sin \omega \cdot t.\)

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

Действующие значения силы тока и напряжения

Пусть источник тока создает переменное гармоническое напряжение

\(u=U_{m} \cdot \sin \omega \cdot t.\;\;\;(1)\)

Согласно закону Ома, сила тока в участке цепи, содержащей только резистор сопротивлением R , подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

\(i = \dfrac{u}{R} =\dfrac{U_{m} }{R} \cdot \sin \omega \cdot t = I_{m} \cdot \sin \omega \cdot t,\;\;\; (2)\)

где \(I_m = \dfrac{U_{m}}{R}.\) Как видим, сила тока в такой цепи также меняется с течением времени по синусоидальному закону. Величины U m , I m называются амплитудными значениями напряжения и силы тока . Зависящие от времени значения напряжения u и силы тока i называют мгновенными .

Кроме этих величин используются еще одна характеристика переменного тока: действующие (эффективные) значения силы тока и напряжения .

  • Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой I .

  • Действующим (эффективным) значением напряжения переменного тока называется напряжение такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой U .{2}}{R}.\)

Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R , выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе.

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения . В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого , мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект мгновенной мощности I 2 r за целый период или среднее значение от (Im х sinωt ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (-i ) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I 2 m . Следовательно, М = 1/2I 2 m

Так как действующее значение I переменного тока равно I = √ M , то окончательно I = Im / √ 2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 E= Em / √ 2

Действующие значения переменных величин обозначаются прописными буквами без индексов (I , U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.


Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого расположение векторов на диаграмме не изменяется.

Значения действующего напряжения и силы тока. Определение. Соотношение с амплитудой для разной формы. (10+)

Понятие эффективных (действующих) значений напряжения и силы тока

Когда мы говорим о переменных напряжении или силе тока, особенно сложной формы, то встает вопрос о том, как их измерять. Ведь напряжение постоянно меняется. Можно измерять амплитуду сигнала, то есть максимум модуля значения напряжения. Такой метод измерения нормально подходит для сигналов относительно гладкой формы, но наличие коротких всплесков портит картину. Еще одним критерием выбора способа измерения является то, для каких целей делается измерение. Так как в большинстве случаев интерес представляет мощность, которую может отдать тот или иной сигнал, то применяется действующее (эффективное) значение.

Вашему вниманию подборка материалов:

Действующее (эффективное) значение для сигналов стандартной формы

Синусоидальный сигнал (синус, синусоида) [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 2 ]

Прямоугольный сигнал (меандр) [Действующее значение ] = [Амплитудное значение ]

Треугольный сигнал [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 3 ]

Закон Ома и мощность для действующих значений напряжения и силы тока

Эффективное значение напряжения измеряется в Вольтах, а силы тока в Амперах.

Для эффективных значений верен закон Ома: = / [Сопротивление нагрузки, Ом ]

[Рассеиваемая на омической нагрузке мощность, Вт ] = [Действующее значение силы тока, А ] * [Действующее значение напряжения, В ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Микроконтроллеры – пример простейшей схемы, образец применения. Фузы (…
Самая первая Ваша схема на микро-контроллере. Простой пример. Что такой фузы?…

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….

Силовой резонансный фильтр для получения синусоиды от инвертора…
Для получения синусоиды от инвертора нами был применен самодельный силовой резон…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…


Принцип работы, самостоятельное изготовление и наладка импульсного силового прео…

Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…

Электрическое напряжение. Амплитуда сигнала. Амплитудное. Вольт. Volt….
Понятие напряжения и разности электрических потенциалов. Амплитуда. Единицы изме…


Дайте определение действующего значения тока и напряжения

При расчете цепей переменного тока обычно пользуются понятием действующих (эффективных) значений переменного тока, напряжения и э. д. с.

Действующие значения тока, напряжения и э. д. с. обозначаются прописными буквами .

На шкалах измерительных приборов и технической документации также указываются действующие значения величин.

Действующее значение переменного тока равно значению такого эквивалентного постоянного тока, который, проходя через то же сопротивление, что и переменный ток, выделяет в нем за период то же количество тепла.

Количество тепла, выделенное переменным током в со противлении за бесконечно малый промежуток времени

а за период переменного тока Т

Приравняв Полученное выражение количеству тепла выделенному в том же сопротивлении постоянным током за то же время Т, получим:

Сократив общий множитель , получим действующее значение тока

Рис. 5-8. График переменного тока и квадрата тока.

На рис. 5-8 построена кривая мгновенных значений тока i и кривая квадратов мгновенных значений Площадь, ограниченная последней кривой и осью абсцисс, представляет собой в некотором масштабе величину, определяемую выражением Высота прямоугольника равновеликого площади, ограниченной кривой и осью абсцисс, равная среднему значению ординат кривой представляет собой квадрат действующего значения тока

Если ток изменяется по закону синуса, т. е.

Аналогично для действующих значений синусоидальных напряжений и э. д. с. можно написать:

Пример 5-4. Напряжение, измеренное вольтметром, U = 220 В. Определить амплитуду напряжения.

Кроме действующего значения тока и напряжения, иногда пользуются еще понятием среднего значения тбка и напряжения.

Среднее значение синусоидального тока за период равно нулю, так как в течение первой половины периода определенное количество электричества Q проходит через поперечное сечение проводника в прямом направлении. В течение второй половины периода то же количество электричества проходит через сечение проводника в обратном направлении. Следовательно, количество электричества, прошедшее через сечение проводника за период, равно нулю, равно нулю и среднее за период значение синусоидального тока.

Поэтому среднее значение синусоидального тока вычисляют за полупериод, в течение которого ток остается положительным. Среднее значение тока равно отношению количества электричества, прошедшего через сечение проводника за половину периода, к продолжительности этого полупериода.

Таким образом, причем начало отсчета времени должно совпадать с началом периода. Аналогично определяются средние значения напряжения и э. д. с,

Среднее за полупериод значение тока можно представить графически высотой прямоугольника с основанием, равным , и площадью, равной площади, которая ограничена осью абсцисс и кривой тока от начала периода до половины периода (рис. 5-9).

Рис. 5-9. Среднее значение тока за полупериод.

Среднее значение синусоидального тока можно выразить через его амплитудное значение следующим образом:

(5-15)

Такое же соотношение имеет место для напряжения и для э. д. с,

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения . В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Действующее значение переменного тока — это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого переменным током, мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект мгновенной мощности I 2 r за целый период или среднее значение от ( Im х sin ω t ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (- i ) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I 2 m . Следовательно, М = 1/2I 2 m

Так как действующее значение I переменного тока равно I = √ M , то окончательно I = Im / √ 2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 E= Em / √ 2

Действующие значения переменных величин обозначаются прописными буквами без индексов ( I , U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого расположение векторов на диаграмме не изменяется.

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения . В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Действующее значение переменного тока — это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого переменным током, мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект мгновенной мощности I 2 r за целый период или среднее значение от ( Im х sin ω t ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (- i ) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I 2 m . Следовательно, М = 1/2I 2 m

Так как действующее значение I переменного тока равно I = √ M , то окончательно I = Im / √ 2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 E= Em / √ 2

Действующие значения переменных величин обозначаются прописными буквами без индексов ( I , U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого расположение векторов на диаграмме не изменяется.

Что такое действующее значение силы тока. Действующие значения силы тока и напряжения

Силу переменного тока (напряжения) можно охарактеризовать при помощи амплитуды. Однако амплитудное значение тока непросто измерить экспериментально. Силу переменного тока удобно связать с каким-либо действием, производимым током, не зависящим от его направления. Таковым является, например, тепловое действие тока. Поворот стрелки амперметра, измеряющего переменный ток, вызывается удлинением нити, которая нагревается при прохождении по ней тока.

Действующим илиэффективным значением переменного тока (напряжения) называется такое значение постоянного тока, при котором на активном сопротивлении выделяется за период такое же количество теплоты, как и при переменном токе.

Свяжем эффективное значение тока с его амплитудным значением. Для этого рассчитаем количество теплоты, выделяемое на активном сопротивлении переменным током за время, равное периоду колебаний. Напомним, что по закону Джоуля-Ленца количество теплоты, выделяющееся на участке цепи cсопротивлениемприпостоянном токеза время, определяется по формуле

. Переменный ток можно считать постоянным только в течение очень малых промежутков времени

. Поделим период колебанийна очень большое число малых промежутков времени

. Количество теплоты

, выделяемое на сопротивленииза время

:

. Общее количество теплоты, выделяемое за период, найдется суммированием теплот, выделяемых за отдельные малые промежутки времени, или, другими словами, интегрированием:


.

Сила тока в цепи изменяется по синусоидальному закону


,


.

Опуская вычисления, связанные с интегрированием, запишем окончательный результат


.

Если бы по цепи шёл некоторый постоянный ток , то за время, равное, выделилось бы тепло

. По определению постоянный ток, оказывающий такое же тепловое действие, что и переменный, будет равен эффективному значению переменного тока

. Находим эффективное значение силы тока, приравнивая теплоты, выделяемые за период, в случаях постоянного и переменного токов


(4.28)

Очевидно, точно такое же соотношение связывает эффективное и амплитудное значения напряжения в цепи с синусоидальным переменным током:


(4.29)

Например, стандартное напряжение в сети 220 В – это эффективное напряжение. По формуле (4.29) легко посчитать, что амплитудное значение напряжения в этом случае будет равно 311 В.

4.4.5. Мощность в цепи переменного тока

Пусть на некотором участке цепи с переменным током сдвиг фаз между током и напряжением равен , т.е. сила тока и напряжение изменяются по законам:


,

.

Тогда мгновенное значение мощности, выделяемой на участке цепи,

Мощность изменяется со временем. Поэтому можно говорить лишь о ее среднем значении. Определим среднюю мощность, выделяемую в течение достаточно длительного промежутка времени (во много раз превосходящего период колебаний):

С использованием известной тригонометрической формулы


.

Величину

усреднять не нужно, так как она не зависит от времени, следовательно:


.

За длительное время значение косинуса много раз успевает измениться, принимая как отрицательные, так и положительные значения в пределах от (1) до 1. Понятно, что среднее во времени значение косинуса равно нулю


, поэтому

(4.30)

Выражая амплитуды тока и напряжения через их эффективные значения по формулам (4.28) и (4.29), получим


. (4.31)

Мощность, выделяемая на участке цепи с переменным током, зависит от эффективных значений тока и напряжения и сдвига фаз между током и напряжением . Например, если участок цепи состоит из одного только активного сопротивления, то

и

. Если участок цепи содержит только индуктивность или только ёмкость, то

и

.

Объяснить среднее нулевое значение мощности, выделяемой на индуктивности и ёмкости можно следующим образом. Индуктивность и ёмкость лишь заимствуют энергию у генератора, а затем возвращают её обратно. Конденсатор заряжается, а затем разряжается. Сила тока в катушке увеличивается, затем снова спадает до нуля и т. д. Именно по той причине, что на индуктивном и ёмкостном сопротивлениях средняя расходуемая генератором энергия равна нулю, их назвали реактивными. На активном же сопротивлении средняя мощность отлична от нуля. Другими словами провод с сопротивлением при протекании по нему тока нагревается. И энергия, выделяемая в виде тепла, назад в генератор уже не возвращается.

Если участок цепи содержит несколько элементов, то сдвига фаз может быть иным. Например, в случае участка цепи, изображенного на рис. 4.5, сдвиг фаз между током и напряжением определяется по формуле (4.27).

Пример 4.7. К генератору переменного синусоидального тока подключён резистор с сопротивлением. Во сколько раз изменится средняя мощность, расходуемая генератором, если к резистору подключить катушку с индуктивным сопротивлением

а) последовательно, б) параллельно (рис. 4.10)? Активным сопротивлением катушки пренебречь.

Решение. Когда к генератору подключено одно только активное сопротивление, расходуемая мощность


(см. формулу (4.30)).

Рассмотрим цепь на рис. 4.10, а. В примере 4.6 было определено амплитудное значение силы тока генератора:

. Из векторной диаграммы на рис. 4.11,а определяем сдвиг фаз между током и напряжением генератора


.

В результате средняя расходуемая генератором мощность


.

Ответ: при последовательном включении в цепь индуктивности средняя мощность, расходуемая генератором, уменьшится в 2 раза.

Рассмотрим цепь на рис. 4.10,б. В примере 4.6 было определено амплитудное значение силы тока генератора

. Из векторной диаграммы на рис. 4.11,б определяем сдвиг фаз между током и напряжением генератора


.

Тогда средняя мощность, расходуемая генератором

Ответ: при параллельном включении индуктивности средняя мощность, расходуемая генератором, не изменяется.

Как известно, переменная э.д.с. индукции вызывает в цепи переменный ток. При наибольшем значении э.д.с. сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального значения, имеются приборы, с помощью которых можно замерить силу переменного тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и могут быть такими же, как и при постоянном токе. К таким действиям можно отнести тепловое. К примеру, переменный ток протекает через проводник с заданным сопротивлением. Через определенный промежуток времени в этом проводнике выделится какое-то количество тепла. Можно подобрать такое значение силы постоянного тока, чтобы на этом же проводнике за то же время выделялось этим током такое же количество тепла, что и при переменном токе. Такое значение постоянного тока называется действующим значением силы переменного тока.

В данное время в мировой промышленной практике широко распространен трехфазный переменный ток , который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными э.д.с. с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода. Каждая такая цепь называется фазой.

Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора. Пример такой системы показан на рис. 3.4.б.

Согласно вышеперечисленным условиям, выясняется, что э.д.с., возникающая во втором генераторе, не будет успевать измениться, по сравнению с э.д.с. первого генератора, т. е. она будет опаздывать на 120°. Э.д.с. третьего генератора также будет опаздывать по отношению ко второму на 120°.

Однако такой способ получения переменного трехфазного тока весьма громоздкий и экономически невыгодный. Чтобы упростить задачу, нужно все статорные обмотки генераторов совместить в одном корпусе. Такой генератор получил название генератор трехфазного тока (рис. 3.4.а). Когда ротор начинает вращаться, в каждой обмотке возникает


а) б)

Рис. 3.4. Пример трехфазной системы переменного тока

а) генератор трёхфазного тока; б) с тремя генераторами;

изменяющаяся э.д.с. индукции. Из-за того что происходит сдвиг обмоток в пространстве, фазы колебаний в них также сдвигаются относительно друг друга на 120°.

Для того чтобы подсоединить трехфазный генератор переменного тока к цепи, нужно иметь 6 проводов. Для уменьшения количества проводов обмотки генератора и приемников нужно соединить между собой, образовав трехфазную систему. Данных соединений два: звезда и треугольник. При использовании и того и другого способа можно сэкономить электропроводку.

Соединение звездой

Обычно генератор трехфазного тока изображают в виде 3 статорных обмоток, которые располагаются друг к другу под углом 120°. Начала обмоток принято обозначать буквами А, В, С , а концы – X, Y, Z . В случае, когда концы статорных обмоток соединены в одну общую точку (нулевая точка генератора), способ соединения называется «звезда». В этом случае к началам обмоток присоединяются провода, называемые линейными (рис. 3.5 слева).

Точно так же можно соединять и приемники (рис. 3.5., справа). В этом случае провод, который соединяет нулевую точку генератора и приемников, называется нулевой. Данная система трехфазного тока имеет два разных напряжения: между линейным и нулевым проводами или, что то же самое, между началом и концом любой обмотки статора. Такая величина называется фазным напряжением (). Поскольку цепь трехфазная, то линейное напряжение будет в v3 раз больше фазного, т. е.: Uл = v3Uф.

Соединение треугольником.

Рисунок 3.6. Пример соединения треугольником

При использовании данного способа соединения конец X первой обмотки генератора подключают к началу В второй его обмотки, конец Y второй обмотки – к началу С третьей обмотки, конец Z третьей обмотки – к началу А первой обмотки. Пример соединения показан на рис. 3.6. При данном способе соединения фазных обмоток и подключении трехфазного генератора к трехпроводной линии линейное напряжение по своему значению сравнивается с фазным: Uф = Uл

Контрольные вопросы

1. Перечислите основные параметры, характеризующие переменный ток.

2. Дайте определение частоты и единицы её измерения.

3. Дайте определение амплитуды и единицы её измерения.

4. Дайте определение периода и единицы его измерения.

5. Отличие простейшего генератора трёхфазного тока от генератора однофазного тока.

6. Что такое фаза?

7. Что представляет собой ротор генератора трёхфазного тока?

8. Почему сдвинуты по фазе обмотки статора генератора трёхфазного тока?

9. Особенность симметричной системы трёх фаз.

10. Принцип соединения фазных обмоток трёхфазных генераторов и трансформаторов по схеме «звезда».

11. Принцип соединения фазных обмоток трёхфазных генераторов и трансформаторов по схеме «треугольник».

3.2. Виды сопротивлений в цепях переменного тока

В цепях переменного тока сопротивления разделяют на активные и реактивные.

В активных сопротивлениях , включенных в цепь переменного тока, электрическая энергия преобразуется в тепловую. Активным сопротивлением R обладают, например, провода электрических линий, обмотки электрических машин и т.д.

В реактивных сопротивлениях электрическая энергия, вырабатываемая источником, не расходуется. При включении реактивного сопротивления в цепь переменного тока возникает лишь обмен энергией между ним и источником электрической энергии. Реактивное сопротивление создают индуктивности и ёмкости.

Если не учитывать взаимное влияние отдельных элементов электрической цепи, то в общем случае электрическая цепь синусоидального тока может быть представлена тремя пассивными элементами: активным сопротивлением R, индуктивностью L и емкостью C.

Активное сопротивление в цепи переменного тока .

При включении в цепь переменного тока активного сопротивления, ток и напряжение совпадают по фазе (рис. 3.7) и изменяются по одному и тому же cинусоидальному закону: u=U m sinωt . Они одновременно достигают своих максимальных значений и одновременно проходят через нуль (рис. 3.7.б).

Для цепи переменного тока, содержащей только активное сопротивление, закон Ома имеет такую же форму, как и для цепи постоянного тока: I=U/R.

Электрическая мощность р в цепи с активным сопротивлением в любой момент времени равна произведению мгновенных значений силы тока i и напряжения u : p=ui .

Рисунок 3.7. Схема включения в цепь переменного тока активного сопротивления R (a), кривые тока i , напряжения u и мощности p (б) и векторная диаграмма.

Из графика видно, что изменение мощности происходит с двойной частотой по отношению к изменению тока и напряжения, т.е. один период изменения мощности соответствует половине периода изменения тока и напряжения. Все значения мощности положительные, это означает, что энергия передается от источника к потребителю.

Средняя мощность Рcp , потребляемая активным сопротивлением, P=UI=I 2 R – это и есть активная мощность.

Под индуктивностью L будем понимать элемент электрической цепи (катушку индуктивности, потерями которой можно пренебречь), способный запасать энергию в своём магнитном поле, который не имеет активного сопротивления и ёмкостиС (рис.3.8).

При включении в цепь переменного тока индуктивности, изменяющийся ток непрерывно индуцирует в ней э.д.с. самоиндукции e L = LΔi/Δt, где Δi/Δt – скорость изменения тока.

Когда угол ωt равен 90° и 270° скорость изменения тока Δi/Δt =0, поэтому э.д.с. e L =0.

Скорость изменения тока будет наибольшей, когда угол ωt равен 0°, 180° и 360°. В эти минуты времени э.д.с. имеет наибольшее значение.

Кривая мощности представляет собой синусоиду, которая изменяется с двойной частотой по сравнению с частотой изменения тока и напряжения. Мощность имеет положительные и отрицательные значения, т.е. возникает непрерывный колебательный процесс обмена энергией между источником и индуктивностью.

Рисунок 3.8. Схема включения в цепь переменного тока индуктивности (а), кривые тока i , напряжения u , э.д.с. e L (б) и векторная диаграмма (в)

Э.д.с. самоиндукции согласно правилу Ленца направлена так, чтобы препятствовать изменению тока. В первую четверть периода, когда ток увеличивается, э.д.с. имеет отрицательное значение (направлена против тока).

Во вторую четверть периода, когда ток уменьшается, э.д.с. имеет положительное значение (совпадает по направлению с током).

В третью четверть периода ток меняет своё направление и увеличивается, поэтому э.д.с. направлена против тока и имеет положительное значение.

В четвёртую четверть периода ток уменьшается и э.д.с. самоиндукции стремится поддержать прежнее положение тока и имеет отрицательное значение. В результате ток отстает от напряжения по фазе на угол 90 О.

Сопротивление катушки или проводника переменному току, вызванное действием э.д.с. самоиндукции, называется индуктивным сопротивлением Х L [Ом]. Индуктивное сопротивление не зависит от материала катушки и от площади поперечного сечения проводника.

В цепях переменного тока катушки индуктивности соединяют последовательно и параллельно.

При последовательном соединении катушек эквивалентная индуктивность и эквивалентное индуктивное сопротивление X L э будут равны:

Lэ=L 1 +L 2 +… X L э=X L 1 +X L 2 +…

При параллельном соединении катушек:

1/Lэ=1/L 1 +1/L 2 +… 1/X L э=1/X L 1 +1/X L 2 +…

Контрольные вопросы

1. Какие виды сопротивления в цепях переменного тока Вы знаете?

2. Что значит активное сопротивление?

3. Что такое реактивное сопротивление?

4. Какие элементы цепи создают реактивное сопротивление?

5. Что такое активная мощность?

1. Дайте определение индуктивности.

2. Что происходит в первую четверть периода колебательного процесса обмена энергией между источником и индуктивностью?

3. Что происходит во вторую четверть периода колебательного процесса обмена энергией между источником и индуктивностью?

4. Дайте определение индуктивного сопротивления.

3.3. Конденсаторы. Ёмкость в цепи переменного тока

Конденсатор – устройство, способное накапливать электрические заряды.

Простейший конденсатор представляет собой две металлические пластины (электроды), разделенные диэлектриком.

Каждый конденсатор характеризуется номинальной емкостью и допустимым напряжением. Напряжение конденсатора указывают на корпусе, и превышать его нельзя. Конденсаторы различаются формой электродов (плоский), типом диэлектрика и ёмкостью (постоянной и переменной).

Cтраница 2

Действующим значением силы тока I называется сила постоянного тока, выделяющего в проводнике за то же время такое же количество теплоты, что и переменный ток.  

Как видно из рисунка, в каждый момент времени величины напряжения и силы тока принимают различные значения. Поэтому, чтобы судить о величине силы тока и напряжения переменного тока, пользуются действующим значением силы тока и напряжения. Чтобы определить действующее значение силы переменного тока, его приравнивают к силе постоянного тока, которое выделило бы в проводнике такое же количество тепла, как и переменный ток.  

Трансформатор, содержащий в первичной обмотке 300 витков, включен в сеть переменного тока с действующим напряжением 220 В. Вторичная цепь трансформатора питает нагрузку с активным сопротивлением 50 Ом. Найти действующее значение силы тока во вторичной цепи, если падение напряжения во вторичной обмотке трансформатора, содержащей 165 витков, равно 50 В.  

Таким образом, при замене операции извлечения корня сравнением время, за которое интегрируемый сигнал с ГЛИН станет равен интегралу от квадрата измеренной силы тока, пропорционально действующему значению силы тока. До этого К2 был открыт в течение времени т и пропускал на счетчик СИ импульсы с генератора тактовых импульсов ГТИ. Число импульсов TV / гтит записанное в СЧ, пропорционально действующему значению силы тока. Это число хранится в / 77, а по окончании цикла измерения отображается на ЦИ.  

Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения и средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.  

Рх o jjFr В слУчае т – н – СУХОЙ лампы применяют способ термометра, подвешиваемого вблизи генераторной лампы, и отмечают его показание. Затем, разрывая цепь колебательного контура генератора, дают на сетку генераторной лампы положительный потенциал до тех пор, пока термометр не по. Беря в последнем случае величины 1а и Еа как исходные, определяем Рх из соотношения Рх1а Еа. Мощность в антенне определяется по ф-ле Рх – / /, где РЯ – мощность eW, ra – активное сопротивление антенны в Q и 1а – действующее значение силы тока в антенне в А. По скольку по современным международным нормам под мощностью передатчика принято понимать мощность в антенне, то упомянутая выше ф-ла определяет одновременно и мощность передатчика.  

Тепловые измерители имеют наиболее широкое практич. Действие тепловых измерителей состоит в удлинении тонкой проволоки при нагревании ее проходящим по ней переменным током высокой частоты. Сам по себе эффект ограничивает пределы применимости таких измерителей токами от нескольких тА до 1 – 3 А в зависимости от материала тонкой проволоки, примененной в измерителе. Применяются сплавы серебра с платиной, платины с иридием и др. Если сплав применяется в виде проволоки, то она имеет диаметр сотых долей мм. При ленте толщина составляет 0 01 мм, ширина 3 мм и длина 25 – 30 мм. Удлинение нити нагреваемым током пропорционально квадрату действующего значения силы тока. Перемещение по шкале измерителя стрелки, связанной с той же проволокой с помощью особой подвижной системы, обычно пропорционально квадратному корню из действующей силы тока. Из-за этого шкалы тепловых измерителей имеют неравномерные интервалы между делениями.  

В данном случае колебания тока являются гармоническими (график колебаний – синусоида) и вынужденными, поскольку параметры колебаний (частота, амплитуда) определяются внешним источником – генератором. Некоторые электротехнические устройства (например, колебательный контур) способны генерировать свободные гармонические колебания электрического тока. По левой ветви рамки – от нас и, поскольку в этом случае через клемму а течет ток в направлении, обратном показанному на рис. 12.1, ее полярность – минус. Поскольку при данном положении рамки сила тока имеет наибольшее значение, фаза колебаний может быть г / 2 или 3 / 2ir, в зависимости от того, какое направление тока в рамке мы принимаем за положительное. Сравнивая формулу (12.1) и заданную зависимость, нетрудно заметить, что 1т 10 А и ш 4тград / с. Далее, используя формулу (12.2), определяем частоту колебаний (отв. Используя закон Джоуля – Ленца (Q I2Rt), определяем действующее значение силы тока (отв.  

Действующее напряжение определение. Действующие значения тока и напряжения

Силу переменного тока (напряжения) можно охарактеризовать при помощи амплитуды. Однако амплитудное значение тока непросто измерить экспериментально. Силу переменного тока удобно связать с каким-либо действием, производимым током, не зависящим от его направления. Таковым является, например, тепловое действие тока. Поворот стрелки амперметра, измеряющего переменный ток, вызывается удлинением нити, которая нагревается при прохождении по ней тока.

Действующим илиэффективным значением переменного тока (напряжения) называется такое значение постоянного тока, при котором на активном сопротивлении выделяется за период такое же количество теплоты, как и при переменном токе.

Свяжем эффективное значение тока с его амплитудным значением. Для этого рассчитаем количество теплоты, выделяемое на активном сопротивлении переменным током за время, равное периоду колебаний. Напомним, что по закону Джоуля-Ленца количество теплоты, выделяющееся на участке цепи cсопротивлениемприпостоянном токеза время, определяется по формуле
. Переменный ток можно считать постоянным только в течение очень малых промежутков времени
. Поделим период колебанийна очень большое число малых промежутков времени
. Количество теплоты
, выделяемое на сопротивленииза время
:
. Общее количество теплоты, выделяемое за период, найдется суммированием теплот, выделяемых за отдельные малые промежутки времени, или, другими словами, интегрированием:

.

Сила тока в цепи изменяется по синусоидальному закону

,

.

Опуская вычисления, связанные с интегрированием, запишем окончательный результат

.

Если бы по цепи шёл некоторый постоянный ток , то за время, равное, выделилось бы тепло
. По определению постоянный ток, оказывающий такое же тепловое действие, что и переменный, будет равен эффективному значению переменного тока
. Находим эффективное значение силы тока, приравнивая теплоты, выделяемые за период, в случаях постоянного и переменного токов



(4.28)

Очевидно, точно такое же соотношение связывает эффективное и амплитудное значения напряжения в цепи с синусоидальным переменным током:

(4.29)

Например, стандартное напряжение в сети 220 В – это эффективное напряжение. По формуле (4.29) легко посчитать, что амплитудное значение напряжения в этом случае будет равно 311 В.

4.4.5. Мощность в цепи переменного тока

Пусть на некотором участке цепи с переменным током сдвиг фаз между током и напряжением равен , т.е. сила тока и напряжение изменяются по законам:

,
.

Тогда мгновенное значение мощности, выделяемой на участке цепи,

Мощность изменяется со временем. Поэтому можно говорить лишь о ее среднем значении. Определим среднюю мощность, выделяемую в течение достаточно длительного промежутка времени (во много раз превосходящего период колебаний):

С использованием известной тригонометрической формулы

.

Величину
усреднять не нужно, так как она не зависит от времени, следовательно:

.

За длительное время значение косинуса много раз успевает измениться, принимая как отрицательные, так и положительные значения в пределах от (1) до 1. Понятно, что среднее во времени значение косинуса равно нулю

, поэтому
(4.30)

Выражая амплитуды тока и напряжения через их эффективные значения по формулам (4.28) и (4.29), получим

. (4.31)

Мощность, выделяемая на участке цепи с переменным током, зависит от эффективных значений тока и напряжения и сдвига фаз между током и напряжением . Например, если участок цепи состоит из одного только активного сопротивления, то
и
. Если участок цепи содержит только индуктивность или только ёмкость, то
и
.

Объяснить среднее нулевое значение мощности, выделяемой на индуктивности и ёмкости можно следующим образом. Индуктивность и ёмкость лишь заимствуют энергию у генератора, а затем возвращают её обратно. Конденсатор заряжается, а затем разряжается. Сила тока в катушке увеличивается, затем снова спадает до нуля и т. д. Именно по той причине, что на индуктивном и ёмкостном сопротивлениях средняя расходуемая генератором энергия равна нулю, их назвали реактивными. На активном же сопротивлении средняя мощность отлична от нуля. Другими словами провод с сопротивлением при протекании по нему тока нагревается. И энергия, выделяемая в виде тепла, назад в генератор уже не возвращается.

Если участок цепи содержит несколько элементов, то сдвига фаз может быть иным. Например, в случае участка цепи, изображенного на рис. 4.5, сдвиг фаз между током и напряжением определяется по формуле (4.27).

Пример 4.7. К генератору переменного синусоидального тока подключён резистор с сопротивлением. Во сколько раз изменится средняя мощность, расходуемая генератором, если к резистору подключить катушку с индуктивным сопротивлением
а) последовательно, б) параллельно (рис. 4.10)? Активным сопротивлением катушки пренебречь.

Решение. Когда к генератору подключено одно только активное сопротивление, расходуемая мощность

(см. формулу (4.30)).

Рассмотрим цепь на рис. 4.10, а. В примере 4.6 было определено амплитудное значение силы тока генератора:
. Из векторной диаграммы на рис. 4.11,а определяем сдвиг фаз между током и напряжением генератора



.

В результате средняя расходуемая генератором мощность

.

Ответ: при последовательном включении в цепь индуктивности средняя мощность, расходуемая генератором, уменьшится в 2 раза.

Рассмотрим цепь на рис. 4.10,б. В примере 4.6 было определено амплитудное значение силы тока генератора
. Из векторной диаграммы на рис. 4.11,б определяем сдвиг фаз между током и напряжением генератора



.

Тогда средняя мощность, расходуемая генератором

Ответ: при параллельном включении индуктивности средняя мощность, расходуемая генератором, не изменяется.

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения . В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого , мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект мгновенной мощности I 2 r за целый период или среднее значение от (Im х sinωt ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (-i ) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I 2 m . Следовательно, М = 1/2I 2 m

Так как действующее значение I переменного тока равно I = √ M , то окончательно I = Im / √ 2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 E= Em / √ 2

Действующие значения переменных величин обозначаются прописными буквами без индексов (I , U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.


Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого расположение векторов на диаграмме не изменяется.

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь? Действия тока не определяются ни амплитудным, ни мгновенным значениями. Для оценки действия, производимого переменным током, мы сравним его действия с тепловым эффектом постоянного тока.

Мощность P постоянного тока I , проходящего через сопротивление r , будет

P = I 2 × r .

Мощность переменного тока выразится как средний эффект мгновенной мощности i 2 × r за целый период или среднее значение от (I m × sin ωt ) 2 × r за то же время.

Пусть среднее значение i 2 за период будет M . Приравнивая мощность постоянного тока и мощность при переменном токе, имеем:

I 2 × r = M × r ,

Величина I называется действующим значением переменного тока.

Среднее значение i 2 при переменном синусоидальном токе определим следующим образом. Построим синусоидальную кривую изменения тока (рисунок 1).


Рисунок 1. Действующее значение синусоидального тока

Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости i 2 от времени. Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (-i ) во второй половине периода, будучи возведены в квадрат, дают положительные величины. Построим прямоугольник с основанием T и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника M будет соответствовать среднему значению i 2 за период. Это значение за период, вычисленное при помощи высшей математики, будет равно .

Следовательно,

Так как действующее значение переменного тока I равно , то окончательно формула примет вид

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и E имеет вид:

Действующие значения переменных величин, то есть действующее значение напряжения, тока и электродвижущей силы, обозначаются прописными буквами без индексов (U , I , E ).

На основании изложенного выше, можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующее значение тока и напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в раз. От этого расположение векторов на диаграмме не изменится.

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, – периодом Т. Для периодического тока имеем

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i – мгновенное значение тока ;

u – мгновенное значение напряжения ;

е – мгновенное значение ЭДС ;

р – мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ).

Амплитуда тока;

Амплитуда напряжения;

Амплитуда ЭДС.

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е 1 и е 2 соответствуют уравнения:

Значения аргументов синусоидальных функций иназываютсяфазами синусоид, а значение фазы в начальный момент времени (t =0): и –начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называютугловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть, гдеf– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз .

Для синусоидальных ЭДС е 1 и е 2 угол сдвига фаз:

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное ) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е 1 и е 2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токовидвух ветвей:

В механической системе вынужденные колебания возникают при действии на нее внешней периодической силы. Аналогично этому вынужденные электромагнитные колебания в электрической цепи происходят под действием внешней периодически изменяющейся ЭДС или внешнего изменяющегося напряжения.

Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток .

  • Переменный электрический ток – это ток, сила и направление которого периодически меняются.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:

\(~u = U_m \cdot \sin \omega t\) или \(~u = U_m \cdot \cos \omega t\) ,

где u – мгновенное значение напряжения, U m – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

\(~i = I_m \cdot \sin (\omega t + \varphi_c)\) ,

где φ c – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Исходя из этого можно дать еще такое определение:

  • Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Генератор переменного тока

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими гармонические колебания.

  • Генератором переменного тока называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

ЭДС индукции генератора изменяется по синусоидальному закону

\(e={\rm E}_{m} \cdot \sin \omega \cdot t,\)

где \({\rm E}_{m} =B\cdot S\cdot \omega\) – амплитудное (максимальное) значение ЭДС. При подключении к выводам рамки нагрузки сопротивлением R , через нее будет проходить переменный ток. По закону Ома для участка цепи сила тока в нагрузке

\(i=\dfrac{e}{R} =\dfrac{B \cdot S \cdot \omega }{R} \cdot \sin \omega \cdot t = I_{m} \cdot \sin \omega \cdot t,\)

где \(I_{m} = \dfrac{B\cdot S\cdot \omega }{R}\) – амплитудное значение силы тока.

Основными частями генератора являются (рис. 1):

  • индуктор – электромагнит или постоянный магнит, который создает магнитное поле;
  • якорь – обмотка, в которой индуцируется переменная ЭДС;
  • коллектор со щетками – устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Неподвижная часть генератора называется статором , а подвижная – ротором . В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

На современных гидроэлектростанциях вода вращает вал электрогенератора с частотой 1-2 оборота в секунду. Таким образом, если бы якорь генератора имел только одну рамку (обмотку), то получался бы переменный ток частотой 1-2 Гц. Поэтому, для получения переменного тока промышленной частоты 50 Гц якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока. Для паровых турбин, ротор которых вращается очень быстро, используют якорь с одной обмоткой. В этом случае частота вращения ротора совпадает с частотой переменного тока, т.е. ротор должен делать 50 об/с.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

Из истории . Первоначально Фарадей обнаружил лишь едва заметный ток в катушке при движении вблизи нее магнита. «Какая от этого польза?» – спросили его. Фарадей ответил: «Какая может быть польза от новорож­денного?» Прошло немногим более половины столетия и, как сказал американский физик Р. Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

*Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией \(\vec{B}\) (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля \(\vec{B}\) и нормали к плоскости рамки \(\vec{n}\) меняется со временем по линейному закону. Если в момент времени t = 0 угол α 0 = 0 (см. рис. 1), то

\(\alpha = \omega \cdot t = 2\pi \cdot \nu \cdot t,\)

где ω – угловая скорость вращения рамки, ν – частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

\(\Phi \left(t\right)=B\cdot S\cdot \cos \alpha =B\cdot S\cdot \cos \omega \cdot t.\)

Тогда согласно закону Фарадея индуцируется ЭДС индукции

\(e=-\Phi “(t)=B\cdot S\cdot \omega \cdot \sin \omega \cdot t = {\rm E}_{m} \cdot \sin \omega \cdot t.\)

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

Действующие значения силы тока и напряжения

Пусть источник тока создает переменное гармоническое напряжение

\(u=U_{m} \cdot \sin \omega \cdot t.\;\;\;(1)\)

Согласно закону Ома, сила тока в участке цепи, содержащей только резистор сопротивлением R , подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

\(i = \dfrac{u}{R} =\dfrac{U_{m} }{R} \cdot \sin \omega \cdot t = I_{m} \cdot \sin \omega \cdot t,\;\;\; (2)\)

где \(I_m = \dfrac{U_{m}}{R}.\) Как видим, сила тока в такой цепи также меняется с течением времени по синусоидальному закону. Величины U m , I m называются амплитудными значениями напряжения и силы тока . Зависящие от времени значения напряжения u и силы тока i называют мгновенными .

Кроме этих величин используются еще одна характеристика переменного тока: действующие (эффективные) значения силы тока и напряжения .

  • Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.{2}}{R}.\)

    Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R , выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе.

    Эффективное значение синусоиды

    Эффективное значение синусоиды

    E max , E avg , I max и I avg – используемые значения в измерениях переменного тока. Другое используемое значение – ЭФФЕКТИВНОЕ значение переменного тока. Это значение переменное напряжение или ток, которые будут иметь такое же влияние на сопротивление, как и сопоставимые значения постоянного напряжения или тока будут иметь на том же сопротивлении.

    В предыдущем обсуждении вам сказали, что когда ток течет через сопротивление, тепло выделяется. произведено.Когда через сопротивление протекает постоянный ток, количество электроэнергии преобразованная в тепло, равна I 2 R Вт. Однако, поскольку переменный ток при максимальном значении 1 ампер не поддерживает постоянное значение, переменный ток не будет выделять столько тепла в сопротивлении, сколько постоянный ток 1 ампер.

    На Рисунке 1-15 сравнивается эффект нагрева 1 ампера постоянного тока с эффектом нагрева 1 ампер. ампер переменного тока.

    Рисунок 1-15.- Нагревательный эффект переменного и постоянного тока.

    Изучите виды A и B на рис. 1-15 и обратите внимание, что тепло (70,7 ° C), выделяемое 1 ампер переменного тока (то есть переменного тока с максимальным значением 1 ампер) составляет всего лишь 70,7% тепла (100 C) вырабатывается 1 ампером постоянного тока. Математически,

    Следовательно, для действующего значения переменного тока (I eff ) = 0.707 X I макс. .

    Скорость, с которой выделяется тепло в сопротивлении, является удобной основой для установление эффективного значения переменного тока, известное как “нагрев эффект “. Считается, что переменный ток имеет эффективное значение, равное единице. ампер, когда он выделяет тепло с заданным сопротивлением с той же скоростью, что и один ампер постоянный ток.

    Вы можете вычислить эффективное значение синусоидального тока с достаточной степенью точности, принимая мгновенные значения тока, равномерно распределенные вдоль кривой, и извлечение квадратного корня из средней суммы квадратов значений.

    По этой причине эффективное значение часто называют «среднеквадратическим». (среднеквадратичное) значение. Таким образом,

    Другими словами, эффективное или среднеквадратичное значение (I eff ) синусоидальной волны ток составляет 0,707 максимального значения тока (I max ). Таким образом, I eff = 0,707 X I макс. . Если известен I eff , вы можете найти I max по используя формулу I max = 1.414 X I эфф . Вы можете задаться вопросом, где постоянная 1,414 происходит от. Чтобы выяснить это, еще раз изучите рисунок 1-15 и прочтите следующее. объяснение. Предположим, что постоянный ток на рисунке 1-15 (A) поддерживается на уровне 1 ампера, а температура резистора на уровне 100С. Также предположим, что переменный ток на рисунке 1-15 (B) увеличен. до тех пор, пока температура резистора не достигнет 100 C. На этом этапе обнаруживается, что максимальная Значение переменного тока 1,414 ампер требуется для того, чтобы иметь такой же нагревательный эффект, как и при прямом подключении. Текущий.Следовательно, в цепи переменного тока максимальный требуемый ток в 1,414 раза больше эффективный ток. Вам важно помнить вышеупомянутые отношения и то, что эффективное значение (I eff ) любой синусоидальной волны тока всегда в 0,707 раза больше максимальное значение (I max ).

    Поскольку переменный ток возникает из-за переменного напряжения, соотношение эффективное значение напряжения к максимальному значению напряжения такое же, как отношение эффективное значение тока до максимального значения тока.Другими словами, эффективное или среднеквадратичное значение (E eff ) синусоидального напряжения в 0,707 раза больше максимальное значение напряжения (E max ),

    Когда значение переменного тока или напряжения указано в книге или на диаграмме, значение является эффективным, если не указано иное. Помните, что все счетчики, если не указано иное, откалиброваны для индикации действующие значения тока и напряжения.

    Проблема: известно, что в цепи имеется переменное напряжение 120 В и пиковое или максимальный ток 30 ампер. Каковы значения пикового напряжения и эффективного тока?

    На рисунке 1-16 показано соотношение между различными значениями, используемыми для обозначения амплитуда синусоиды. Просмотрите значения на рисунке, чтобы убедиться, что вы понимаете, что каждый значение указывает.

    Рисунок 1-16. – Различные значения, используемые для обозначения амплитуды синусоидальной волны.

    Q.32 Какая наиболее удобная основа для сравнения переменного и постоянного напряжения и токи?
    В.33 Какое значение переменного тока используется для сравнения с постоянным током?
    В.34 Какова формула для определения действующего значения переменного тока?
    Q.35 Если пиковое значение синусоидальной волны составляет 1000 вольт, каково эффективное (E eff ) значение?
    В.36 Если I eff = 4,25 ампера, что такое max ?

    Объяснение действующего значения напряжения и тока

    переменного тока

    Электричество и магнетизм

    Объяснение действующего значения напряжения и тока

    Руководство для преподавателей для 14-16

    Есть много способов объяснить среднеквадратичное (среднеквадратичное) напряжение и ток на разных уровнях сложности для студентов продвинутого уровня.

    • Для простейшего уровня скажем, что вы измеряете ток (или разность потенциалов) через крошечные интервалы времени. Возведите каждое значение в квадрат, сложите квадраты (все положительные) и разделите на количество выборок, чтобы найти средний квадрат или средний квадрат. Затем извлеките из этого квадратный корень. Это среднеквадратичное значение (среднеквадратичное).
    • Например, предположим, что существует 8 временных интервалов, как показано на диаграмме выше:
      Значения 7 10 7 0-7-10-7 0
      Квадраты 49 100 49 0 49 100 49 0
      Сумма квадратов = 396 Среднее значение квадратов = 396/8 = почти 50 Квадратный корень ~ 7 При большем количестве интервалов среднеквадратичное значение оказывается равным (пиковое значение) √ 2 = пиковое значение 1.41 = 0,707 пиковое значение
    • Для тех, кто знаком с графиками функций синуса и косинуса, можно попробовать следующий алгебраический метод.
      • I = I 0 sinω t и I 2 = I 0 2 sin 2 ω t
      • Эффект нагрева зависит от I 2 R , поэтому требуется среднее значение I 2 , а не среднее значение I .
      • Чтобы найти среднеквадратичное значение, вам нужно среднее значение sin 2 по мере того, как время идет все дальше и дальше.
      • График sinω t и график cosω t выглядят одинаково, за исключением смещения начала координат. Поскольку это одна и та же модель, sin 2 ω t и cos 2 ω t имеют одинаковое среднее значение с течением времени.
      • Но sin 2 ω t + cos 2 ω t = 1. Следовательно, средние значения любого из них должны быть 1/2.
      • Следовательно, действующее значение I 0 sinω t должно быть I 0 √ 2
      • Среднеквадратичное значение составляет 0,707 пикового значения, а пиковое значение – 1,41 раза больше значения, отображаемого вольтметром. Пиковое значение для сети 230 В составляет 325 В.
    • В качестве альтернативы: построить график sin 2 θ. Разрежьте график пополам и переверните одну половину вверх ногами или скопируйте на прозрачную пленку и совместите вместе. Две половины точно совпадают, показывая, что среднее значение равно 1/2.
    • Обратите внимание, что при использовании несглаженного выпрямленного тока переменного тока от простого источника питания оценка мощности, полученная путем умножения показаний вольтметра постоянного тока с подвижной катушкой и амперметра с подвижной катушкой, вероятно, будет почти на 20% меньше. Это связано с тем, что каждый измеритель с подвижной катушкой измеряет простое среднее по времени неровностей за полупериод, а не среднеквадратичное значение.
    • Умноженные действующие значения тока и напряжения дают фактическую мощность. Это жизненно важная часть при проведении количественных экспериментов с мощностью и энергией, таких как удельная теплоемкость.В лучшем случае значения составляют только 80% от стоимости.

    Easy Formula RMS Voltage and Current AC Circuit

    Идея эффективного значения возникает из-за необходимости измерить эффективность источника напряжения или тока при передаче мощности на резистивную нагрузку. Здесь мы узнаем, что такое среднеквадратичное значение напряжения и тока.

    Эффективное значение периодического тока – это постоянный ток, который передает на резистор такую ​​же среднюю мощность, что и периодический ток.

    Обязательно сначала прочтите, что такое цепь переменного тока.

    Существует несколько типов мощности в цепи переменного тока:

    1. Максимальная средняя передаваемая мощность
    2. Среднеквадратичное значение напряжения и тока
    3. Коэффициент мощности и полная мощность
    4. Треугольник мощности и комплекс мощности
    5. Сохранение мощности переменного тока

    Как сделать Вычислить среднеквадратичное значение напряжения и тока

    На рисунке (1) цепь в (a) – переменный ток, а цепь в (b) – постоянный ток. Наша цель – найти I eff , который будет передавать ту же мощность на резистор R, что и синусоида i .

    Рисунок 1. Определение эффективного тока: (а) цепь переменного тока, (б) цепь постоянного тока

    Средняя мощность, потребляемая резистором в цепи переменного тока, составляет

    (1) и (2) и решая для I eff , получаем

    (3)

    Эффективное значение напряжения находится так же, как ток ; то есть

    (4)

    Это означает, что эффективное значение является (квадратным) корнем среднего (или среднего) квадрата периодического сигнал.

    Таким образом, эффективное значение часто называют среднеквадратичным значением или для краткости среднеквадратичным значением ; и мы пишем

    (5)

    Для любой периодической функции x (t) в общем случае среднеквадратичное значение определяется как

    )

    Эффективное значение периодического сигнала – это его среднеквадратичное (среднеквадратичное) значение.

    Уравнение (6) утверждает, что для нахождения среднеквадратичного значения x (t) мы сначала находим его квадрат x 2 , а затем находим его среднее значение, или

    (7)

    и квадратный корень (√) из этого среднего. Действующее значение константы – это сама константа.

    Для синусоиды i (t) = I m cos ωt, эффективное или среднеквадратичное значение составляет

    (8)

    t) = V m cos ωt,

    (9)

    Имейте в виду, что Equations.(8) и (9) действительны только для синусоидальных сигналов.

    Прежде чем двигаться дальше, вспомните все уравнения, которые мы использовали в формулах мгновенной мощности и средней мощности.

    Среднюю мощность можно записать через среднеквадратичные значения

    (10)

    Аналогично, средняя мощность, потребляемая резистором R, может быть записана как

    (11)

    Когда задаются синусоидальное напряжение или ток, они часто выражаются в их максимальном (или пиковом) значении или его среднеквадратичном значении, поскольку его среднее значение равно нулю.

    Электроэнергетика указывает величины векторов в терминах их среднеквадратических значений, а не пиковых значений.

    Например, 110 В, доступное в каждом доме, является среднеквадратичным значением напряжения энергокомпании.

    При анализе мощности удобно выражать напряжение и ток в их действующих значениях.

    Аналоговые вольтметры и амперметры также предназначены для непосредственного считывания среднеквадратичных значений напряжения и тока соответственно.

    Примеры среднеквадратических значений

    Для лучшего понимания рассмотрим примеры ниже:

    1.Определите среднеквадратичное значение формы сигнала тока на рисунке (2). Если ток проходит через резистор 2 Ом, найдите среднюю мощность, потребляемую резистором.

    Рисунок 2

    Решение:
    Период формы волны составляет T = 4. За период мы можем записать текущую форму волны как

    . действующее значение

    Мощность, потребляемая резистором 2 Ом, равна

    2.Форма волны показана на рисунке. (3) – это полуволновой выпрямленный синусоидальный сигнал. Найдите среднеквадратичное значение и количество средней мощности, рассеиваемой на резисторе 10 Ом.

    Рисунок 3

    Решение:
    Период формы сигнала напряжения равен T = 2π, и

    Среднеквадратичное значение получается как

    Но sin t = ½ (1 – cos 2 t ). Следовательно,

    Средняя потребляемая мощность составляет

    Среднеквадратичное значение – обзор

    8.4.4.2.2 Временная область

    В главе 5 тома I мы представили подход во временной области к решению проблемы случайного отклика; в главе 7 тома I мы расширили обсуждение до систем с несколькими степенями свободы. Процедура буфета во временной области проста и относительно проста по концепции. Он основан на предположении, что анализ «шведского стола» со стационарными случайными и эргодическими силами и численное решение во временной области, если оно достаточно продолжительное, даст соответствующие статистические результаты.Действительно, Broussinos и Kabe (1990) использовали подход во временной области для проверки соответствующего решения в частотной области, где мощность возбуждения и спектральная плотность перекрестной мощности были получены из временных диаграмм силы удара.

    Историю времени возбуждения буфета можно составить двумя способами. Первый из них, как обсуждалось выше, где графики силы во времени генерируются из данных испытаний в аэродинамической трубе. Второй устанавливает хронологию на основе существующих функций спектральной плотности мощности возбуждения.Поскольку площадь под функцией спектральной плотности мощности является среднеквадратичным значением, мы можем вычислить среднеквадратичное значение для каждой спектральной линии, предполагая, что она охватывает площадь на полпути к соседним спектральным линиям. Затем мы можем приравнять каждый из них к синусоидальной функции с соответствующей частотой и амплитудой спектральной линии, что даст такое же среднеквадратичное значение. Мы не можем установить с помощью функции спектральной плотности мощности фазовое соотношение между ее различными спектральными компонентами. Однако, поскольку мы знаем, что история времени является случайной по своей природе, предполагая, что фазовое соотношение между различными гармоническими составляющими является случайным, мы можем разработать случайную историю времени, которая имеет желаемую функцию спектральной плотности мощности.

    Среднеквадратичное значение синусоидальной функции амплитуды A составляет

    (8.4-74) A2¯ = 1T∫0TA2sin2ωtdt = A2 / 2

    Следовательно, при данном среднеквадратичном значении спектральной линии эквивалентная синусоидальная амплитуда будет быть квадратным корнем из удвоенного значения. Суммирование синусоидальных функций, по одной для каждой спектральной линии, при назначении каждой фазового угла θj, оттянутого случайным образом между 0 и 2π, дает искомую временную диаграмму

    (8.4-75) f (t) = 2∑j = 1Nfj2¯sin (ωjt + θj)

    где fj2¯ – это среднеквадратичное значение, полученное из функции спектральной плотности мощности для j-й спектральной линии.Обратите внимание, что N должно быть достаточно большим, а спектральные линии должны доходить до частоты Найквиста. Это может потребовать добавления дополнительных спектральных линий к спектральной плотности мощности путем интерполяции между существующими частотами.

    Учитывая хронологию функции форсирования буфета, полученную непосредственно из испытаний в аэродинамической трубе или выведенную из функций спектральной плотности мощности, теперь мы можем численно интегрировать уравнения движения, используя процедуры из тома I,

    (8.4-76) [I] {q¨ (t)} + ([D] + [N˙]) {q˙ (t)} + ([ωn2] – [N]) {q (t)} = [ ϕ] T {f (t)}

    Ур. (8.4-76) было получено в разделе 8.4.2 этой главы и включает аэродинамическое демпфирование и жесткость [N˙] и [N], соответственно. Опыт показывает, что эти термины не имеют значения при вычислении ответов о буфете и поэтому могут быть исключены. Однако при желании условия всегда можно сохранить. Кроме того, поскольку функции принуждения имеют нулевое значение , моделирование автопилота не требуется для стабильности, хотя его включение обычно увеличивает эквивалентное демпфирование в нижних режимах .Временные истории, полученные с помощью уравнений (8.4-76) теперь можно использовать для вычисления хронологии интересующих физических величин, таких как нагрузки, смещения и ускорения. По ним можно вычислить среднеквадратические значения каждого параметра; для нагрузок, например, вычисление будет:

    (8.4-77) {L2¯} = 1T∫0T {L2 (t)} dt

    , где {L2¯} содержит среднеквадратичные значения, полученные из историй времени загрузки , {L (t)}, а T – длительность временных историй. Квадратные корни из членов в {L2¯} являются искомыми среднеквадратичными значениями.

    Как только истории времени отклика буфета станут доступны, их можно будет использовать либо непосредственно в комбинации Монте-Карло с историями времени других участников, такими как реакции турбулентности / порыва, либо они могут быть использованы для получения среднеквадратичных значений, которые могут быть используется напрямую или в уравнении сочетания нагрузок. В подходе Монте-Карло, например, сегменты историй времени отклика «шведского стола» будут выбираться случайным образом из более длинных временных историй и объединяться со случайно выбранными, но более короткими историями времени отклика турбулентности / порыва; другие участники также могут быть включены.Пиковые значения будут извлечены из каждой комбинации, разработаны гистограммы и определены уровни статистической изоляции. В подходе уравнения комбинации нагрузок среднеквадратичные значения будут использоваться для определения соответствующих средних значений распределения Рэлея и дисперсных частей, которые затем могут быть объединены с соответствующими значениями от других участников. Оба подхода подробно обсуждаются в главе 7.

    Длина временной истории, T, требует дальнейшего обсуждения.В подходе «временной области» предполагается, что временные истории вынуждающих функций и, следовательно, временные истории отклика являются стационарными, случайными и эргодическими. Это, следовательно, требует, чтобы продолжительность вынуждающих функций была достаточно большой для получения сходящихся статистических результатов. Требуемая длина может быть установлена ​​путем сравнения среднеквадратичных значений, полученных для увеличения продолжительности временной истории. Например, можно начать с временной истории, скажем, 10 с и вычислить среднеквадратичное значение отклика, затем увеличить продолжительность и пересчитать среднеквадратичное значение.Это можно повторять до тех пор, пока значения не сойдутся в пределах желаемого допуска. Следует отметить, что чем ниже основная частота упругой моды системы, тем длиннее должна быть временная история. Успешно использовались 30–60-секундные хронологические диаграммы, а для систем с очень низкими фундаментальными частотами моды длины временных хронологий пришлось увеличить до 100 с.

    В главе 5 тома I среднеквадратичные значения хронологий бесконечной продолжительности получены аналитически и показаны как эквивалентные значениям, полученным в частотной области.Кроме того, глава содержит решение в закрытой форме на вопрос о продолжительности. Получено соотношение, которое устанавливает длину функции принуждения, которая требуется, так что в среднем средний квадрат находится в пределах указанного допуска решения бесконечной длины. Это отношение является функцией собственной частоты, связанной с любой данной модой .

    Среднеквадратичные значения, вычисленные, как описано выше, будут очень близки к значениям, полученным путем извлечения квадратного корня из площади под соответствующими кривыми спектральной плотности мощности, полученными в анализе частотной области, который использовал спектральную плотность мощности и спектральную плотность перекрестной мощности. форсирующие функции, полученные из временных историй форсирующих функций.Однако выполнение анализа во временной области дает ряд преимуществ:

    (1)

    Временные истории различных нагрузок могут быть объединены, и синхронизация по времени будет правильной. Затем можно вычислить среднеквадратичные значения с объединенной историей времени. Это может уменьшить ненужный консерватизм за счет использования временной фазировки, чего нельзя добиться с помощью частотной области, если комбинация нагрузок является нелинейной, например, комбинируя две ортогональные компоненты нагрузки.

    (2)

    Размер вычислительной задачи может быть уменьшен, поскольку для вычисления правильных нагрузок в частотной области следует использовать кросс-спектры вынуждающих функций. Они часто игнорируются или используются лишь частично для экономии вычислительных ресурсов. Подход во временной области включает строгое правильное фазирование всех функций форсирования при условии, что они были измерены в одном и том же испытании в аэродинамической трубе.

    (3)

    Историю времени отклика можно использовать в последующих анализах, таких как комбинация нагрузок Монте-Карло.

    (4)

    Доступность хронологии имеет большое значение для понимания физического поведения системы.

    THE R.M.S. ЗНАЧЕНИЕ ПЕРЕМЕННОГО ТОКА (ИЛИ НАПРЯЖЕНИЯ)

    Рассмотрим две схемы, показанные ниже.
    На схеме слева есть d.c. поставлять.
    Этот источник питания обеспечивает постоянный ток силы , Я постоянного тока
    В схеме справа у нас есть переменный ток. источник питания, доставляющий ток, который постоянно меняет свое величина и смысл.
    Представим, что нашли две одинаковые лампочки и что переменный ток поставка была тщательно отрегулирована, чтобы загорелась лампочка на точно такая же яркость как в другой контур.
    Тогда было бы разумно предположить, что ток, i ac имеет такой же действующее значение как ток I dc
    Обратите внимание, что когда речь идет о чередовании тока мы обычно используем строчные буквы буквы для мгновенные значения тока (или напряжения) и капиталов для максимальных значений .
    Однако, если ток в цепи меняется, как показано выше тогда простое математическое среднее значение равно нулю , а не очень подходящая цифра для эффективного значения тока!
    Мы выходим из этой неловкой ситуации следующим образом:
    1.помните, что мощность рассеивается в колба (или любой компонент, обладающий сопротивлением) – пропорционально текущему квадрату (см. здесь для доказательства)
    2. помните, что квадрат отрицательного число имеет положительное значение
    Помня об этих идеях, сначала нарисуйте График текущего в квадрате . Все значения положительные.
    Теперь найдите среднее значение текущего в квадрате.
    Поскольку вариация симметрична, это очевидно, половина максимального значения, как показано на следующем графике.
    Теперь извлекаем квадратный корень из этого среднего значение, чтобы дать нам значимое эффективное значение для ток называется, довольно логично, среднеквадратичным значением или р.РС.
    Следовательно, эффективное или среднеквадратичное значение значение тока равно
    и, хотя ток и напряжение равны конечно, совершенно разные количества, так как обсуждение выше чисто математически, мы можем использовать ту же логику для чередования напряжение, так
    где V – максимальное напряжение.
    Обратите внимание, что эти уравнения применяются, когда изменение является синусоидальным, как показано на графиках выше.
    В ситуации, когда отклонение показано ниже,
    среднеквадратичное значение равно максимальному значению , так как там практически нулевое время, когда ток имеет любую другую величину, чем Я.

    Анализ генерации переменного тока: эффективные значения, фазовый угол и частота

    Анализ процесса производства электроэнергии переменного тока и переменного тока, который мы используем почти во всех аспектах нашей жизни, необходим для лучшего понимания того, как мощность переменного тока используется в современных технологиях.

    Эффективные значения

    Выходное напряжение генератора переменного тока можно выразить двумя способами. Один – графически с использованием синусоидальной волны (рис. 3).Второй способ – алгебраически с помощью уравнения e = E max sin ωt, которое будет рассмотрено позже в тексте.

    Рисунок 3: Синусоидальная волна напряжения

    Когда напряжение вырабатывается генератором переменного тока, результирующий ток изменяется пропорционально напряжению. Когда катушка генератора вращается на 360 °, выходное напряжение проходит один полный цикл. За один цикл напряжение увеличивается от нуля до E в одном направлении, уменьшается до нуля, увеличивается до E max в противоположном направлении (отрицательное значение E max ), а затем снова уменьшается до нуля.Значение E max происходит при 90 ° и называется пиковым напряжением. Время, необходимое генератору для завершения одного цикла, называется периодом, а количество циклов в секунду называется частотой (измеряется в герцах).

    Один из способов обозначения переменного напряжения или тока – это пиковое напряжение (E p ) или пиковый ток (I p ). Это максимальное напряжение или ток для синусоидальной волны переменного тока.

    Другое значение, размах амплитуды (E p-p или I p ), представляет собой величину напряжения или диапазон тока, охватываемого синусоидальной волной.Однако наиболее часто используемым значением переменного тока является эффективное значение. Эффективное значение переменного тока – это количество переменного тока, которое производит такой же нагревательный эффект, как и такое же количество постоянного тока.

    Проще говоря, эффективное значение переменного тока в один ампер будет производить такое же количество тепла в проводнике за заданное время, что и один ампер постоянного тока. Эффект нагрева от данного переменного тока пропорционален квадрату тока. Эффективное значение переменного тока можно вычислить, возведя в квадрат все амплитуды синусоидальной волны за один период, взяв среднее из этих значений, а затем извлекая квадратный корень.Действующее значение, являющееся корнем из среднего (среднего) квадрата токов, называется среднеквадратическим или среднеквадратичным значением. Чтобы понять значение эффективного тока, приложенного к синусоиде, см. Рисунок 4.

    Значения I нанесены на верхнюю кривую, а соответствующие значения I 2 нанесены на нижнюю кривую. Кривая I 2 имеет вдвое большую частоту, чем I, и изменяется выше и ниже новой оси. Новая ось представляет собой среднее значение I 2 , а квадратный корень из этого значения представляет собой среднеквадратичное или эффективное значение тока.Среднее значение ½ I max 2 . Тогда среднеквадратичное значение

    .

    Существует шесть основных уравнений, которые используются для преобразования значения переменного напряжения или тока в другое значение, как указано ниже.

    • Среднее значение = пиковое значение x 0,637
    • Эффективное значение (RMS) = пиковое значение x 0,707
    • Пиковое значение = среднее значение x 1,57
    • Эффективное значение (RMS) = среднее значение x 1,11
    • Пиковое значение = эффективное значение (RMS) x 1.414
    • Среднее значение = эффективное (RMS) x 0,9

    Значения тока (I) и напряжения (E), которые обычно встречаются, считаются действующими значениями; поэтому нижний индекс не используется.

    Рисунок 4: Действующее значение тока

    Еще одно полезное значение – это среднее значение амплитуды в течение положительной половины цикла.

    Приведенное ниже уравнение представляет собой математическую связь между I ср. , I макс и I.

    I средн. = 0,637 I макс. = 0,9 I

    Приведенное ниже уравнение представляет собой математическую связь между E ср. , E max и E.

    E ср. = 0,637 E макс. = 0,9 E

    Пример 1:

    Пиковое значение напряжения в цепи переменного тока составляет 200 В. Каково среднеквадратичное значение напряжения?

    E = 0,707E макс.

    E = 0,707 x 200 = 141,4 В

    Пример 2:

    Пиковый ток в цепи переменного тока составляет 10 ампер.Какое среднее значение тока в цепи?

    I средн. = 0,637 I макс.

    I ср. = 0,637 x 10 = 6,37 ампер

    Фазовый угол

    Фазовый угол – это доля цикла в градусах, которая прошла с тех пор, как напряжение или ток прошли через заданное значение. Данное значение обычно равно нулю. Возвращаясь к рисунку 3, возьмите точку 1 как начальную точку или нулевую фазу. Фаза в точке 2 равна 30 °, точке 3 – 60 °, точке 4 – 90 ° и так далее до точки 13, где фаза равна 360 ° или нулю.Более часто используемый термин – это разность фаз.

    Рисунок 5: Соотношение фаз

    Разность фаз может использоваться для описания двух разных напряжений с одинаковой частотой, которые проходят через нулевые значения в одном направлении в разное время. На рисунке 5 углы вдоль оси указывают фазы напряжений e 1 и e 2 в любой момент времени.

    При 120 ° e 1 проходит через нулевое значение, которое на 60 ° опережает e 2 (e 2 равно нулю при 180 °).Считается, что напряжение e 1 опережает e 2 на 60 электрических градусов, или можно сказать, что e 2 отстает от e 1 на 60 электрических градусов.

    Разность фаз также используется для сравнения двух разных токов или тока и напряжения. Если разность фаз между двумя токами, двумя напряжениями или напряжением и током равна нулю, они считаются «синфазными». Если разность фаз отлична от нуля, говорят, что они «не совпадают по фазе».”

    Расчет напряжения

    Приведенное ниже уравнение представляет собой математическое представление напряжения, связанного с любой конкретной ориентацией катушки (индуктора).

    e = E макс sinθ

    где

    e = наведенная ЭДС
    E max = максимальная наведенная ЭДС
    θ = угол от точки отсчета (градусы или радианы)

    Пример 1:

    Какова наведенная ЭДС в катушке, создающей максимальную ЭДС 120 В, когда угол от точки отсчета составляет 45 °?

    e = E макс sinθ

    e = 120 v Sin (45)

    е = 84.84 В

    Максимальное индуцированное напряжение также можно назвать пиковым напряжением E p . Если (t) – время, за которое катушка поворачивается на угол (θ), то угловая скорость (ω) катушки равна θ / t и выражается в радианах / сек.

    Уравнение ниже представляет собой математическое представление угловой скорости.

    θ = ωt

    где

    ω = угловая скорость (радианы / сек)
    t = время поворота на угол от точки отсчета (с)
    θ = угол от точки отсчета (радианы)

    Используя законы замещения, можно выразить взаимосвязь между наведенным напряжением, максимальным наведенным напряжением и угловой скоростью.

    Приведенное ниже уравнение представляет собой математическое представление взаимосвязи между наведенным напряжением, максимальным напряжением и угловой скоростью, оно равно выходной мощности генератора переменного тока.

    e = E макс sin (ωt)

    , где
    e = наведенная ЭДС (вольт)
    E max = максимальная наведенная ЭДС (вольты)
    ω = угловая скорость (радиан / сек)
    t = время поворота на угол относительно опорной точки (сек)

    Текущие расчеты

    Максимальный наведенный ток рассчитывается аналогичным образом.Приведенное ниже уравнение представляет собой математическое представление взаимосвязи между максимальным индуцированным током и угловой скоростью.

    i = I макс sin (ωt)

    где

    i = индуцированный ток (амперы)
    I max = максимальный наведенный ток (амперы)
    ω = угловая скорость (радиан / сек)
    t = время поворота на угол от опорного значения (сек)

    Расчет частоты

    Частота переменного напряжения или тока может быть напрямую связана с угловой скоростью вращающейся катушки.Единицы угловой скорости – радианы в секунду, а 2π радиан – это полный оборот.

    Радиан – это угол, образующий дугу, равную радиусу окружности. Один радиан равен 57,3 градуса. Один цикл синусоидальной волны генерируется, когда катушка вращается на 2π радиана.

    Уравнение ниже представляет собой математическое соотношение между частотой (f) и угловой скоростью (ω) в цепи переменного тока.

    ω = 2πf

    где

    ω = угловая скорость (радиан / сек)
    f = частота (Гц)

    Пример 1:

    Частота цепи 120 В переменного тока составляет 60 Гц.Найдите следующее: 1. Угловая скорость 2. Угол от точки отсчета через 1 мс 3. Индуцированная ЭДС в этой точке

    Решение:

    1. ω = 2πf

    ω = 2 (3,14) (60 Гц) = 376,8 радиан / сек

    2. θ = ωt

    θ = (376,8 радиан / сек) (0,001 сек) = 0,3768 радиан

    3. e = E max sinθ

    e = (120 В) (sin 0,3768 радиан)
    e = (120 В) (0,3679)
    e = 44,15 В

    Что такое среднеквадратичное значение? Самое простое объяснение

    Сколько раз мы использовали термин RMS при работе с цепями переменного тока.Что ж, считать это безумием. Потому что мы используем его почти каждый день. Напряжение, которое мы получаем в нашем доме, является среднеквадратичным значением. Системные напряжения, такие как 415 В переменного тока, 11 кВ переменного тока, 36 кВ переменного тока и т. Д., Также являются среднеквадратичными значениями. Значение RMS – важный термин в электротехнике. Но каково точное значение RMS? И почему это так важно?


    Среднеквадратичное значение используется почти везде в электротехнике. Следовательно, каждый инженер-электрик должен знать среднеквадратичное значение. К концу этого руководства вы сможете понять, что именно означает значение RMS, а также сможете объяснить значение RMS своим учителям, друзьям, коллегам и т. Д.Итак, приступим.

    Расчет мощности; Легко в DC, тяжело в AC!

    Мы знаем, что напряжение или ток в системах постоянного тока никогда не меняют своего направления. В каждом случае он почти остается постоянным. Следовательно, в системах постоянного тока очень легко вычислить мощность, напряжение или ток. Рассмотрим показанный пример. Допустим, лампочка подключена к источнику постоянного тока 10 В.

    А ток, протекающий по цепи, равен 2А. Исходя из этого, мы можем легко рассчитать мощность, потребляемую лампой, просто умножив напряжение на ток, поскольку и напряжение, и ток постоянны.

    P = VI = 10 X 2 = 20 Вт

    А это мощность, потребляемая лампочкой в ​​любой момент. Теперь, если мы изменим источник постоянного тока на переменный. Напряжение и ток больше не постоянны. Значение напряжения и тока теперь будет непрерывно изменяться. Для облегчения понимания мы будем рассматривать только форму сигнала напряжения. Вначале напряжение будет равно нулю, через некоторое время оно достигнет 5 В, через какое-то время упадет до 10 В. Через некоторое время он снова снизится до 5 В, 0 В, -5 В, -10 В, -5 В, 0 В, и цикл продолжится.

    И если мы рассмотрим значение от 5 до -5 В или от 10 до -10 В, которое является размахом от пика до пика, или любое другое значение напряжения на форме волны для расчета мощности, это приведет к неправильному ответу. Поскольку значение истинно только в течение определенного времени, после этого времени значение будет другим.

    Ситуация становится еще хуже, когда мы сравниваем разные формы сигналов. Например, если мы сравниваем синусоидальную волну с прямоугольной волной, синусоидальная волна будет иметь пиковое значение в течение небольшого промежутка времени, чем прямоугольная волна.

    И, следовательно, влияние этих двух напряжений переменного тока, питающих одну и ту же нагрузку, будет различным. В заключение, рассмотрение значения от пика до пика для расчетов – не лучшая идея.

    Итак, нам нужно решение для этого. Нам нужен член, который даст нам эффективное значение величин переменного тока. Нам нужен термин, который мы можем учитывать при расчете мощности и который будет оставаться верным большую часть времени.


    Эффективное значение переменного тока; Среднеквадратичное значение

    К счастью, нам не о чем беспокоиться, существует метод расчета действующего значения в цепях переменного тока.И как мы это делаем?

    Шаг 1 – Разделите сигнал на равные части.

    Просто отметьте точки на равном расстоянии, как показано. Чтобы понять, мы рассмотрим только половину цикла. Если хотите, можете сделать это и во второй половине цикла. Отображаются отмеченные значения.

    Шаг 2 – Возьмите каждое значение в квадрат.

    Просто возьмите « квадрат» каждого отмеченного вами значения.

    Шаг 3 – Возьмите среднее / среднее значение.

    Теперь вычислите « Среднее» или среднее значение.

    Шаг 4 – Квадратный корень.

    И, наконец, возьмите квадрат « корень» окончательного значения.

    Значение, которое мы получаем с помощью этого метода, известно как «среднеквадратичное значение» , то есть среднеквадратичное значение.

    Итак, в нашем примере пиковое значение равно 20 В (V5), где как действующее значение или среднеквадратичное значение составляет 14,14 В. Это 14,14 В переменного тока равно 14,14 В постоянного тока. Это означает, что среднеквадратичное значение эквивалентно значению постоянного тока.Чтобы понять суть вещей, рассмотрим показанный пример.

    Источник переменного тока Источник постоянного тока

    Здесь у нас есть два разных источника: один – 10 В переменного тока (среднеквадратичное значение), а другой – 10 В постоянного тока. Эти источники подключаются к лампочке с сопротивлением 2 Ом. В случае цепи постоянного тока рассеиваемая мощность составляет 50 Вт. А как насчет переменного тока? Поскольку 10 В – это среднеквадратичное значение, мы можем использовать его для расчета мощности. В результате мощность, рассеиваемая цепью переменного тока, также составит 50 Вт.


    Среднеквадратичное значение – лучший способ рассчитать эффективное значение системы переменного тока.Например, для расчета размера кабеля всегда полезно измерение среднеквадратичного тока. Но при рассмотрении изолятора в высоковольтных приложениях переменного тока следует учитывать пиковое значение, а не среднеквадратичное значение.

    Среднеквадратичное значение, пиковое значение, среднее значение будут меняться в зависимости от формы сигнала. Эти значения будут разными для синусоидальной волны, для прямоугольной волны, для треугольной волны и т. Д. Чтобы упростить задачу, у нас также есть формула для расчета среднеквадратичного или пикового значения, которая задается как –

    В действующее значение = 0.7071 x Vмакс

    Помните, что это значение верно только для чистой формы «синусоидальной волны ».
    Итак, мы также можем вычислить среднеквадратичное значение в нашем примере выше, используя формулу.

    В среднеквадр. = 0,7071 x 20 = 14,14 В

    Вы также можете узнать, почему питание переменного тока всегда представлено синусоидальной волной.

    В заключение, среднеквадратичное значение – это эффективное значение величин переменного тока, которое необходимо учитывать при различных типах расчетов и допущений.Среднеквадратичное значение также эквивалентно значению постоянного тока.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *