Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments
Как определить фазу и ноль индикаторной отверткой и мультиметром

При монтаже розеток, выключателей, бытовых потребителей приходится сталкиваться с определением фазы и нуля в электропроводке. Если для электромонтажников с опытом эта задача не является проблемой, то у тех, кто впервые коснулся этого вопроса, возникает много непонятных моментов. Поэтому следует разобраться, как и чем можно выявить фазу и ноль в розетке, каково назначение жил электропроводки и можно ли обойтись без специального оснащения.

Содержание

Понятия ноля и фазы

Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой — преобразование высокого напряжения чаще всего в 380 В. К домам электроэнергия подземным или воздушным способом подводится на вводной распределительный щит. Затем напряжение подается к щиткам каждого подъезда. В квартиру от него заходит только одна фаза с нулем, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Таким образом, проводник, обеспечивающий подачу тока к потребителю, называется фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.

Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение — защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.

Как определить фазу и ноль индикаторной отверткой

Один из способов выявить, где фаза и ноль в розетке либо в силовом кабеле, — использовать индикаторную отвертку. Инструмент внешне напоминает отвертку, но внутри у него есть специальная начинка со светодиодом. Прежде чем приступить к измерениям, нужно отключить рубильник, через который напряжение подается в помещение. После этого требуется зачистить концы проверяемых проводов, для чего снимают 1,5 см изолирующего материала.

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Во избежание короткого замыкания между проводами после включения автомата их следует направить в разные стороны. Когда все подготовительные мероприятия будут выполнены, необходимо включить автомат для подачи напряжения. Чтобы понять, как найти фазу и ноль, необходимо выполнить следующие действия:

  1. Отвертку зажимают между двумя пальцами — средним и большим, избегая касания оголенной части жала инструмента.
  2. Указательным пальцем касаются металлического наконечника с противоположной стороны отвертки.
  3. Плоским концом индикатора поочередно дотрагиваются до зачищенных проводников.
  4. При касании тестером фазы светодиод загорится. Второй провод будет соответствовать нулевому. При отсутствии индикации изначально проводник будет являться нулевым.

Как определить фазу и ноль мультиметром

Прибор, которым измеряют напряжение, ток и сопротивление, называется мультиметром. Чтобы выявить фазный и нулевой провод с его помощью, сперва нужно настроить устройство, для чего выбирают необходимый предел измерений. В случае с цифровыми приборами устанавливают 600, 750 или 1000 «~V» или «ACV».

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Определение фазы производится следующим образом: один из щупов прибора подключают к контакту розетки или кабеля, а до второго щупа дотрагиваются рукой. При отображении на дисплее значения около 200 В это будет указывать на наличие фазы. Показания могут отличаться, что зависит от отделки пола, обуви и т.п. Если прибор отображает нули либо напряжение в пределах 5-20 В, значит, контакт соответствует нолю.

Как определить фазу и ноль без приборов

Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.

Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:

  • синий или голубой — ноль;
  • коричневый — фаза;
  • заземление — зелено-желтый.

Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.

Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим — проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.

Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.

Как определить фазу и ноль мультиметром

Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.

По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа – ёмкость (человек).

Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.  


Как найти фазу мультиметром


Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения – уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».


Режим измерения напряжения на мультиметре для определения фазы


В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.


Как проверить мультиметром напряжение в розетке 220в


Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом – не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.


Измерение напряжения мультиметром в розетке 220В


Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.


как определить мультиметром на каком из трех проводов фаза


Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.


Как найти фазу мультиметром


Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

 

Как найти ноль мультиметром


как определить ноль мультиметром


Ноль, чаще всего, находится мультиметром относительно фазного провода, т.е. сперва, способом, описанным выше, вы находите фазу, а затем установив красный щуп на неё, касаетесь других проводников и когда тестер на экране покажет 220В (+/- 10%), тогда вы поймете, что второй провод нулевой рабочий или нулевой защитный (заземление).

Определить же то, является провод нулем или заземлением одним мультиметром, довольно сложно, ведь по сути, эти проводники одно и то же и нередко просто дублируют другу друга. В определенных системах заземления ноль и зазмление даже связаны между собой в электрощите и очень тяжело точно их выявить.

Проще всего, в таком случае, отключить от шины заземления в электрощите вводной провод, тогда, во всей квартире или доме, при проверке напряжения, между фазой и проводами заземления, вы не получите 220В, как при проверке нуля и фазы.

Так же стоит отметить тот факт, что если в электрощите установлена дифференциальная защита – УЗО или автоматический выключатель дифференциального тока, он обязательно сработает, при проверке проводов заземления относительно любого другого проводника, даже нулевого.

Если же вы знаете более надежные и универсальные методы определения фазы и нуля цифровым мультиметром – обязательно пишите об этом в комментариях к статье, кроме того приветствуются любые мнения, опыт, здоровая критика или вопрос.

Так же вступайте в нашу группу ВКонтакте, следите за появлением новых материалов.

Как определить фазу и нуль

инструменты для определения фазы и нуль

Перед тем, как начать процесс определения фазы и нуля, необходимо сделать ряд приготовлений, поскольку для данных работ потребуются следующие приборы и инструменты:

  • мультиметр;
  • индикаторная отвертка;
  • тестер;
  • пассатижи;
  • нож с заточенным лезвием, чтобы снимать изоляцию с проводников;
  • изоляционная лента;
  • маркер для нанесения разметок;

Также, важно помнить, что перед началом любых электромонтажных работ, необходимо отключить автоматы, поскольку несоблюдение данного правила может представлять угрозу для жизни. Помимо этого, требуется убедиться, что весь используемый инструмент обладает надежно заземленными рукоятями.

В противном случае, его использование является небезопасным и не допускается по технике безопасности.

Визуальный метод определения

провода с обозначениями

Данная методика является самым простым способом, поскольку для его реализации не потребуется никаких дополнительных приборов или оборудования.

Необходимо осмотреть проводку, чаще всего она имеет следующие цветовые разграничения:

  1. Провод желто-зеленого цвета является заземлением.
  2. Нуль имеет синий цвет или любые его оттенки вплоть до светло-голубого.
  3. Фаза имеет черный, коричневый или белый цвет.
  4. Необходимо убедиться в соответствии цветов не только в электрощите, но также и в распределителе.

Визуальный осмотр системы должен осуществляться в соответствии со следующим алгоритмом действий:

  1. Открыть электрощит и осмотреть его содержимое. Поскольку расчетная нагрузка может различаться, то и количество установленных автоматов также может быть разным. Через них может быть осуществлено подключение фазы или фазы с нулем, заземление никогда не подсоединяется к автоматическим выключателям, а имеет соединение с шиной. Необходимо убедиться, что все подключенные провода соответствуют цветовой маркировке.
  2. Если цвет изоляции, проведенной от электрощита к домашней сети, соответствует правилам цветовой маркировки, то все равно потребуется вскрытие распределителей для визуального осмотра скруток. Это необходимо для того, чтобы убедиться, что и в них цветовая маркировка изоляции нуля и заземления не была перепутана и соответствует установленным правилам.
  3. Иногда в распределителях осуществляется подключение фазы к автоматическим выключателям. В большинстве случаев, это реализуется при помощи специального провода с двумя жилами, изоляция которого может отличаться цветом.
  4. Если результаты визуальной проверки показали, что цвета изоляции полностью соответствуют правилам, то остается всего лишь проверить фазный проводник, используя для этого индикаторную отвертку.

Определение индикаторной отверткой

индикаторная отвертка

Одним из наиболее простейших способов определения нуля и фазы является использование для этих целей индикаторной отвертки.

Для осуществления данного процесса необходимо придерживаться следующего алгоритма действий:

  1. Первоначально потребуется отключить автомат, от которого происходит питание линии электросети на месте проверки.
  2. Провести зачистку обоих проверяемых проводников, достаточно снять не более 1-2 см. изоляционного слоя.
  3. После этого оба проводника разводятся друг от друга на безопасное расстояние, поскольку после подачи напряжения их случайное соприкосновение может стать причиной короткого замыкания.
  4. Можно приступать к идентификации фазного проводника. Для этого включается автоматический автомат, который подает напряжение, после этого необходимо будет взять индикаторную отвертку и прикоснуться к металлической области, расположенной возле основания рукояти.
  5. Категорически не допускается прикасаться к любым частям индикаторной отвертки, расположенным ниже рукояти, поскольку это вызовет удар электрическим током.
  6. Прикоснуться инструментом к одному из проверяемых проводов, при этом не нужно убирать палец с металлической области.
  7. Загорание лампочки, входящей в конструкцию отвертки, свидетельствует о том, что проводник является фазным. Соответственно второй провод – это нуль. Если загорание лампочки не произошло, наоборот, проводник был нулем, а второй является фазой.

Определение тестером или мультиметром

индикаторная отвертка

мультиметр

Иным распространенным способом определения фазы и нуля является использование специальных приборов – тестера или мультиметра.

Если был выбран именно этот вариант, то необходимо придерживаться следующей последовательности действий:

  1. Используемому прибору задать настройки предельного измерения переменного тока. На современных моделях этому параметру соответствует режим ~V или ACV. Необходимо указать значение равное 600 В, 750 В, 1000 В или иной параметр в зависимости от особенностей модели, главным требованием является, чтобы он превосходил показатель 250 В.
  2. Щупами прибора необходимо коснуться сразу обоих проводов, для того, чтобы определить уровень напряжения между ними. В стандартных бытовых сетях этот показатель равен 220 В, возможное отклонение не должно превышать 10 % в любую из сторон. Подобное значение свидетельствует о том, что проводник является фазой, у нуля уровень напряжение будет совсем незначительным или равным нулю.
  3. В современных электросетях может потребоваться также идентификация проводника с заземлением, для этого требуется определение уровня сопротивления. В таком случае, прибор переводится в соответствующий режим, который имеет условное обозначение в виде значка звонка или омеги.
  4. Необходимо помнить, что когда прибор переведен в режим для определения уровня сопротивления, категорически запрещено одновременное прикосновение к фазе и заземлению, поскольку произойдет короткое замыкание. Имеется риск получения травм.

Определение по маркировке

маркировка проводов

При описании визуального способа идентификации проводников уточнялось, что в большинстве современных электросетей желто-зеленый цвет соответствует защитному нулю, все оттенки синего цвета обозначают рабочий нуль, а любые иные цвета фазу.

Однако, необходимо учитывать, что проводники могут не соответствовать принятой цветовой гамме в следующих случаях:

  1. Проводка проложена в доме старой постройки, где не была произведена реконструкция домашней электросети в соответствии с современными правилами. Чаще всего в ней используются одноцветные проводники.
  2. Проводка проложена в новостройке, но ее монтаж осуществлялся частными лицами, а не профессиональными электриками.
  3. Провода ведут к более сложным бытовым устройствам, например, различным переключателям или выключателям, конструкция которых изначально подразумевает принципиально иную схему функционирования.
  4. Проводка прокладывалась по стандартам, отличающимся от принятых в Европе, поэтому она имеет совершенно иные цветовые обозначения.

В большинстве остальных случаев, цветовая маркировка проводников производится в соответствии с указанными правилами, которые регламентируются соответствующим стандартом IEC, действующем на территории всей Европы.

В ситуациях, когда отсутствует полная уверенность в полном соответствии цветовой гаммы общепринятому стандарту, рекомендуется воспользоваться одним из практических методов для определения нуля и фазы.

Также, можно посоветовать в последствии использовать специальные цветные насадки, которые позволят в будущем не забыть предназначение проводников и не осуществлять процедуру их определения заново.

Определение с помощью картошки

картошка

Еще одним известным методом определения без специальных приборов является вариант, в котором задействуется обычная сырая картошка. Многие специалисты относятся к таким действиям довольно скептически, но подобное решение все равно является действенным.

Для его осуществления необходимо осуществить следующую последовательность:

  1. Взять одну сырую картофелину и разрезать ее на две части.
  2. Зачистить концы двух проводников и воткнуть их в одну из частей картофелины.
  3. Подождать около 10 минут, после чего вытащить оба провода.
  4. Осмотреть картофелину: в месте, где образовался зеленоватый след, был воткнут фазный проводник.

Другие способы определения

компьютерные кулеры

Существует еще несколько альтернативных методик определения фазы и нуля, они редко используются и зачастую подвергаются критике со стороны квалифицированных специалистов. Связано это по большей части с тем, что подобные способы являются более опасными, поэтому проводить их необходимо с максимальной степенью осторожности.

Один их таких методов определения требует задействования обычного компьютерного кулера, его можно применить на практике в тех случаях, когда известны параметры подаваемого напряжения, но неизвестно назначение проводников:

  1. Для реализации необходимо будет использовать красный и черный проводники, выходящие из вентилятора. Иногда в нем имеется и третий провод, который является датчиком оборотов, но он в процессе определения не пригодится.
  2. Красный проводник кулера является фазным, а черный соответствует нулю.
  3. Стандартные вентиляторы рассчитаны на 12 В, а функционировать начинают от 3В, поэтому они лучше всего подходят для проверки от соответствующих источников питания.
  4. Если напряжение превышает показатель 12 В, то потребуется резко прикоснуться проводниками к выводам кулера и посмотреть на реакцию лопастей. Если они остались без движения, то к красному проводнику был подключен нуль, если начали двигаться, то это была фаза.

Для другого способа определения нужна будет контрольная лампа, а его реализация потребует соблюдения следующего алгоритма действий:

  1. Первоначально надо собрать саму контрольную лампу, простейшее устройство будет выглядеть таким образом: вкрутить лампочку в патрон, в его клеммы закрепить проводники, с их концов снять изоляционный слой.
  2. Дальнейший процесс не представляет никакой сложности: тестируемые проводники поочередно соединяются с контактами лампы, во время процесса необходимо наблюдать за ее реакцией.

Среди более безопасных вариантов определения можно выделить следующие альтернативные методы:

  1. Проверка проводников через УЗО, поскольку известно, что при наличии потребителя, подключенного к электросети, замыкание нуля и земли способствует возникновению утечки электрического тока, что моментально отключает защитное устройство. Это поможет идентифицировать нулевой и заземляющий проводник, третий будет являться фазой.
  2. Взять предохранитель и захватить его плоскогубцами, рукоять инструмента при этом должна быть изолирована, чтобы избежать поражения электрическим током. Замкнуть на нем два проводника и проверить результат: если предохранитель сгорел, то это была фаза и земля; если уцелел, то земля и нуль либо фаза и нуль. Поставив несколько поочередных экспериментов с фиксацией результатов, можно будет точно идентифицировать каждый проводник.

Особенности определения фазы и нуля

определение фазы и нуля

В двухпроводной сети

Идентификация проводников в двухпроводной сети является гораздо более простой, поскольку осуществляется самым простым способом, для этого потребуется:

  1. Определить только фазу, поскольку известно, что второй проводник будет являться нулевым.
  2. Для определения фазы в двухпроводной сети идеально подходит индикаторная отвертка, подробный порядок действий был описан выше.

В трехпроводной сети

Немного сложнее ситуация обстоит с современными видами трехпроводных сетей, поскольку в них имеется еще и заземление.

Для определения назначения проводников необходимо придерживаться следующего алгоритма действий:

  1. Фаза определяется при помощи индикаторной отвертки методом, описанным выше. После этого рекомендуется нанести пометку при помощи маркера, чтобы в дальнейшем не перепутать провод.
  2. Для работы с нулем и землей потребуется задействовать мультиметр. Нулевой проводник также может обладать напряжением, что вызывается перекосом фаз, но его показатели никогда не превышают 30 В. Мультиметр нужно переключить в режим работы для измерения напряжения переменного тока, после чего один щуп подключается к фазе, а второй поочередно к оставшимся проводникам. Нуль будет там, где зафиксируется наименьший параметр напряжения.
  3. Иногда оба проводника обладают одинаковыми показателями напряжения. В таком случае, фазу необходимо изолировать, а мультиметр переключить в режим, предназначенный для определения уровня сопротивления. Также, потребуется подобрать внешний заземленный элемент и прикоснуться к нему один щупом прибора, а вторым по очереди к каждому из проверяемых проводников. В том случае, когда мультиметр покажет сопротивление 4Ом или меньше, подключение совершено к земле, если показатель выше, то это нуль.
  4. Однако, показатели сопротивления не являются точными, если нейтраль была подвержена заземлению еще внутри электрощита. Тогда потребуется обнаружить и отключить заземляющий элемент, который подключен к шине. После этого, взять контрольную лампу и поставить описанный ранее эксперимент по ее подключению. Ее загорание происходит только при подключении нулевого проводника.

Устройство бытовых электрических сетей

мужчина режет проводаПоступление электроэнергии в любые жилые строения происходит через трансформаторные подстанции, которые изменяют поступающее высоковольтное напряжение, и на выходе оно уже имеет показатель равный 380 В.

Бытовые электросети современного образца выглядят и функционируют следующим образом:

  1. Трансформаторная обмотка на подстанции имеет особый вид соединения, который придает ей сходство со звездой. Три вывода подключаются к одной общей точке нуля, а другие три на соответствующие клеммы.
  2. Выводы, подключенные к нулю, соединяются и подключаются к заземлению трансформаторной подстанции.
  3. В этом же месте общий нуль разделяется на рабочий нуль и специальный защитный PE-проводник.
  4. Описанная система получила обозначение TN-S, но в старых домах до сих пор действует схема TN-C, которая отличается в первую очередь отсутствием защитного PE-проводника.
  5. Фаза и нуль, после вывода из трансформатора, протягиваются к жилым домам для подключения к вводному электрощиту. Здесь происходит создание трехфазной системы напряжения с показателями 320/220В.
  6. Далее разводка осуществляется по подъездным электрощитам, куда поступает напряжение с фазы 220В и защитный PE-проводник, если его наличие было предусмотрено.
  7. Нулем в квартирной электросети будет являться проводник, который имеет соединение с землей в схеме трансформаторной подстанции и предназначенный для создания необходимого уровня нагрузки от фазы, которая также имеет подсоединение к трансформаторной обмотке, но с противоположной стороны. Главной функцией защитного нуля является отвод токов повреждений, которые могут возникнуть при аварийной ситуации внутри сети.
  8. Происходит равномерное распределение нагрузки, это осуществляется благодаря наличию этажной разводки, а также подключению квартирных электрощитов к определенным линиям на 220 В внутри центрального распределителя в подъезде.
  9. Система, по которой осуществляется подведение напряжения к жилому дому, с точностью повторяет векторные характеристики трансформаторной подстанции и также обладает формой звезды.
  10. Сумма всех токов в трехфазной разновидности электросети складывается в соответствии с векторной графикой внутри нулевого проводника, после чего она возвращается на трансформаторную обмотку в подстанции.

Если внутри жилого помещения отключить все потребители электроэнергии и отключить их от рабочих розеток, то электрический ток внутри сети перестанет протекать даже при подведенном к электрощиту напряжении.

Описанная система устройства бытовой электросети является наиболее оптимальной из всех существующих на сегодняшний день, но и она не застрахована от возможных неисправностей. В большинстве случаев они связаны с нарушением соединений контактов либо обрывом проводников.

Статья была полезна?

0,00 (оценок: 0)

Как найти фазу и ноль в розетке и проводах

проверка фазы в розеткеДля отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».индикаторные отвертки и контрольки

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • жалом отвертки прикасаетесь к контакту
  • нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевойопределение фазы в розетке индикаторной отверткой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь

для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • никогда не дотрагивайтесь до нижней части отвертки при замерахкуда не прикасаться при работе в пробником
  • отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением
    .

Как определить фазу и ноль мультиметром или тестером

Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. замер напряжения мультиметром dt830Далее замер можно сделать несколькими способами:

  • зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. ноль в розетке замер мультиметромЕсли коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.фаза в розетке показания мультиметра
  • если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.определение фазы и ноля в розетке
  • еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу. Если он будет фазным, тестер покажет наличие напряжения 220В.замер фазного провода при помощи тестера

Меры безопасности при работе с мультиметром:

  • обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок ~V или ACV. Иначе может ударить током.
  • некоторые «опытные » электрики для определения фазы, используют так называемую контрольную лампочку. Не рекомендую рядовым пользователям такой метод, тем более он запрещен правилами. Используйте только исправные и проверенные измерительные приборы.

В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.

Статьи по теме

Как определить фазу и ноль мультиметром

Поиск фазы и ноля мультиметром

Очень часто при выполнении в квартире, доме, гараже или на даче ремонтных либо монтажных работ, связанных с электричеством, возникает необходимость отыскать ноль и фазу. Это нужно для правильного подключения розеток, выключателей, осветительных приборов. Большинство людей, даже если они не имеют специального технического образования, представляют себе, что для этого есть специальные индикаторы. Мы рассмотрим вкратце этот метод, а также расскажем вам об ещё одном приборе, без которого не обходится ни один профессиональный электрик. Поговорим о том, как определить фазу и ноль мультиметром.

Понятия ноля и фазы

Перед тем, как определить фазу ноль, хорошо бы вспомнить самую малость физики и разобраться, что это за понятия и зачем их находят в розетке.

Все электросети (и бытовые, и промышленные) подразделяются на два типа – с постоянным и переменным током. Со школы помним, что ток – это передвижение электронов в определённом порядке. При постоянном токе электроны передвигаются в каком-то одном направлении. При переменном токе это направление постоянно меняется.

Разница между постоянным и переменным током

Нас больше интересует переменная сеть, которая состоит из двух частей:

  • Рабочей фазы (как правило, её называют просто «фазой»). На неё подаётся рабочее напряжение.
  • Пустой фазы, именуемой в электричестве «нулём». Она необходима, чтобы создать замкнутую сеть для подключения и работы электрических приборов, служит также для заземления сети.

Когда мы включаем приборы в однофазную сеть, то особой важности нет, где именно пустая или рабочая фаза. А вот когда монтируем в квартире электрическую проводку и подсоединяем её к общей домовой сети, это знать необходимо.

Разница между нолем и фазой на видео:

Простейшие способы

Существует несколько способов, как найти фазу и ноль. Рассмотрим их вкратце.

По цветовому исполнению жил

Наиболее простым, но в то же время и самым ненадёжным способом, является определение фазы и ноля по цветам изоляционных оболочек проводников. Как правило, фазная жила имеет чёрное, коричневое, серое или белое цветовое исполнение, а ноль делают голубым либо синим. Чтобы вы были в курсе, бывают ещё жилы зелёные или жёлто-зелёные, так обозначаются проводники защитного заземления.

В этом случае никаких приборов не нужно, глянули на цвет провода и определили – фаза это или ноль.

Расцветка жил проводов

Но почему этот метод самый ненадёжный? А нет никакой гарантии, что во время монтажа электрики соблюдали цветовую маркировку жил и ничего не перепутали.

Цветовая маркировка проводов на следующем видео:

Индикаторной отвёрткой

Более правдивым методом является применение индикаторной отвёртки. Она состоит из не токопроводящего корпуса и встроенных в него резистора с индикатором, который представляет собой обыкновенную неоновую лампочку.

Например, при подключении выключателя главное не перепутать ноль с фазой, так как этот коммутационный аппарат работает только на разрыв фазы. Проверка индикаторной отвёрткой заключается в следующем:

  1. Отключите общий вводной автомат на квартиру.
  2. Зачистите ножом проверяемые жилы от изоляционного слоя на 1 см. Разведите их между собой на безопасное расстояние, чтобы полностью исключить возможность соприкосновения.
  3. Подайте напряжение, включив вводной автомат.
  4. Жалом отвёртки прикоснитесь к оголённым проводникам. Если при этом загорится индикаторное окошко, значит, провод соответствует фазному. Отсутствие свечения говорит о том, что найденный провод – нулевой.
  5. Нужную жилу наметьте маркером либо кусочком изоленты, после чего снова отключите общий автомат и проведите подсоединение коммутационного аппарата.

Поиск фазного провода индикаторной отверткой

Более сложные и точные проверки выполняются с помощью мультиметра.

Поиск фазы индикаторной отверткой и мультиметром на видео:

Мультиметр. Что это за прибор?

Мультиметр (электрики его ещё называют тестером) представляет собой комбинированный прибор для электрических измерений, который объединил в себе множество функций, основные из которых омметр, амперметр, вольтметр.

Эти приборы бывают разными:

  • аналоговыми;
  • цифровыми;
  • переносными лёгкими для каких-то базовых измерений;
  • сложными стационарными с большим количеством возможностей.

С помощью мультиметра можно не только определить землю, ноль или фазу, но и померить на участке цепи ток, напряжение, сопротивление, проверить электрическую цепь на целостность.

Прибор представляет собой дисплей (или экран) и переключатель, который можно устанавливать в различные позиции (вокруг него находится восемь секторов). В самом верху (в центре) имеется сектор «OFF», когда переключатель установлен в это положение, значит, прибор выключен. Чтобы выполнять замеры напряжения понадобится установить переключатель в сектора «ACV» (для переменного напряжения) и «DCV» (для постоянного напряжения).

Постоянный и переменный ток на шкале мультиметра

В комплект мультиметра входят ещё два измерительных щупа – чёрный и красный. Чёрный щуп подсоединяется в нижнее гнездо с маркировкой «СОМ», такое подключение является постоянным и используется при проведении любых измерений. Красный щуп в зависимости от замеров вставляется в среднее или верхнее гнездо.

Как использовать прибор?

Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.

Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:

  • Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
  • На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.

Разъемы для проверки напряжения

  • Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.

Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

В этом случае у нас будут задействованы два гнезда «СОМ» и «V», вставьте в них измерительные щупы. Прибор установите в режим «ACV», на значение 200 В.

У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.

Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.

Метки на проводах

Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.

Несколько правил по использованию мультиметра

Перед тем, как определить фазу и ноль мультиметром, ознакомьтесь с несколькими правилами, которые необходимо соблюдать при работе с прибором:

  • Никогда не пользуйтесь мультиметром во влажной среде.
  • Не применяйте неисправные измерительные щупы.
  • В момент проведения замеров не меняйте измерительные пределы и не переставляйте положение переключателя.
  • Не измеряйте параметры, значение которых выше чем верхний измерительный предел прибора.

Как замерять напряжение мультиметром – на следующем видео:

Обратите внимание на важный нюанс в использовании мультиметра. Поворотный переключатель изначально всегда необходимо устанавливать на максимальное положение, чтобы избежать повреждения электронного прибора. А уже в дальнейшем, если показания оказываются ниже, переключатель переставляется на низкие отметки для получения максимально точных замеров.

Как мультиметром найти фазу без ошибок

Ремонт и монтаж бытовой проводки своими руками требуют умения грамотно определять потенциалы напряжения, отличать фазу ноль и землю внутри домашней электрической схемы.

За многолетнюю практику электрика встретил много ошибок, которые допускают новички. Написал эту статью, чтобы вы их не повторяли. Делюсь опытом, как мультиметром найти фазу безопасно и быстро.

Информацию разбил на несколько частей, сосредоточив первоначальное внимание на особенностях и устройстве измерительного прибора. Бывалым электрикам можно сразу перейти к третьему разделу.

Содержание статьи

Что такое фаза, ноль и земля: краткое объяснение простыми словами

Прежде чем начать разбираться с проводами в квартире следует хорошо представлять, откуда и какими способами появляются в ней потенциалы напряжения, чем отличаются способы заземления.

Современные промышленные генераторы вырабатывают трехфазную систему токов.

Напряжение по проводам или кабелям поступает к потребителю от трансформаторных подстанций.

При этом в квартиру многоэтажного дома обычно заводится 220 вольт, определяемые между потенциалами одной из фаз и общего нуля. На ввод частного дома может поступать и полноценное трехфазное питание.

Более подробно об этом можно прочитать в статье про электрическое напряжение.

Во времена СССР внутри жилых помещений для экономии материалов использовалась двухпроводная схема питания, когда на электрическую розетку квартиры подавалось два потенциала:

  1. одной из трех фаз;
  2. общего нуля, который является заземлением одного вывода обмотки трансформаторной подстанции и обозначается латинскими буквами PEN.

Эта самая простая система заземлений больше не имеет никаких дополнительных контуров.

Современная схема подключения жилых помещений более сложная. В ней отдельно смонтированы потенциалы заземления выходной обмотки трансформаторной подстанции двумя магистралями, разделяющими PEN:

  1. рабочего ноля N, который используется только для протекания токов, обеспечивающих полезную работу бытовых механизмов;
  2. защитного проводника PE, предназначенного для отвода опасных токов утечек при аварийных ситуациях на электрическом оборудовании.

Разновидностями современной системы заземлений, обладающих дополнительным защитным контуром, являются ее модификации: TN-C-S, TT.

Сейчас у жителей частных домов есть возможность сделать защитное заземление своими руками и спастись от случайных аварийных ситуаций.

Тем же людям, кто проживает в старых многоквартирных домах, приходится ждать очереди, когда государство переведет их на более безопасную систему. А новые здания строятся с учетом существующих нормативов ПУЭ.

Таким образом, в современной квартире можно встретить две системы подключения бытовых приборов, выполненных по двухпроводной или трехпроводной схеме.

Для них выпускаются свои два вида электрических розеток, к которым монтируются 2 либо 3 провода.

Какие бывают розетки

Для их подключения разработаны определенные правила монтажа.

Как подключить розетку

Таким образом: потенциалы рабочего ноля N и земли РЕ объединены на заземленной части выходной обмотки трансформаторной подстанции. В старой схеме они подводятся одним проводником PEN, а в новой — двумя раздельными.

Требования ПУЭ к монтажу РЕ проводника очень жесткие, в нем должно обеспечиваться минимально допустимое сопротивление протеканию аварийного тока. Он монтируется без использования коммутационных аппаратов на проводах повышенной надежности.

В рабочий ноль могут включаться контакты автоматических и дифференциальных выключателей, УЗО, коммутационных аппаратов, а рабочие провода подбираются для передачи только обычных нагрузок.

За счет этих двух требований и благодаря удалению бытовой проводки от трансформаторной подстанции на стороне потребителя между РЕ и N создается небольшая разность потенциалов, которую можно замерить обыкновенным вольтметром.

Почему мультиметр необходимо переводить в режим вольтметра при проверке фазы

До массового появления в продаже цифровых приборов нам в электролабораторию друзья и знакомые частенько приносили для ремонта сгоревшие аналоговые тестеры.

Причина их повреждения практически всегда была одна: неправильный выбор режима измерения при подключении прибора к цепям напряжения.

При этом в лучшем случае выгорали цепочки подключения резисторов с кнопками и переключателями, а в худшем — высочувствительная измерительная головка с токопроводящими пружинками. Последние неисправности чаще всего ремонту не поддавались.

Люди просто не понимали, что тестер, как и цифровой мультиметр, производит измерения на основе закона Ома.

Разница только в том, что тестер работает с аналоговыми величинами, а мультиметр — оцифрованными. Но принципы подключения обоих типов приборов одинаковы, сводятся к двум простым правилам:

  1. при измерении напряжения переключатели ставят в то положение, которое вводит калиброванное сопротивление, ограничивающее ток через токоизмерительную головку или датчик;
  2. замер неизвестной величины напряжения всегда необходимо выполнять на режиме максимального значения шкалы прибора.

