Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Генератор электрического тока или динамо машина

Динамо-машина, или генератор электрического тока, - это устройство, которое преобразует в электрическую энергию другие состояния энергии: тепловую, механическую, химическую. До сегодняшнего дня остаются популярными велосипедные генераторы, питающие фары и задние фонари.

Принцип работы генератора электрического тока

Динамо-машина генерирует электрическую энергию благодаря принципу электромагнитной индукции. Обычно такое устройство конвертирует именно механические воздействия прямо в электрические импульсы. В его составе - ротор (открытая проволочная обмотка) и статор, в котором расположены полюса магнита. Ротор, не прекращая движения, все время вращается в силовом магнитном поле, что неизбежно приводит к возникновению тока в обмотке.
Схему своего устройства динамо-машина представляет следующую. Вращающийся проводник, или ротор, пересекает магнитное поле и в нем генерируется ток. Концы ротора подведены к кольцу (коллектор), через них и прижимные щётки ток перемещается в электрическую сеть. 

 

Электрический ток в динамо-машине

Образующийся ток в проводнике будет иметь наибольшее значение при условии, если ротор располагается перпендикулярно магнитным линям. Чем больше поворот проводника, тем сила тока будет меньше. И наоборот. То есть, процесс вращения проводника в магнитном поле вынуждает генерируемый электрический ток менять направление за один оборот ротора два раза. Благодаря этому свойству такой род тока стали называть переменным.
Динамо-машина для выработки постоянного тока построена на таком же принципе, как и для переменного тока. Разницу можно заметить лишь в деталях, когда концы металлического провода закрепляют не к кольцам, а подсоединяют к полукольцам. Такие полукольца обязательно изолируются между собой, что при вращении проводника делает возможным контактировать со щёткой переменно то одно полукольцо, то другое. Значит, в щётки вырабатываемый ток будет поступать исключительно в одном направлении, одним словом - ток будет постоянным.

Как собрать динамо-машину?

Динамо-машина своими руками собирается быстро. Основанием для будущего генератора будет служить деревянная доска толщиной около 30 мм и площадью 150 на 200 мм. Двумя шурупами на неё крепится корпус так, чтобы электромагниты располагались по горизонтали, один против другого. Затем, сквозь прикреплённый к корпусу подшипник продевается ось якоря, который закрепляется на своём месте между электромагнитами. С внутренней стороны подшипниковой стойки продевают щётки, вставляют второй конец оси якоря. На этом конце закрепляют коллектор.

Перед прикреплением подшипниковой стойки к основанию, якорь нужно выровнять таким образом, чтобы его вращение между электромагнитами не задевало их. Щётки должны располагаться поперёк башмаков электромагнитов и закрепляться на подшипнике. На свободном конце ротора прикрепляется небольшой шкив.
Электромонтаж устройства заключается в соединении концов обмоток для электромагнитов со щётками. Также к ним соединяют отрезки гибкого провода для сообщения устройства с внешней цепью.

Генератор и велосипед

Свою мощность динамо-машина для велосипеда демонстрирует в зависимости от скорости вращения. Например,

недостаточно быстрое вращение или остановка велосипеда прекращает питать фонарь или иное устройство. Но при высокой скорости лампочки способны перегореть раньше срока выработки ресурса.
Различают несколько разновидностей велосипедных электричес

as-system.ru

Бесконтактная динамо-машина своими руками

Эта страница содержит инструкцию по сборке своими руками простой бесконтактной динамо-машины из обмотки реле и магнитов жесткого диска. Самодельная динамо-машина может питать заднюю мигалку и переднюю фару. Если вас интересует педальный генератор для питания оборудования, то смотрите серию статей про сборку мощного электрического генератора своими руками из автомобильной динамо-машины и велосипеда.

Электрическая схема питания задней мигалки достаточно простая. Она содержит только три ярких красных светодиода и конденсатор на 4700 нФ. Конденсатор используется только для стабилизации напряжения на одном из светодиодов. Остальные два светодиода мерцают во время прохождения магнитов возле обмотки. Если вы хотите, чтобы мерцали все три светодиода, то можно удалить конденсатор. Если параллельно подключить несколько светодиодов, то немерцающий светодиод будет продолжать светить даже во время остановки.

Во второй части инструкции мы создадим схему питания пяти белых ярких светодиодов передней фары с помощью двух катушек. Эта схема полностью независима от первой схемы питания заднего фонаря.

  1. Передняя фара с пятью белыми светодиодами
  2. Задний фонарь с тремя красными светодиодами и конденсатор на 4700нФ
  3. Катушка второй схемы, питающей переднюю фару
  4. Катушка первой схемы, питающей задний фонарь
  5. Магнит жесткого диска
  1. Магнит жёсткого диска
  2. Обмотка реле

Если вы хотите улучшить схемы, то на сайте сможете найти более совершенные схемы по теме: схемы питания светодиодных фар от динамо-машин, схемы аккумуляторных фонариков, схему зарядки аккумуляторов от динамо-машины, различные виды велогенераторов и т. д.

Схема заднего фонаря с динамо-машиной.

  1. Старое реле
  1. Контакты катушки
  2. Крепёжный винт

Чтобы не тратить время на сборку катушки своими руками, лучше попробуйте найти какое-нибудь старое реле. Панель на рисунке выше я достал из старой миниАТС. На второй картинке показана катушка из разобранного реле.

Сопротивление катушки должно находится в границах между 100 и 200 ом. Сопротивление изображённой на рисунке катушки составляет 200 ом. Чем больше сопротиление катушки, тем больше генерируется энергии, но вместе с тем и падает эффективность из-за возрастания потерь в катушке.

  1. Нержавеющая сталь

Далее нужно будет достать неодимовые магниты из жесткого диска. В моей динамо-машине на заднем колесе используется три таких магнита, но вы можете использовать гораздо больше, если вы способны их надёжно закрепить.

  1. Три импульса за время одного оборота колеса, так как используется три магнита
  1. Модель катушки с напряжением, предварительно записанным от реально существующей катушки
  2. Основная схема их трёх красных ярких светодиодов и конденсатора на 4700 нФ
  3. Резистор, используемый для измерения токов в симуляции
  1. Зарядка конденсатора, исходное состояние 2.2 В
  2. Ток светодиода 3
  3. Напряжение катушки
  4. Ток конденсатора

На осциллографе можно проследить за напряжением, генерируемом катушкой. Записанный сигнал можно импортировать в программу моделирования схем и попробовать смоделировать свой проект.

В симуляции у меня к сожалению не получилось добится постоянной проводимости у светодиода 3 несмотря на то, что на реальной схеме у меня это вышло. Возможно так случилось из-за отсуствия катушек индуктивности в модели катушки.

Обратите внимание, что схема не симметрична, так как генерируемая катушкой энергия сосредоточена на положительных значениях. Распределение энергии зависит от конструкции магнита и используемой катушки.

  1. Исходная система с батарейками, которые уже не нужны
  2. Крепление

Нам потребуется дешёвый задний светодиодный фонарь, в который будет установлена наша новую систему.

Схема передней фары с питанием от динамо-машины.

  1. «Водонепроницаемая» пластмассовая оболочка
  2. Исходная мерцающая схема с пятью яркими зелёными светодиодами
  3. Отражающий пластик

Схема передней фары полностью независима от первой части проекта. Она состоит их двух обмоток реле и передней фары.

  1. Двойной переключатель питания со старого компьютера
  1. Исходная схема
  2. Собранная схема

Это схема питания пяти ярких светодиодов с помощью двух катушек. Они не вырабатывают энергию одновременно. Если их подключить последовательно, одна катушка будет поглощать часть энергии другой катушки. В данной схеме этого не происходит.

Чтобы мерцали все светодиоды, здесь специально не используются конденсаторы. Единственное место куда можно поставить конденсатор — это параллельно со светодиодом 3, поскольку на него никогда не поступает отрицательное напряжение. В итоге у вас будет один немерцающий светодиод и четыре мерцающих.

Сопротивление катушки должно быть в пределах 100 - 200 ом, но в моей схеме используется две катушки на 600 ом и у меня всё замечательно работает.

  1. Магнит жесткого диска
  2. Катушка на 600 ом из второй части инструкции
  3. Катушка на 200 ом из первой части инструкции
  4. Катушка на 600 ом из второй части инструкции

velofun.ru

Динамомашина — Техножук

Корпус нашей динамомашины мы сделаем из консервной банки диаметром в 100 мм. Корпус можно сделать различ­ными способами. Мы опишем только некоторые из них.Прежде всего у банки вырезается дно. Затем надо… Read more »

Якорь является вращающейся и самой ответственной частью динамомашины. Поэтому к изготовлению якоря надо отнестись с особым вниманием и тщательно делать каждуюего деталь.  Якорь динамо собирается из отдельных пластинок, выое-занных из… Read more »

Коллектор—не менее важная часть, чем якорь, и потому юже должен быть изготовлен аккуратно. Его можно сделать из медной или латунной трубки диаметром 20—25 мм или собрать из отдельных пластин.Если вы… Read more »

Щеткодержатель — это приспособление, на котором укреп­ляются щетки для съема напряжения, поступающего с обмо­ток якоря на коллектор. Щеткодержатель должен быть устроен так, чтобы можно было по мере надобности выдви­гать щетки… Read more »

Для обмотки нашей динамомашины потребуется полкило­грамма медной, изолированной бумажной изоляцией, прово­локи сечением 0,5, 0,6 или 0,8 мм. Причем, чем толще будет взята для обмотки проволока, тем меньше напряжения будет давать… Read more »

Сборку динамомашины следует начать с того, что корпус ее прикрепляется к основанию — доске толщиной в 30 мм и размером 150X200 мм.Корпус можно прикрепить двумя шурупами, предвари­тельно просверлив для этого… Read more »

Прежде всего закрепляются щетки так, чтобы они слегка прижимались к коллектору и не тормозили сильно его вра­щение. Затем, для проверки правильности всех соединений и отсутствия обрывов и коротких замыканий в… Read more »

У кого найдется старое магнето от автомашины или телефонный индуктор, их мож­но легко переделать в динамо-машину. Для этого нужно бу­дет только сменить обмотку на якоре и сделать коллектор со щетками.С… Read more »

Динамомашина, или, как ее называют, генератор, есть такая машина, которая превращает механическую энер­гию, то-есть энергию вращения генератора,— в электри­ческую.Динамомашина вырабатывает постоянный ток. Он не имеет, в силу своих качеств, особенно… Read more »

В 1831 году английский физик Михаил Фарадей открыл очень интересное явление и вывел из него закон электро­магнитной индукции. Сущность электромагнитной индукции заключается в том, что в медном проводе, если его… Read more »

tehnojuk.ru

Велогенератор (генератор на велосипед) своими руками и покупной

Время чтения: ~8 минут Автор: Сергей Морской 351

Велогенератор – устройство, которое позволяет получить электроэнергию за счет вращения педалей и передать ее на осветительные приборы велосипеда или сторонние электроприборы. По конструкции велосипедные генераторы делятся на несколько типов: втулочные, бутылочные, кареточные и бесконтактные.

Выдаваемые сила тока и напряжение неразрывно связаны с частотой педалирования – скоростью передвижения. Закономерность справедлива для всех типов генераторов. Велосипедный генератор выдает переменный ток, который стабилизируется в постоянный с помощью моста-выпрямителя. Его роль могут играть спаянные диодные лампы или специальные устройства, например, двухполупериодовой выпрямитель.

Динамо-втулка как электродвигатель

Динамо-втулка, или втулочный генератор, – обычная велосипедная втулка со встроенным магнитным механизмом. При вращении образуются вихревые токи, на выходе из втулки механическая энергия преобразуется в ток с заданной силой, напряжением и мощностью. На велосипедных динамо-машинах напряжение достигает 6В, а мощность – 1.8-2 Вт.

Изобретение запатентовано английской компанией Sturmey Archer. В наши дни производство активно поддерживают и другие фирмы-производители – Shimano и Schmidt.

Особенности конструкции втулки-генератора:

  • неподвижный якорь (обмотка) на оси;
  • зафиксированный и вращающийся вместе с втулкой кольцевой магнит;
  • клеммы и двойные провода;
  • высокая масса.
Shimano AlfineDH-S701
Динамка Shimano AlfineDH-S701

Втулочный источник электричества не использует в качестве заземления велосипедную раму и вместе с лампами изолируется от нее. В двухполупериодовом выпрямителе цепь переменного тока (на выходе) и постоянного тока (к фаре) полностью отделены друг от друга.

Динамо-втулки тяжелые, правда, более легкие магниты редкоземельных металлов и алюминиевая оболочка позволили немного снизить их массу. В работе устройство имеет невысокое сопротивление раскручиванию, а при возрастании угловой скорости усиливается частота тока. Этот эффект сглаживает усиление напряжения и позволяет генератору работать в широких диапазонах скоростей.

Фары, которыми оснащается втулочный генератор, имеют встроенный стабилизатор тока. При подключении другой фары в цепь устанавливается отдельный выпрямитель, чтобы не спалить электроприбор. Яркость фары зависит от ее требований к источнику энергии и, собственно, выходного напряжения втулки. Чем больше несоответствия в меньшую сторону (фара мощнее), тем свет будет тусклее. В противоположной ситуации источник света работать не будет.

Бутылочный велогенератор: особенности, плюсы и минусы

Познакомимся с другим источником энергии – бутылочным, или «шинным» преобразователем.

Бутылочный электрогенератор – закрытый корпус с вращающимся резиновым роликом снаружи, закрепленный на переднюю вилку. В корпусе находится непосредственно преобразующее устройство – обмотка и магниты. Движение магнитного поля достигается за счет зацепления ролика с покрышкой и прямой передачи на него механической энергии с колеса. Чем выше скорость движения, тем сильнее полярность внутри генератора и больше выдаваемое напряжение.

Бутылочный электрогенератор
«Бутылка» боится падений велосипеда

Преимущества «бутылок»:

  • возможность отключить за ненадобностью – достаточно отодвинуть ролик вбок;
  • легко установить на любой тип велосипеда;
  • недорогие в сравнении с втулочными генераторами.

К слабым сторонам относятся:

  • весовой перекос: масса порядка 250 г, крепится «бутылка» с одной стороны;
  • низкая эффективность в мокрую погоду – ролик проскальзывает по покрышке;
  • шум, высокое трение на скоростях;
  • износ боковин покрышек;
  • долго регу

velofans.ru

Электронные схемы светодиодных фар для динамо-машин

Фары на светодиодах исключительно надёжны, светят намного ярче в сравнении со стандартными велосипедными фарами. В этой статье поэтапно описаны все способы подключения фар на светодиодах к динамо-машинам, даны различные варианты схем драйверов светодиодных фар, которые могут быть собраны своими руками в домашних условиях.


Введение.

Несколько слов о мощных светодиодах и люменах.

В приведённых схемах используются только мощные светодиоды, которые выпускаются такими производителями как Philips-Lumileds, Cree, Seoul Semiconductor. Мощные светодиоды быстро усовершенствуются. Новые модели мощных светодиодов, которые ещё шесть месяцев назад были наиболее совершенными светодиодами, сейчас выглядят тусклыми. Скоро на рынке может появится в свою очередь ещё более яркое поколение светодиодов. Поэтому нельзя порекомендовать конкретную модель светодиодов. Электронные схемы не зависят от типа используемых светодиодов при условии, что у них типичное прямое напряжение белого светодиода.

Чтобы рассчитать светоотдачу схем, представленных на этой странице, необходимо только знать мощность светодиодов. В спецификации светодиода указано сколько люменов на ватт он даёт.

Чтобы собрать максимально яркую фару необходимо обратить внимание на:

  • электронную схему — чем больше она выдаёт мощность, тем лучше;
  • светодиоды — чем больше люменов на ватт, тем лучше;
  • оптику, отражатели, линзы — их эффективность должна стремится к 100%.

Схема 1 — самая простая схема питания светодиодной фары.

Наименование Значение Альтернативное значение
D1 1N4007 1N5818
D2 1N4007 1N5818
D3 1N4007 1N5818
D4 1N4007 1N5818
LED1 Белый мощный светодиод (Luxeon, Cree… )

Динамо, мостовой выпрямитель и один мощный светодиод — это всё что нужно для светодиодной фары с питанием от динамо-машины!

Как она работает.
Переменный ток из динамо-генератора проходит двухполупериодный выпрямитель и питает один мощный светодиод фары. Ток светодиода жестко ограничен динамо-генератором до 500..600 мА. Можете убедится сами, что светодиод будет светить. Диоды Шоттки (1N5818) сводят к минимуму потери в цепи. Эта схема работает как для бутылочных динамо-машин так и для динамо-втулок. Она выдаёт чуть более 1.5 Вт мощности.

Вышеприведённая схема имеет одну проблему — мерцание света на низких скоростях, особенно если питание поступает от динамо-втулки. С этим недостатком можно легко справится:

Схема 2 — уменьшаем мерцание на низкой скорости.

Наименование Значение Альтернативное значение
D1 1N4007 1N5818
D2 1N4007 1N5818
D3 1N4007 1N5818
D4 1N4007 1N5818
C1 1,000 .. 10,000uF @ min.4V
LED1 Белый мощный светодиод (Luxeon, Cree…)

Сглаживающий конденсатор снижает мерцание на низкой скорости и даёт небольшую прибавку яркости. Чем больше ёмкость конденсатора C1, тем меньше мерцание. C1 требует не менее 4 В, а ёмкость не ограничена. Поэтому единственными небольшими ограничительными факторами остаются только стоимость и размер конденсатора. Схемы работают как с динамо-втулками так и с бутылочными динамо-машинами. Для более эффективного снижения мерцания динамо-втулкам требуется более крупный конденсатор.

Несколько советов:
Конденсатор C1 может быть установлен внутри корпуса фары, где должен правильно присоединён к светодиоду. В случае отсоединения светодиода от схемы, конденсатор заряжается до достаточно высокого напряжения (до 100 В при быстрой езде). Это не только опасно для жизни, но и переподключение светодиода вызывает запредельный ток, который может даже испортить светодиод. Это справедливо для большинства схем на этой странице.


Схема с задним фонарём.

Если вы используете задний фонарь на аккумуляторах, то можете пропустить этот раздел.

Схема 3 — добавляем задний фонарь.

Наименование Значение Альтернативное значение
D1 1N4007 1N5818
D2 1N4007 1N5818
D3 1N4007 1N5818
C1 1,000 .. 10,000uF @ min.4V
LED1 Белый мощный светодиод (Luxeon, Cree…)
LED2 Красный мощный LED или не менее 15 SMD-светодиодов

Светодиод заднего фонаря устанавливается на место одного из выпрямительных диодов и поэтому он работает в половину тока по сравнению со светодиодной фарой. Напряжение на красных светодиодах составляет половину напряжения белых светодиодов. Мощность заднего фонаря составляет 25% мощности фары. В качестве альтернативы мощному светодиоду можно испльзовать несколько маломощных светодиодов подключенных параллельно (к примеру 15 Osram LS T676). Светодиод заднего фонаря должен выдерживать 5 В обратного напряжения. Задний фонарь выключается с помощью шунтирования его выпрямительным диодом.

Схема 4 — альтернативный вариант подключения заднего фонаря.

Наименование Значение
D1 1N4007
D2 1N4007
D3 1N4007
D4 1N4007
C1 1,000 .. 10,000uF @ min.4V
R1 47R 0.25W
LED1 Белый мощный светодиод (Luxeon, Cree…)
LED2..5 Красные SMD-светодиоды (Osram LS T676)

В отличии от схемы 3, где мощность заднего фонаря составляет 25% от мощности фары, при данном способе подключения он регулируется резистором R1. Задний фонарь можно отрегулировать под низкий ток, чтобы достаточно было всего несколько SMD-светодиодов.

В этой схеме есть интересная особенность: задний фонарь подключён непосредственно к клеммам динамо-машины, так что кабель велосипедной фары может оставаться присоединённым к динамо-машине.

Недостаток этой схемы заключатся в необходимости определения значение резистора, снижении яркости заднего фонаря и возможности его повреждения в случае отключения фары.

Для вышеприведённой схемы значение R1 равно примерно 47 Ом. Реальное значение зависит от используемых светодиодов. Схему легко собрать: необходимо измерять ток заднего фонаря, корректируя значение R1 в зависимости от тока светодиодов. Обратное напряжение светодиодов некритично в данной схеме. Для выключения заднего фонаря необходимо просто отсоединить его.


Повышаем «напряжение».

Схема 5 и 6 — увеличиваем мощность на средней скорости с помощью регулирующего конденсатора.

Схема 2 для сравнения.

Схема 5.

Cхемы 2 и 5 отличаются конденсатором C2, который находится между динамо-машиной и выпрямителем. Как это повлияло на мощность светодиодов в зависимости от скорости при различных значениях C2 можно увидеть на данном графике:

Несмотря на отсутствие ощутимой разницы на очень низкой и очень высокой скорости, на средней скорости мы всё же получаем дополнительную мощность. К сожалению эта прибавка достигается дорогой ценой: C2 должен быть не поляризированным и его значение весьма критично. С обычной бутылочной динамо-машиной конденсатор C2 на 220uF справляется отлично, а вот для работы с динамо-втулкой его ёмкость должна достигать чудовищных 1500uF. Требуемый неполяризованный конденсатор тяжёло найти, он очень большой и дорогой. Схема 6 позволяет обойти эти трудности, используя два стандартных поляризованных конденсатора. Они дают двойную ёмкость и подходят конденсаторы со сверхнизким эквивалентным последовательным сопротивлением, которые используются в многорежимных блоках питания. Резистор R1 некритичен, зависит только от C2 и C3.

Схема 6.

Наименование Значение для бутылочной динамо-машины Значение для динамо-втулки
D1 1N5818 1N5818
D2 1N5818 1N5818
D3 1N5818 1N5818
D4 1N5818 1N5818
C1 2,200uF @ min.4V 10,000uF @ min.4V
C2 470uF 63V low-ESR 3300uF 35V low-ESR
C3 470uF 63V low-ESR 3300uF 35V low-ESR
R1 47K 0.25W 47K 0.25W
LED1 Белый мощный светодиод (Luxeon, Cree …)

Повышаем мощность за счёт увеличение количества светодиодов.

Схема 7 — установка нескольких светодиодов.

Динамо-машина является более менее стабильным источником постоянного тока, поэтому при подключении последовательно двух светодиодов общая выходная мощность системы приблизительно удваивается. Почему б не соединить три, четыре или ещё больше светодиодов последовательно? Для получения дополнительной мощности нужно установить регулирующие конденсаторы из схемы 6.

В зависимости от количества светодиодов и типа динамо-машины очень различаются и используемые компоненты:

Бутылочная динамо-машина
  1 светодиод 2 светодиода 3 светодиода 4 светодиода
Общая мощность 1.6 W 3.0 W 4.6 W 5.8 W
D1..D4 1N5818 1N5818 1N5818 1N5818
C1 2200uF 4V 2200uF 10V 2200uF 16V 2200uF 16V
C2, C3 470uF 50V 220uF 63V 100uF 100V 47uF 100V
R1 47K 0.25W 47K 0.25W 47K 0.25W 47K 0.25W
LED1 Мощный LED Мощный LED Мощный LED Мощный LED
LED2 Не нужен Мощный LED Мощный LED Мощный LED
LED3 Не нужен Не нужен Мощный LED Мощный LED
LED4 Не нужен Не нужен Не нужен Мощный LED
Динамо-втулка
  1 светодиод 2 светодиода 3 светодиода 4 светодиода 6 светодиодов
Общая мощность 1.6 W 3.4 W 5.2 W 6.7 W 10.5 W
D1..D4 1N5818 1N5818 1N5818 1N5818 1N5818
C1 10,000uF 4V 4700uF 10V 4700uF 16V 4700uF 16V 2200uF 25V
C2, C3 3300uF 35V 1500uF 35V 1000uF 63V 470uF 100V 220uF 100V
R1 47K 0.25W 47K 0.25W 47K 0.25W 47K 0.25W 47K 0.25W
LED1 Мощный LED Мощный LED Мощный LED Мощный LED Мощный LED
LED2 Не нужен Мощный LED Мощный LED Мощный LED Мощный LED
LED3 Не нужен Не нужен Мощный LED Мощный LED Мощный LED
LED4 Не нужен Не нужен Не нужен Мощный LED Мощный LED
LED5 Не нужен Не нужен Не нужен Не нужен Мощный LED
LED6 Не нужен Не нужен Не нужен Не нужен Мощный LED

При получении данных значений использованы бутылочная динамо-машина Busch & Muller Dymotec6 (8 магнитных полюсов) и динамо-втулка Shimano DH-3D71 (28 магнитных полюсов). Вероятно различные динамо-машины одного типа будут работать аналогично. Проверьте содержит ли ВАША динамо-машина опорный диод, предназначенный для ограничения выходного напряжения при использовании с электрическими лампочками. Его нужно удалить.

Теперь посмотрим на кривые мощности. Поражает, что 3-ваттная динамо-втулка обеспечивает более 10 Вт мощности в цепи светодиодов! Конечно это не даётся просто так — получая больше мощности, прилагается и больше усилий на педалирование.

Обратите внимание: на кривых с большой отдаваемой мощностью требуется прилагать больше усилий, а на маленькой скорости фара почти не светит. Например, система из шести светодиодов вообще не даёт света на скорости 8 км/ч. Поэтому такая схема для многих не приемлема. Почему б не решить эту проблему, перейдя к другой кривой на маленькой скорости? Читайте далее.


Схемы с большой мощностью и хорошей производительностью на низкой скорости.

Схема 8 — добавляем удвоитель напряжения.

Схема 7, использующая много светодиодов, на низкой скорости выдаёт маленькую мощность, что видно на кривых мощности выше. Существует несколько способов решения данной проблемы:

  1. Шунтировать несколько светодиодов, подключить конденсаторы и таким образом изменить схему с включением меньшего количества светодиодов, что улучшит её на низкой скорости.
  2. Параллельная сборка скажем 6-ти светодиодной и 3-х светодиодной версий. Переключателем подбираем более подходящую. 6-ти светодиодная версия может давать узкий пучок дальнего света, 3-светодиодная — широкий пучок на низкой скорости.
  3. Подключение мостового выпрямителя к удвоителю напряжения. Такая схема будет работать так, если бы она имела только половину светодиодов.

Первое решение нуждается в сложном переключении и неработоспособно при отключении хоть одного светодиода. Второе решение лучше первого, несложно в построении, но требует дополнительных светодиодов и оптики. Третье решение недорогое и простое, независимо от режима работают все светодиоды. Его и будем рассматривать далее.

Немного изменённая схема 7. Справа удвоитель напряжения Гриначера. Ниже представлена схема 8, включающая обе схемы. Два режима чередуем обычным переключателем.

Эта схема (без R1, C2, C3) пользуется популярностью в компьютерных блоках питания. Основное её предназначение — выбор режима 115/230 В.

Режимы не перекрывают друг друга и следовательно гарантируют хорошую производительность на низкой скорости. Схема 7 обоснована! Далее приведён список компонентов для различных конфигураций схемы 8.

  Бутылочная динамо-машина Динамо-втулка
  3 светодиода 4 светодиода 3 светодиода 4 светодиода 6 светодиодов
Общая мощность 4.6 W 5.7 W 5.2 W 6.7 W 10.5 W
D1..D4 1N5818 1N5818 1N5818 1N5818 1N5818
C1 2200uF 16V 2200uF 16V 4700uF 16V 4700uF 16V 2200uF 25V
C2, C3 100uF 100V 47uF 100V 1000uF 63V 470uF 100V 220uF 100V
C4, C5 100uF 63V 47uF 63V 470uF 35V 470uF 35V 220uF 63V
R1 47K 0.25W 47K 0.25W 47K 0.25W 47K 0.25W 47K 0.25W
SW1 120VAC 2A 120VAC 2A 120VAC 2A 120VAC 2A 120VAC 2A
LED1 Мощный LED Мощный LED Мощный LED Мощный LED Мощный LED
LED2 Мощный LED Мощный LED Мощный LED Мощный LED Мощный LED
LED3 Мощный LED Мощный LED Мощный LED Мощный LED Мощный LED
LED4 Не нужен Мощный LED Не нужен Мощный LED Мощный LED
LED5 Не нужен Не нужен Не нужен Не нужен Мощный LED
LED6 Не нужен Не нужен Не нужен Не нужен Мощный LED

Рассмотрим кривые производительности. Нижняя кривая каждого цвета показывает мощность светодиодов в режиме удвоителя напряжения. Обратите внимание, что этот режим работает лучше только на низкой скорости, а выше определённой скорости выигрывает режим мостового выпрямителя. Второй график показывает момент, когда необходимо переключаться на другой режим.

Давайте рассмотрим ещё один интересный вариант схемы 8:

Схема 9 — вариант схемы 8.

К

velofun.ru

трансформация энергии силы в энергию электричества

    • Автомобили
      • Бизнес
        • Дом и семья
          • Домашний уют
            • Духовное развитие
              • Еда и напитки
                • Закон
                  • Здоровье
                    • Интернет
                      • Искусство и развлечения
                        • Карьера
                          • Компьютеры
                            • Красота
                              • Маркетинг
                                • Мода
                                  • Новости и общество
                                    • Образование
                                      • Отношения
                                        • Публикации и написание статей
                                          • Путешествия
                                            • Реклама
                                              • Самосовершенствование
                                                • Спорт и Фитнес
                                                  • Технологии
                                                    • Финансы
                                                      • Хобби

                                                        FB

                                                        Войти Пирография и резка по дереву: делаем чашу с текстурой автомобильной шины

                                                        fb.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о