Где взять 12 Вольт в домашних условиях?
Большинство домашних приборов работает от 12 В. Это напряжение стандартно для большинства блоков питания от ноутбуков и автомобильных аккумуляторов. Поэтому так часто можно встретить приборы и элементы, работающие от 12В. Например, светодиодные ленты, вентиляторы, усилители и многое другое работает от источника тока с таким напряжением. Но как получить заветные Вольты дома?
Если нет возможности что-то купить
Нужно понимать, что напряжение – не ключевой показатель при подключении чего-либо к источнику тока. Более важным является мощность – произведение силы тока и напряжения. Так, если мы возьмем АКБ от ноутбука и автомобильный, и оба они будут обладать одинаковым напряжением, то у ноутбучного сила тока составит 4-8 Ампер, а у автомобильного пусковые токи достигают 200-900 А. Это все нужно учитывать при выборе источника тока, но сосредоточимся пока на конкретной цели – 12 Вольт в домашних условиях.
Самым простым способом обладают владельцы стационарных ПК. У них уже есть готовый источник тока на 12 В, поскольку в 99% случаев блок питания имеет один или несколько свободных разъемов питания. У молекса это крайний желтый провод. В разъеме SATA (для дисков) нет разметки по цветам, но это тоже крайний штекер. Лучше померять мультиметром, чтобы не ошибиться. Я пользуюсь UT33D+ – он дешевый, но с хорошей точностью.
Второй вариант – питание от старых приборов. Если вы не выбрасываете технику после поломки, то можно извлечь понижающий трансформатор с подходящими значениями. Та же светодиодная лента со встроенным питанием имеет миниатюрный трансформатор с 220 на 12 Вольт, но низкой мощностью в пределах 5 Вт, не более.
Последний вариант – сделать составной аккумулятор из батарей. Если, к примеру, у вас есть старый аккумулятор от ноутбука, то его можно разобрать и найти там несколько батарей. Уверен, сдохли из них не все, а поставив оставшиеся последовательно можно получить заветные 12 В. Правда их придется как-то заряжать, но это уже другой вопрос.
Если Вы готовы потратить немного денег
Первым делом нужно обратить внимание на рынок подержанной и не рабочей техники. В большинстве случаев выходят из строя модули, которые не подвергаются ремонту или стоят дорого и в таком ремонте нет смысла. Элементы питания в таком случае почти всегда функционируют как положено. Это старые магнитофоны (кассетные вообще частенько раздают даром), зарядки от телефонов и ноутбуков, бритвы, вентиляторы и так далее. Если удастся заполучить что-либо из крупной техники, то Вы получите источник питания с большой мощностью.
Блоки питания – очевидный способ получить 12 Воль из 220ти. Но не всегда есть смысл брать лабораторный блок питания или промышленный БП. Тот же компьютерный блок может легко работать всего на одного потребителя в 12 В не потребляя много из розетки. К слову, потребление легко замерить, если купить портативный счетчик электроэнергии. Старый БП для ноутбука скорее всего будет выдавать больше 12, но если правильно подобрать мощность, то можно ненадолго запитать нужный прибор.
Если Вам не нужна высока мощность, можно приобрести понижающий трансформатор. Эта радиодеталь не стоит больших денег и продается как отдельно, так и в составе преобразователей напряжения.
самоделки
24.07.2018 00:00:00
Просмотры: 17539
Рекомендуемые товары
Понизить напряжение с 12 до 5 вольт – Как понизить напряжение с 12 на 5 вольт (резистор, микросхема)
Напряжение и сила тока – две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током – Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.
Определение физической величины
Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.
Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:
Если выразить через работу, тогда:
где A – работа, q – заряд.
Измерение напряжения
Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.
Вывод:
Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.
На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.
Для цифровых приборов – в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.
Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп – то на дисплее перед результатом измерения появится знак «–».
А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.
Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.
Чем больше измеряемые значения – тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В – это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.
Что делать если напряжение не подходит для питания нагрузки
Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.
Как понизить напряжение сопротивлением?
Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.
Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:
R=(14.7-3.3)/0.02)= 570 Ом
Но резисторы отличаются по максимальной рассеиваемой мощности:
Ближайший по номиналу в большую сторону – резистор на 0.25 Вт.
Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.
Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.
Недостаток – выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.
Как понизить переменное напряжение дросселем или конденсатором?
Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.
Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.
Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:
где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.
Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:
Пример использования индуктивного сопротивление – это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.
А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».
Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны – нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.
Как понизить и стабилизировать напряжение постоянного тока
Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.
Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.
Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.
Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:
Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.
Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.
Как повысить постоянное напряжение?
Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:
1. Плата на базе микросхемы XL6009
2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.
3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.
4. Плата на базе MT3608
Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.
Как повысить переменное напряжение?
Для корректировки переменного напряжения используют два основных способа:
Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.
Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.
Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.
Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.
Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:
Зарядное устройство вашего смартфона;
Блок питания ноутбука;
Блок питания компьютера.
За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).
В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.
Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.
Достоинства – простота схемы, гальваническая развязка и малые размеры.
Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.
Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.
Заключение
Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.
Привет друзья. Имеется блок питания 24в 4а. Подскажите, как изменить выходное напряжение на 18в без потери мощности.
солнечной энергии – 3 ампера при 5 В потребляют ту же мощность, что и 3 ампера при 12 В?
\$\начало группы\$
Я знаю, что ампер – это вольт x ватт. Если я получаю 5 В при 3 амперах, это почти то же самое, что и 12 В при 3 амперах от 12-вольтовой системы? Я ожидаю, что 5 В будут потреблять больше, так как падение напряжения неэффективно.
Что я хочу сделать, так это подключить Google Wifi к батарее SLA и солнечной панели, и я пытаюсь рассчитать время работы для розыгрыша при 5 В 3 ампера.
- 12 В
- солнечная энергия
\$\конечная группа\$
2
\$\начало группы\$
Если вы хотите подключить Google Wifi к аккумулятору SLA, вам понадобится преобразователь постоянного тока в постоянный для адаптации напряжения. Для Wi-Fi требуется 5 В, но батарея обеспечивает 12 В.
Если вы используете линейный регулятор напряжения для получения 5 В, ток при 12 В и 5 В будет одинаковым, входная мощность регулятора составит 3 А при 12 В = 36 Вт, а выходная мощность 3 А при 5 В = 15 Вт. Разница между входной и выходной мощностью теряется, поэтому теряется 36 Вт – 15 Вт = 21 Вт.
Если вы используете импульсный преобразователь постоянного тока в постоянный, входной ток этого преобразователя ниже выходного тока. Идеальный преобразователь со 100% эффективностью потреблял бы 15 Вт от батареи, чтобы произвести 15 Вт для Wi-Fi. Таким образом, ток при 12 В составляет всего 15 Вт / 12 В = 1,25 А.
Если батарея имеет 60 Ач (ампер-часы), время работы с линейным регулятором составляет 60 Ач / 3 А = 20 ч. Если используется переключающий преобразователь постоянного тока в постоянный, время работы намного больше, 60 Ач / 1,25 А = 48 часов.
Реальным преобразователям нужно немного энергии для самих себя, поэтому мы должны предположить, что время работы примерно на 10 % меньше, то есть 18 часов или 43,2 часа.
\$\конечная группа\$
\$\начало группы\$
Я знаю, что ампер – это вольт x ватт
Неверно.
$$ \begin{выровнено} P &= I \times V \ \ \ \ /V \\ \frac{P}{V} &= I, \end{выровнено} $$
где P мощность, I ток, В это напряжение.
Ампер x Вольт = Вт
3 А x 5 В = 15 Вт
3 А x 12 В = 36 Вт
\$\конечная группа\$
0
\$\начало группы\$
Для цепей постоянного тока (например, батарея, питающая цепь) мощность (Вт) рассчитывается как ампер, умноженный на вольт. Итак, 5 В при 3 А — это 15 Вт; 12В при 3А это 36Вт.
\$\конечная группа\$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.Переключение 12 В с помощью NPN-транзистора дает 5 В на эмиттере только тогда, когда на базе 5 В
\$\начало группы\$Почему я получаю 5 вольт на моем транзисторном выходе? Почему на выходе не 12 вольт?
Как заставить это работать? Можно ли заставить его работать? Я имею в виду, что на выходе должно быть 12 вольт, в то время как база использует более низкое напряжение.
Вот иллюстрация:
Пожалуйста, объясните причину.
- транзисторы
\$\конечная группа\$
3
\$\начало группы\$
Ваша схема известна как эмиттерный повторитель.
В эмиттерном повторителе выходное напряжение всегда примерно на 0,7 вольт ниже, чем базовое напряжение.
Чтобы заставить NPN-транзистор проводить ток от коллектора к эмиттеру, необходимо, чтобы разница напряжений между базой и эмиттером составляла около 0,7 В.
У вас есть 5 В на базе, поэтому эмиттер никогда не может быть больше, чем около 4,3 В.
Вы можете подключить базу к 12 В, что даст вам около 11,3 В на эмиттере. Поскольку ваши 5 В, вероятно, с выхода микроконтроллера или чего-то еще, вы, вероятно, не сможете легко подключить 12 В к базе.
Обычный способ использования NPN-транзистора — поместить его на нижнюю сторону. То есть между нагрузкой и землей.
смоделируйте эту схему – Схема создана с помощью CircuitLab
Когда на «цифровом входе 5 В» есть 5 В, транзистор будет проводить, и нагрузка, подключенная к «Выходу», получит питание. Это известно как переключатель низкой стороны.
Обратите внимание, что между входом и базой транзистора есть резистор. Вам нужен этот резистор для защиты транзистора и микроконтроллера. База транзистора действует как диод. Когда он проводит, он «включается» и действует как короткое замыкание. Без резистора для ограничения тока через базу может протекать такой большой ток, который будет разрушен.