Как правильно самостоятельно пользоваться Осциллографом
Осциллограф – это цифровой или аналоговый прибор предназначенный визуального контроля формы напряжения и токов. Любой мастер или инженер занимающийся ремонтом электроники, должен уметь пользоваться Oscilloscope, для проведения диагностики.
Назначение осциллографа
Настройка осциллографа
Что измеряет осциллограф
Как работает осциллограф
Как пользоваться осциллографом
Измерение сигнала с ШИМ-контроллера (видео)
Выводы
Назначение осциллографа
Для разработки и ремонта современной электронной техники нужны специализированные знания в области электронных схемопостроений. При проектировании или исследовании любой схемы необходимо проводить измерения.Так как большинство схем имеют импульсный режим работы, то приборы должны соответствовать исследуемой технике.
Если мы до этого могли свободно обходиться мультиметром, измеряя необходимые значения токов и напряжения, то при диагностике современной электроники этого будет недостаточно.
В этом случае применяется прибор называемый – Осциллографом. Данный прибор визуально показывает какие процессы происходят в электрической схеме, в определенный момент исследования. На практике научиться применять Oscilloscope можно пройдя очное обучение по программе Электроника и схемотехника в Bgacenter.
Визуализация процессов используя АКИП-4115/4АОсциллографы существуют двух видов:
- аналоговые
- цифровые
Развитие электронной техники вытеснили аналоговые, а цифровые завоевали особую популярность среди электронщиков и начинающих радиолюбителей. За счет простоты их использования, а также минимальной подготовки к работе. Данные приборы обладают большим функционалом, многими полезными функциями, которые отсутствуют у аналоговых приборов. При ремонте и настройке блока питания APW8 необходимо применять Oscilloscope, для визуального контроля амплитуды и длительности на входах полевых транзисторов каскада PFC и оконечного каскада.
Осциллограф – это практически тот же вольтметр, где измеряется напряжение, поэтому прибор подключается параллельно к участку измеряемой цепи, либо параллельно источнику питания. Если применить закон Ома, то можно увидеть форму тока. Для этого необходимо применить сопротивление значением 1 Ом, а при делении напряжения на сопротивление в 1 Ом получим силу тока и его форму.
Настройка осциллографа
В данной инструкции будем рассматривать все примеры, применяя цифровой осциллограф АКИП-4115/4А.
Для использования прибора его необходимо подключить к электрической сети, при помощи сетевого шнура идущего в комплекте с прибором.
Далее на верхней части корпуса необходимо нажать кнопку, подождать некоторое время, когда загрузится программа осциллографа. На экране появится заставка с названием прибора. После загрузки операционной системы устройства засветится дисплей (горизонтальная линия на экране прибора).
Так как Oscilloscope является двух канальным, то по умолчанию включается первый канал. Клавиша КАН 1 на передней панели, обозначена желтым цветом. Канал подсвечивается, а на экране прибора так же светится желтая линия.
В нижней части панели управления имеется высокочастотный разъем BNC (Bayonet Neill-Concelman), также желтого цвета, что соответствует подсвечиваемой линии на экране осциллографа. Для второго канала используется синий цвет, это связано с удобством в работе при одновременном наблюдении осциллографом сигнала в исследуемом устройстве.
КАН1Для дальнейшей работы необходимо перейти к определенным настройкам АКИП-4115/4А. По умолчанию может быть выставлен определенный режим работы, например заданный производителем (язык интерфейса, время, значения настроек). Для этого в данном приборе существует специализированное меню которое имеет 6 независимых функциональных кнопок расположенных в верхней части настроечного блока в два ряда.
Верхний ряд имеет клавиши:
- Курсоры
- Сбор информации
- Зап. вызов
Нижний ряд имеет клавиши:
- Измерение
- Дисплей
- Утилиты
Слева от данного меню находится регулятор “УСТАНОВКА”, который необходим для настройки необходимых параметров прибора в соответствующем МЕНЮ.
При нажатии кнопки “Утилиты” в правой части экрана прибора появляется 4-х страничное меню. Самая верхняя клавиша “Меню вкл/выкл” может удалять при нажатии на нее меню с экрана прибора. В нижней части блока кнопок расположенных на панели экрана, расположена кнопка “Печать”. При помощи которой можно записать данные с экрана осциллографа на флеш носитель.
При повторном нажатии на клавишу “Меню вкл/выкл” меню снова появляется на экране. 4-х страничное меню, можно переключать нажимая пятую клавишу сверху.
Кнопка Меню ВКЛ/ВЫКЛПри выборе первой страницы меню, клавишей “1” можно включить подменю “СТАТУС”, при этом на экране осциллографа появляется информация о статусе прибора. Выход из этого подменю осуществляется нажатием клавиши “Однократно”.
Статус прибораКлавиша подменю “2” управляет отключением и включением звукового сигнала.
Клавиша “3” выводит на экран частоту измеряемого сигнала.
Кнопка “4” позволяет выбрать язык интерфейса.
При нажатии клавиши “5” включается вторая страница подменю.
В этой вкладке, нажимая на кнопку “1” выполняется самокалибровка.В режиме Самокалибровки необходимо отключить от прибора все пробники и кабели. Затем нажать кнопку “Однократно”, при этом появляется шкала зеленого цвета, которая заполняется. После завершения Самокалибровки нажать кнопку “Однократно”. Для выхода из режима Самокалибровки необходимо нажать клавишу “ПУСК/СТОП”.
Кнопка ОднократноРежим “Самотестирования”. При нажатии клавиши “2” открывается подменю соответствующее кнопкам:
- 1 – Тест экрана (Screen Test). При нажатии этой клавиши, экран становится красным. Дальнейшее нажатие кнопки “Однократно”, цвет экрана может меняться на зеленый и синий. Эта функция помогает контролировать наличие основных цветов RGB (красный, зеленый, синий). Выход из данного меню осуществляется нажатием кнопки “ПУСК/СТОП”
- 2 – Тест клавиатуры (Keyboard Test). При нажатии этой клавиши можно протестировать работу всех клавиш. При этом на экране соответствующая кнопка будет менять цвет на зеленый.
Что говорит о исправности клавиш. - 3 – Тест Свд (LED Test). Проверка работоспособности подсветки кнопок.
Выход из данного подменю осуществляется нажатием кнопки “Утилиты”.
УтилитыСтраница 3 подменю. Соответствие кнопок настройкам:
- 1 – Обновление ПО
- 2 – “Доп/Контр” использование дополнительных настроек
- 3 – “Запись” – записывает данные на нужный носитель, в соответствии с выбранным подменю
- 4 – “Установки порта”
Страница 4 подменю. Соответствие кнопок настройкам:
- 1 – Режим сохранения долговечности светодиодов
- 2 – Регистратор
“Дисплей” – клавиша основного меню
При нажатии этой кнопки высвечиваются следующие пункты подменю:
- 1 – “Вектор”
- 2 – “Послесвечение”
- 3 – “Яркость луча”
- 4 – “Яркость сетки”
При нажатии клавиши “1” мы можем видеть линию осциллографа либо в виде точек, либо в виде прямой линии (вектор).
При нажатии клавиши “2” выбираем длительность свечения экрана после проведения измерения. От 1 секунды до бесконечности.
При нажатии клавиши “3” – мы можем регулировать яркость свечения луча при помощи ручки регулятора “Установка”.
При нажатии клавиши “4” мы можем регулировать яркость координационной сетки, для удобства пользования.
Выход из этого меню осуществляется нажатием клавиши “Утилиты”
“Измерения” – клавиша основного меню
При нажатии этой кнопки открывается пять видов подменю:
- 1 – Напряжение. Выбор источника канала. Выбор типа измерения напряжения.
- 2 – Время. Также выбор источника канала и тип длительности (частота)
- 3 – Задержка.
- 4 – Все измерения. Канал, напряжение и время. Сразу три характеристики одновременно отображаются на экране.
- 5 – Удалить измерения.
“Курсоры” – клавиша основного меню
Устанавливает линии ограничения измерений по амплитуде и по частоте
“Сбор информации” – клавиша основного меню
Используется режим выборки
“Зап/Выз” – клавиша основного меню
Переводит режим осциллографа при нажатии первой клавиши к заводским настройкам.
“Начальные установки” переводит осциллограф к начальным установкам пользователя
“Помощь” – нажатие на эту кнопку вызывает справочное меню. Перемещение осуществляется с использованием кнопок 1-5.
“Пуск/Стоп” – применяется для остановки исследуемого сигнала. Чтобы измерить его длительность и амплитуду.
“АВТО” – автоматически находит исследуемый сигнал подаваемый на щупы осциллографа, для его дальнейшего исследования.
Регулятор управления вертикальной разверткой первого канала (желтого цвета) предназначен для выбора оптимальной величины амплитуды, для исследования сигнала.
Регулятор “Смещение” луча в вертикальном направлении
Что измеряет осциллограф
Для полноценной диагностики электронного устройства применяется Oscilloscope.
При помощи осциллографа можно измерить следующие параметры:
- Максимальную амплитуду любого сигнала
- Посмотреть эпюру напряжения и тока
- Измерить частоту сигнала
- Просмотреть фазу сигнала
- Измерить постоянное напряжение
Амплитуда сигнала есть максимальное значение которое выдается генератором при его работе.
Эпюра напряжения или тока – это осциллограмма, то есть изображение на экране осциллографа, поданного на вход прибора любого исследуемого электрического сигнала. Измерения можно проводить в любой интересующей нас контрольной точке и сравнить ее с данными производителя.
Эпюра синусоидального напряжения сетиЧастота сигнала – значение исследуемого сигнала во временном диапазоне по оси Х осциллографа. Так как данный сигнал измеряется по времени (сек, миллисекунд, микросекунд), то частота величина обратная времени. Поэтому для нахождения частоты необходимо применить формулу:
f = 1/T
где f – частота, в Гц (Hz)
T – время, в сек (S)
Частота сигнала формы МеандрФаза сигнала – измеряется при помощи двух каналов. На один вход подается один исследуемый сигнал, на второй вход подается другой сигнал на этой же частоте. Сдвиг сигналов на экране прибора по времени и есть фаза.
Измерение постоянного напряжения. При помощи прибора можно измерять не только амплитудное переменное значение, но и постоянную составляющую напряжения.
Осциллограф без сигнала на входеИзмерение напряжение источника постоянного тока. На фото заметно поднятие горизонтальной полосы вверх относительно первоначального значения. Согласно координационной сетки Вольт/деление по оси Y можно рассчитать фактическое напряжение на выходе источника питания
Измерение постоянного напряженияКак работает осциллограф
Последовательность работы с осциллографом:
- Включить Oscilloscope в электрическую сеть.
- Согласно инструкции выбрать соответствующие настройки в пунктах меню (язык, время, и т.д.).
- Произвести калибровку прибора.
- Подключить высокочастотные измерительные провода BNC к соответствующим разъемам, в соответствии с маркировкой.
- Начать проводить измерения, присоединив щуп к исследуемой точке на электронной плате.
- Если исследуемый сигнал не отображается на экране осциллографа в ручном режиме, необходимо нажать кнопку “АВТО”. При этом прибор покажет исследуемый сигнал.
- В случае когда эпюра сигнала не помещается на экране, ее необходимо удержать кнопкой “ПУСК/СТОП”, затем регуляторами вертикального и горизонтального усиления довести картинку до оптимального отображения.
- Во время проведения работ с осциллографом, соблюдайте технику безопасности. Особенно это касается при ремонте горячей части импульсного блока питания, привязанной к электрической сети. В этом случае, для полной безопасности лучше использовать разделительный трансформатор.
Как пользоваться осциллографом
Перед тем как начать пользоваться Oscilloscope, важно определиться какой сигнал предварительно может в данной точке измеряться прибором по амплитуде. Это необходимо в целях исключения поломки прибора. Согласно инструкции установить на приборе максимальное значение напряжения В/Деление по развертке Y. А по развертке X ожидаемую частоту сигнала.
Только после этого подключаем прибор к соответствующей контрольной точке для измерений. Затем проанализировать появившуюся эпюру напряжения. Для удобства отсчета существуют ручки смещения:
- по оси координат Y – вертикальное отклонение
- по оси Х – горизонтальное отклонение
При помощи этих регуляторов сместить полученное изображение к началу координат, для удобства отсчета. По осям Ординат и Абсцисс (Y,Х) существует координатная сетка. Она привязана к соответствующим условным значениям. По выбранным значениям можно посчитать полученное значение напряжение в вольтах и время в секундах. Для нахождения частоты, необходимо перевести время в частоту, по формуле f = 1/T.
Измерение сигнала с ШИМ-контроллера (видео)
Для примера возьмем плату от рабочего телевизора и посмотрим выходные импульсы с ШИМ-контроллера в различных режимах работы:
- в дежурном режиме – когда телевизор включен в сеть, до нажатия на кнопки включения
- в рабочем режиме – после нажатия на кнопку включения (или что то же самое под нагрузкой)
Удобно применять осциллограф, для исследования электрической схемы в случае, когда ШИМ-контроллер был бы не исправен. При присутствии питания на ШИМ-контроллере выходных импульсов не было бы. А присутствовало бы какое-нибудь напряжение. А это в свою очередь говорит о неисправности самого ШИМ-контроллера или его цепей.
Выводы
- Научиться применять осциллограф необходимо каждому электронщику и начинающему радиолюбителю, занимающемуся разработкой, производством, настройкой, диагностикой и ремонтом электронных устройств.
- Важно уметь анализировать полученные результаты, основываясь на понимании работы электронных компонентов.
- Осциллограф является сложным устройством, но научится им пользоваться не составляет особого труда.
Цифровой осциллограф для начинающих. Ч1
Что такое осциллограф и для каких целей он нужен, ты можешь узнать из предудщих статей: Как пользоваться осциллографом и для чего он вообще нужен. Часть I и Как пользоваться осциллографом и для чего он вообще нужен. Часть II
Если же тебе их читать лень, то скажу, что главная задача этого прибора в том, чтобы отобразить на экране изменение электрического сигнала с течением времени. Для этого на экране осциллографа размечена координатная система. Обычная декартова система, на которой имеются ось X и ось Y. По оси X отмечается время, а по оси Y — напряжение.
Всякие управляющие ручки и кнопочки, которые расположены вокруг экрана прибора предназначены для того, чтобы можно было настраивать отображение сигнала: масштаб по Х, масштаб по Y, триггеры и курсоры. Таким образом можно как бы отдалить или приблизить сигнал, чтобы рассмотреть его по лучше.
Хочу также заметить, что современный осциллограф отличается от своих предшественников тем, что представляет собой компьютер, который собирает, преобразует, анализирует и манипулирует измеренными значениями сигнала, поданного на вход. Это современный вычислительный комплекс.
Осциллограф очень полезен при:
- Измерении частоты и амплитуды сигнала, что может сильно помочь при отладке создаваемой тобой схемы.
- Определении уровня шума в цепи
- Визуальном контроле формы сигнала
- Определение сдвига фаз между двумя сигналами
- …и другие способы применения. Например, анализ работы датчиков автомобиля.
Осциллографы применяются при создании, наладке, ремонте различных электронных приборов:от сотовых телефонов, до эл. цепей автомобильных двигателей. От гражданских до военных. Они нужны везде.
В дополнение к описанным выше возможностям, многие современные приборы имеют дополнительные функции, с помощью которых можно быстро узнать частоту сигнала, его амплитуду и многие другие характеристики. Некоторые приборы уже предоставляют возможность провести с сигналами в реальном времени различные математические преобразования или, например, быстрое преобразование фурье. В целом, осциллограф позволяет наблюдать на экране временные и физические характеристики сигнала. Вот как выглядит такое меню функций у Siglent SDS 1202X-E (38 параметров!):
На мой взгляд, это очень удобно и полезно. Поэтому следует все таки обращать свое внимание на современный инструментарий. Благодаря хорошим измерительным приборам можно сильно сократить время поиска неисправности. Особенно это касается осциллографа, который является единственными “глазами”, которые позволяют заглянуть внутрь происходящего в электронной цепи и оценить временные и физические характеристики сигналов в этой цепи.
→ Временные характеристики:
Частота и период, скважность и коэфф. заполнения (Duty cycle), время спада и нарастания сигнала.
→ Физические характеристики:
Амплитуда, максимум и минимум сигнала, средне квадратичное, среднее значение напряжения и т. д.
Принцип работы цифрового осциллографа
Цифровые осциллографы, в отличие от аналоговых, не повторяют получаемый сигнал сразу на экран, а предварительно его преобразовывают в “цифровую” форму. Для этого входной сигнал замеряется определённое число раз в секунду, затем прибор после некоторых преобразований этих данных реконструирует сигнал и отображает его на экране. Оцифровка выполняется помощью блока аналогово-цифрового преобразования.
Ключевые характеристики цифрового осциллографа
Еще 5-6 лет назад большинство радиолюбителей (а некоторые и по сей день) пользовались приборами, которые остались ещё от СССР. В свое время это были замечательные приборы со своими плюсами и минусами. Но СССР уже нет более четверти века, а технологии продолжали развиваться, совершенствоваться и дешеветь. Теперь у нас есть возможность пользоваться современными цифровыми приборами с превосходными характеристиками.
Для того, чтобы научиться пользоваться современным цифровым осциллографом требуется освоить небольшой, но специфичный набор понятий и принципов, на основе которых строится его работа. Это по силам каждому. Приступим.
→ Полоса пропускания
Осциллографы (Oscilloscope, O-Scope) не могут измерять абсолютно любые сигналы. Все приборы имеют ограничения, которые определяют сигналы какой минимальной и максимальной частоты или амплитуды с помощью этого прибора могут быть измерены. А полоса пропускания — это как раз та характеристика прибора, которая говорит тебе какой диапазон частот может быть измерен этим прибором. Говоря про полосу пропускания осциллографов обычно имеют ввиду верхнюю границу, так как нижняя граница — это сигнал постоянного тока и его умеют рисовать абсолютно все приборы.
К слову, на самом деле при реальных измерениях диапазон ещё уже, чем заявляет полоса пропускания. В современных цифровых приборах сигнал проходит оцифровку и обработку, прежде чем попадёт на экран прибора. Существует определенная теоретическая база из-за которой производители советуют выбирать прибор таким образом, чтобы его полоса пропускания была в 3 раза больше, чем измеряемый синусоидальный сигнал в 4 или в 5 раз больше, если сигнал цифровой (т. е. всякие разные формы и виды прямоугольных сигналов).
Нижняя и верхняя границы полосы пропускания — это частоты среза сигнала. Сигнал начиная с частоты среза начинает ослабляеться в два (или на 3Дб = log102) и больше раз с ростом частоты.
→ Количество каналов
Многие современные осциллографы могут анализировать сразу несколько сигналов, отображая их на экране одновременно. Обычно прибор содержит от двух до четырех каналов. Тут важно знать как устроен конкретный осциллограф. Дело в том, что часто каналы разделяют между собой какие-нибудь общие ресурсы, что в итоге сказывается на общей производительности прибора при использовании сразу нескольких каналов.
→ Частота дискретизации (Sampling rate)
Эта характеристика касается только цифровых осциллографов. Она определяет сколько раз в ед. времени осциллограф считывает измеряемый сигнал. Для приборов, имеющих более одного канала, частота дискретизации может уменьшиться, если одновременно используется несколько каналов. Это зависит от конструкции конкретного прибора, но в большинстве случаев это работает так. В цифровых осциллографах частота дискретизации неразрывно связана с полосой пропускания. Например, у моего Siglent SDS 1202X-E этот параметр равен 1х109. Чем выше этот параметр, тем лучше, так как осциллограф получает больше информации о сигнале.
Вообще, этот пункт довольно важен. Для того, чтобы понять почему это так следует хотя бы слегка разобраться в процессе аналогово-цифрового преобразования. А значит пришло время достать из пыльного угла теории теорему Котельникова (теорема отсчетов), которую, на мой взгляд, довольно несправедливо иногда называют теоремой Шенона-Котельникова. Котельников доказал её в 1933г, когда Шенону было всего 17, а Найквист так и не доказал этой теоремы. Ладно, сосредоточимся на главном.
Важное значение этой теоремы заключается в том, что если проводить замеры сигнала (например, синусоиды) с частотой хотя бы 2 раза выше частоты этой синусоиды, тогда по этим измерениям можно будет восстановить исходный сигнал с минимальной потерей информации. Т.е. если замерять сигнал через интервал Δt, то мы сможем его гарантированно восстановить.
Таким образом частота дискретизации цифрового осциллографа является одним из факторов, определяющих максимальную частоту сигналов, которые мы сможем без потерь увидеть на экране.
А что если интервал больше необходимого? Тогда получится что-то подобное:
Т.е. после восстановления окажется, что восстановлденный сигнал меньшую частоту, чем измеряемый сигнал. Мы также можем потерять некоторые детали сигнала. Например, краткие всплески. Таким образом получается, что для измерения сигнала 100Мгц требуется прибор с частотой дискретизации хотя бы 200Мгц. Но хватит ли такой частоты выборки на самом деле?
Пока что я рассматривал ситуацию идеального сигнала, который не содержит в себе частотных компонент, превышающих по частоте основную. частоту сигнала. Как например какой-нибудь прямоугольный сигнал, который содержит всебе множество компонент (гармоник) с частотами значительно выше основной частоты сигнала (но меньшей амплитуды). В таком случае т. Котельникова говорит нам, что на практике частота дискретизации должна быть в 4-5 раз выше, чем верхняя граница полосы пропускания осциллографа. А значит для прибора с полосой до 200 Мгц частота дискретизации должна быть больше 800Мгц.
У меня Siglent SDS1202X-E с полосой пропускания 200Мгц и частотой выборки 1000Мгц (1Ггц или 1GSa/s) в режиме 1го канала. Так что, если надо посмотреть сигнал близкий к 200Мгц, то прибор в принципе справится. При условии, что будет использован только один канал. Если же задействовать для измерений сразу два канала, тогда полоса пропускания “сократится” до 100Мгц. Т.е. примерно до этой частоты сохранится соотношение между частотой выборки и частотой сигнала, которое позволит достаточно точно воспроизвести оцифрованный сигнал.
→ Эквивалентная частота дискретизации
Иногда не хватает реальной частоты дискретизации. Например, когда измеряется сигнал с частотой близкой к пределу полосы пропускания, а реальная частота дискретизации уже не соответствует условиям т. Котельникова. Тогда вступает в бой эквивалентная дискретизация. По факту, это чисто технический трюк, когда итоговая картинка конструируется на основе нескольких последовательных измерений. Но при этом каждое последующее измерение сигнала слегка смещено от предыдущего, чтобы получить больше точек для восстановления исходного сигнала.
Таким образом, если ты измеряешь сигнал 200МГц на осциллографе с полосой до 200МГц и частотой дискретизации 1 миллиард выборок в сек (1GSa/s), то тогда на один период сигнала ты получишь всего 5 измерений. В принципе, из т. Котельникова следует, что этого должно хватить, но для лучшей детализации лучше включить эквивалентную дискретизацию и тогда ты получишь вместо 1GSa/s уже 2 GSa/s (хоть и чисто алгоритмическим путем)
Более подробно о эквивалетной дискретизации и джиттере синхронизации вот в этой неплохой статье
→ Глубина памяти
Цифровые осциллограф по праву называются запоминающими (DSO = Digital Storage Oscilloscope), так как запоминают измеренный сигнал. Точнее они сохраняют во временной памяти измеренные значения сигнала в отдельные моменты времени. На что влияет данный параметр? Чем больше глубина памяти, тем выше частота дискретизации по мере снижения скорости развертки – время/дел. Дело в том, что ниже скорость развертки, тем больше измеренных значений осциллографу приходится сохранять у себя в памяти для последующей обработки и отображении на экране. Так что в целом, чем больше глубина памяти, тем лучше.
Однако, и здесь есть особый случай. При измерении на медленных значениях развертки может страдать скорость обновления осциллограм на экране, а также прибор может “подтормаживать”, медленно реагируя на управление. Поэтому следует внимательно смотреть руководства и отзывы на желаемую модель прибора перед тем, как его купить.
Довольна подробная статья по этой теме от Agilent Technologies
→ C
корость обновления сигналов на экранеЧем выше у прибора скорость обновления сигналов на экране, тем меньше у него величина мертвого времени, т. е. времени, которое требуется на обработку захваченных данных перед тем, как они будут выведены на экран. Понятно, что чем оно меньше, тем быстрее будут обновляться осциллограммы на экране цифрового осциллографа. Тем выше вероятность, что осциллограф захватит и вовремя покажет на экране какую-нибудь аномалию в сигнале. Конечно, в нашей радиолюбительской жизни это может и не играет особой роли, но тем не менее параметр довольно важный.
→ Максимальное входное напряжение
Любая деталь или цепь имеет предельно-допустимое напряжение. Осциллограф не исключение. Если подать на его вход (не приняв доп. мер) напряжение, которое превышает максимально допустимое, то есть высокий шанс того, что прибор юудет поврежден.
Для моего прибора максимальное напряжение в режиме щупа 1:1 равняется 40 вольт, а в режиме 1:10 около 400. Но, я бы не стал лезть щупом в цепь с напряженим 400В без доп. защиты и себя и прибора. Электричество шуток не любит и премию Дарвина может выписать в милисекунду =)
В этой вводной статье я хотел показать, что ничего страшного в цифровых осциллографах нет, но для того чтобы эффективно их использовать в своей домашней лаборатории следует понимать как они устроены, идеи, на основе которых они созданы, а также понимать какие характеристики прибора являются существенными. На что следует смотреть при покупке осциллографа. В следующей части я продолжу рассказ о цифровых осциллографах.
/blog/tsifrovoj-ostsillograf-dlya-nachinayuschih/ Еще 5-6 лет назад большинство радиолюбителей (а некоторые и по сей день) пользовались приборами, которые остались ещё от СССР. В свое время это были замечательные приборы со своими плюсами и минусами. Но СССР уже нет более четверти века, а технологии продолжали развиваться, совершенствоваться и дешеветь. Теперь у нас есть возможность пользоваться современными цифровыми приборами с превосходными характеристиками. 2017-10-13 2017-11-23 цифровой осциллограф, частота дискретизации
Tech Explorations
Подходящие курсы, книги и сообщество для серьезных создателей программируемой электроники и Интернета вещей.
Arduino + моторы + датчики + ввод-вывод
Arduino Car Projects идеально подходит для новых производителей Arduino и выпускников курса Arduino Step by Step Getting Started.
Используйте Arduino Uno и программы для управления автомобилем, оснащенным двигателями и датчиками. Используйте джойстик, инфракрасный контроллер и смартфон для управления автомобилем Arduino.
Проект Arduino IoT Environment Monitor
Этот курс заменяет исходный проект Arduino Environment Monitor, который я опубликовал еще в 2014 году. С тех пор многое изменилось, особенно в сфере Интернета вещей и распространения мобильных устройств. и беспроводные технологии.
Итак, я решил, что пришло время переделать этот проект IoT.
Наши последние записи в блогеSunfounder поделились со мной своим новым (гм…) любимым проектом: Pidog. Pidog — обучающая роботизированная собака, в настоящее время находится в стадии эксперимента и не старше 9 лет.0005
Читать далее
Я рад объявить о нашем последнем курсе: Arduino IoT Environment Project. Некоторый контекст Этот курс заменяет исходный проект Arduino Environment Monitor
. Читать далее
Возможно, вы слышали новости о грядущей плате Arduino UNO R4 (ожидается в мае 2023 года). Если нет, то вот артикул
Читать далее
Курсы для мастеров
Наши курсы разработаны таким образом, чтобы быть подробными, всеобъемлющими и описательными. Изучите новые навыки, которые особенно применимы к вашим проектам.
Коснитесь нашей базы знаний, Справочного центра и сообщества Facebook, чтобы получить поддержку, когда она вам понадобится.
Вы работаете с такими инструментами, как Arduino, Raspberry Pi, KiCad, Design Spark Mechanical?
Круто, можно перестать искать на YouTube и в Google. У нас есть один из лучших материалов в Интернете прямо здесь, готовый к погружению.
Узнать больше
Учебный курс Arduino для учителей
Преподаватели STEM нуждаются в специализированном, динамичном обучении, подходящем для требовательных классов, мастерских или других групповых учебных сред.
Наш учебный курс Arduino для учителей предназначен для обучения учителей, чтобы они могли быть уверенными и компетентными наставниками для своих учеников. Наш инструктор Bootcamp будет работать с вами, чтобы разработать индивидуальный график обучения, а затем поможет вам достичь мастерства в учебной программе.
Используйте эти знания, нашу учебную программу и учебные материалы и обучайте своих учеников.
Узнать больше
Почему учиться у нас?
Мы занимаемся образованием.
Это так просто.
Сосредоточенность и спокойствие
Мы создали спокойную и благоприятную онлайн-среду для наших студентов, где вы можете сосредоточиться, подумать и учиться. Это противоположно тому, что вы найдете на гигантских видеохостингах и социальных платформах.
Качество
Студенты приходят в Tech Explorations, потому что серьезно относятся к обучению. Мы поддерживаем вас через наш качественный контент, взаимодействие с преданными инструкторами.
Инструменты
Для всех наших курсов есть специальное пространство для обсуждения. Каждая лекция имеет специальный инструмент вопросов и ответов. Когда вы застряли, мы можем помочь.
Вот некоторые из наших курсов
Шаг за шагом по Arduino
Начало работы
Оригинальный всеобъемлющий курс, разработанный для начинающих производителей Arduino. Он научит вас пользоваться Arduino и узнать об электронике и программировании. Мы разработали этот курс для тех, кто только начинает. Это идеальное начало для нового Arduino Maker.
Узнать больше
Arduino шаг за шагом
Серьёзно
Создавайте гаджеты Arduino, которые могут общаться, перемещаться, взаимодействовать, измерять и обнаруживать. Этот курс начинается с того места, где остановился Arduino Step by Step Getting Started, и показывает, как использовать десятки внешних компонентов и расширенные встроенные функции.
Узнать больше
Raspberry Pi Full Stack Raspbian
Raspberry Pi: Full Stack — это всеобъемлющий проектный курс, который научит вас создавать современное приложение для Интернета вещей, которое включает приложение для локального веб-сервера, написанное на Python и JavaScript, датчики , кнопки и светодиоды, а также облачные онлайн-сервисы, такие как If This Then That, Google Sheets, Google Charts и Plotly.
Узнать больше
ESP32 Для занятых людей
Используйте этот мощный микроконтроллер для ускорения ваших проектов Arduino. Если вы уже используете Arduino в своих проектах, вам понравятся возможности ESP32. Этот курс поможет вам быстро начать работу с ESP32.
Узнать больше
Arduino IoT Cloud
Изучите Arduino IoT Cloud для создания приложений IoT на основе Arduino MKR1010, Arduino Nano 33 IoT и ESP32. Этот курс предназначен для всех, кто хочет создавать безопасные и масштабируемые приложения IoT.
Узнать больше
KiCad Like a Pro, 3e
Изучите самый популярный в мире инструмент проектирования печатных плат с открытым исходным кодом с помощью самого полного в мире курса и электронной книги. Научитесь использовать KiCad для проектирования многослойных печатных плат с высокоинтегрированными компонентами и профессиональным покрытием.
Узнать больше
Tech Explorations
Подходящие курсы, книги и сообщество для серьезных создателей программируемой электроники и Интернета вещей.
Arduino + моторы + датчики + ввод-вывод
Arduino Car Projects идеально подходит для новых производителей Arduino и выпускников курса Arduino Step by Step Getting Started.
Используйте Arduino Uno и программы для управления автомобилем, оснащенным двигателями и датчиками. Используйте джойстик, инфракрасный контроллер и смартфон для управления автомобилем Arduino.
Проект Arduino IoT Environment Monitor
Этот курс заменяет исходный проект Arduino Environment Monitor, который я опубликовал еще в 2014 году. С тех пор многое изменилось, особенно в сфере Интернета вещей и распространения мобильных устройств. и беспроводные технологии.
Итак, я решил, что пришло время переделать этот проект IoT.
Наши последние записи в блогеSunfounder поделились со мной своим новым (гм…) любимым проектом: Pidog. Пидог — обучающая роботизированная собака, которая в настоящее время является экспериментальной и находится под номером
. Читать далее
Я рад объявить о нашем последнем курсе: Arduino IoT Environment Project. Некоторый контекст Этот курс заменяет исходный проект Arduino Environment Monitor
. Читать далее
Возможно, вы слышали новости о грядущей плате Arduino UNO R4 (ожидается в мае 2023 года). Если нет, то вот артикул
Читать далее
Курсы для мастеров
Наши курсы разработаны таким образом, чтобы быть подробными, всеобъемлющими и описательными. Изучите новые навыки, которые особенно применимы к вашим проектам.
Коснитесь нашей базы знаний, Справочного центра и сообщества Facebook, чтобы получить поддержку, когда она вам понадобится.
Вы работаете с такими инструментами, как Arduino, Raspberry Pi, KiCad, Design Spark Mechanical?
Замечательно, вы можете перестать искать на YouTube и в Google. У нас есть один из лучших материалов в Интернете прямо здесь, готовый к погружению.
Узнать больше
Учебный курс Arduino для учителей
Преподаватели STEM нуждаются в специализированном, динамичном обучении, подходящем для требовательных классов, мастерских или других групповых учебных сред.
Наш учебный курс Arduino для учителей предназначен для обучения учителей, чтобы они могли быть уверенными и компетентными наставниками для своих учеников. Наш инструктор Bootcamp будет работать с вами, чтобы разработать индивидуальный график обучения, а затем поможет вам достичь мастерства в учебной программе.
Возьмите эти знания, нашу учебную программу и учебные материалы и научите своих учеников.
Узнать больше
Почему учиться у нас?
Мы занимаемся образованием.
Это так просто.
Сосредоточенность и спокойствие
Мы создали спокойную и благоприятную онлайн-среду для наших студентов, где вы можете сосредоточиться, подумать и учиться. Это противоположно тому, что вы найдете на гигантских видеохостингах и социальных платформах.
Качество
Студенты приходят в Tech Explorations, потому что серьезно относятся к обучению. Мы поддерживаем вас через наш качественный контент, взаимодействие с преданными инструкторами.
Инструменты
Для всех наших курсов предусмотрено специальное пространство для обсуждения. Каждая лекция имеет специальный инструмент вопросов и ответов. Когда вы застряли, мы можем помочь.
Вот некоторые из наших курсов
Arduino Шаг за шагом
Начало работы
Оригинальный комплексный курс, разработанный для новых производителей Arduino. Он научит вас пользоваться Arduino и узнать об электронике и программировании. Мы разработали этот курс для тех, кто только начинает. Это идеальное начало для нового Arduino Maker.
Узнать больше
Arduino шаг за шагом
Серьёзно
Создавайте гаджеты Arduino, которые могут общаться, перемещаться, взаимодействовать, измерять и обнаруживать. Этот курс начинается с того места, где остановился Arduino Step by Step Getting Started, и показывает, как использовать десятки внешних компонентов и расширенные встроенные функции.
Узнать больше
Raspberry Pi Full Stack Raspbian
Raspberry Pi: Full Stack — это всеобъемлющий проектный курс, который научит вас создавать современное приложение для Интернета вещей, которое включает приложение для локального веб-сервера, написанное на Python и JavaScript, датчики , кнопки и светодиоды, а также облачные онлайн-сервисы, такие как If This Then That, Google Sheets, Google Charts и Plotly.
Узнать больше
ESP32 Для занятых людей
Используйте этот мощный микроконтроллер для ускорения ваших проектов Arduino. Если вы уже используете Arduino в своих проектах, вам понравятся возможности ESP32. Этот курс поможет вам быстро начать работу с ESP32.
Узнать больше
Arduino IoT Cloud
Изучите Arduino IoT Cloud для создания приложений IoT на основе Arduino MKR1010, Arduino Nano 33 IoT и ESP32.