Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Проверка транзистора мультиметром: назначение транзистора

Транзистор — это широко используемый компонент, который можно найти в каждом электрическом устройстве. Он необходим для работы с электрическими сигналами, т.е. способен генерировать, усиливать и преобразовывать электрические сигналы. Транзисторы бывают двух видов: биполярные и униполярные, или, как их чаще называют, полевые транзисторы. Деление основано на принципе действия и конструкции деталей. Каждый тип описан в этой статье не просто так — это основа для того, чтобы знать, как проверить транзистор с помощью мультиметра.

То есть: биполярные транзисторы работают с помощью полупроводников с двумя типами проводимости: прямой (положительной) и обратной (отрицательной). В зависимости от комбинации они называются NPN и PNP. Полевые эффекторы, с другой стороны, работают только с одним типом. Это либо N-канальная, либо P-канальная схема.

Биполярные устройства управляются током, а униполярные — напряжением.

Биполярные транзисторы можно найти в большинстве аналоговых устройств, в то время как в цифровых устройствах чаще используются полевые транзисторы. Учитывая эти различия, давайте рассмотрим, как проверить транзистор с помощью тестера.

Конструкция мультиметра

Мультиметр (тестер) — это универсальный измерительный прибор. Он рассчитывает ток, напряжение, сопротивление и непрерывность. Мультиметры могут быть аналоговыми или цифровыми. