Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Подключение электролитических конденсаторов в сеть переменного тока

Алюминиевые электролитические конденсаторы широко используются в различных электро- и радиотехнических приборах теле-, радио-, аудиоустройствах, стиральных машинах, кондиционерах воздуха и т. Применение на постоянном напряжении с наложенной переменной составляющей пульсирующее напряжение :. Алюминиевый электролитический конденсатор имеет простую конструкцию. Две ленты из конденсаторной бумаги проложены между двумя лентами из специальным образом обработанной алюминиевой фольги и эта комбинация из четырех лент свернута в рулон.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Конденсаторы | Принцип работы и маркировка конденсаторов
  • Как сделать из полярного конденсатора неполярный и в чем их отличие между собой
  • Подбор конденсаторов для электродвигателя и их подключение
  • Конденсатор в цепи переменного тока – что нужно накапливать и для чего
  • Пусковой конденсатор для электродвигателя
  • Как подобрать конденсаторы для запуска электродвигателя

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Электролиты для подключения трехфазного двигателя

Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.

Вернуться к оглавлению

Доработка трехфазного двигателя

Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки.

Рисунок 8. Принципиальная схема коммутации обмоток трехфазного электродвигателя для включения в однофазную сеть.

Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.

Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.

Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об./мин), установленном на самодельном деревообрабатывающем станке, и показала свою эффективность.

Вернуться к оглавлению

Детали

В схеме коммутации обмоток электродвигателя в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.

Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа», после чего продолжают дальнейшую работу.

Для того чтобы улучшить пусковые характеристики двигателей, кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз.

Что произойдет, если мы неправильно подключим полярный конденсатор?

Что происходит при подключении электролитического поляризованного конденсатора в обратной полярности?

Существуют различные типы конденсаторов, такие как полярные (конденсаторы постоянной емкости, например, электролитические, псевдоконденсаторы, ELD и суперконденсаторы) и неполярные конденсаторы (керамические, слюдяные, пленочные, бумажные и переменные конденсаторы). Конденсаторы играют активную и важную роль как в цепях переменного, так и постоянного тока (например, фильтры, RC-цепи, связь и развязка, улучшение коэффициента мощности, генераторы, демпферы, пускатели двигателей и т. д.). Давайте остановимся на теме поляризованных электролитических конденсаторов.

Электролитический полярный конденсатор представляет собой тип полярного конденсатора, который имеет полярность на своих клеммах, обозначенную катодом и анодом (положительная и отрицательная клеммы).

В электролитическом конденсаторе изолирующий слой, используемый в качестве диэлектрика (твердого, жидкого или газообразного материала), зажат между двумя электродами. Есть две металлические пластины, где первая пластина в качестве положительного «анода» покрыта изолирующим оксидным слоем посредством анодирования, а электролит используется в качестве второй клеммы, известной как «катод». Существует три типа электролитических конденсаторов, а именно алюминиевые, танталовые и ниобиевые конденсаторы.

В алюминиевых электролитических конденсаторах электроды состоят из чистого алюминия, однако анодный (положительный) электрод изготавливается путем формирования изолирующего слоя из оксида алюминия (Al 2 O 3 ) путем анодирования. Электролит (твердый или нетвердый) помещается на изолирующую поверхность анода. Этот электролит технически действует как катод. Второй алюминиевый электрод помещается поверх электролита, который служит его электрическим соединением с отрицательной клеммой конденсатора.

Алюминиевая фольга с бумагой между ними намотана вместе. Их пропитывают электролитом, а затем покрывают кожухом из алюминия. Этого достаточно, давайте сосредоточимся на теме прямо сейчас.

  • Связанный пост: Разница между батареей и конденсатором

Содержание

Что происходит с конденсатором, если он подключен к обратному напряжению?

Мы знаем, что конденсатор блокирует постоянный ток и пропускает переменный. Полярный, т.е. электролитический конденсатор должен быть подключен к правильным клеммам источника питания постоянного тока для правильной работы при использовании в цепях постоянного тока. Другими словами, положительный и отрицательный источник постоянного тока должны быть подключены к положительной и отрицательной клеммам конденсатора соответственно.