Неправильное положение переключателей, переводящих прибор в режим омметра или амперметра, чаще всего встречается у новичков по невнимательности и из-за низких навыков.

На моей памяти есть случай, когда два опытных электрика, понадеявшись в спешке друг на друга, спалили дорогой образцовый вольтметр — эталон класса точности 0,2.

Прибором пришлось срочно воспользоваться для выставления уставок зарядного устройства аккумуляторной батареи оперативного тока 220 вольт на подстанции 330 кВ.

Один работник держал прибор в руках горизонтально и подал концы с щупами второму для выполнения замера. Никто из них не обратил внимания, что переключатель стоял на низшем пределе измерения. В результате протекания повышенного тока измерительная головка выгорела полностью.

Этот случай не типичный, но наглядно показывает, что электричество никому и никаких ошибок не прощает. Ток течет туда, где ему оказывается меньшее сопротивление.

Неправильное подключение мультиметра или тестера к цепям напряжения кроме повреждения самого измерительного прибора создает режим короткого замыкания, вредного для бытовых потребителей и проводки.

Поэтому перед установкой измерительных щупов на цепи напряжения необходимо проверять исходное положение переключателей прибора в режим вольтметра.

Сгоревший мультиметр

Вообще-то стоит заметить, что элитные цифровые мультиметры оборудованы встроенной электронной схемой, защищающей прибор от неправильного подключения к цепям напряжения, а у бюджетных моделей она отсутствует.

Ее в народе часто называют «защитой от дурака». Во многих случаях она может спасти прибор и бытовую сеть, но постоянно использовать эти ее возможности все же я не рекомендую: подключайте вольтметр правильно всегда.

Технические приемы в картинках: как мультиметром искать потенциалы напряжения в электропроводке

Сейчас производители выпускают очень большой ассортимент цифровых измерительных приборов. Они имеют различные органы управления, внешний вид, конфигурацию. Поэтому точно показать положение кнопок и переключателей для всех моделей невозможно.

Однако при их выпуске соблюдается определенные стандарты маркировки переключающих устройств и органов индикации. По этому вопросу у меня на сайте есть статья, объясняющая, как пользоваться любым мультиметром новичку.

В ней я нарисовал и показываю обобщенную модель с максимальным расположением кнопок управления и переключателей, где подробно в табличной форме объясняю положение каждого органа. Читайте и пользуйтесь.

Мультиметр цифровой

Для постоянного использования себе выбрал бюджетный карманный мультиметр Mestek MT102 с большим количеством функций и сделал подробный обзор его возможностей отдельной статьей.

Карманный мультиметр

Это прибор буду использовать при демонстрации приемов работы по определению разности потенциалов между проводами и контактами.

Вначале показываю, как им пользоваться для измерения напряжения в розетке. На этом примере мы сразу решаем две задачи:

  1. Определяем техническую исправность самого мультиметра и его концов для подключения.
  2. Контролируем наличие питания 220 вольт в квартире.

Концы для мультиметра — специальные провода с наконечниками для соединения прибора с измеряемой схемой выполнены красным и черным цветом.

Концы для мультиметра

По этой расцветке они всегда должны вставляться в соответствующие гнезда нижнего блока. Причем красный конец обычно подключается справа.

Если на приборе есть дополнительные красные гнезда, то они используются только для измерения больших токов или на пределе милли-, микроампер.

Центральным переключателем я свой Mestek MT102 перевел в режим измерения вольтметра, выбрав положение «V», а кнопкой «SEL» указав режим измерения параметров переменного тока «АС».

Только после этого подключенные к прибору концы установил в розетку для измерения напряжения.

Напряжение в розетке

На дисплее появилось значение 242,8 вольта, что укладывается в норму.

После этого можно сделать вывод, что в розетке имеется напряжение, а Mestek MT102 и его концы исправны и им можно пользоваться дальше. Подготовительные процедуры закончены, но дальнейшую работу начинающему электрику может облегчить знание расцветки жил кабелей.

Правила цветовой маркировки проводов: как их следует учитывать

Расцветка жил значительно упрощает монтаж электрической проводки и поиск в ней неисправностей. Поэтому производители ее наносят на изоляцию, а профессиональные электрики стараются придерживаться правил монтажа.

Цветовая маркировка проводов

Правила цветовой маркировки предполагают обозначение:

  • защитного РЕ проводника желто-зеленым цветом;
  • рабочего ноля синим или голубым;
  • фазы — остальными: белым, оранжевым, коричневым, черным, серым, красным, фиолетовым.

Обратите внимание, что не всегда кабель и провод имеет подобное разнообразие расцветок. Изоляция жил часто может иметь какой-то один оттенок. Да и не все монтажники, а особенно домашние мастера придерживаются этого правила.

Цветовая маркировка призвана облегчить поиск неисправностей и монтажные работы, она является дополнительным способом определения фазы и рабочего ноля. Но полностью полагаться на этот метод нельзя.

Кстати, во время работы не раз приходилось наблюдать, как в спешке устранения неисправностей даже на ответственных вторичных цепях оборудования 330 кВ на подстанции опытным электрикам приходилось заменять и прокладывать провода из тех, какие есть под рукой, не обращая внимание на их расцветку.

Какие безобразия творятся в бытовой домашней сети, допускаемые необученным персоналом, можете представить сами.

Последовательность поиска фазы вольтметром: пошаговая инструкция из 3 типовых случаев

Работа состоит из подготовительной и основной части.

На первоначальном этапе проверяем исправность измерительного прибора и его концов, как я показал выше. Во многих случаях эта короткая процедура экономит дальнейшее рабочее время. Делайте ее привычкой, ибо плохой контакт в гнезде, оборванная жила, севшие батарейки питания, любые другие дефекты доставят много неприятностей.

Вариант №1. Трехпроводная бытовая схема питания

Определение наличия фазного потенциала на проводе буду показывать на примере проводки с жилами однотонной изоляции. На них предполагаем наличие фазы, земли и ноля. Будем их определять.

Далее все делаем за 2 шага.

Шаг №1. Попарный замер напряжения между проводами

Произвольно помечаем все три провода. Например, присваиваем им номера, буквы или располагаем сверху вниз либо слева направо.

При этом помним, что они находятся под напряжением и прикасаться к ним можно только с соблюдением правил безопасности, не создавая контакт тела с токоведущими жилами.

Для наглядности я расположил их вертикально и присвоил номера №1÷3. Затем щупами вольтметра последовательно замеряем разность потенциалов между токоведущими жилами.

Допустим, мы увидели 220 вольт между проводами 1 и 2, а также 2 и 3.

Проверка напряжения мультиметромЗамер напряжения мультиметром

А между жилами №1 и 3 вольтметр показывает доли вольта, близкие к нулю.

Проверка напряжения вольтметром

Шаг №2. Анализ результатов измерения

На основе этих замеров можно сделать вывод, что общий провод №2 для двух случаев измерения 220 вольт является фазным.

Вариант №2. Двухпроводная бытовая сеть

Имеем два провода с фазой и нулем, но не знаем где находится какой потенциал.

Шаг №1. Замер напряжения между проводами

Вначале проверяем разность потенциалов между токоведущими жилами. При исправной цепи мы должны увидеть 220 вольт, как я показал на фотографии розетки выше при проверке исправности прибора.

Шаг №2. Замер напряжения между каждым проводом и контуром земли

Один конец от вольтметра крокодилом подключаем на водопроводный кран, батарею отопления или любую другую заземленную металлическую конструкцию. Вторым щупом поочередно касаемся токоведущих жил.

Как проверить напряжение вольтметром

В одном положении вольтметр покажет что-то близкое к нолю, а в другом — 220 вольт. На этом проводе и будет присутствовать потенциал фазы.

Оба случая проверки напряжения для двух- и трехпроводной схемы хорошо подходят для оценки наличия фазы в соответствующих типах розеток.

Вариант №3. Принцип определения фазы на емкостном токе

Здесь используется та же технология, что и при проверке напряжения обычной индикаторной-отверткой.

Проверка напряжения индикатором

Внутри индикатора стоит высокоомный резистор, ограничивающий ток через тело оператора на землю до безопасной величины: нескольких милли- или микроампер, достаточных для свечения неоновой либо светодиодной лампочки.

Когда человек касается пальцами контакта на торце отвертки, то, если имеется потенциал фазы на противоположном конце лезвия, создается емкостной ток и лампочка горит. В противном случае ее свечения не будет.

Схема протекания емкостного тока выглядит следующим образом.

Как работает индикатор

Заменив индикатор мультиметром в этом методе вполне можно найти фазу, что я и показываю на очередной фотографии.

Поиск фазы мультиметром

Один щуп вольтметра установлен в гнездо розетки, а второго касаюсь пальцами. На табло вы видите показание 73 вольта. При этом я сижу в кресле, находящемся на сухом деревянном полу.

За счет хорошей изоляции тела от контура земли мой Mestek MT102 сильно занижает величину фазного потенциала. Поэтому я делаю второй эксперимент.

Снял с ноги носок и притронулся голой стопой к окрашенному радиатору батареи отопления. Вот что получилось.

Поиск фазы мультиметром

Mestek MT102 показал уже 175 вольт, что ближе к истине.

Этим методом пользоваться можно, но цифрам дисплея верить нельзя: они приблизительные и зависят от качества заземления тела.

На другом контакте розетки вы вольты таким способом замера не увидите.

Как отличить провод нуля от земли в трехпроводной схеме

Когда мы нашли фазу, то на двух оставшихся исправных проводах будут потенциалы рабочего нуля и РЕ проводника. Их нам необходимо различить.

Для этого первоначально используем цветовую маркировку, если она применена правильно. Но обязательно рекомендую выполнить для достоверности электрические замеры.

Надо просто еще раз внимательно измерить величину разности потенциалов между фазой и этими двумя проводами. Землей будет тот провод, где показание мультиметра чуть больше. На нем меньшие потери напряжения из-за высоких требований к монтажу и отсутствию коммутационных аппаратов внутри цепи.

Третий оставшийся провод — рабочий ноль. Для практики можно измерить разность потенциалов между землей и нулем, сравнить ее с отличием замеров между этими проводами с фазой.

Небольшие отклонения будут вызваны:

  • классом точности прибора;
  • качеством подключения концов;
  • отличием арифметических действий от методов векторной алгебры.

3 заключительных совета из личного опыта

Здесь я поделюсь тремя случаями, которые должны помочь вам облегчить жизнь при общении с электричеством, исключить типичные ошибки.

Удлинитель для мультиметра

Работая тестером на различных объектах мне пришлось изготовить простой удлинитель его концов.

Удлинитель для мультиметра

На самодельное пластиковое мотовильце намотал длинный гибкий провод и припаял к нему два штеккера. На фото показаны крокодил и самодельный щуп из спицы велосипеда, закрытый корпусом шариковой ручки. Они легко надеваются и снимаются в зависимости от необходимых задач.

Этот удлинитель занимает мало места, не путается, очень выручает меня при прозвонке удаленных объектов. Он же будет полезен при проверке фазы методом емкостного тока.

«Неисправный телевизор»

Этот случай произошел, когда у нас еще работали черно-белые кинескопные телевизоры.

Соседка с пятого этажа пришла с просьбой: “Помоги, у меня телевизор перестал включаться”. Пришлось брать тестер и инструменты. Первым делом измерил напряжение в розетке: 220 вольт, норма.

Дальше вскрыл заднюю крышку и стал проверять цепи питания подачи напряжения на трансформатор. Все вызвонил, а неисправности не нашел, предохранители и провода целые, кнопки рабочие.

Еще раз проверил розетку: опять 220. Пришлось сильно задуматься. В итоге взял удлинитель, подключил его в другой комнате и запитал телевизор. Он заработал.

Стал разбирать розетку. Алюминиевая лапша 2,5 квадрата. Оба конца исправны, тестер показывает напряжение 220. Включил настольную лампа, а она не горит. Опять возвращаюсь к вольтметру и вижу всего 40 вольт.

Делаю вывод: под нагрузкой где-то пропадает контакт. Лезу в распределительную коробку, осматриваю соединения. Прощупываю провода и замечаю внутри изоляции обломанную жилу: концы подвижны, но соприкасаются.

Когда через них проходит маленький ток от тестера, то контакт надежный, а при увеличении нагрузки от настенной лампы или телевизора он ухудшается и цепь не работает.

Раньше такие неисправности хорошо выявлялись контрольной лампой. Сейчас она запрещена правилами по ряду причин. Однако проверять наличие фазы на проводе под нагрузкой более правильно, чем без нее.

«Электрик по совместительству»

Десяток лет назад встал вопрос о ремонте ванной и туалета. Жене порекомендовали хорошего плиточника по имени Сергей. Он профессионально занимается отделочными работами, имеет опыт, показывает фотографий в своем портфолио.

Цена устроила, договорились. Сергей приступил к работе. По ходу дела он взял на себя весь ремонт, как сейчас говорят, «помещения под ключ», включая сантехнику, электрику, замену дверей.

Во время не удачного демонтажа старой дверной рамы рухнула небольшая часть стены с замурованной проводкой. Одни провода оборвались, а на других повис кусок бетона. (В этом месте был установлен трёхклавишный выключатель и розеточный блок.)

Сергей попытался разобрать образовавшийся клубок и получил сильный удар током. Автоматы отключили короткое замыкание, а неудачный электрик впал в шоковое состояние.

К его счастью в этот момент я пришел с работы и увидел всю эту картину. Сергей сразу заявил, что дальше он с этой неисправностью сам не справится, а от электричества теперь будет держаться подальше.

Пришлось мне браться за прозвонку и монтаж всей проводки. Вам же хочу напомнить, что работы под напряжением относятся к опасным. Их допускается выполнять только обученному персоналу, обладающему:

  1. специальными знаниями;
  2. практическими навыками;
  3. крепким физическим здоровьем.

Если хоть одно из этих требований отсутствует, то беда неминуема. Дабы ее не было — привлекайте профессиональных электриков. Вот и вся информация о том, как мультиметром найти фазу. Можете ее дополнить в комментариях или задать дополнительные вопросы. Я отвечу.

Как определить фазу и ноль: Инструкция по определению

При монтаже розеток и выключателей освещения, подключении бытовых электроприборов возникает необходимость в определении назначения жил проводки. Как определить фазу и «ноль», а также заземляющий проводник? Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. Попробуем разобраться в этом вопросе.

Устройство бытовых электрических сетей

Бытовые электрические сети на входе в распределительный щиток имеют линейное напряжение 380В трехфазного переменного тока. Проводка в квартирах, за редким исключением, имеет напряжение 220В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. В домах старой застройки заземляющего проводника может не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.

Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого проводника производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. Выключатель подключают в фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения – это обеспечит безопасность при смене ламп. Сложные бытовые приборы в металлическом корпусе необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.

Приборы и инструменты

Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:

  • Мультиметр стрелочный или цифровой;
  • Индикаторную отвертку или тестер;
  • Маркер;
  • Пассатижи;
  • Нож для зачистки изоляции.

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели или пробки, УЗО. Обычно их устанавливают в распределительном щитке на площадке или у входа в квартиру. Все операции по подключению электроаппаратуры и зачистку проводов необходимо проводить при отключенных автоматах!

Правила работы с тестером и мультиметром

Проверку фазы с помощью индикаторной отвертки проводят так: отвертку зажимают между большим и средним пальцем руки, не касаясь неизолированной части жала. Указательный палец ставят на металлическийпятачок с торца рукоятки. Жалом задевают оголенные концы проводов, при касании к фазному проводнику загорается светодиод.

Определяем фазу и ноль с помощью индикаторной отвертки

Определяем фазу и ноль с помощью индикаторной отвертки

Мультиметром измеряют напряжение между проводниками. Для этого прибор устанавливают на предел измерения переменного тока со значком «~V» или «ACV» и значением больше 250 В (обычно у цифровых приборов выбирают предел 600, 750 или 1000 В). Щупами одновременно прикасаются к двум проводникам и определяют напряжение между ними. В бытовых электросетях оно должно быть 220В±10%.

Иногда для определения заземляющего проводника необходимо бывает измерить сопротивление. Для этого на мультиметре выставляют предел измерения «Ω» или со значком звонка.

Инструкция по пользованию мультиметром

Инструкция по пользованию мультиметром

Внимание! В режиме измерения сопротивления прикосновение к фазному проводу и заземляющему контуру вызовет короткое замыкание! При этом возможны электротравмы и ожоги!

Визуальный метод определения

Если проводка выполнена по всем правилам, определить фазу, ноль и заземляющий проводник можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках.

Визуальный способ определения фаза и ноль

Визуальный способ определения фаза и ноль

Последовательность визуального осмотра

  1. Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы могут быть подключены только фазный или фазный и нулевой провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
  2. Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите скрутки. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
  3. К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.
  4. Если монтаж выполнен с полным соответствием цвета изоляции, достаточно проверить фазный провод с помощью индикаторной отвертки.

Определение фазы и нуля в двухпроводной сети

Если ваша проводка выполнена без заземляющего проводника, вам необходимо найти только фазный провод. Сделать это проще всего с помощью индикаторной отвертки.

Индикаторная отвертка поможет нам определить фазу и ноль

Индикаторная отвертка поможет определить фазу и ноль

  1. Отключите автоматический выключатель и зачистите изоляцию проводов на расстоянии 1-1,5 см с помощью ножа. Разведите их на расстояние, исключающее случайное касание проводов.
  2. Включите автоматический выключатель. Индикаторной отверткой поочередно касайтесь зачищенных концов проводов. Светящийся диод укажет на фазный провод.
  3. Отметьте его маркером или цветной изолентой, отключите автоматический выключатель  и выполните необходимые подключения.
  4. При подключении осветительных приборов необходимо также убедиться, что выключатель подключен к фазному проводу, в противном случае при смене лампочек недостаточно будет отключить выключатель, придется каждый раз полностью обесточивать квартиру отключением автомата.

Определение фазы, нуля и заземляющего провода

Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

Определение фазы и нуля заземляющего провода

Определение фазы и нуля заземляющего провода

  1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

Нулевой фазовый отклик цифрового фильтра

Синтаксис

[Hr, w] = нулевая фаза (b, a)
[Hr, w] = нулевая фаза (sos)
[Hr, w] = нулевая фаза (d)
[ Hr, w] = нулевая фаза (..., nfft)
[Hr, w] = нулевая фаза (..., nfft, 'целом')
[Hr, w] = нулевая фаза (..., w)
[Hr , f] = нулевая фаза (..., f, fs)
[Hr, w, phi] = нулевая фаза (...)
нулевая фаза (...)

Описание

[Hr, w] = нульфаза (б, а) возвращает отклик нулевой фазы ч и вектор частоты Вт (в радиан / образец), при котором Hr вычисляется, учитывая фильтр, определенный числителем b и знаменателем a .Для FIR-фильтров, где a = 1 , вы можете опустить значение a из команда. Отклик нулевой фазы оценивается в 512 в равной степени разнесенные точки на верхней половине круга единицы.

Отклик нулевой фазы, H r ( ω ), относится к частотной характеристике H ( e ), по

, где φ ( ω ) непрерывная фаза.

Примечание

Отклик нулевой фазы всегда действителен, но не эквивалентен величины отклика.Первое может быть отрицательным, а второе не может быть отрицательным.

[Hr, w] = нулевая фаза (sos) возвращает нулевую фазу ответ на матрицу секций второго порядка, sos . Сос является K -by-6 матрица, где количество секций, К, , должно быть больше или равно 2. Если количество секций меньше чем 2, Zerophase считает входной числитель вектор, б . Каждый ряд Сос соответствует к коэффициентам фильтра второго порядка (биквад). и -й строка матрицы sos соответствует [bi (1) bi (2) bi (3) ai (1) ai (2) ai (3)] .

[Hr, w] = нулевая фаза (d) возвращает нулевую фазу ответ для цифрового фильтра, d . Используйте designfilt для генерации на основе d по частотным характеристикам.

[Hr, w] = нулевая фаза (..., nfft) возвращается отклик нулевой фазы час и вектор частоты Вт (радиан / выборка), используя nfft частотных точек на верхней половине единичный круг.Для достижения наилучших результатов установите nfft на значение больше, чем порядок фильтра.

[Hr, w] = нулевая фаза (..., nfft, 'whole') возвратов отклик нулевой фазы час и вектор частоты Вт (радиан / выборка), используя nfft частотных точек вокруг всего устройства круг.

[Hr, w] = нулевая фаза (..., w) возвратов отклик нулевой фазы час и вектор частоты Вт (радиан / выборка) на частотах в векторе Вт .Вектор ш должен иметь как минимум два элемента.

[Hr, f] = нулевая фаза (..., f, fs) возвращается отклик нулевой фазы ч и вектор частоты ч (Гц), используя частоту дискретизации фс (в Гц), чтобы определить вектор частоты f (в Гц), при котором Hr равен вычислен. Вектор f должен иметь как минимум два элемента.

[Hr, w, phi] = нулевая фаза (...) возвратов отклик нулевой фазы час , вектор частоты Вт (рад / образец), и компонент непрерывной фазы, фи .(Заметка что эта величина не эквивалентна фазовому отклику фильтр, если отклик нулевой фазы отрицателен.)

нулевой фазы (...) изображает зависимость отклика нулевой фазы от частота. Если вы введете коэффициенты фильтра или матрицу секций второго порядка, то текущее окно рисунка используется. Если вы введете digitalFilter , ответ шага отобразится в FVTool .

Примечание

Если ввод в нулевой фазы с одинарной точностью, отклик нулевой фазы рассчитывается с использованием арифметики одинарной точности.Выход Hr с одинарной точностью.

Что такое ток обратной последовательности и как он влияет на работу генератора

Воздействие несбалансированных токов…

Как вы знаете, генераторы и двигатели должны работать с сбалансированной трехфазной нагрузкой, но воздействие несбалансированных токов неизбежно. Дисбалансы могут возникать из-за множества различных источников, таких как несбалансированные нагрузки, нетранспонированная конструкция линии электропередачи, неисправности и обрыв фазы и т. Д.

Эти дисбалансы появляются как ток обратной последовательности в выводах генератора.По определению, величины обратной последовательности имеют вращение, противоположное вращению энергосистемы. Этот обратный вращающийся ток статора вызывает двухчастотные токи в конструкциях ротора.

Обогрев в результате может очень быстро повредить ротор.

В течение десятилетий электромеханические реле максимальной токовой последовательности были предусмотрены в качестве стандартной защиты от несбалансированного тока для генераторов среднего и большого размера. Электромеханическая технология сильно ограничивает чувствительность этих реле.В результате они могли обеспечить только резервную защиту для неотключенных межфазных и замыканий на землю .

Потенциально повреждающие слаботочные условия, такие как разомкнутая фаза или ограниченная неисправность, не были обнаружены.

С появлением полупроводниковой и микропроцессорной технологии теперь доступна ретрансляция для обеспечения защиты генератора в широком диапазоне условий дисбаланса.


Так что же такое ток обратной последовательности?

Концепция тока обратной последовательности основана на методологии симметричного компонента.Основная теория симметричных компонентов заключается в том, что фазные токи и напряжения в трехфазной системе питания могут быть представлены тремя однофазными компонентами.

Это компоненты положительной, отрицательной и нулевой последовательности. Компонента прямой последовательности тока или напряжения имеет такое же вращение, что и система питания. Этот компонент представляет собой сбалансированную нагрузку.

Если фазные токи генератора равны и смещены точно на 120 °, будет существовать только ток прямой последовательности .Дисбаланс тока или напряжения между фазами по амплитуде или фазовому углу приводит к появлению компонентов отрицательной и нулевой последовательности.

Symmetrical components Symmetrical components Рисунок 1 – Симметричные компоненты: положительная, отрицательная и нулевая последовательность

Компонент обратной последовательности имеет вращение, противоположное вращению энергосистемы. Компонент нулевой последовательности представляет собой дисбаланс, который вызывает ток в нейтрали.

Компонент обратной последовательности аналогичен системе прямой последовательности, за исключением того, что результирующее поле реакции вращается в направлении, противоположном d.с. полевая система. Следовательно, создается поток, который разрезает ротор с удвоенной скоростью вращения, тем самым вызывая двухчастотные токи в полевой системе и в корпусе ротора.

Результирующие вихревые токи очень велики и вызывают сильный нагрев ротора.

Этот эффект настолько серьезен, что однофазная нагрузка, равная нормальному трехфазному номинальному току, может быстро нагреть клинья паза ротора до точки размягчения .

Затем они могут выдавливаться под действием центробежной силы до тех пор, пока они не окажутся над поверхностью ротора, когда возможно, что они могут ударить сердечник статора.

Генератору присвоен непрерывный рейтинг обратной последовательности .

Для турбогенераторов этот рейтинг низкий – приняты стандартные значения 10% и 15% от непрерывного рейтинга генератора. Более низкий рейтинг применяется, когда применяются более интенсивные методы охлаждения, например, водородное охлаждение с помощью газовых каналов в роторе, чтобы облегчить прямое охлаждение обмотки.

Кратковременный нагрев представляет интерес в условиях неисправности системы, и при определении способности выдерживать обратную последовательность генератора обычно предполагается, что тепловыделение в такие периоды незначительно.

Используя это приближение, можно выразить отопление по закону:

I 2 2 t = K

где:

  • I 2 = компонент обратной последовательности (на единицу максимального непрерывного рейтинга)
  • т = время (секунды)
  • K = постоянная, пропорциональная теплоемкости ротора генератора

Для нагрева в течение периода, превышающего несколько секунд, необходимо учитывать рассеиваемое тепло.Из комбинации номиналов непрерывного и короткого времени общая характеристика нагрева может быть получена:

Overall heating characteristic of a generator Overall heating characteristic of a generator

, где I 2R – непрерывный рейтинг отрицательной последовательности фаз на единицу максимального непрерывного рейтинга (MCR)

Чтобы проиллюстрировать происхождение этих компонентов, обратитесь к загрузке в образце системы генератора, показанной на рисунке 2.

Generator unbalanced currents Generator unbalanced currents Рисунок 2 – Генератор несбалансированных токов

Нагрузка генератора не сбалансирована, и, следовательно, тока отрицательной и / или нулевой последовательности присутствует в дополнение к току положительной последовательности.Последовательные токи могут быть определены из фазных токов, когда известны величина и фазовый угол.

Математически, токи положительной (I 1 ), отрицательной (I 2 ) и нулевой (I 0 ) последовательностей в системе с вращением ABC определяются как (Уравнение 1):

Positive (I<sub>1</sub>), negative (I<sub>2</sub>) and zero (I<sub>0</sub>) sequence currents Positive (I<sub>1</sub>), negative (I<sub>2</sub>) and zero (I<sub>0</sub>) sequence currents

Подставляя фазовые токи и углы из рисунка 1 в уравнение (1), найдены последовательные токи:

Substituting phase currents and angles Substituting phase currents and angles

Номинальный ток для измерительной системы составляет 4370 А .Тогда ток прямой последовательности составляет 4108 A / 4370 A = 0,94 pu , а ток обратной последовательности составляет 175 A / 4370 A = 0,04 Pu .

Ток нулевой последовательности является векторной суммой фазных токов и должен протекать в нейтрали или заземлении .

Генератор системы отбора проб подключен к дельта-обмотке трансформатора повышающего генератора (GSU). Без нейтрального обратного пути ток нулевой последовательности не может существовать. Расчетный ток нулевой последовательности является результатом ошибок измерения и должен рассматриваться как нулевой.


Влияние тока обратной последовательности

Роторное отопление

Магнитное поле в воздушном зазоре, которое вращается с синхронной (роторной) скоростью в том же направлении, что и ротор. Поскольку магнитное поле, индуцированное ротором и обратной последовательностью, движется с одинаковой скоростью и направлением, поле сохраняет фиксированное положение относительно ротора, и ток не индуцируется в ротор.

Несбалансированный ток создает ток обратной последовательности, который, в свою очередь, создает обратное вращающееся поле в воздушном зазоре.Это магнитное поле вращается с синхронной скоростью, но в обратном направлении к ротору.

С точки зрения точки на поверхности ротора это поле вращается с двойной синхронной скоростью. По мере того как это поле пронизывает ротор , оно индуцирует токи двойной частоты в корпус ротора цилиндрической роторной машины и в поверхность полюса выдающейся полюсной машины.

Части полученного пути индуцированного тока имеют высокое электрическое сопротивление индуцированному току. Результат – быстрый нагрев.

Повреждение из-за потери механической целостности или повреждения изоляции может произойти в считанные секунды.


Цилиндрические роторные генераторы

Цилиндрический ротор изготовлен из ковки из цельной стали с прорезями по всей длине. Каждая полевая катушка требует двух пазов, по одному на каждую сторону обмотки катушки. Паз может содержать одну или несколько обмоток катушки.

Гребни между пазами называются зубцами .Рисунок 3 иллюстрирует конфигурацию ротора.

Salient-pole rotor Salient-pole rotor Рисунок 3 – Ротор с выступающими полюсами

Канавки обрабатываются по бокам каждого зуба, чтобы можно было вдавливать клинья по всей длине паза. Клинья удерживают обмотки поля в пазах. В некоторых машинах в щелях между клином и полевой катушкой установлены токопроводящие полосы.

Эти полосы соединены на стопорных кольцах , чтобы обеспечить путь с низким сопротивлением для индуцированных токов .Петли, образованные этими полосами, известны как обмотки амортизатора.

Конфигурации пазов клина, полевой катушки и дополнительной обмотки амортиссера показаны на рисунке 4.

Slots and wedges Slots and wedges Рисунок 4 – Слоты и клинья

На концах корпуса ротора стопорные кольца удерживают концы обмоток возбуждения на месте против центробежной силы. Стопорные кольца обычно имеют усадочную посадку на корпусе ротора, но в старых машинах они могут свободно плавать при случайном контакте с корпусом ротора.

Кольца и клинья рассчитаны на механическую прочность , потому что они должны ограничивать большие обмотки возбуждения при частоте вращения генератора . Стопорные кольца являются компонентом наибольшего напряжения ротора.

Индуцированные токи 120 Гц протекают в виде петель вдоль корпуса цилиндрического ротора, как показано на рисунке 5. В роторе столько же петель тока, сколько полюсов статора.

Когда переменный ток проходит через проводник, в этом случае корпус ротора, плотности тока неодинаковы.

Rotor currents Rotor currents Рисунок 5 – Токи ротора

«Эффект скин-эффекта» заставляет переменный ток мигрировать к внешней поверхности проводника. Эта тенденция увеличивается с частотой.

В цилиндрическом роторе индуцированный ток 120 Гц занимает поперечное сечение, простирающееся от поверхности до глубины , не превышающей 0,1-0,4 дюйма . Это заставляет индуцированный ток в зубья и клинья на поверхности ротора. В результате высокая плотность тока значительно увеличивает сопротивление ротора для тока 120 Гц по сравнению с постоянным током или током 60 Гц.

Чем выше сопротивление, тем выше потери и больше тепла на усилитель для тока 120 Гц, чем для тока низкой частоты.

Индуцированные токи производят максимальный нагрев на концах корпуса ротора . Значительное тепло генерируется контактным сопротивлением, как передать токи от клиньев к зубам, чтобы войти в стопорное кольцо и от кольца до зубов затем клиньев на обратном цикле. Повышенный нагрев также вызван высокой плотностью тока в этих местах, так как ток собирается в зубьях для входа и выхода стопорных колец на конце ротора.

Допуск обратной последовательности генератора зависит от поддержания хорошего электрического контакта между конструкциями ротора. Низкое сопротивление минимизирует нагрев и предотвращает искрение в точках контакта . Дизайнеры включают в себя множество функций для улучшения проводимости.

К ним относится добавление обмоток амортизатора в пазы ротора для формирования дорожек с низким сопротивлением по всей поверхности ротора. Концы обмоток амортизатора соединены со стопорными кольцами для обеспечения моста с низким сопротивлением от прорези к кольцу.

Алюминиевые щелевые клинья также могут быть использованы для уменьшения сопротивления на этом пути тока.

Посеребренные алюминиевые пальцы могут обеспечить токопровод низкого сопротивления от клиньев до стопорных колец. Поверхность ротора в месте прессовой посадки стопорного кольца является часто покрытым серебром, чтобы минимизировать сопротивление и нагрев в месте соединения.

Два типа отказов ротора связаны с несбалансированным током.

Перегрев клиньев паза вызовет отжиг и разрушение при сдвиге от силы материала в пазах.Вторая неудача будет вполне стопорное кольцо. Чрезмерное нагревание может привести к термозажима стопорное кольцо, чтобы поднять свободный от тела ротора. Это создаст две проблемы.

стопорное кольцо не может перестроить после того, как он остынет, переустановка во взведенном положении на корпусе ротора. В результате получится Вибрация.

Кроме того, потеря хорошего электрического контакта во время плавания может привести к точечной коррозии и ожогам в местах прерывистого или плохого контакта. Стопорные кольца, предназначенные для плавания, также будут испытывать повреждение дуги в точках прерывистого контакта или плохой проводимости.

Результирующие локализованные высокие температуры могут охрупчивать участки кольца, а может привести к растрескиванию под воздействием различных нагрузок при повторном запуске и останове агрегата .

Характеристики нагрева различных конструкций генератора показаны на рисунке 6 ниже.

Typical negative phase sequence current withstand of cylindrical rotor generators Typical negative phase sequence current withstand of cylindrical rotor generators Рисунок 6 – Типичная выдерживаемая по току последовательность с обратной последовательностью фаз цилиндрических роторных генераторов
Генераторы выдающихся полюсов

Генераторы выдающихся полюсов обычно имеют обмотку амортизатора в форме проводящих стержней, расположенных на лицевой стороне каждого полюса ротора.Концы спаяны, чтобы сформировать путь низкого сопротивления на поверхности полюса.

Существует два основных типа амортизаторов: Несвязанные обмотки амортизатора изолированы на каждой поверхности полюса. Подключенные амортизаторы имеют токопроводящие перемычки, которые соединяют полюса для соединения концов всех групп амортиссеров на каждом полюсе.

Большая часть тока, индуцируемого в роторе машины с выдающимися полюсами, течет в амортизаторах с полюсной поверхностью. Поскольку соединения паяны, этот путь не имеет горячих точек контактного сопротивления, присущих машине с цилиндрическим ротором.

Тем не менее, ток амортизаторов имеет тенденцию течь во внешних стержнях, и индуцированный ток может вызвать повреждение напряжения из-за неравномерного расширения стержней.

Amortisseurs windings Amortisseurs windings Рисунок 7 – Обмотки амортиссеров

Если амортизаторы не подключены между полюсами – Большая часть тока, наведенного в этих обмотках, протекает по корпусу полюса в ласточкин хвост, который удерживает полюс на роторе, а затем обратно на соседний полюс. Соединение у ласточкиного хвоста создаст сопротивление, создавая тепло, которое может повредить изоляцию и конструкцию ротора.

Если амортиссеры подключены между полюсами – Ток ласточкиного хвоста резко уменьшается, но в соединении между полюсами будет течь большой ток.

Подключение амортизаторов также оказывает текущий балансировочный эффект на стержнях полюсов.

Машины с выдающимися полюсами и подключенными амортизаторами будут иметь более высокую способность по току обратной последовательности, чем машины без них. Ограничивающими компонентами на подключенных машинах часто являются стержни, которые соединяют полюса.

Большой индуцированный ток, протекающий в этих стержнях, может вызвать достаточный нагрев для отжига стержня , что приведет к механическому повреждению под действием центробежной силы .

Difference in salient pole rotor and round or cylindrical rotor Difference in salient pole rotor and round or cylindrical rotor Рис. 8 – Различие в роторе с выступающими полюсами и роторе с круглой или цилиндрической поверхностью

Пульсирующий крутящий момент

Ток обратной последовательности создает обратное вращающееся магнитное поле в воздушном зазоре. Это поле вызывает пульсацию крутящего момента вала с удвоенной частотой линии. Величина крутящего момента пропорциональна на единицу тока обратной последовательности в статоре.Пульсации передаются на статор.

Если статор установлен на пружине, пульсация будет поглощена. Без пружинных креплений пульсация будет передаваться на фундамент статора, где они могут быть конструктивным фактором.

В общем, проблемы, связанные с пульсацией крутящего момента, являются вторичными по отношению к нагреву ротора.

Источники:

  1. Защитная ретрансляция для систем производства электроэнергии от Дональда Реймерта
  2. Руководство по защите и автоматизации сети от Alstom
,
Вычисление компонентов с положительной, отрицательной и нулевой последовательностью трехфазного сигнала

Simscape / Электротехника / Специализированные энергосистемы / Контроль и измерения / Измерения

Simscape / Электротехника / Специализированные энергосистемы / Фундаментальные блоки / Измерения / Дополнительные измерения

Описание

Блок анализатора последовательности выводит величину и фазу из положительной, отрицательной и нулевой последовательностей компонентов множества из трех сбалансированных или несбалансированных сигналов.Индекс 1 обозначает положительный последовательность, индекс 2 обозначает отрицательную последовательность, а индекс 0 обозначает нулевая последовательность. Сигналы могут дополнительно содержать гармоники. три последовательные составляющие трехфазного сигнала (напряжения V 1 В 2 В 0 или токи I 1 I 2 I 0 ) рассчитываются следующим образом:

V1 = 13 (Va + a⋅Vb + a2⋅Vc) V2 = 13 (Va + a2⋅Vb + a⋅Vc) V0 = 13 (Va + Vb + Vc) Va, Vb, Vc = три вектора напряжения на указанной частотеa = ej2π / 3 = 1∠120∘ комплексный оператор

A Фурье-анализ по скользящему окну одного цикла указанная частота сначала применяется к трем входным сигналам.Это оценивает векторные значения Va, Vb и Vc при заданном фундаментальном или гармоническая частота. Затем преобразование применяется для получения положительная последовательность, отрицательная последовательность и нулевая последовательность.

В качестве блока используется скользящее среднее окно для выполнения Фурье анализ, один цикл моделирования должен завершиться до выхода дать правильную величину и угол. Например, ответ блока с шагом изменения V1 является одноцикловой рампой. Для первого цикла моделирование, выход поддерживается постоянным с использованием указанных значений по начальным входным параметрам.

Примеры

Модель power_SequenceAnalyzer показывает использование блока анализатора последовательности для вычисления трех составляющие последовательности трехфазного синусоидального напряжения. Модель время выборки

Время выборки модели параметризуется набором переменных Ts к значению по умолчанию 50e-6 с. Установите Ts на 0 в командном окне на моделировать модель в непрерывном режиме.

Пусконаладочные испытания защитных реле на площадке

Установка защитных реле

Установка реле защиты на месте создает ряд возможностей для ошибок в реализации схемы. Даже если схема была тщательно протестирована на заводе-изготовителе, подключение к ТТ и ТТ на месте может быть выполнено неправильно, или ТТ / ТТ могут быть неправильно установлены.

Commissioning tests of protection relays at site (before set to work) Пуско-наладочные испытания защитных реле на месте (перед началом работы) – кредит фото: электр.ком

Воздействие таких ошибок может варьироваться от простого нарушения до (отключение происходит многократно при включении питания, требующем расследования для выявления и исправления ошибок) до сбоев в условиях неисправности , что приводит к серьезному повреждению оборудования, нарушению работы поставки и потенциальные опасности для персонала.

Существует множество стратегий устранения этих рисков, , но все они включают в себя какое-то тестирование на сайте . Поэтому тесты при вводе в эксплуатацию всегда проводятся до того, как защитное оборудование будет установлено.Цели ввода в эксплуатацию испытаний:

  1. Чтобы убедиться, что оборудование не было повреждено во время транспортировки или установки
  2. Чтобы убедиться, что монтажные работы были выполнены правильно
  3. Доказать правильность функционирования схемы защиты в целом.

Испытания, проведенные , обычно варьируются в зависимости от схемы защиты, используемой , используемой технологии ретрансляции и политики клиента. Во многих случаях фактически проводимые испытания определяются во время ввода в эксплуатацию по взаимному соглашению между представителем клиента и группой ввода в эксплуатацию.

Следующие тесты проводятся неизменно, поскольку схема защиты не будет работать правильно при наличии неисправностей.

  • Проверка монтажной схемы с использованием принципиальных схем, показывающих все ссылочные номера соединительной проводки
  • Общий осмотр оборудования, проверка всех соединений, проводов на клеммах реле, маркировка на клеммных колодках и т. Д.
  • Измерение сопротивления изоляции всех цепей [подробно]
  • Выполните процедуру самотестирования реле и проверки внешних коммуникаций цифровых / числовых реле [подробнее]
  • Испытание главных трансформаторов тока
  • Испытание главных трансформаторов напряжения
  • Убедитесь, что настройки аварийного реле / ​​срабатывания защитного реле были введены правильно [подробно]
  • Проверка цепи отключения и сигнализации для подтверждения правильности работы
Кроме того, могут быть выполнены следующие проверки в зависимости от факторов, указанных выше (не рассматриваемых в данной технической статье):
  • Тест вторичного впрыска на каждом реле для подтверждения работы при одном или нескольких значениях настройки
  • Тесты первичного впрыска на каждом реле, чтобы доказать устойчивость к внешним неисправностям и определить настройку эффективного тока для внутренних неисправностей (важно для некоторых типов электромеханических реле)
  • Проверка логики схемы защиты

Испытания на сопротивление изоляции

Все преднамеренные заземления на тестируемой проводке должны быть сначала удалены, например, заземляющие цепи на трансформаторах тока, трансформаторах напряжения и источниках постоянного тока.Некоторые тестеры изоляции генерируют импульсы с пиковым напряжением, превышающим кВ. В этих случаях любое электронное оборудование должно быть отключено во время проверки внешней изоляции проводки.

Сопротивление изоляции должно измеряться на массу и между электрически разделенными цепями. Показания записываются и сравниваются с последующими рутинными испытаниями для выявления любых повреждений изоляции.

Various tests performed on protection relays (photo credit: canahighvoltage.ca) Various tests performed on protection relays (photo credit: canahighvoltage.ca) Различные испытания, выполненные на реле защиты (фото предоставлено: canahighvoltage.са)

Измеренное сопротивление изоляции зависит от количества проводов , его марки и влажности на месте. Как правило, если тест ограничен одной ячейкой, показание должно составлять несколько сотен мегом. Если задействована большая длина проводки, считывание может составлять всего несколько мегом.

Вернуться к пусконаладочным испытаниям №


Процедура самопроверки защитного реле

Цифровые и числовые реле

будут проходить процедуру самопроверки , которая подробно описана в соответствующем руководстве по реле .Эти тесты должны быть выполнены, чтобы определить, правильно ли работает реле.

Обычно это включает проверку схемы сторожевого реле , выполнение всех цифровых входов и выходов и проверку того, что аналоговые входы реле находятся в пределах калибровки путем подачи испытательного тока или напряжения.

Для этих тестов релейные выходы обычно отключаются от остальной части схемы защиты, поскольку это тест, проводимый для подтверждения правильности работы реле, а не схемы.

To shorten testing and commissioning times of SIPROTEC relays, extensive test and diagnostic functions are available to the user in DIGSI 5 To shorten testing and commissioning times of SIPROTEC relays, extensive test and diagnostic functions are available to the user in DIGSI 5 Чтобы сократить время тестирования и ввода в эксплуатацию реле SIPROTEC, в DIGSI 5 пользователю доступны расширенные функции тестирования и диагностики.

Схемы защиты устройства включают в себя реле, которые должны взаимодействовать друг с другом. Это приводит к дополнительным требованиям тестирования. Путь связи между реле проверяется с использованием подходящего оборудования, чтобы убедиться, что путь завершен и что уровень принятого сигнала находится в пределах спецификации. Числовые реле могут быть оснащены средствами проверки по шлейфу, которые позволяют с одной стороны тестировать либо часть, либо всю линию связи.

После завершения этих тестов, , обычно необходимо ввести требуемые настройки реле . Это можно сделать вручную с помощью элементов управления на передней панели реле или с помощью портативного ПК и подходящего программного обеспечения.

Какой бы метод ни использовался, желательно, чтобы второй человек проверил правильность использованных настроек и записал настройки. Требуемая логика программируемой схемы также вводится на этом этапе.

SIPROTEC relay wiring test editor for monitoring and testing of binary inputs, binary outputs and LED SIPROTEC relay wiring test editor for monitoring and testing of binary inputs, binary outputs and LED SIPROTEC редактор тестирования проводных реле для контроля и тестирования двоичных входов, двоичных выходов и светодиода (нажмите, чтобы развернуть)

Вернуться к пусконаладочным испытаниям №


Тесты трансформаторов тока

Перед запитыванием главных цепей обычно проводятся следующие испытания: проверка полярности и кривой намагничивания трансформатора тока.


Проверка полярности

Каждый трансформатор тока должен пройти индивидуальное тестирование , чтобы убедиться в правильности маркировки первичной и вторичной полярности (см. Рисунок 1).

Амперметр, подключенный к вторичной обмотке трансформатора тока, должен иметь надежную подвижную катушку с постоянным магнитом, центр-ноль. Низковольтная батарея используется через однополюсный кнопочный переключатель для питания первичной обмотки. При закрытии кнопки амперметр постоянного тока A должен давать положительный щелчок, а при открытии – отрицательный.

Current transformer polarity check Current transformer polarity check Рисунок 1 – Проверка полярности трансформатора тока

Вернуться к пусконаладочным испытаниям №


Проверка кривой намагничивания

Необходимо проверить несколько точек на каждой кривой намагничивания трансформатора тока . Это может быть сделано путем подачи питания на вторичную обмотку от местной электросети через переменный автотрансформатор, пока первичная цепь остается разомкнутой. Смотрите рисунок 2.

Характеристика измеряется с подходящими интервалами приложенного напряжения, , пока не наблюдается очень быстрый рост тока намагничивания при небольшом увеличении напряжения .Это указывает приблизительный уровень точки перегиба или потока насыщения трансформатора тока.

Затем ток намагничивания должен регистрироваться с одинаковыми интервалами напряжения, поскольку он уменьшается до нуля.

Testing current transformer magnetising curve Testing current transformer magnetising curve Рисунок 2 – Проверка кривой намагничивания трансформатора тока

Необходимо следить за тем, чтобы испытательное оборудование соответствовало требованиям. Номинальный ток короткого времени должен превышать номинальный ток вторичной обмотки ТТ, чтобы можно было измерять ток насыщения.Это будет выше номинального тока вторичной обмотки ТТ. Поскольку ток намагничивания не будет синусоидальным, следует использовать амперметр с подвижным утюгом или динамометр.

Часто обнаруживается, что трансформаторы тока с вторичными номиналами 1 А или менее имеют напряжение точки перегиба выше, чем местное электроснабжение. В этих случаях необходимо использовать повышающий промежуточный трансформатор для получения необходимого напряжения для проверки кривой намагничивания.

Вернуться к пусконаладочным испытаниям №


Испытания трансформаторов напряжения

Трансформаторы напряжения требуют проверки полярности, соотношения и фазирования.


Проверка полярности трансформатора напряжения

Полярность трансформатора напряжения может быть проверена с использованием метода для проверки полярности ТТ . Необходимо соблюдать осторожность, чтобы подключить аккумуляторную батарею к первичной обмотке, а амперметр полярности подключен к вторичной обмотке. Если трансформатор напряжения относится к типу конденсаторов, то следует проверить полярность трансформатора в нижней части блока конденсаторов.

Вернуться к пусконаладочным испытаниям №


Коэффициент проверки VT

Эта проверка может быть выполнена , когда главная цепь впервые становится активной .Вторичное напряжение трансформатора напряжения сравнивается со вторичным напряжением, указанным на паспортной табличке.

Namplate of a single phase voltage transformer Namplate of a single phase voltage transformer Namplate однофазного трансформатора напряжения (фото предоставлено: emadrlc.blogspot.com)

Вернуться к пусконаладочным испытаниям №


Фазирование чека VT

Вторичные соединения для трехфазного трансформатора напряжения или группы из трех однофазных трансформаторов напряжения должны быть тщательно проверены на предмет фазирования. При активной цепи чередование фаз проверяется с помощью измерителя чередования фаз, подключенного к трем фазам , как показано на рисунке 3 ниже.

Если существующий проверенный VT доступен в той же первичной системе и используется вторичное заземление, все, что теперь необходимо для проверки правильности фазирования, – это проверка напряжения между, скажем, обоими вторичными выходами фазы «А». Там должно быть номинально мало или нет напряжения, если фазировка правильная.

Тем не менее, этот тест не обнаруживает, является ли последовательность фаз правильной , но фазы смещены на 120 ° от их правильного положения, то есть фаза A занимает положение фазы C или фазы B на рисунке 3.

Это можно проверить, удалив предохранители из фаз B и C (скажем) и измерив фазно-заземляющие напряжения на вторичной обмотке VT. Если фазировка правильная, только фаза A должна быть исправной, фазы B и C должны иметь только небольшое остаточное напряжение.

Voltage transformer phasing check Voltage transformer phasing check Рисунок 3 – Проверка фазировки трансформатора напряжения

Правильная фазировка должна быть дополнительно подтверждена при проведении испытаний «под нагрузкой» на любых реле, чувствительных к фазе и углу , на клеммах реле. Ток нагрузки в известной фазе вторичной обмотки трансформатора тока должен сравниваться с соответствующей фазой относительно напряжения вторичной обмотки трансформатора тока.

Следует измерять фазовый угол между ними, и относиться к коэффициенту мощности нагрузки системы .

Если трехфазный трансформатор напряжения имеет разомкнутую третичную обмотку, то следует проверить напряжение на двух соединениях от разорванного треугольника VN и VL, как показано на рисунке 3 выше. При номинальном сбалансированном трехфазном напряжении питания, подаваемом на первичные обмотки трансформатора напряжения, напряжение разрыва должна быть ниже 5 В при подключенной номинальной нагрузке.

Вернуться к пусконаладочным испытаниям №


Проверка настройки защитного реле (настройки тревоги и отключения)

В какой-то момент при вводе в эксплуатацию необходимо будет ввести и / или проверить настройки аварийного сигнала и отключения задействованных элементов реле . Если полная схема разрабатывается и поставляется одним подрядчиком, настройки, возможно, уже были введены до отправки с завода, и, следовательно, это не нужно повторять.

Способ ввода настроек зависит от используемой технологии реле.Для электромеханических и статических реле требуется ручной ввод настроек для каждого элемента реле. Этот метод также может быть использован для цифровых / числовых реле.

Однако количество вводимых данных намного больше, и поэтому обычно использует для этой цели соответствующее программное обеспечение, обычно поставляемое производителем . Программное обеспечение также значительно упрощает задачу записи введенных данных.

После ввода данных их следует проверить на соответствие рекомендуемым настройкам, рассчитанным на основании исследования параметров защиты.Если для ввода данных используется соответствующее программное обеспечение, проверки могут считаться завершенными, если данные проверяются до загрузки настроек в реле.

В противном случае может потребоваться проверка после ввода данных путем проверки и записи настроек реле, или она может считаться достаточной для этого во время ввода данных. Записанные настройки являются неотъемлемой частью документации по вводу в эксплуатацию, предоставляемой клиенту.

Вернуться к пусконаладочным испытаниям №

Ресурс // Руководство по защите и автоматизации сети – Areva

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *