Как найти фазу, землю и ноль в квартирной электропроводке – PROFI.RU — За профи говорят дела
Алексей Помазовпрофессиональный электромонтёр, инженер промышленного оборудования, опыт работы — 18 лет
В комментариях к статье «Что нужно знать о ремонте электропроводки» был задан вопрос о том, как в электропроводке найти ноль и землю, если провода не соответствуют традиционным цветам. На вопрос отвечает специалист по электромонтажу, эксперт PROFI.RU.
Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.
- Земля будет жёлтой, зелёной либо жёлто-зелёной.
- Ноль будет синим или голубым.
- Фазе досталась самая богатая палитра, она бывает серой и красной, розовой и бирюзовой, оранжевой и фиолетовой, но чаще всего — коричневой, чёрной или белой.
Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?
Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!
Ищем фазу
Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.
Отсоединив провода от розетки, обязательно разведите их в разные стороны.
После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза — тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.
В поиске земли
Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.
Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.
Как определить фазу, ноль и заземление самому, подручными средствами?
В наших статьях и инструкциях, мы часто выкладываем схемы подключения, правила монтажа и подсоединения электрооборудования к сети, а также многое другое, где для правильного выполнения всех операций необходимо знать, где у вас фазный провод, где нулевой (рабочий ноль), а где заземляющий (защитный ноль). Для опытного электрика определить где фаза и ноль или найти землю, обычно не составляет труда, а вот как быть остальным?
Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.
Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов – как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.
На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.
Маркировка проводов по цвету
Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.
Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.
В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года, который жестко регламентирует цветовую маркировку электрических проводов.
Согласно этому стандарту для квартирной электросети:
Рабочий ноль (нейтраль или ноль) – Синий провод или сине-белый
Защитный ноль (земля или заземление) – желто-зеленый провод
Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т.д.
Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.
Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).
КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ
Итак, начнем по порядку:
ОПРЕДЕЛЕНИЕ ФАЗЫ
Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.
ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ
Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.
Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки – загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.
Принцип действия индикаторной отвертки прост – внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.
Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.
ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ
Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.
Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.
Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.
Определить фазу и ноль из двух проводов
В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.
Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.
Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.
Найти фазу, ноль и заземление из трех проводов:
В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.
Действуем методом исключения:
Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.
После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:
– Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.
– Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.
– Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.
Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.
А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.
от простого до сложного метода
Монтаж нового оборудования с частичной заменой электрической проводки или без нее обязательно включает четкое определение проводов с фазой, «нулем» и заземлением. С поиском фазы вопросов нет: воспользуйтесь отверткой со встроенным индикатором. Если на объекте применяется проводка с двумя жилами, то автоматически понятно — первая является «фазой», вторая — «нулем». Сложности возникают при работе с системами, состоящими из трех токоведущих кабелей, поэтому ниже рассказано о том, как отличить «ноль» от заземления.
Проблемы связаны с фактически одинаковыми электрическими параметрами двух проводников. Именно поэтому не пытайтесь отличить «ноль» от «земли», используя обычную лампочку: светиться она будет в обоих случаях. Приблизительно идентичными будут значения напряжения при замере с помощью мультиметра на парах фаза-ноль и фаза-земля (около 220 В). Впрочем, данный метод все же актуален для определенных ситуаций.
Контрольная лампа на 220Вк содержанию ↑Определяем фазу
Чтобы найти «фазу», достаточно воспользоваться индикаторной отверткой — простым инструментом, который должен быть у любого хозяина. Прикоснитесь жалом к каждому проводнику, одновременно удерживая палец на верхней, металлической части рукоятки отвертки. Когда световой индикатор внутри отвертки загорится, значит, вы коснулись фазного провода. Однако помните, что при выполнении соответствующих операций электрическая сеть не обесточивается.
Поиск фазного провода индикаторной отверткойк содержанию ↑Методы определения
Существует несколько способов, позволяющих отличить «ноль» от «земли».
Цветовая маркировка проводов
Профессиональные и добросовестные электрики никогда не будут монтировать проводку без соблюдения цветовой маркировки. При условии, что монтаж осуществлялся с соблюдением основных правил ПУЭ, каждый проводник имеет определенный цвет в зависимости от выполняемой функции:
- Синяя/голубая оболочка используется для маркировки нулевого проводника.
- Желто-зеленая оболочка (полосками) применяется для обозначения заземляющей жилы.
- С фазным проводом сложнее, поскольку он может иметь оболочку белого, черного, красного, оранжевого и других цветов. Независимо от выбранного цвета «фазы» такой монтаж будет правильным.
Помните: даже если были обнаружены жилы соответствующих цветов, по которым можно определить «фазу», «ноль» и «землю», не стоит спешить с выводами. Быть полностью уверенным в правильности монтажа можно исключительно при условии, что вы выполнили его самостоятельно. В остальных ситуациях подобный метод поиска «ноля» и «земли» будет некорректным. Поэтому переходите к остальным способам.
к содержанию ↑Дифференциальный ток
Намного проще отличить «ноль» от «земли», если на обслуживаемом участке имеется устройство защитного отключения (УЗО) либо дифференциальный автомат. Воспользуйтесь лампой с проводами, подключите прибор к фазе и одному из двух проводников. Если защита не сработала, то лампочка подключена правильно — к паре фаза-ноль. Если сработало УЗО и ветка оказалась обесточенной, то была задействована пара фаза-земля.
Если УЗО не сработало в обоих случаях, то возможны проблемы с функциональностью оборудования. О работоспособности устройства дифференциальной защиты можно судить по проведенному испытанию. На любом подобном оборудовании есть кнопка «Тест». Нажмите на нее.
к содержанию ↑Примечание. Защитное устройство может не сработать по другой причине: если протекающий через лампу ток ниже номинального дифференциального значения (при котором оборудование должно выполнять обесточивание цепи). К примеру, лампа накаливания пропускает ток около 20-40 мА. Если используется УЗО на 100 мА, то логично, что прибор не сработает.
Заземляющие контакты на розетках
Этот способ подходит для любого объекта, на котором используются двухполюсный вводный автомат и заземляющие розетки. Отключите автомат, что гарантирует отсутствие связи между «нолем» и «землей». Сделайте аналогичное со всеми бытовыми приборами. Возьмите мультиметр, активируйте режим «Прозвонка» и выполните процедуру между заземляющим контактом на розетке и двумя неизвестными проводами.
Когда заземляющий контакт розетки будет соединен с «нолем», на мультиметре будет показано огромное сопротивление, с «землей» — приближенное к нулевому значению. Данный метод поможет убедиться в правильности подключения заземляющих розеток.
к содержанию ↑Использование мультиметра
Перед проверкой токоведущих жил с помощью мультиметра следует зачистить проводку. Не забывайте о мерах предосторожности и обязательно выполните обесточивание электрической сети на обслуживаемом объекте.
Если электрическая проводка не имеет цветовой/символьной маркировки либо монтаж выполнялся неизвестным мастером, тогда воспользуйтесь мультиметром. Однако сперва при помощи индикаторной отвертки определите «фазу». Настройте мультиметр, выбрав диапазон замера переменного напряжения более 220 В. Можно взять измерительный прибор любого типа. Не имеет значения конкретный размер диапазона: главное — выставить его выше 220 В.
На паре фаза-земля напряжение будет меньшеСоедините через мультиметр «фазу» с одним, а затем — другим проводником. На паре фаза-ноль значение напряжения будет ненамного выше, чем на паре фаза-земля. Это позволит отличить «ноль» от «земли».
Примечание. Определение «земли» при помощи мультиметра актуально для более старых электрических сетей, построенных по конфигурации ТТ. Для современных топологий TN-C-S метод неактуален. Во втором случае нулевой и заземляющий проводники разделяются уже внутри здания, поэтому электрически являются идентичными и связанными между собой. У них одинаковое сопротивление, а, значит, при использовании мультиметра на обеих парах будет равная разница потенциалов.
Не подходит мультиметр для поиска заземляющего проводника в электрической сети TN-S. «Ноль» и «земля» разделены от источника энергии до потребителя. Из-за разной длины проводов будет совершенно иное сопротивление, которое обуславливает полученную разницу в напряжении. Может оказаться, что разница потенциалов на паре фаза-земля будет выше, нежели на паре фаза-ноль.
к содержанию ↑Отключение нулевого провода (электрический щиток)
Убедитесь, что электрические приборы были отключены от сети, благодаря чему ток гарантированно не будет поступать на нулевой проводник. Загляните в распределительный щиток, расположение которого регламентируется правилами ПУЭ, отсоедините нулевой провод (открутите зажимы, вытащите кабель из вводного автомата и заизолируйте). Либо удалите проводник с нулевой шины, которая используется для дальнейшего разветвления нейтрали. В квартире или частном доме останутся два работающих проводника — заземляющий и фазный.
Вновь возьмите в руки мультиметр, измерьте напряжение между фазой (определяется индикаторной отверткой) и двумя другими проводниками. Напряжение появится исключительно между «фазой» и «землей», поскольку нулевой провод отключен от щитка.
к содержанию ↑Примечание. Существует такое понятие, как «наведенное напряжение». Не вдаваясь в подробности, отметим, что вследствие него при измерении пары фаза-ноль мультиметр покажет вольтаж, отличный от «0» (обычно не более 10 В).
Метод прозвонки
Прозвонка — один из самых популярных методов, использующихся мастерами для поиска мест обрыва электропроводки. Он подходит для определения «ноля» и «земли». Данный способ актуален при условии, что вы знаете расположение нулевого и заземляющего проводников на одном из концов. Например, когда прозвонка осуществляется от распределительного щитка, но по какой-то причине на другом конце провода имеют другую цветовую маркировку (либо одинакового цвета).
Произведите полное обесточивание. Прозвонка может выполняться профессиональными приборами (на любых моделях мультиметра имеется соответствующая функция) или обычной схемой из лампочки, батарейки и проводов.
Если длина измеряемых проводников небольшая, то воспользуйтесь куском кабеля, подсоединив отрезок к концам участка. Если требуется прозвонить проводник, идущий от распределительного щитка до розетки в дальней комнате, то лучше воспользоваться известной жилой: до обесточивания индикаторной отверткой определите и промаркируйте «фазу» (на обоих концах).
Один щуп мультиметра (или самодельного прибора) подключите к отмеченному фазному проводу, другой — к одному, а затем — другому неизвестному проводнику. Переходите к противоположному концу линии. Подключите поочередно два конца неопределенных жил к промаркированному фазному кабелю. Обозначьте их.
к содержанию ↑Разница между нулем и землей
Последствия неправильной коммутации нулевого и заземляющего проводников могут быть разными:
- Неправильная работа приборов учета электроэнергии в меньшую или большую сторону. Соответственно в первом случае, когда компания-поставщик найдет ошибку, может быть начислен огромный штраф.
- Некорректная работа устройств защитного отключения и дифференциальных автоматов: при существенных перепадах напряжения будет постоянно перегорать бытовая техника.
- Отсутствие защиты человека от поражения током. Более того, неправильная схема может стать основной причиной удара.
В статье были рассмотрены способы, позволяющие отличить нулевой и заземляющий проводники в трехжильных системах. Расположены они в порядке возрастания сложности действий. Только правильный монтаж электрической проводки гарантирует корректную работу УЗО, дифференциальных автоматов и розеток с заземляющим контуром. Если есть малейшие сомнения, лучше обратиться за помощью к квалифицированному специалисту, предоставляющему акт о проведении ремонтных работ.
Как отличить ноль от заземления: от простого до сложного метода
Как определить фазу, ноль и землю: правила, способы, советы
Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь – ноль или земля.
Правильно определить фазу
Провода трехжильные
Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).
Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.
Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.
Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:
- В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).
Неверное положение нуля и фазы евророзетки
- В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
- Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.
Определение положения фазы по цвету изоляции жил провода
Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.
Найти нулевой провод в квартире
По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые – не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.
Штекер 230 вольт Великобритании
В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):
- Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
- Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
- Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
- Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.
Дополнительные сведения о нахождении земли, фазы, нулевого провода
Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.
Добавим другой способ – промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.
Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.
Современные отвертки-индикаторы определения фазы, нулевого провода, земли
Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:
Отвертка-индикатор
- Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
- На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
- Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.
Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.
Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.
Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:
- Красный – фаза.
- Синий – нулевой провод.
- Желтый – земля.
Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.
Как определить провод земля или ноль
Здесь Вы можете задать любой интересующий Вас вопрос, который касается электрики, электромонтажа и пр. Чаще всего задаются одни и те же вопросы – сначала загляните в раздел “Часто задаваемые вопросы”. Если Вы не желаете, чтобы вопрос был виден, то вполне можно написать мне лично или задать вопрос в моей группе ВКонтакте.
Чтобы задать вопрос Вам потребуется регистрация на сайте или авторизация для уже зарегистрированных пользователей.
Чтобы получить точный и правильный ответ нужно грамотно задать вопрос!
Задавая вопрос – не спешите! Тщательно его обдумайте. При качественной формулировке вопроса Вы получите более полный ответ, а значит, не придется многократно переспрашивать и уточнять. В тело вопроса Вы можете вставить изображение (это чаще касается эл.щита, схем на бирках электропечей, разводки и пр.).
И, пожалуйста, не забудьте представиться. Подробностей не нужно, назовитесь как-нибудь, ведь всегда приятно общаться не с пробелом 🙂 Не забывайте и о знаках препинания в предложениях, не пишите сплошным текстом, я не телепат!
После заполнения предложенных форм, Ваш вопрос поступит мне на модерацию. После изучения вопроса и дальнейшего ответа, Вам на электронный адрес придет уведомление о положительном результате.
Всегда на связи, Александр
Где ноль, а где земля?
ВОПРОС:
Попросили меня поставить розетки и выключатели в новом, частном доме. Где-то общим количеством около 60-ти штук.Походил, посмотрел, начал делать. Все шло ровненько, пока в одной из комнат у меня не изменился цвет проводов. Был стандартный набор: белый, синий, желто-зеленый, а тут совершенно другие цвета. С определением фазного провода проблем не было. А вот где земля, а где ноль? Померив прибором напряжение между фазой и проводами, обнаружил 230 и 190 вольт соответственно. Ну и решил, что там где 230 это ноль, а где 190 это земля. А как все-таки определить, если можно так сказать, более научно, где ноль, а где земля? Возможности прозвонить у меня тогда не было, ввиду отсутствия каких-либо проводов. Устанавливал соответственно своему решению. Вопрос. Совершил я ошибку или нет? Если да, то в чем она заключается? И возможные последствия этой ошибки.
ОТВЕТ:
Здравствуйте!
Ну, в самые дебри ходить не стоит, ответ лежит на поверхности :fellow: Идея в чем. У Вас три провода, фаза известна. Теперь идете к эл.щиту, думаю, что линию на данную комнату Вы знаете. Проследите выход провода с АВ или УЗО до кабеля. Определите провода рабочего нуля и защитного заземления. Далее, зависит от Ваших приспособ для определения фазы. Итак, имеется:
1. Тестер/мультиметр/контролька . Отключаем АВ или УЗО на данную линию. Откидываем от общей шины уже известный “нуль” или “землю”, без разницы. Включаем АВ ил УЗО. Затем идем к любой и розеток. Там уже догадались. Производим замер между фазой и любым из проводников. Если цепи нет, то значит это откинутый “нуль” или “земля”.
2. Индикаторная отвертка . Отключаем АВ или УЗО на данную линию. Вытаскиваем на всякий случай все вилки из розеток в определяемом месте. Отсоединяем фазный провод с АВ или УЗО. Отсоединяем нулевой проводник с общей шины и присоединяем его к АВ или УЗО. Включаем АВ или УЗО. Идем с отверткой и касаемся или “нуля” или “земли”. Где появилась фаза, там и рабочий нуль. Т.е. используем метод “прозвонки”.
А так, проводники сейчас идут с разной цветовой гаммой. Иногда вообще непонятен цвет. В этой статье представлены некоторые цвета, но вот оттенки на заводах производителях могут быть достаточно креативны
С уважением,
Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь — ноль или земля.
Правильно определить фазу
Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль — искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).
Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.
Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.
Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:
- В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая — земля (в противном случае — резервный провод питания напряжением 220 вольт).
Неверное положение нуля и фазы евророзетки
Определение положения фазы по цвету изоляции жил провода
Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.
Найти нулевой провод в квартире
По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые — не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.
Штекер 230 вольт Великобритании
В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):
- Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
- Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
- Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
- Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.
Дополнительные сведения о нахождении земли, фазы, нулевого провода
Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.
Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.
Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.
Современные отвертки-индикаторы определения фазы, нулевого провода, земли
Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:
- Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
- На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
- Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.
Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.
Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.
Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:
- Красный – фаза.
- Синий – нулевой провод.
- Желтый – земля.
Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.
ФАЗА, НОЛЬ, ЗАЗЕМЛЕНИЕ
Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.
В промышленных масштабах у нас производится трехфазный переменный ток. а в быту мы используем, как правило, однофазный. Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).
Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля – N).
Еще момент – чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.
Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой – фазовым.
Отсюда следует еще один очевидный практический вывод: напряжение между нулем и землей будет близко к нулевому значению (определяется сопротивлением заземления), а земля – фаза , в нашем случае 220 Вольт.
Кроме того, если гипотетически ( На практике так делать нельзя! ) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение фаза – ноль у нас будет те же 220 Вольт.
Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.
При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.
В описанной выше ситуации защиту от поражения электрическим током может также обеспечить устройство защитного отключения.
При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и землей (рис.4). Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.
Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток уйдет по цепи заземления.
Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.
Как это делается – тема для отдельного разговора, поскольку существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.
КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ
Где фаза, где ноль – вопрос, возникающий при подключении любого электротехнического устройства.
Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).
Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.
Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт. Одним щупом мультиметра (каким – безразлично) касаемся участка измеряемой цепи, другим – естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).
Обращаю Ваше внимание – если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.
- Сейчас в точке 1 фазы нет.
- При замыкании выключателя S она появляется.
Поэтому следует проверить все возможные варианты.
Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно. Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.
#160 #160 *#160 #160 *#160 #160 *
Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Фаза, ноль, заземление
Цветовая маркировка провода
В этой статье мы рассмотрим как определить фазу#187 и зачем это нужно? Чем отличается ноль#187 от земли#187 ? Как правильно подключать их по цвету.
Определить фазу можно одним из приборов, рассмотренных в одной из предыдущих статей. Также можно определить фазу самодельным прибором, рассмотренным в этой статье. А также можно определить прибором и попроще индикаторной отвёрткой, при прикосновении жала отвёртки к фазному#187 проводу в ней загорается огонёк, при этом вы должны прикасаться пальцем к металлическому пятачку индикатора (см. рисунок).
Если проводку делали добросовестные и квалифицированные электрики, то ноль#187 подключен к проводу в синей изоляции, земля#187 к жёлто-зелёному проводу, а фаза к чёрному или к любому цветному (зависит от конкретного кабеля). Если вы делаете проводку заново, то придерживайтесь такой же цветовой маркировки.
Ноль#187 от земли#187 отличить сложнее, индикатор тут не поможет, можно поступить следующим образом: Взять вольтметр и померить напряжение поочерёдно между фазой и одним и вторым оставшимся проводом. Где напряжение больше, там земля#187 . Для подтверждения можно померить напряжение между землёй#187 и заведомо заземлённым устройством, например корпусом электрощита или батареей центрального отопления (краску придётся зачистить) вольтметр не должен ничего показать, а вот между нулём#187 и заземлённым устройством небольшое напряжение, но есть. Также можно прозвонить#187 омметром землю#187 (по нормам сопротивление не должно превышать 0,05 Ом), но предварительно убедитесь, что между измеряемыми точками нет напряжения, иначе можно спалить#187 прибор.
Если у вас всего два провода, то земли#187 у вас нет. К сожалению этот защитный проводник раньше не прокладывали, поэтому он присутствует только в новых домах или если у вас была заменена проводка.
Ноль#187 от земли#187 отличается тем, что при подключении нагрузки по нему течёт ток, такой же величины, как и по фазному#187 проводу, а земля#187 подсоединяется к корпусу электроприбора и служит для защиты человека от поражения электрическим током в случае поломки прибора. Ток по ней не течёт.
А для чего определять фазу#187 ? При подключении электророзетки действительно не важно с какой стороны будет фаза, а вот для выключателя люстры важно, фаза#187 должна подаваться на выключатель, а ноль#187 напрямую к лампам люстры. В этом случае при замене лампы в люстре, при выключенном выключателе, человека не ударит током, даже если он случайно прикоснётся к токоведущим частям патрона люстры.
P.S. Некоторые сайты предлагают определять фазу#187 сомнительными и совсем НЕбезопасными способами, надодобие контрольки#187 , один провод которой надо подставить под струю воды, отковырять откуда-нибудь неоновую лампочку и тыкать ей в провода, или даже прикоснуться проводом с конденсатором(резистором) к батарее. Не делайте этого! Используйте только проверенные приборы, изготовленные на заводе и не прикасайтесь руками к оголённым проводам и металлическим щупам приборов. Здоровье дороже.
Как сделать собственное заземление можно почитать в этой статье .
- Ваше имя Ваш email-адрес
Как определить: фазу, ноль и землю
Для двухжильной проводки:
Важно: При определении фазы в проводке дома либо квартиры необходимо будет подать напряжение на эту самую проводку. В связи с этим последующие работы и эксперименты становятся небезопасными для жизни. Поэтому 100 раз подумайте, нужно ли вам это, может лучше вызвать профессионального электрика, у которого имеется допуск. Жизнь значительно дороже тех денег, которые он с вас возьмет.
Если вы отнеслись к моим предостережениям равнодушно, тогда идем дальше и по пунктам читаем, как из двух проводов определить, где фаза, а где ноль.
1. Выключите из розеток все приборы.
2. Обесточьте квартиру либо дом, напряжение вообще должно быть отключено.
3. Оголите те два провода, с которыми собрались «выяснять отношения». Я не имею в виду, что нужно полностью снимать изоляцию с проводов, просто их кончики должны быть слегка оголенными и зачищенными, а так же находится на расстоянии друг от друга, чтобы они случайно не соприкоснулись, и не возникло КЗ.
4. Снова подайте напряжение, в том числе и на нужные вам провода.
5. Возьмите индикаторную отвертку. Если ее у вас нет, значит нужно купить. Стоит она очень смешных денег, как буханка хлеба. Поэтому не нужно искать другие методы и говорить, что: «у меня нет никакой отвертки, может лучше лампочкой».
6. Индикаторная отвертка должна находится в правой руке. Брать ее нужно только за диэлектрическую ручку. Дотроньтесь концом отвертки поочередно до каждого из проводов. При этом указательный палец правой руки нужно класть на кончик рукоятки, который должен быть металлическим.
Тот провод, на котором загорелся индикатор и есть фаза. а второй провод, естественно – это ноль .
Вся эта инструкция очень хорошо подходит для двухжильной проводки, но провода может быть и 3, то есть ноль, фаза и земля.
Для трёхжильной проводки:
Фазу в трехжильном проводе вы определите точно так же: индикатор будет гореть. На землю и ноль индикаторная отвертка реагировать не будет.
Ноль и земля определяется в разных случаях по-разному. Некоторые определяют по цветам проводов: коричневый – фаза. синий/голубой – ноль. злёно-жёлтый/полосатый – земля. Однако в этом случае нужно полагаться на электриков, которые не должны были перепутать и использовать конкретный цвет для конкретного провода. Поэтому этот метод сразу отпадает.
Можно взять патрон с лампочкой и двумя проводами, один прикрутить к определенной вами индикатором фазе, а вторым коснуться поочередно двух оставшихся проводков: где загорится – тот провод и ноль. Однако лампочка может загореться и при соприкосновении с землей. Можно померить поочередно напряжение при помощи вольтметра. В паре фаза-ноль напряжение должно быть больше, чем в паре фаза-земля.
Советы, как узнать 0 и землю:
1. Залезть в щит и отключить защитное зануление. На оставшейся паре проводов нагрузка (лампа) будет работать. Это если вы точно знаете, где земля в щитке.
2. Замкнуть фазу на один из оставшихся проводов. Если пробки выбьет, то ноль. Если нет, то земля. При условии, что у вас есть пробки, и вы не боитесь, что вся проводка сгорит. И это довольно опасно.
3. Есть индикаторные отвёртки специальные с батарейкой, ИЭК тот же продаёт (такие жёлтые), таким землю от нуля отличать удобно. Выявляем неонкой фазу, вырубаем пакетник/вводной автомат (работает это понятно только если он двухполюсный), тыкаем оставшиеся концы, который светится – земля, который не светится – ноль.
4. Вольтметром переменного тока померять напряжение между неопределенным проводом и батареей теплоснабжения (отковырнуть краску и касаться металла). У заземляющего провода потенциал будет ноль, у нулевого провода, за счет перекоса фаз (разных нагрузок по фазам) потенциал может быть от нуля до 20-30 вольт.
5. Если у Вас трех проводная сеть то тогда должно быть УЗО, далее определяете фазный провод, предварительно отключив всю нагрузку (т.е. нигде не должна замыкаться на устройствах). После определения фазы и подключения к ней (например, лампы накаливания), второй провод соединяете с любым из оставшихся, проводов (все подключения делайте со снятием напряжения), включите УЗО, затем включите вводной автоматический выключатель, если УЗО не отключится то второй провод и является нулевым, а если произойдет отключение УЗО, то это защитное заземление.
© Энциклопедия Технологий и Методик Патлах В.В. 1993-2007 гг.
Как определить фазу и ноль индикаторной отверткой
Определение фазы и нуля без приборов
Бывают ситуации, когда для правильности подключения необходимо узнать какой провод фаза, а какой ноль. Например, для обеспечения нормальной работы осветительного прибора, в разрыв (через выключатель) и дет фазный провод, а нулевой прокладывается непосредственно к осветительному прибору. В настоящее время, проводка в домах и квартирах прокладывается трехжильными проводами, которые подразделяют на три вида.
Виды проводников:
- Фаза;
- Ноль;
- Заземление.
Отличить в проводке фазу от нуля представляется возможным визуально
Но для этого должно быть соблюдено одно важное условие. Проводка в доме или квартире должна быть выполнена с применением разноцветных проводников
Фазный проводник согласно правилам ГОСТ, обязательно должен маркироваться следующими цветами: черный, белый, коричневый, фиолетовый, бирюзовый, красный, серый, розовый и оранжевый.
Нулевой проводник легко найти, так как он всегда маркируется голубым цветом. Провод заземления имеет желто – зеленую расцветку.
Стоит отметить, что электрический ток, который подается к жилым секторам, является переменным, поэтому полярность подключения электроприборов не имеет значения
Правильность подключения важно только для оборудования, работающего на постоянном токе
Применение лампы накаливания
Это метод использования лампы накаливания для определения проводников соответствующего цвета в сети из 3 проводников. Этот метод предусматривает соблюдение повышенных мер безопасности.
Для применения этого метода в патрон вкручивается обычная лампа накаливания. На клеммы патрона прикручиваются провода, не имеющие на концах изоляции.
Если не имеется комплекта деталей для этого метода, можно использовать стандартную настольную лампу. В таком случае, чтобы получить результат следует попеременно, по цветам присоединять проводники к вилке.
Недостатком этого способа является то, что применив его, невозможно будет наверняка узнать какой из двух проводников фазный. То есть, таким методом, мы скорее проверяем систему на работоспособность.
А преимущество состоит в том, что с большой долей вероятности будем знать следующее: 1 провод нуль, другой провод фаза. Если при тестировании свет не горит, это указывает на отсутствие фазы в проверяемых проводниках.
Разновидности и функции отверток
Чисто внешне рассматриваемый прибор выглядит как самая простенькая отвертка. Разница будет видна в ручке. В рассматриваемой версии данного инструмента в корпусе ручки имеется резистор, соединенный с жалом, выполненным из металла. Именно оно и будет выступать проводником.
Наличие сопротивляющейся части позволяет сократить токовую силу до максимума, что дает возможность применять подобную отвертку максимально безопасно. В каркас устройства еще и встроен световой диод либо лампочка на основе неона, что подсоединяются к пятачку внешнего типа на пластине контакта, что расположена с внешней стороны прибора. Получается, что электричество идет по щупу и в дальнейшем по резистору, снижается до такого уровня, чтобы его показатель был максимально безопасным для осуществления работ. Именно это и является главным аспектом использования индикаторной отвертки.
Если говорить о категориях подобных отверток, то новейшие модели, представленные на рынке, могут найти напряжение в жиле даже через глиняный, побелочный или штукатурный слой, что будет крайне удобно, ведь избавит от необходимости разбивать часть стены, чтобы добраться непосредственно до провода.
Вообще, алгоритм действия подобных инструментов в большинстве случаев одинаков. Хотя существуют различия, возникающие в зависимости от категорий, моделей и наявных функций, которые есть у той или иной модели с индикаторной функцией. Бывает так, что по своему функционалу такая отвертка индикаторного типа может заменить целый ряд довольного дорогостоящего оборудования. Например, есть решения на батарейках, что позволяют проверить целостность проводов, даже когда они обесточены, и ток по ним не идет.
Подобные варианты дадут следующие данные о цепи, что проверяется:
- присутствие звукового сигнала позволит понять, есть ли в цепи напряжение либо оно отсутствует;
- цифровое табло показывает величину напряжения, что обычно отображается в вольтах;
- использование рассматриваемой отвертки дает возможность проверить цепь постоянного и переменного тока в бытовой электротехнике;
- установить сетевую полярность;
- прозвонка электрической цепи звуковой либо световой индикацией.
Вообще, существуют две категории отверток такого типа.
С неоновой лампой. Этот вариант является распространенным и его устройство описано выше. Преимуществом такого решения будет дешевизна и простота. А недостатком является малый диапазон напряжения, с котором можно работать. Как правило, речь идет о диапазоне от 90 до 380 вольт. Да и фазный провод определить в указанном случае можно исключительно при непосредственном электроконтакте.
Благодаря наличию резистора ограничения щуп подключается к контакту с разными полярностями у диодного мостовыпрямителя. А второй контакт выводится на индикаторную рукоять, чтобы можно было прикоснуться пальцем. Малый постоянный, который возник, уходит на накопительный конденсатор. После этого активируется транзистор лавинного типа, который активирован по инверсной схеме. В финале всего этого светодиод получает пульсирующий ток. Такая отвертка может осуществить определение фазы даже при напряжении от 45 вольт. А если подключить не щуп, а маленькую антенну, то можно легко найти электрополе переменного типа.
Если говорить об области применения, то при помощи подобных отверток можно выполнять следующие типы работ:
- проверка к розеточному или выключательному контакту подключается проводник фазы;
- если розетка на удлинителе не функционирует, то можно осуществить проверку всех гнезд с применением пробника;
- осуществить проверку, куда именно подведена фаза на патроне: на основной контакт или на резьбу;
- узнать, есть ли напряжение в определенном электрическом приборе;
- проверить, насколько исправен заземлительный проводник.
Принцип действия индикаторных отверток
Для того чтобы эффективно и правильно пользоваться индикаторными отвертками, рекомендуется ознакомиться с их устройством и общими принципами работы. Несмотря на внешние различия, у каждой из них основной функцией является проверка наличия и отсутствия напряжения, определение фазы и нуля. Для этого достаточно подключиться рабочим органом к одному из контактов.
Наиболее простым устройством считается индикаторная отвертка с неоновой лампочкой. В ее конструкцию входит металлический токопроводящий стержень, на конце у которого расположено плоское жало. В схему индикаторной отвертки дополнительно включен токоограничивающий резистор и неоновая лампочка. Стальная пружина прижимает лампу к резистору.
Отвертка на светодиоде может работать и с более низким напряжением – до 45 вольт. Для нормального функционирования требуется импульсный режим, то есть, с увеличением силы тока пропорционально снижается время непрерывного горения светодиода. Кроме ограничительного резистора, в схеме имеется диодный мост, выполняющий функцию выпрямителя. Незначительное количество тока, появившееся на контактах моста, поступает к накопительному конденсатору. Далее через транзистор пульсирующий ток подается на светодиод, который начинает гореть мерцающим светом.
Принцип работы с такой отвёрткой заключается в следующем. Человеческое тело представляет собой своеобразный конденсатор с достаточной емкостью. Когда палец касается сенсора, в цепи возникают слабые электрические токи в пределах 0,5 мкА. Если жало инструмента одновременно касается фазного проводника, происходит увеличение силы тока до значения, достаточного для открытия транзистора. Далее выполняется подключение питающего элемента к светодиоду, который начинает излучать свет.
Показатель напряжения срабатывания составляет около 50 вольт. Порог чувствительности удается снизить за счет использования собственных источников питания. Это дает возможность отличить ложные срабатывания, возникающие под действием наводок электрического поля.
Как найти фазу мультиметром
Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения — уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».
В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.
Общие сведения
В нашей повседневной жизни мы сталкиваемся с электричеством практически в любом месте, где пребываем. Будь это работа или различные заведения: кино, театр, магазины, спортивные комплексы — перечислять можно очень долго. Что и говорить, мы пользуемся многими электроприборами ежедневно, причем лет так 20 или 30 лет назад их было не так много, как в настоящее время. Причем их число растет с завидной периодичностью.
Но все электрическое оборудование не может работать вечно и рано или поздно оно начинает ломаться, что просто неизбежно. Вечного двигателя пока еще никто не изобрел, поэтому на чудо надеяться не стоит. Некоторые люди хотят научиться чему-то новому, неизведанному и электричество не является исключением. Хотя бы потому, что можно самостоятельно проводить ремонт бытовой техники. Конечно, лучше приглашать специалиста, но легкую работу можно выполнить самостоятельно. Только для этого необходимо изучить фундаментальные понятия, дабы разобраться, что такое ноль и фаза.
Дополнительная информация
Выше рассматривались ситуации, когда нет индикационной отвертки, но имеется мультиметр или токовые клещи. Предполагалось, что до входа в помещение есть земля, фаза и нуль, а помещение со стороны потребителя прозванивается. В случае с тремя жилами метод еще проще, так как между фазой и любым проводом разница потенциалов равна 220 В. При этом нужно заметить, что способ не подойдет в других ситуациях, к примеру, когда имеется нулевая разница межфазного напряжения. В указанном случае тестер будет бесполезен.
Есть и другая методика проверки, применение которой в промышленных условиях, однако, запрещено.
Понадобится лампа в патроне с парой оголенных проводов. С помощью лампы определяется фаза — любую жилу можно замкнуть на заземление. Использование с этой целью водопроводных, канализационных или газовых коммуникаций запрещено. Можно использовать кабельную антенну, оплетка которой, согласно нормативам, должна быть заземлена, а это означает, что найти фазу можно будет с помощью тестера (или, как говорилось выше, можно использовать лампу в патроне).
Также можно использовать пожарные лестницы или металлические громоотводные шины. Необходимо зачистить сталь до появления блеска, а затем прозвонить фазу на зачищенном участке. Следует сказать, что далеко не всякая пожарная лестница имеет заземление в отличие от громоотводной шины. При обнаружении такого дефекта рекомендуется обращаться с жалобами на нарушение технологии защитного зануления в управляющие или государственные организации.
Как проверить фазу и ноль?
Теперь перейдем непосредственно к проверке ноля и фазы. Но перед стартом работ подобного типа, следует проверить работоспособность самого прибора, чтобы он отображал правильные данные, которые позволили провести нужные действия, выполняя следующие действия:
- сначала следует осуществить визуальный осмотр и убедиться, что конструкция прибора полностью целостна и не имеет повреждений механического характера;
- после выполнения этого действия, если никаких изъянов не найдено, следует протестировать устройство;
- щуп следует при проверке вставить в оба отверстия рабочей розетки, одновременно с этим требуется большой палец руки держать на части рукояти диэлектрического сенсора – если что-то не так, индикатор не сработает;
- при применении решения с индикатором неонового типа на батарейке можно зажать пальцами отверточное жало и пятачок; в случае активации светового диода, это будет означать исправность устройства.
Объясним определение фазы и ноля на самой обычной розетке. Нужно вставить отвертку в одно из розеточных отверстий и, как описано выше, прикоснуться пальцем к рукояточной пластинке. Если индикатор активировался, значит, удалось найти фазу. Потом вставляем устройство в иное отверстие – активации лампочки произойти не должно. Если все так, как и должно быть – это ноль.
Если же она и тогда светится от нулевого провода, чего вроде как быть не может, это значит, что есть две фазы. Не следует бояться, ведь это возможно, если просто исчез контакт на нулевом кабеле. Например, это можно произойти где-то в коробке. В розетке не может быть две фазы никоим образом: одна будет просто идти во второе отверстие через какие-то включенные электрические приборы (лампочки, стиральные машины, холодильники и так далее).
Следует отметить, что довольно часто многие путают простую индикаторную отвертку с прозвоночным вариантом. Во втором случае у отверток имеется батарейка. Если с использованием такой отвертки осуществить определение земли, то нет необходимости касаться пятки. Либо же лампочка будет активна, как в случае касания фазы, как и при касании нуля.
Определение нуля и фазы
Для того чтобы не перепутать нуль и фазу на выключателе, или при проведении других электромонтажных работ нужно пользоваться специальными фазоуказывающими инструментами или пробниками. Наиболее простым способом будет использование индикаторной отвертки.
Индикаторная отвертка
Чтобы знать, как определить фазу и ноль индикаторной отверткой, нужно понять принцип ее работы. Она настроена таким образом, что внутренняя неоновая лампа загорается при появлении разности потенциалов
между рабочим контактом отвертки и металлическим выводом на конце ее ручки. Для правильного указания фазы отверткой нужно выполнить простые действия:
- Отключить питание от электросети автоматом;
- Зачистить концы испытываемых проводников и развести их на безопасное расстояние;
- Подать питание в электросеть;
- Прикоснуться жалом пробника к концу испытываемого проводника;
- Пальцем нажать на металлический вывод на конце ручки отвертки, касаться жала отвертки во время работы запрещается;
- Если тестируется фаза — лампочка внутри пробника должна засветиться.
Кроме обычной индикаторной, существует отвертка для прозвонки. Она отличается тем, что имеет в своем составе батарейки и указывает фазу без касания пальцем ее противоположного металлического конца. Также существует индикаторная отвертка
с функцией обнаружения скрытой проводки. Она может определить, где внутри стены проходит электрическая сеть квартиры. В ней используется бесконтактный способ определения по электромагнитному полю, возникающему вокруг проводника.
Контрольная лампа
Еще один способ, как определить фазу и нуль без приборов — это изготовление контрольной лампы. Такой индикатор создается просто: нужно припаять провода достаточной длины к выводам патрона и вкрутить в него лампу накаливания или неоновую. Один из выводов такого определителя фазы присоединяется к батарее, а вторым можно проверить наличие питающего напряжения в сети
. Для этого зачищенным концом провода нужно коснуться испытываемого проводника. Если это фаза — лампа должна вспыхнуть. Этот способ весьма опасен, поэтому им нужно пользоваться только в исключительных случаях, к тому же он запрещен Правилами Безопасной Эксплуатации Электроустановок.
Измерение мультиметром
При отсутствии индикаторной отвертки и для более точных измерений напряжения питания сети используется мультиметр, еще его называют тестер. С помощью него можно определить фазовый, нулевой и заземляющий проводник
в трехпроводной сети. Дело в том, что индикаторная отвертка может показать только большие различия в потенциалах, то есть показывает только фазу. Мультиметр работает с различными сигналами: высокого и низкого уровня, положительными и отрицательными. Его задача — показывать параметры электроцепи.
Чтобы узнать, как найти фазу и ноль мультиметром, а также заземляющий провод, нужно правильно настроить и подключить это устройство измерения. Проводится это так:
- Установить черный щуп мультиметра в гнездо, маркированное COM, а красный щуп — в гнездо с надписью U, Ω, Hz ;
- Ручкой на передней панели выбрать режим измерения переменного тока, предел измерения больше 220 В.
После настройки нужно одновременно прикоснуться двумя концами щупов к двум тестируемым выводам. Значение на экране мультиметра:
- Более 100 В — найдены фаза и ноль;
- Более 160 В — найдены фаза и заземляющая линия;
- Менее 70 В — это ноль и заземляющий.
Протестировав таким образом все три линии, можно с уверенностью определить, где присутствует искомый потенциал.
Более простой способ, как определить фазу мультиметром, заключается в том, чтобы щупом, установленным в отверстие U, Ω, Hz поочередно прикоснуться ко всем концам электросети. В случае соприкосновения с фазовым
проводником мультиметр будет показывать напряжение 8 -15 В. В остальных случаях показания будут на уровне 0 — 3 вольта
Пользоваться мультиметром надо с осторожностью, используя изолирующую обувь и никогда не прикасаться руками к концам щупов без изоляции
При любых работах с электрической проводкой нужно соблюдать технику безопасности, то есть обесточивать помещение при монтаже и ремонте электрики, а во время теста на работоспособность при включенном автомате обеспечивать себе надежную защиту изоляцией.
При подключении различных электрических устройств (розетка или выключатель), не обязательно учитывать полярность проводников. Но что делать, если используемая проводка в доме трехжильная и не имеет цветовой маркировки, а устройства необходимо подключить с заземляющим проводником. Для этого существует несколько способов как проверить, какой из проводов является фазой, нулем или заземлением.
Как отличить по внешнему виду
Узнать, какие провода проходят в конкретной квартире, можно по их внешнему виду. Знать, как определить фазу и ноль без приборов, нужно, если отсутствуют оба из указывающих инструментов. Отличить провода можно по цвету их изоляции. Но этот метод применим только тогда, когда электропроводка выполнена с соблюдением всех правил ее укладки
. Желто-зеленый цвет изоляции указывает на то, что этот проводник — заземляющий. Голубой или синий цвет говорит о том, что провод нулевой, а коричневый, белый или черный цвет указывает на фазовую линию.
Но даже при уверенности в цвете проводки лучше ее перепроверить индикаторной отвёрткой или мультиметром, так как неправильное подключение чревато электротравмой.
Описание процесса
Начнём с фазы. Требуется включить устройство, после чего выставить на нём определение напряжения переменного характера, что на корпусе устройства обычно обозначается значком V~. Также следует выбрать предел измерения выше предполагаемого сетевого напряжения. Часто говорят о 400–700 В. Щупы тогда будут подключаться так: чёрный следует установить в разъём с пометкой COM, а красный – VΩmA. Но прежде чем осуществлять это, следует проверить работоспособность мультиметра в выбранном режиме. Проще попытаться выяснить напряжение в простой розетке. Для этого вставляем щупы в розеточные отверстия. Если устройство рабочее, и таковой будет розетка, то мультиметр покажет вам значение около 220–230 В.
Теперь приступим непосредственно к поиску фазы на примере 2 кабелей, торчащих из потолка и использующихся для включения люстры. Всё будет довольно легко. Требуется сформировать условия для прохождения электричества по прибору и установить этот факт. Создаётся электрическая цепь примерно такая, как с отвёрткой-индикатором.
При выяснении напряжения переменного характера с установленной границей 500 вольт, красным щупом нужно коснуться проверяемого кабеля, а чёрный прижать пальцами или коснуться предмета, что заземлён. Им может стать каркас стены из стали, отопительный радиатор и так далее. Если на проверяемом кабеле будет фаза, тестер высветит на дисплее величину напряжения около 220 В. Она может чуть различаться из-за условий, но будет примерно такой. Если провод не фаза, то появится 0 либо прибор покажет не более пары десятков вольт.
Теперь поговорим о том, как найти ноль. Он обычно находится уже относительно фазы. Сначала ищем её и логически предполагаем, что провод, расположенный рядом, ноль либо земля. Определить, является кабель нулём либо заземлением с помощью рассматриваемого устройства относительно сложно из-за того, что данные проводники почти одинаковы и повторяют друг друга.
Проще всего будет отключить от заземлительной шины в электрощитке кабель ввода. При осуществлении проверки напряжения между кабелями заземления и фазой нельзя будет получить 220 вольт, как при проверке фазы и нуля. Кроме того, следует сказать, что если в электрощите стоит защита дифференциального типа, то она точно сработает при проверке кабелей заземления относительно иного проводника, даже нулевого.
Если надо установить ноль в розетке, то следует красный щуп поставить в фазовую розеточную дырку, а чёрный поднести к иному контакту, после чего сделать эти же действия с третьим контактом. Обязательно следует запомнить напряжение в обоих случаях. Где оно будет меньше, там будет заземление. А там, где показатель будет чуть выше – там будет нулевой провод. В общем, как можно убедиться, ничего сложного в поиске нуля и фазы мультиметром нет.
Особенности домашних электрических сетей
Практически во всех квартирах электричество подается через однофазную сеть, с напряжением 220 вольт и частотой 50 Гц. Общее питание к жилому дому подводится посредством мощной трехфазной линии, а потом электроэнергия коммутируется в распределительных щитах. Дальнейшее движение тока к потребителям осуществляется по однофазным линиям с фазным и нулевым проводами.
Распределение нагрузки на каждую фазу должно быть максимально равномерным, чтобы избежать перекосов в процессе эксплуатации. В современных домах дополнительно прокладывается контур защитного заземления. Таким образом, в электрической сети добавляется еще один провод, который в дальнейшем тоже придется идентифицировать при необходимости.
В частном секторе нередко используются трехфазные линии. Напряжение в 380 вольт может напрямую подводиться к отдельным потребителям – отопительным котлам, электродвигателям и другому оборудованию. Однако для внутренней разводки внутри частного дома все равно используются однофазные линии, в которых равномерно распределяются все три фазы. Таким образом, к розеткам оказывается подведенными три провода – фазный, нулевой и заземление.
Определение фазы, нуля и заземляющего провода
Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.
- Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
- Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
- Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
- Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.
Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.
При ремонте электрической проводки, или ее обслуживании часто может потребоваться определить какой провод подключен к нулю, а какой к фазе. Это требуется для установки выключателей или коммутации другого электрооборудования. Прежде, чем рассказать, как определить ноль и фазу, расскажем о связанных с этим предрассудках.
Фаза
Сами по себе термины «фаза», «ноль» и «земля» хорошо знакомы профессиональным электрикам. Но, к примеру, фаза встречается и в физике — под этим определением можно назвать несколько состояний воды:
- жидкое;
- твердое;
- газообразное.
Помимо этого, под фазой можно понимать несколько стадий колебания, что может относиться к волновому движению. В астрономии здесь несколько иное значение, что можно понять по наблюдению за луной.
Чуть выше было рассмотрено, как рождается электричество на станциях. Так вот именно на рабочую фазу, которую электрики называют просто — фазой, подается напряжение. Чтобы более точно представить себе, что это значит, следует раскрыть следующее понятие — ноль.
Алгоритм визуального осмотра
Во-первых, откройте щиток. Внимательно рассмотрите автоматические выключатели, количество которых зависит от расчетной нагрузки. К автоматам существует 2 варианта подключения:
- провод содержит только фазу;
- как фазу, так и ноль.
Провод заземления подключается непосредственно к шине.
Теперь, когда вы знаете значение расцветки и месторасположение кабелей, осталось лишь проверить, чтобы в щитке все соответствовало стандарту.
Далее, при условии, что в щитке ваша изоляция проводов соответствует правилам, необходимо открыть каждую распределительную коробку и визуально изучить состояние скруток. Здесь тоже не должно быть неточностей.
Очень часто бывают такие моменты, на которых не стоит заострять внимание. Например:.
- Распределительная коробка содержит выключатель, подсоединенный к фазе.
- Монтажники использовали провода с двумя жилами, изоляция которых отличалась от стандарта.
В обязательном порядке придерживайтесь правил техники безопасности и будьте осторожны и предельно внимательны, когда решаете вопросы с электричеством самостоятельно.
Как использовать прибор?
Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.
Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:
- Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
- На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.
Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.
Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).
У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.
Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.
Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.
Как определить фазу ноль и землю
Как найти фазу ноль и землю по цветам проводов
Самый простой метод определения фазы нуля и земли возможен по расцветке проводов. Этот вариант применим только для построек, где используется стандарт IFC c нормативом используемых цветов для электропроводки.
По этим нормам провода электропроводки в домах должны иметь цвета:
– рабочий нулевой проводник обозначается синим или сине – белым цветом:
– защитное заземление должно иметь желто – зеленый цвет изоляции провода:
– цвет изоляции фазы может иметь несколько разных это белый, серый, коричневый и далее.
По этой цветной маркировке проводов достаточно легко определить назначение проводника. Однако от разветкоробки до выключателя, светильника, розеток иногда используется провода другого цвета в основном белого. Как в этом варианте найти фазу ноль и землю.
Цвета трехпроводной электропроводкиДля нахождения фазы нуля и земли в таком варианте нужно отключить электросеть квартиры вводным автоматом, открыть разветкоробку, разъединить провода. Прозванивать провода нужно тестером, мультиметром в режиме минимального сопротивления или батарейкой с лампочкой или со светодиодом.
Определение фазы нуля и земли индикатором напряжения
Индикатором напряжения можно найти только фазу, ноль и землю придется вызванивать, как описано выше. Перед использованием индикатора напряжения его нужно проверять на работоспособность. Индикатор напряжения с неоновой лампой годен для нахождения фазы, если на нулевом и заземляющем проводе отсутствует наводимое напряжение.
Индикаторная отвертка с неоновой лампойК наводкам неоновая лампа очень чувствительна, так как она загорается при очень маленьком токе. Для электропроводки в квартире или доме наводки на проводах при отключенной сети довольно редкое явление. Но если рядом с электропроводкой находится посторонняя электросеть или дом расположен вблизи высоковольтной линией электропередач, тогда для определения фазы лучше использовать контрольную лампу.
В 7 издании ПУЭ для проверки наличия или отсутствия напряжения использование контрольной лампы не разрешается. Этот запрет основан на том, что индикаторы напряжения с низким сопротивлением не чувствительны к наведенным напряжениям, какие могут создать угрозу жизни человеку.
Этот пункт, скорее всего, применим к кабелям большой длины и большого сечения и проходящим рядом с другими кабелями, находящимися под напряжением. Эти кабеля могут скапливать большой и опасный для жизни заряд, благодаря большой емкости кабеля. Тогда конечно пользоваться контрольной лампой для определения отсутствия напряжения нельзя, она не покажет опасное наведенное напряжение.
Этот пункт касается промышленных предприятий. В домашней электропроводке провода имеют (если имеют) очень малую емкость, что явно недостаточно для опасного наведенного напряжения. Единственно, что пользоваться контрольной лампой нужно очень осторожно, так как имеются открытые не изолированные концы.
Определение фазы ноля и земли индикаторной отверткойДля нахождения фазы контрольной лампой находим два провода, при присоединении к которым лампа горит. В этом варианте мы нашли фазу и ноль.
Теперь один конец контрольки соединяем со свободным проводом. Лампа не горит. Тогда свободный проводник это фаза, а замкнутые через контрольную лампу провода – это ноль и земля. В этом случае может сработать УЗО (если оно имеется).
Теперь берем фазный провод и один из двух оставшихся. Если лампа загорелась и УЗО не отключается, тогда мы нашли ноль, а свободный провод будет землей. Теперь проверяем землю (при установленном УЗО). Соединяем через контрольку фазу и предполагаемую землю. Если лампа моргнет, и УЗО отключит сеть, тогда мы нашли землю.
Без УЗО нужно в подъездном электрощите откинуть заземление. Соединяя фазу и один из двух оставшихся проводников, находим провод, при котором лампа не горит, этот проводник будет земляным. Использовать водопроводные, канализационные, газовые трубы для нахождения фазы контрольной лампой категорически запрещается, так как вы подвергаете риску поражения током соседей или возникновение пожара.
Как мультиметром найти фазу ноль и землю
Определить назначение проводников в трехпроводной схеме электропроводки мультиметром нетрудно. Для этого зачищаем пятачок металлической батареи или стальной трубы отопления, водопровода и прикасаемся одним концом щупа мультиметра к трубе, а вторым щупом подключаемся к одному из трех проводов поочередно, пока на дисплее не покажется напряжение 220 В.
МультиметрМультиметр должен быть включен в положении измерения напряжения 220 В. Найденный провод будет фазой. Теперь относительно фазы подсоединяем щуп прибора по очереди к оставшимся проводам. Провод, при котором тестер покажет полные 220 В будет нулем, а второй соответственно землей.
При измерении напряжения фаза – земля, мультиметр покажет напряжения меньше, чем 220 В – этот проводник будет землей. Однако, если в старой постройке с системой энергоснабжения TN – C и повторным заземлением рядом с домом, то тестер покажет одинаковое напряжение фаза – ноль и фаза – земля.
В этом случае нужно отключить в подъездном щитке заземление и найти провода фаза – ноль на которых будет 220 В, оставшийся земляной проводник с фазой не покажет наличие напряжения.
Помните, что работая с напряжением сети нужно предпринимать все защитные меры по электробезопасности (защитные перчатки изолированный инструмент). Если вы не уверены в своих силах, тогда определение фазы ноля и земли доверьте опытному электрику.
Диагностика проблем с питанием на розетке
Измеряя напряжение горячей нейтрали, напряжение нейтраль-земля и напряжение горячей земли, вы уже на пути к ответу на следующие вопросы:
- Неправильно ли подключена розетка?
- Ответвленная цепь слишком нагружена?
- Имеют ли чувствительные электронные нагрузки необходимое напряжение?
Эти три измерения, выполненные быстро в одной розетке, дадут вам четкое представление об электроснабжении здания.
Проверка трехслотовой розетки на полярность заземления
Неправильно подключенные розетки не редкость. Розетка с тремя гнездами имеет горячий гнездо (короткое), нейтральное гнездо (длинное) и гнездо заземления (U-образное). Перепутаны ли полярность горячего (черного) и нейтрального (белого) проводов? Нейтральный и заземляющий (зеленый) провода перепутаны местами или закорочены?
Эти условия могут долгое время оставаться незамеченными. Многие нагрузки не чувствительны к полярности – им все равно, поменяли ли местами горячую и нейтральную полярность.С другой стороны, чувствительные электронные нагрузки, такие как компьютерное оборудование и приборы, действительно заботятся о чистом заземлении (заземлении без напряжения и без токов холостого хода). Одна перевернутая нейтраль и земля могут поставить под угрозу всю систему заземления.
Итак, что вы нашли?
Горячая нейтраль – это напряжение нагрузки. Напряжение должно быть около 120 В (обычно от 115 до 125 В). Вы измеряете точно 118,5 В.
- Нейтральное заземление – это падение напряжения (также называемое ИК-падением), вызванное током нагрузки, протекающим через полное сопротивление белого провода.Допустим, вы измеряете 1,5 В.
- Горячую землю можно рассматривать как источник напряжения на розетке. Вы читаете 120,0 В. Вы заметили, что горячая земля выше, чем горячая нейтраль. Фактически, горячее заземление равно сумме напряжений между горячей нейтралью и нейтралью-землей.
Нормальные ли эти показания? Правильно ли подключена розетка?
Как определить неправильное подключение розеток
Чаще всего неправильное подключение происходит, если переключаются горячая и нейтральная проводка, или если нейтраль и земля переключаются или закорочены.Как вы определяете эти условия?
- Измерение горячей нейтрали само по себе не говорит вам, были ли они переключены. Вы должны измерить нейтральную или горячую землю. Если напряжение между нейтралью и землей составляет около 120 В, а напряжение горячего заземления составляет несколько вольт или меньше, значит, переключение между фазой и нейтралью поменялось местами.
- В условиях нагрузки должно быть некоторое напряжение нейтраль-земля – обычно 2 В или немного меньше. Если напряжение нейтраль-земля равно 0 В – опять же при условии наличия нагрузки в цепи – проверьте, есть ли случайное или преднамеренное соединение нейтраль-земля в розетке.
- Чтобы проверить, переключены ли нейтраль и земля, измерьте горячую нейтраль и горячую землю под нагрузкой. Горячая земля должна быть больше, чем горячая нейтраль. Чем больше нагрузка, тем больше разница. Если напряжение горячей нейтрали, измеренное с нагрузкой в цепи, больше, чем напряжение горячей земли, то нейтраль и земля переключаются. Это потенциальная угроза безопасности, и состояние следует немедленно устранить.
Показание горячего заземления должно быть наивысшим из трех показаний. Цепь заземления в нормальных, нормальных условиях не должна иметь тока и, следовательно, не должна падать на нее ИК.Вы можете думать о заземлении как о проводе, идущем обратно к источнику (главной панели или трансформатору), где он подключен к нейтрали. На конце цепи заземления, где производится измерение, заземление не подключено к какому-либо источнику напряжения (опять же, при условии, что неисправности нет). Таким образом, заземляющий провод похож на длинный тестовый провод, ведущий к источнику напряжения. Когда подключена нагрузка, напряжение источника розетки с горячей землей должно быть суммой напряжения горячей нейтрали (напряжения на нагрузке) и напряжения нейтрали-земли (падение напряжения на нейтрали на всем пути обратно к ее значению). подключение к цепи заземления).
Сопутствующие ресурсы
электричество – Как может быть нулевой провод нулевого напряжения, когда по нему течет ток?
Вы сокращаете путь, когда говорите: «Напряжение равно нулю».
Напряжение всегда измеряется между двумя точками . В электротехнике, когда мы говорим, что напряжение в точке X равно V, мы фактически измеряем напряжение между точкой X и неявной другой точкой, называемой «землей».
В электросети «нейтраль» – это заземление по определению.Так что напряжение нулевого провода всегда равно нулю … По определению.
Реальность немного отличается.
Если вы измеряете напряжение между любыми двумя точками сверхпроводящего провода, вы будете измерять ноль вольт независимо от силы тока, но нейтральные провода в электросети не являются сверхпроводниками.
Если вы измеряете напряжение между двумя разными точками нейтрального провода, по которому проходит ток, вы, , сможете измерить небольшую разницу.
Обычно эта разница достаточно мала, чтобы ее можно было игнорировать в большинстве случаев. Если он недостаточно мал, чтобы его можно было игнорировать, это означает, что нейтральный провод слишком мал (диаметр) для величины тока, который он несет.
ток течет из-за напряжения
Ну да, но нет. Ток будет вечно течь в обмотках сверхпроводящего магнита вообще без приложенного напряжения. Требуется напряжение, чтобы запустить протекание тока, но как только ток течет в катушке, напряжение не требуется, чтобы он продолжал течь.
Ток перестает течь в катушках обычного электромагнита только тогда, когда напряжение снимается из-за сопротивления провода.
Это похоже на разницу между самолетом, летящим по воздуху, и спутником, вращающимся вокруг Земли намного выше атмосферы. Самолет не будет летать долго, если его двигатель остановится из-за сопротивления, с которым он сталкивается при движении по воздуху, но после первоначального разгона спутник будет продолжать вращаться по орбите вечно.
Заземление, нейтраль и провода под напряжением (США / Канада)
Нейтральный, заземляющий и горячий провода объяснены.В этой статье мы рассмотрим разницу между горячим, нейтральным и заземляющим проводами, а также функцию каждого из них на нескольких примерах. Эта тема для домов в Северной Америке. Если вы находитесь за пределами этого региона, вы все равно можете следовать инструкциям, но ваша система будет работать и выглядеть иначе, поэтому ознакомьтесь с другими нашими темами.
Прокрутите вниз, чтобы просмотреть руководство YouTube по заземлению, нейтрали и горячим проводам.
Предупреждение
Помните, что электричество опасно и может быть смертельным.Вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ. Никогда не работайте с электрическими цепями, находящимися под напряжением / горячими.
Прежде чем мы перейдем к этому видео, я хочу, чтобы вы запомнили три вещи.
1) Электричество будет течь только по замкнутой цепи, если вы войдете в контакт с электрическим проводником, ваше тело может замкнуть цепь.
2) Электричество всегда пытается вернуться к своему источнику.
3) Электричество использует все доступные пути для замыкания цепи. Он предпочитает путь с меньшим сопротивлением, и по нему будет течь больше тока.
Мы собираемся рассмотреть провода под напряжением, нейтраль и заземление для типичной североамериканской жилой электрической цепи. Но сначала мы увидим действительно простую схему, чтобы понять, как она работает, а затем применим эти знания к сложной жилой установке.
Если мы посмотрим на простую электрическую схему с батареей и лампой. Мы знаем, что для включения лампы нам нужно подключить оба конца проводов к клеммам аккумулятора. Как только мы подключим эти провода, цепь замкнута, и электроны могут течь от отрицательного полюса через лампу и обратно к положительному выводу.
Электроны текут от отрицательного к положительному . Это называется потоком электронов. Первоначально считалось, что они перетекают от положительного к отрицательному. Позже было обнаружено, что это неверно, и мы называем это обычным током.
Итак, чтобы цепь была замкнута, нам нужен провод для переноса электронов от источника питания к свету, это наш горячий провод. Затем нам нужно подключиться от лампы и обратно к батарее, чтобы электроны вернулись к своему источнику питания или своему источнику.Это наш нейтральный провод. Горячий провод передает электричество от источника питания к нагрузке, а нейтральный провод возвращает использованное электричество обратно к источнику питания.
Токовая нагрузка в цепях
Если мы посмотрим на жилую электрическую систему в Северной Америке, мы найдем два провода под напряжением, нейтральный провод и несколько проводов заземления. Если вы хотите подробно изучить, как это работает, у нас есть обучающее видео, которое можно посмотреть здесь.
Представьте на секунду, что электрическая система дома отключена. подключен к аккумулятору, и у нас есть только один провод под напряжением и нейтральный провод.Как мы пила по простой схеме, для включения света нам понадобится горячий провод, чтобы подавать ток на нагрузку, и нам нужен нейтральный провод, чтобы вернуть ток к источнику. Таким образом, электричество проходит через горячую шину. и автоматический выключатель и в свет. Затем он возвращается через нейтрально и к источнику.
Конечно дома не подключены к батареям, они подключен к трансформаторам. Итак, мы заменили батарею на трансформатор, и мы иметь полную схему.
Электричество в этой цепи – переменный ток, который отличается от постоянного тока, который мы видели с батареей. С DC электроны текут прямо от A к B в одном направлении, как поток вода по реке. Но в наших домах у нас есть переменный ток переменного тока, что означает электроны сильно меняют свое направление между вперед и назад как прилив на море.
Сейчас в Северной Америке у нас есть разделенная фаза питания для большинства жилых домов, поэтому у нас есть два провода под напряжением и один нейтральный провод.У нас просто есть две катушки на 120 В, соединенные вместе в трансформаторе, а затем нейтраль подключается к центру между двумя катушками.
Когда мы подключаем мультиметр между фазой и нейтралью, мы получаем 120 В, и мы получаем такое же значение для другого, потому что мы используем только половину катушки в трансформаторе. Когда мы подключаемся между двумя точками, мы получаем 240 В, потому что мы используем полную катушку трансформатора.
Если у вас нет мультиметра, я настоятельно рекомендую вам его приобрести, это незаменимый инструмент для любых поисков и электромонтажных работ.
Если у нас есть нагрузка только на одну половину катушки, между горячей и нейтралью, и нагрузка, например, 20 А, то горячая часть будет переносить 20 А к нагрузке, а нейтраль вернет 20 А обратно к источнику.
Мы можем измерить ток в кабеле с помощью токоизмерительных клещей.
Если у нас есть другая нагрузка на нашей другой половине катушки, между другой горячей и нейтралью, и нагрузка имеет другое значение, например, 15 Ампер, то нейтраль будет переносить только разницу между этими двумя значениями обратно на трансформатор.В этом случае 20A – 15A = 5A, поэтому нейтраль будет переносить 5A обратно. Остальная часть пройдет через два провода под напряжением. Это то, что у нас будет в большинстве случаев, потому что есть несколько цепей с разными нагрузками.
Если бы у нас была нагрузка на обе катушки, и они имеют одинаковое значение, скажем, например, 15 А каждая, то в нейтральном проводе не будет протекать ток. Все это течет вперед и назад по двум токоведущим проводам между нагрузкой и источником. Это связано с тем, что это переменный ток переменного тока, и трансформатор имеет центральное ответвление с нейтралью, поэтому, когда одна половина движется вперед, другая половина движется назад, и ток будет течь в другую цепь, а не обратно через нейтраль.
Подробную анимацию см. В видео на YouTube ниже
Горячие провода переносят электрический ток от источника питания к нагрузке, а нейтральные провода переносят электрический ток от нагрузки и обратно к источнику питания.
Для чего нужен заземляющий провод?
Заземляющий провод при нормальных условиях эксплуатации не пропускает электрический ток. Этот провод будет пропускать электрический ток только в случае замыкания на землю. Будем надеяться, что иначе этот провод никогда не будет использоваться в течение всей его жизни.Это просто аварийный путь, по которому электричество возвращается к источнику энергии, а не проходит через вас. Заземляющий провод в большинстве случаев представляет собой неизолированный медный провод, но иногда он покрывается зеленой изоляцией. Этот провод имеет очень низкое сопротивление, поэтому электричество предпочтительнее перемещаться по нему, потому что это легче и может быстрее вернуться.
Возвращаясь к простой схеме с батареей и лампой. Если теперь мы возьмем другой провод и проведем его от положительной клеммы к лампе и подключим его к металлическому патрону лампы, это будет фактически наш заземляющий провод.Он не используется для подачи электричества. Если горячий провод касается металлического корпуса, то вместо этого электричество будет проходить через заземляющий провод. Если горячий провод соприкасается как с нейтралью, так и с землей, он будет течь через оба провода обратно к источнику, но поскольку заземление имеет меньшее сопротивление, через него будет протекать больший ток.
Когда электричество находит способ выйти из своей цепи и вернуться к источнику другим путем, чем нейтральный провод, мы называем это замыкание на землю.
Возвращаясь к дому, электричество проходит через горячий и светлый и обратно через нейтраль. Но если горячая энергия касается металлического корпуса, она вместо этого потечет через заземляющий провод обратно к панели, затем через шину, а затем обратно к трансформатору через нейтральный провод. У заземляющего провода очень низкое сопротивление, поэтому он вызывает резкое и мгновенное увеличение тока, которое приведет к срабатыванию выключателя.
Поэтому мы подключаем заземляющие провода ко всему, что может потенциально стать потенциальным путем, по которому электричество может покинуть свою цепь, например, как металлические трубы, металлические пластины выключателей и розеток и их коробки.Нам также нужно запустить один в торговые точки, потому что часто наши бытовая техника будет иметь металлический корпус, как стиральные машины и микроволновые печи.
Если вы посмотрите на розетку и вилку, то увидите, что клемма под напряжением, клемма нейтрали и клемма заземления. Оболочка чего-то как стиральная машина подключена к проводу заземления в проводе, который идет к вилку через розетку и обратно к панели, чтобы спасти вас от поражение электрическим током.
Теперь предположим, что вы находитесь на улице без обуви и на земле. влажный.Если вы дотронетесь до горячего провода, вы замкните цепь и ток пройдет через вас, чтобы вернуться к источнику питания. В этом случае сопротивление очень высокое, поэтому ток может быть недостаточно высоким, чтобы автоматически переверните выключатель и отключите питание. Это, скорее всего, приведет к тому, что люди смерть.
К счастью, у нас есть розетка GFCI или прерыватель GFCI. GFCI расшифровывается как прерыватель цепи замыкания на землю. Мы рассмотрим вариант с автоматическим выключателем, но, по сути, они работают одинаково.
Этот выключатель GFCI будет подключаться как к горячему, так и к нейтрали цепи, чтобы он мог контролировать провода и гарантировать, что ток, протекающий в горячем проводе схемы, равен току в нейтральном проводе цепи. .Если ток не равен, значит, он явно течет обратно к источнику по другому маршруту, например, по металлической трубе, поэтому у нас есть замыкание на землю. Прерыватель осознает это очень быстро и автоматически перевернется, чтобы отключить питание цепи.
Штанга заземления
При подключении к основной панели находим толстый медный провод. что ведет к заземляющему стержню. Грунтовая дорога засыпана землей снаружи рядом с собственностью. Этот стержень не используется при замыканиях на землю. Цель состоит в том, чтобы рассеивают статическое электричество и высокое внешнее напряжение, например, молнии удары.
Также имеется заземляющий стержень, подключенный к нейтрали трансформатора. Многие думают, что во время замыкания на землю электричество проходит через заземляющий стержень в землю. Но помните, что электричество пытается вернуться к своему источнику. Поскольку у трансформатора есть заземляющий стержень, существует потенциальный путь для электричества, чтобы вернуться к источнику. НО, этот путь будет иметь очень высокое сопротивление или импеданс, поскольку это переменный ток, и, как мы знаем, электричество будет иметь преимущество перед путем с наименьшим сопротивлением.Поскольку у нас уже есть заземляющий провод с низким сопротивлением, который обеспечивает обратный путь непосредственно к источнику, замыкание на землю будет происходить по этому же маршруту.
Когда дело доходит до освещения, источником освещения в основном является Земля. Итак, молния пытается вернуться к своему источнику, который является земной шар. Если молния ударит по кабелям электропитания, она потечет по проводам к добраться до заземляющих стержней как трансформатора, так и главной панели, чтобы вернуться на землю. В противном случае он взорвет все наши цепи и вызовет пожары.
Если горячая проволока напрямую контактирует с заземляющим стержнем, то электричество будет проходить через землю обратно к трансформатору, но сопротивление очень велико, поэтому ток будет низким. Это означает, что автоматический выключатель вряд ли обнаружит эту неисправность, и выключатель не будет автоматически переключаться, чтобы отключить питание.
Электрические определения – электрические 101
Направление тока –
Выделенная цепь –
Устройство * –
Постоянный ток (DC) –
Электрическая нагрузка –
Электрическая система –
Неисправность –
Калибр –
Земля –
Заземляющий провод –
Замыкание на землю – это происходит, когда незаземленный провод (линейный провод) соприкасается с чем-либо заземленным (например, обмотка двигателя касается корпуса или линейный провод прибора касается металлического корпуса).
Прерыватель замыкания на землю (GFCI) –
Винт заземления –
Токоведущий провод – Незаземленный провод. Это проводник, на котором есть напряжение. В доме цвет провода черный или красный.
Импеданс –
Изолятор –
Киловатт –
Киловатт-час (кВтч) –
Линия –
Сторона линии –
Нагрузка –
Сторона нагрузки –
NEC – Национальный электротехнический кодекс.
Нейтральный проводник –
Нейтраль –
NM –
Номинальное напряжение –
Более высокие значения напряжения 125, 130, 230 и 250 вольт предназначены для переключателей, розеток, лампочек и некоторых нагрузок. Эти номинальные значения указывают на верхний предел напряжения, при котором устройство или нагрузка должны работать должным образом в нормальных условиях.
Нижние значения напряжения 110, 115 и 220 В предназначены для нагрузок (бытовых приборов, двигателей и т. Д.). Эти характеристики указывают нижний предел напряжения для правильной работы в нормальных условиях.
Ом –
Обрыв цепи –
Розетка –
Перегрузка по току * –
Перегрузка * – Эксплуатация оборудования с превышением номинальной, полной номинальной нагрузки
Фотоэлемент –
Разница потенциалов –
Power –
Квалифицированное лицо * –
Сопротивление –
Короткое замыкание –
Вольт –
Напряжение – электрическая сила или разность потенциалов, измеряемая в вольтах (В).
Напряжение (номинальное) –
Падение напряжения –
Вольт –
Вт –
Сборка проводов –
(* Обозначает определения статьи 100 NEC 2014)
Arc –
Arc Fault –
Прерыватель цепи при дуговом замыкании (AFCI) – прерыватель цепи, который также срабатывает при обнаружении аномальной дуги.
Вспышка дуги –
Переменный ток (AC) – Ток в обоих направлениях.В жилых и коммерческих помещениях используется переменный ток.
Amp –
Ampacity * –
AWG –
Цепь –
Автоматический выключатель * –
Проводник – материалы, которые позволяют легко перемещаться электронам, включая серебро, медь, золото и алюминий.Электрические провода в основном из меди, некоторые из алюминия.
Непрерывность –
Непрерывная нагрузка –
Ток – поток электронов через проводник, количество измеряется в амперах (А).
Что вам нужно знать – Провод заземления оборудования
Заземление оборудования в целях безопасностиГде бы мы были без электричества? С того момента, как мы встаем утром и до того, как ложимся спать, мы включаем и выключаем выключатели, не задумываясь об этом. Но электричество – один из самых опасных элементов, которые мы используем в повседневной жизни. Чтобы использовать его безопасно, нам нужно принять меры предосторожности.
Система заземления для создания безопасного путиВ целях безопасности персонала и оборудования все электрические системы должны быть заземлены.Мы заземляем электрические системы, чтобы ограничить дополнительное напряжение, наложенное на них молнией, скачками напряжения в сети, контактом с линиями высокого напряжения или замыканиями на землю. Система заземления помогает эффективно направлять электрические токи через электрические системы и стабилизировать уровни напряжения, чтобы цепи не перегружались и не взрывались. Используя низковольтную проводку и системы заземления, мы можем предотвратить дальнейшее возникновение проблем.
Избыточное или рассеянное электричество всегда имеет путь наименьшего сопротивления, и земля является идеальным проводником или приемником этого электричества.Согласно Национальному электротехническому кодексу, «земля» определяется как проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли. «Заземленное» оборудование подключается к земле или к какому-либо проводящему телу, которое служит вместо земли ».
Раздел 150-51 NEC гласит, что эффективный путь электрического заземления должен выполнять четыре задачи. Он должен быть постоянным и непрерывным, иметь способность безопасно проводить любые вероятные токи короткого замыкания, иметь достаточно низкий импеданс и иметь дополнительный заземляющий провод электрического оборудования, который выполняет ту же функцию, что и земля.Заземляющие проводники оборудования, проводники заземляющего электрода и заземленные проводники являются проводящими объектами, которые расширяют заземление.
Заземляющий провод оборудования выполняет три очень важные функции, когда речь идет о системе электробезопасности. Он создает путь для электричества, связывает оборудование вместе и контролирует аномальные электрические события. Электрический заземляющий проводник – это металлический провод, металлический стержень или аналогичный предмет, который выполняет роль проводника, соединяющего оборудование с землей через заземляющий электрод.Чтобы заземлить оборудование, соедините металлические части на каждой части, которая не проводит ток, вместе, а затем подключите их к заземленному проводу системы, проводнику заземляющего электрода или к обоим. Токоведущий провод, по которому течет ток в нормальных условиях, обычно подключается к земле, поэтому электричество рассеивается в земле, эффективно заземляя оборудование.
Соединение для нулевого электрического потенциалаПомимо заземления, заземляющие провода оборудования также связывают оборудование.Соединение означает соединение двух проводящих частей, например двух частей электронного оборудования. Склеивание очень важно в системах передачи данных, телекоммуникаций или управления процессами. Шкафы для оборудования, корпуса и конструкционная сталь – все должно быть склеено. В противном случае разница в напряжении между ними может нарушить качество потока данных, и это может привести к полной остановке сети.
Соединение выполняется путем соединения всех металлических частей, которые не должны пропускать ток (при нормальных условиях эксплуатации) в двух соединяемых элементах.Этот процесс выравнивает их электрический потенциал, таким образом они работают на одной и то же электрическом основных опорном напряжение. Когда они соединены, между ними не будет протекать ток, поэтому разряда не произойдет. Уменьшение тока между двумя частями оборудования при разных потенциалах защищает как оборудование, так и людей.
Одна вещь, которую процесс соединения не выполняет, – это защита любого элемента от накопления электрической энергии. Этот тип защиты исходит от процесса заземления.Но если один из элементов был заземлен, так что у него нулевой электрический потенциал, элемент, к которому он подключен, также будет заземлен.
Склеивание электрического оборудования также помогает обеспечить безопасность и защиту сотрудников, которые могут работать с оборудованием или находиться рядом с ним. Например, если два элемента оборудования связаны и сотрудник одновременно касается кожухов оборудования обоих элементов, он не получит шока. Если эти два элемента не связаны, работник может стать путем выравнивания электричества и получить неприятный шок.
Еще одна причина, по которой соединение так важно, заключается в том, что оно помогает создать обратный путь с низким сопротивлением к источнику. Когда электричество находится на пути с низким сопротивлением, ток может течь свободно. Эти большие токи могут отключить автоматический выключатель и устранить неисправность.
Лучший способ соединения оборудования – это прокладывать заземляющий провод по тому же маршруту, что и силовой и нейтральный проводники, от источника к машине.
Контроль аномальных событийОсновная цель заземления электрических систем – обеспечить защиту от электрических повреждений.Электрическая неисправность – это дефект в электрической системе, который отклоняет или прерывает нормальный поток электрического тока от предполагаемого пути. Если его не остановить, он может повредить электрическое оборудование.
Различные типы электрических неисправностей, такие как замыкание на землю, могут вызвать повреждение. Девяносто пять процентов неисправностей – это замыкания на землю. Замыкание на землю происходит, когда паразитные электрические токи проходят мимо проводки цепи и текут прямо на землю. Замыкания на землю часто вызваны ухудшением механической изоляции, которое может произойти во влажной, влажной и пыльной среде.Нерегулярное или дуговое замыкание на землю может вызвать повышение напряжения в электрической системе, ухудшение изоляции и создание напряжения, в шесть раз превышающего номинальное напряжение системы. Эффективная система заземления оборудования гарантирует, что все части останутся в рабочем состоянии при замыкании на землю.
Четкая терминологияПутаница часто возникает вокруг «нейтральных» проводов или проводников, «заземленных» проводов или проводников и «заземляющих» проводов или проводников.Заземленные провода или проводники на самом деле то же самое, что и нулевые провода или проводники. Заземляющие провода очень разные, но термины «заземляющий провод» и «заземляющий провод» часто используются как синонимы.
Заземляющий провод легко отличить от нейтрального по цвету. Национальный электрический кодекс (NFPA 70 NEC) требует, чтобы заземляющий провод был оголенным. Если это изолированный провод, он должен быть зеленого или зеленого цвета с желтой полосой изоляции. Нейтральные провода белого или серого цвета.Стандартные цвета помогают упростить монтаж электропроводки и повысить безопасность.
Нейтральный (заземленный) провод или проводник выполняет две важные функции. Он служит точкой отсчета нулевого напряжения в электрической цепи и обеспечивает обратный путь для тока, подаваемого через проводник под напряжением.
Подобно нейтральному проводу или проводнику, заземляющий провод или проводник также работает с нулевым напряжением. Однако его основная функция – обеспечить заземленное соединение всего оборудования.Нейтральный проводник несет все возвратные токи, но в нормальных условиях заземляющий провод не пропускает электрический ток. Однако при возникновении короткого замыкания в линии (условия короткого замыкания или другие потенциально опасные ситуации) заземляющий провод или проводник служит альтернативным путем, по которому ток короткого замыкания может безопасно течь обратно к источнику.
Что произойдет, если не использовать заземляющий провод? Неисправность не отключается, и оборудование может оказаться под напряжением, если к нему прикоснется токоведущий провод.Это означает, что любой, кто прикоснется к находящемуся под напряжением оборудованию, получит удар электрическим током.
Поскольку и заземляющий, и нейтральный проводники работают с нулевым напряжением, большинство устройств будут работать правильно, если провода поменять местами, однако работа будет нарушать электрические нормы.
Вы работаете в строительной отрасли? В таком случае наше программное обеспечение электрического котрактора может помочь оптимизировать ваши проекты и повысить эффективность с самого начала.Чтобы узнать больше о нашем программном обеспечении, загляните в наш блог или позвоните одному из наших профессионалов сегодня.
В чем разница между нейтралью, землей и землей?
Основное различие между нейтралью, землей и землей?Чтобы понять разницу между нейтралью, землей и землей, мы должны сначала понять необходимость этих вещей.
НейтральНейтраль – обратный путь для цепи переменного тока, которая должна проводить ток в нормальных условиях.Этот ток может быть вызван многими причинами, в первую очередь из-за дисбаланса фазных токов, а иногда также из-за 3-й и 5-й гармоник.
Могут быть и другие причины, но величина этого тока составляет долю фазного тока, а в некоторых случаях он может быть даже в два раза больше фазного тока. Таким образом, предполагается, что нейтральный провод всегда заряжен (в активной цепи). Этот нейтральный провод подключается к земле (путем заземления), чтобы второй вывод нейтрального провода находился под нулевым потенциалом.
Земля или ЗемляЗемля или Земля предназначен для обеспечения безопасности от утечки или остаточных токов в системе через путь наименьшего сопротивления.В то время как фаза и нейтраль подключены к основной силовой проводке, заземление может быть подключено к корпусу оборудования или к любой системе, которая в нормальных условиях не проводит ток, но в случае некоторого нарушения изоляции предполагается, что она будет пропускать небольшой ток.
Этот ток исходит не напрямую от провода под напряжением или фазы, а от вторичных звеньев, которые в нормальном состоянии не контактировали с системой под напряжением. Этот ток обычно намного меньше, чем ток основной линии или фазный ток, и в большинстве случаев имеет порядок мА.Но этого тока утечки достаточно, чтобы убить кого-нибудь или вызвать пожар. Такой ток проходит по пути с низким сопротивлением и направляется на землю через заземляющий провод.
Из-за разницы в применении мы никогда не смешиваем заземление нейтрали и земли. Однако оба обоснованы (конечно, процесс может быть другим). Если оба будут смешаны, то заземляющий провод, который не должен пропускать ток в нормальных условиях, может иметь некоторые заряды и станет опасным.
Полезно знать:
Разница между заземлением и заземлением.Нет разницы между заземлением и заземлением, но это те же термины, которые используются для заземления или заземления.
Заземление – это слово, обычно используемое для заземления в североамериканских стандартах , таких как IEEE, NEC, ANSI и UL и т. Д., В то время как Заземление используется в европейских , странах Содружества и стандартах Ritain B , например IS и IEC и т. д.
Проще говоря, Заземление и Заземление являются синонимами.Оба слова используются для обозначения одного и того же
Вы также можете прочитать:
цветов заземления нейтральной линии
Нейтральная линия
Нейтральная линия – это линия, проведенная от нейтральной точки (N) вторичной обмотки трансформатора, и образует петлю с фазовой линией (L) для подачи питания на электрическое оборудование.Обычно нейтральный провод имеет двойную защиту путем повторного заземления (PEN) в нейтральной точке (N) вторичной обмотки трансформатора и защитного заземления (PE).
Разница в цепях
Нейтраль (N): в основном используется в рабочей цепи, основная линия выводится после заземления нейтрали трансформатора.
Провод заземления (PE): не используется для рабочих цепей, только как защитная линия. При абсолютном нулевом напряжении земли, когда корпус устройства протекает, ток будет быстро течь в землю.Даже если линия PE имеет разомкнутую цепь, она будет течь от ближайшего заземляющего корпуса к земле. (Из нейтральной точки трансформатора основная линия выводится и заземляется через каждые 20-30 метров)
Разница напряжений
Напряжение – это разность потенциалов между двумя точками. Под действием напряжения заряд будет течь по проводу, образуя ток. Это то же самое, что и поток воды снизу вверх. Вода будет работать в процессе потока, и электричество также будет работать в процессе потока.Между линией под напряжением и нейтралью есть разница в напряжении. Стандартное напряжение однофазной сети в Китае – 220 В.
Когда ток проходит через провод с малым диаметром и большим сопротивлением, возникает ситуация, похожая на пробку, что приводит к выделению тепла. Вольфрамовая проволока лампы может выдерживать высокие температуры, а вольфрамовая проволока излучает свет в условиях высоких температур.
переменного тока
Шнур питания переменного тока разделен на нулевые линии (отмечены «N»: нейтральный провод) и FireWire (отмечены «L»: провод под напряжением).Электрическое соединение также подключается к заземляющему проводу – провод, соединенный с землей; провод под напряжением, нейтральный провод и заземляющий провод – это провода, подключенные к розетке с тремя отверстиями, и между проводом под напряжением и нейтральным проводом сохраняется синусоидальная колебательная разница давления. Поскольку потенциал земли и нулевой линии одинаковы, линия под напряжением и линия земли также поддерживают синусоидальную разность колебаний давления. Когда человеческое тело касается линии огня, ток линии под напряжением течет в землю или нейтральную линию через тело человека, и происходит несчастный случай, связанный с поражением электрическим током, и линия нулевого контакта не поражается электрическим током.Внешний корпус электрического устройства, который может проводить электричество, соединен с заземляющим проводом. В случае утечки ток течет прямо в землю через заземляющий провод, не проходя через тело, что позволяет избежать поражения электрическим током.
Нулевая линия заряжена
Причина и решение зарядки
1. Зарядка от нулевой линии не является хорошим заземлением. Если он хорошо заземлен, ток будет течь в землю и не будет обнаружен электрической ручкой.Если электрическая ручка используется для обнаружения нейтральной линии, нейтраль либо оборвана, либо контакт плохой. Но на самом деле это результат, а не причина электрификации нулевой линии;
2. Причина: в нормальных условиях на нулевой линии не должно быть электричества. Таким образом, если есть электричество, это определенно результат неисправности; самый простой – это электромагнитная индукция, и в это время нулевая линия плохо заземлена и не может образовывать петлю; во-вторых, происходит утечка в электрооборудовании или фазовая линия ударяется о оболочку, но ток небольшой.Следовательно, нет поездки; нейтральная линия заряжена, а нейтральная линия определенно не заземлена; после решения проблемы, причина нахождения оборудования.
В трехфазной четырехпроводной системе электропитания, если нейтральная линия недостаточно заземлена или клемма заземления разорвана, следствием этого является то, что потенциал нейтральной линии не равен 0, когда трехфазная нагрузка несимметрична. , то есть нейтральная точка смещена. сдвиг. Удельный потенциал нулевой линии связан с трехфазным дисбалансом нагрузки.Чем больше неуравновешенность, тем больше смещение нейтральной точки и выше потенциал нейтральной линии. Фазовое напряжение трех фаз после сдвига потенциала нулевой линии обычно не 220 В. Некоторые фазы могут превышать 220 В, а некоторые могут быть ниже 220 В. Когда смещение нейтральной точки слишком велико, фаза повышения трехфазного напряжения может привести к его выгоранию электрическим прибором, а фаза снижения трехфазного фазного напряжения может привести к отказу электрического прибора. .После повышения потенциала нейтральной линии линия заземления вызовет риск поражения электрическим током при достижении определенного значения.
Зарядка по нулевой линии:
1. Есть ток: это вызвано трехфазным дисбалансом
2. Есть напряжение: это ломаная линия, что очень опасно, легко повредить электрооборудование, необходимо отремонтировать
В трехфазной четырехпроводной системе (TN-C) нейтральная линия заряжена, большая часть которой вызвана несимметрией трехфазной нагрузки.В неисправном состоянии нейтральная линия будет заряжена.
Однако в трехфазной пятипроводной системе (TN-S) нейтраль обычно имеет очень слабый ток, особенно в блоке питания компьютерной системы. Это связано с тем, что рабочее напряжение компьютерной системы обычно составляет 0 ~ 5 В. Между, а также питание постоянного тока, поэтому в соответствии с принципом работы системы постоянного тока, ее нулевой потенциал – это сквозной ток, нулевой потенциал постоянного тока в компьютере – через преобразование постоянного / переменного тока, будет входящим источником питания переменного тока нулем в качестве Точка нулевого потенциала постоянного тока Следовательно, в компьютерной системе нейтральная линия в линии электропередачи обычно имеет микроток, поэтому в конструкции распределения питания компьютера не установлено устройство защиты от утечки.
Причина поражения электрическим током
Удар электрическим током должен образовывать петлю, чтобы вызвать поражение электрическим током. В то же время он поразит огонь, и нулевую линию или линию огня и землю ударит током.
Поскольку тело птицы очень маленькое, две ноги стоят на проводе (горячем или нейтральном) одновременно, расстояние между ними невелико, и закон Ома может знать, что напряжение между ногами и ногами мало, и проходить Ток у птицы также невелик, поэтому птица не получит удара током.
Прежде чем объяснять почему, вы должны сначала понять, что называется поражением электрическим током. На самом деле определение поражения электрическим током не означает, что рука касается переменного тока так просто. Определение поражения электрическим током заключается в том, что на обоих концах объекта возникает разность потенциалов. Согласно закону Ома I = U / R, если две стороны образуют разность потенциалов и ток течет от тела (небольшой академический термин называется петлей), это называется поражением электрическим током. .
Как правило, высоковольтный провод будет разделен на несколько частей, одна из которых имеет напряжение 0 В, то есть провод заземления, о котором мы говорим.У других есть напряжение, которое называется линией огня.
Почему птицу не ударили током? Потому что у птицы две ноги на одном проводе, поэтому напряжение на ногах будет одинаковым. Например: птица находится под высоким напряжением 10 000 вольт, левая ступня птицы – 10 000 вольт, а правая ступня – также 10 000 вольт, поэтому 10 000 – 10 000 В = 0 В напряжение равно 0 вольт, конечно, ток равен также 0 ампер, поэтому птица не получает удара током, потому что у нее вообще нет разницы потенциалов, и, конечно же, нет тока.
Если большая птица летит, одно крыло попадает в линию огня, а другое – в нулевую линию или линию земли, то, к сожалению, поражение электрическим током (220V-0V = 220V).
В нормальных условиях вторая линия на левой стороне линии передачи, обращенная к направлению передачи, определяется как нулевая линия, за исключением специальных.