Несчастные случаи реальны и часто происходят намеренно или случайно. Теперь давайте посмотрим, что произойдет, если полярный или электролитический конденсатор подключить к обратной клемме источника питания постоянного тока, т.е. минус к плюсу, и наоборот.

Полярный электролитический конденсатор взорвется при обратной полярности

Давайте обсудим последний сценарий как первый, чтобы быть в безопасности в первую очередь. В случае обратного включения конденсатор вообще не будет работать, а если приложенное напряжение выше значения номинала конденсатора, начнет протекать больший ток утечки и нагревать конденсатор, что приведет к повреждению диэлектрической пленки (алюминиевой слой очень тонкий и его легко сломать) по сравнению с приложенным постоянным напряжением) даже взорвать конденсатор.

Соблюдайте осторожность при подключении поляризованного конденсатора к источнику питания постоянного тока с помощью соответствующих клемм. В противном случае обратное напряжение может повредить общий конденсатор с треском или взрывом за очень короткое время (несколько секунд). Это может привести к серьезной травме или опасному пожару (танталовые конденсаторы с этим справляются).

Алюминиевые слои в электролитическом конденсаторе выдерживают только прямое напряжение постоянного тока (так же, как диод прямого смещения). Обратное постоянное напряжение на полярном конденсаторе приведет к его выходу из строя из-за короткого замыкания между двумя его выводами через диэлектрический материал (так же, как диод обратного смещения, работающий в области пробоя). Это явление известно как клапанный эффект.

Имейте в виду, что электролит, используемый в фольге и электролитическом конденсаторе, может заживить и преобразовать конденсатор в его нормальное состояние, если в конденсаторе прошло очень низкое обратное напряжение. Поэтому, если вы приложили обратное напряжение к полярному конденсатору и используете его для хобби, вы должны протестировать и проверить конденсатор перед установкой в ​​цепь или заменить его новым в случае коммерческого и промышленного использования.

  • Связанный пост: Разница между конденсатором и суперконденсатором
Поляризованный конденсатор взорвется при обратном напряжении

В случае обратного напряжения (отрицательный источник к положительной клемме и наоборот) алюминиевый электролитический конденсатор взорвется из-за теории ионов водорода. При неправильном подключении проводов на электролитическом катоде возникает положительное напряжение, а на оксидном слое появляется отрицательное напряжение. В этой ситуации ионы водорода (H 2 ), собранные в оксидном слое, будут проходить через диэлектрическую среду между двумя пластинами и достигать металлического слоя, где они превращаются в газообразный водород. Давление, создаваемое газообразным водородом, достаточно для разрыва конденсатора, а корпус может взорваться со взрывом и паром.

Удельное сопротивление электролитического конденсатора уменьшается при перепутывании клемм

При перепутывании положительной и отрицательной клемм. Водород будет генерироваться без образования оксидной пленки, необходимой для диэлектрической среды. По этой причине удельное сопротивление электролитического конденсатора, подключенного в обратном направлении, меньше по сравнению с правильным подключением, т. Е. Положительным и отрицательным источником к положительной и отрицательной клеммам соответственно. Весь этот процесс потерпит неудачу и повредит общий конденсатор.

  • Связанный пост: Какова роль конденсатора в потолочном вентиляторе?
Полярный конденсатор действует как короткое замыкание при обратной установке

Диэлектрическая среда, используемая между двумя электродами электролитического конденсатора, является однонаправленной, т. е. она пропускает ток только и только в одном направлении, как и диод с PN-переходом. В случае обратного подключения диэлектрическая среда не будет выступать в роли сопротивления или изоляционного материала. Газообразный водород будет генерироваться в течение нескольких секунд, и конденсатор будет действовать как короткое замыкание для источника постоянного тока, что приведет к выходу из строя конденсатора (с вздутием верхней части или общим износом компонента).

  • Сообщение по теме: Почему дроссель действует как короткое замыкание в источнике постоянного тока?

Полезно знать:

  • Поляризованный и электролитический конденсаторы нельзя подключать к сети переменного тока (как прямое, так и обратное подключение), так как они специально разработаны для правильной работы только и только в цепях постоянного тока. . В этом случае конденсатор немедленно взорвется. Весь сценарий мы обсудим в следующей статье.
  • Неполярный электролитический конденсатор на самом деле представляет собой два последовательно соединенных электролитических конденсатора, соединенных спиной к спине (так же, как диоды, соединенные спиной к спине, или две батареи, соединенные последовательно). Эти конденсаторы используются эпизодически из-за низкой надежности и эффективности, большого количества потерь и способности выдерживать низкое напряжение.

Связанный пост: Разница между переменным и постоянным током (ток и напряжение)

Предупреждение:

Всегда проверяйте положительный и отрицательный выводы электролитических и полярных конденсаторов. Тот, на котором напечатана отметка «-» (минус или полоса со стрелкой) или короткий вывод, известен как «Катод» или отрицательный вывод, а другой с длинным выводом известен как «Анод» или положительный вывод.

Маленький чувак, как поляризованный конденсатор, очень опасен и радостно взрывается и пускает кровь в случае замены и переворачивания его клемм или большей утечки или прямого тока и напряжения, отличного от номинального напряжения. Пожалуйста, наденьте защитные очки и не прикасайтесь к какой-либо части схемы во время игры и создания схем с использованием конденсаторов.

Похожие сообщения:

  • Почему трансформатор не работает от источника постоянного тока вместо переменного?
  • AC или DC – что опаснее и почему?
  • Почему в электронных схемах используется постоянный ток вместо переменного?
  • Что произойдет, если аккумулятор подключен к сети переменного тока?
  • Что происходит с аккумулятором при подключении проводов с обратной полярностью
  • Почему мы не можем хранить переменный ток в батареях вместо постоянного?

Показать полную статью

Связанные статьи

Кнопка «Вернуться к началу»

Конденсаторы

: все, что вам нужно знать | ОРЕЛ

Нет, мы не говорим о Grand Theft Auto! Открывать крышку в мире электроники нехорошо, если только вам не нравится смотреть, как ваш электролитический конденсатор сгорает в огне. Конденсаторы играют важную роль в семействе пассивных электронных компонентов, и их можно использовать повсеместно.

Помните вспышку в своем цифровом фотоаппарате? Конденсаторы делают это возможным. Или возможность изменить канал на вашем телевизоре? Снова конденсаторы. Эти ребята — маленькие батарейки, которые «могут», и вам нужно знать о них все, что известно, прежде чем вы начнете работать над своим первым проектом в области электроники.

Это как бутерброд с мороженым

Проще говоря, конденсатор накапливает электрический заряд , как батарея. Также известные как конденсаторы , вы найдете эти ребята в приложениях, требующих накопления энергии, подавления напряжения и даже фильтрации сигналов. И как они выглядят? Ну, бутерброд с мороженым!

Что бы вы сделали с баром КлондайкⓇ? Сравните его с конденсатором, конечно! (Источник изображения)

Подумайте о том восхитительном бутерброде с мороженым, которым вы наслаждались в тот знойный летний день. У вас есть вкусная корочка с двух сторон, а кремовая плитка ванильного мороженого находится посередине. Эта композиция из двух внешних слоев и одного внутреннего слоя и есть то, как выглядит конденсатор. Вот из чего они сделаны:

 

  • Начиная снаружи. В верхней и нижней части конденсатора вы найдете набор металлических пластин, также называемых проводниками. Электрический заряд находит эти металлические пластины очень привлекательными.
  • Сидя посередине. Среди этих двух металлических пластин вы найдете изолятор или материал, к которому не притягивается электричество. Этот изолятор обычно называют диэлектриком, и он может быть изготовлен из бумаги, стекла, резины, пластика и т. д.
  • Соединение вместе. Две металлические пластины сверху и снизу крышки соединены двумя электрическими клеммами, которые соединяют ее с остальной частью цепи. Один конец конденсатора подключается к питанию, а другой течет к земле.

Внутреннее устройство конденсатора, у нас есть две металлические пластины, внутренняя диэлектрическая и соединительные клеммы.

Конденсаторы всех форм и размеров

Конденсаторы

бывают разных форм и размеров, каждый из которых определяет, насколько хорошо они могут удерживать заряд. Три наиболее распространенных типа конденсаторов, с которыми вы столкнетесь, включают керамический конденсатор, электролитический конденсатор и суперконденсатор:

Керамические конденсаторы

Это конденсаторы, с которыми вы, вероятно, будете работать в своем первом проекте электроники с использованием макетной платы. В отличие от своих электролитических аналогов, керамические конденсаторы держат меньший заряд, но и пропускают меньше тока. Они также оказались самыми дешевыми конденсаторами из всех, так что запасайтесь! Вы можете быстро идентифицировать сквозной керамический конденсатор, глядя на маленькие желтые или красные лампочки с двумя торчащими выводами.

Три типа керамических конденсаторов, которые вы будете использовать на макетных платах. (Источник изображения)

Электролитические конденсаторы

Эти ребята выглядят как маленькие жестяные банки, которые вы найдете на печатной плате, и могут удерживать огромный электрический заряд в своей крошечной площади. Это также единственный тип поляризованных конденсаторов, а это означает, что они будут работать только при определенной ориентации. На этих электролитических конденсаторах есть положительный контакт, называемый анодом, и отрицательный контакт, называемый катодом. Анод всегда должен быть подключен к более высокому напряжению. Если вы подключите его наоборот, с катодом, получающим более высокое напряжение, то приготовьтесь к взрыву колпачка!

Электролитический конденсатор, обратите внимание на положительный и более длинный контакт (анод) и более короткий отрицательный контакт (катод). (Источник изображения)

Несмотря на способность удерживать большое количество электрического заряда, электролитические конденсаторы также хорошо известны тем, что они пропускают ток быстрее, чем керамические конденсаторы. Из-за этого они не лучший выбор, когда вам нужно сохранить энергию.

Суперконденсаторы

Supercaps — супергерои семейства конденсаторов, способные хранить большое количество энергии! К сожалению, суперконденсаторы не очень хорошо справляются с избыточным напряжением, и вы окажетесь без конденсатора, если превысите максимальное напряжение, указанное в техническом описании. ПОП!

В отличие от электролитических конденсаторов, вы обнаружите, что суперконденсаторы используются для хранения и разрядки энергии, как батарея. Но, в отличие от батареи, суперконденсаторы высвобождают весь свой заряд сразу, и вы никогда не получите от них срок службы, который вы бы получили от обычной батареи.

Посмотрите на этот мускулистый суперкап ! Он имеет огромную емкость 3000F. (Источник изображения)

Обозначения конденсаторов

Определить конденсатор на вашей первой схеме очень просто, так как они бывают только двух типов: стандартные и поляризованные. Посмотрите на символ стандартного конденсатора ниже. Вы заметите, что это всего лишь две простые строки с пробелом между ними. Это две металлические пластины, которые вы найдете сверху и снизу физического конденсатора.

Поляризованный конденсатор выглядит немного по-другому и имеет дугообразную линию в нижней части, а также положительный вывод наверху. Эта положительная клемма очень важна и указывает, как должен быть подключен этот поляризованный конденсатор. Положительная сторона всегда подключается к источнику питания, а сторона дуги подключается к земле.

Два наиболее распространенных типа конденсаторов, которые вы можете увидеть на схемах для США: стандартный и поляризованный.

Кто изобрел эти вещи?

Хотя многие считают английского химика Майкла Фарадея пионером современного конденсатора, он не был первым, кто его изобрел. То, что сделал Фарадей, было важно — он продемонстрировал первые практические образцы конденсатора и способы его использования для накопления электрического заряда в своих экспериментах. И благодаря Фарадею у нас также есть способ измерить заряд, который может удерживать конденсатор, известный как емкость и измеряемый в фарадах!

Блестящий английский химик Майкл Фарадей, пионер конденсаторов, которые мы используем сегодня. (Источник изображения)

До Майкла Фарадея некоторые записи указывают на то, что покойный, покойный немецкий ученый Эвальд Георг фон Клейст изобрел первый конденсатор в 1745 году. Несколько месяцев спустя голландский профессор по имени Питер ван Мусшенбрук придумал аналогичный конструкции, ныне известной как Лейденская банка. Странное время, верно? Однако все это было просто совпадением, и оба ученых получили равные заслуги в своих первоначальных изобретениях конденсатора.

Самый ранний образец конденсатора, лейденская банка. (Источник изображения)

Знаменитый Benjamin Franklin позже усовершенствовал дизайн лейденской банки, созданный Musschenbroek. Франклин также смог обнаружить, что использование плоского куска стекла было отличной альтернативой использованию целой банки. Так родился первый плоский конденсатор, получивший название «Площадь Франклина».

Крышки в действии – как они работают

Давайте подробно рассмотрим, как работают эти мощные конденсаторы, на практическом примере. Вы уже пользовались цифровой камерой, верно? Тогда вы знаете, что есть несколько коротких моментов между тем, когда вы нажимаете кнопку, чтобы сделать снимок, и тем, когда выключается вспышка.

Что здесь происходит? К вспышке прикреплен конденсатор, который заряжается после того, как вы нажмете кнопку, чтобы сделать снимок. Как только этот конденсатор полностью заряжается от батареи камеры, вся эта энергия вырывается наружу ослепляющей вспышкой света!

Зацените, конденсатор, который делает возможной вспышку в этой камере. (Источник изображения)

Так как же все это произошло? Вот взгляд изнутри в таинственный мир конденсатора:

  1. Начинается с зарядки. Электрический ток от источника питания сначала поступает в конденсатор и застревает на первой пластине. Почему он застревает? Потому что есть изолятор, который не пропускает отрицательно заряженную электронику.
  2. Накопление зарядов. По мере того, как все больше и больше электронов прилипает к этой первой пластине, она становится отрицательно заряженной и в конечном итоге отталкивает все лишние электроны, с которыми не может справиться, на другую пластину. Затем эта вторая пластина становится положительно заряженной.
  3. Заряд сохранен. Пока две пластины конденсатора продолжают заряжаться, отрицательные и положительные электроны отчаянно пытаются соединиться, но этот надоедливый изолятор посередине не позволяет им, создавая электрическое поле. Вот почему колпачок продолжает удерживать и накапливать заряд, потому что существует бесконечный источник напряжения между отрицательной и положительной сторонами двух пластин, которые не разрешены.
  4. Заряд высвобождается. Рано или поздно две пластины в нашем конденсаторе не смогут удерживать заряд, так как они заполнены. Но что происходит сейчас? Если в вашей цепи есть путь, по которому электрический заряд перетекает в другое место, то все электроны в вашей кепке будут 9Разрядка 0157, , наконец, прекращают напряжение, поскольку они ищут другой путь друг к другу.

Измерение этого заряда

Как можно измерить, сколько заряда хранится в конденсаторе? Каждый колпачок рассчитан на определенную емкость. Измеряется в фарадах в честь английского химика Майкла Фарадея. Поскольку один фарад удерживает тонну электрического заряда, вы обычно видите конденсаторы, измеряемые в пикофарадах или микрофарадах. Вот полезная диаграмма, показывающая, как распределяются эти измерения:

Имя Сокращение Фарады
Пикофарад пФ 0,000000000001 Ф
Нанофарад нФ 0,000000001 Ф
Микрофарад мкФ 0,000001 Ф
Милифарад мФ 0,001 Ф
Килофарад кФ 1000 Ф

Теперь, чтобы выяснить, сколько заряда в данный момент хранится в конденсаторе, вам понадобится следующее уравнение:

В этом уравнении общий заряд представлен как (Ом) , и отношение этого заряда можно найти, умножив емкость конденсатора ( Кл ) и приложенное к нему напряжение ( В ). Здесь следует отметить одну вещь: емкость конденсатора напрямую связана с его напряжением. Таким образом, чем больше вы увеличиваете или уменьшаете источник напряжения в цепи, тем больше или меньше заряда будет иметь ваш конденсатор.

Емкость в параллельных и последовательных цепях

При параллельном соединении конденсаторов в цепи общую емкость можно найти, сложив вместе все емкости по отдельности.

Получить общую емкость в параллельной цепи так же просто, как 1+1, просто сложите их все вместе! (Источник изображения)

При последовательном соединении конденсаторов общая емкость вашей цепи пропорциональна сумме всех емкостей. Вот краткий пример: если у вас есть два конденсатора по 10 Ф, соединенных последовательно, то их общая емкость составит 5 Ф.

Получить общую емкость в последовательной цепи немного сложнее. Емкость уменьшается вдвое. (Источник изображения)

Использование колпачков в работе

Теперь, когда у нас есть четкое представление о том, что такое конденсаторы, как они работают и как их измеряют, давайте рассмотрим три распространенных приложения, в которых используются конденсаторы. Сюда входят такие приложения, как развязывающие конденсаторы, накопители энергии и емкостные сенсорные датчики.

Развязывающий конденсатор

В наши дни вам будет трудно найти схему, которая не включает интегральную схему или ИС. В этих типах схем конденсаторы выполняют важную работу, удаляя все высокочастотные шумы, присутствующие в сигналах источника питания, которые питают ИС.

Почему это необходимая работа для нашего конденсатора? Любое колебание напряжения может быть фатальным для микросхемы и даже привести к неожиданному отключению питания микросхемы. Размещая конденсаторы между ИС и источником питания, они гасят колебания напряжения, а также действуют как второй источник питания, если первичный источник питания падает достаточно, чтобы отключить ИС.

Развязывающий конденсатор для контроля колебаний напряжения.

Аккумулятор энергии

Конденсаторы имеют много общих характеристик с батареями, включая их способность накапливать энергию. Однако, в отличие от батареи, конденсаторы не могут удерживать такую ​​же мощность. Но хотя они не могут угнаться за количеством, они компенсируют это своим энтузиазмом, чтобы разрядиться как можно быстрее! Конденсаторы могут отдавать энергию намного быстрее, чем батарея, что делает их идеальными для питания вспышки в камере, настройки радиостанции или переключения каналов на телевизоре.

Емкостные сенсорные датчики

Одно из последних достижений в области применения конденсаторов связано с бурным развитием технологий сенсорных экранов. Стеклянные экраны, из которых состоят эти сенсорные датчики, имеют очень тонкое прозрачное металлическое покрытие. Когда ваш палец касается экрана, это создает падение напряжения, определяя точное местоположение вашего пальца!

Емкостные сенсоры в действии с защитной накладкой и печатной платой. (Источник изображения)

Практичность — выбор конденсатора

Давайте перейдем к сфере практичности и поговорим о том, на что следует обратить внимание при выборе следующего конденсатора. Необходимо учитывать пять переменных, в том числе:

  • Размер. Сюда входят как физический размер конденсатора, так и его общая емкость. Не удивляйтесь, если выбранный вами конденсатор является самой большой частью вашей печатной платы, так как чем больше емкость вам нужна, тем больше они получаются.
  • Допуск — Как и их аналоги резисторов, конденсаторы также имеют переменный допуск. Вы найдете допуск для конденсаторов в диапазоне от ± 1% до ± 20% от его рекламируемого значения.
  • Максимальное напряжение — Каждый конденсатор имеет максимальное напряжение, которое он может выдержать. Иначе он взорвется! Вы найдете максимальное напряжение от 1,5 В до 100 В.
  • Эквивалентное последовательное сопротивление (ESR) — Как и любой другой физический материал, выводы конденсатора имеют очень небольшое сопротивление. Это может стать проблемой, если вам нужно помнить о тепле и потерях мощности.
  • Ток утечки — В отличие от наших батарей, конденсаторы будут пропускать накопленный заряд.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *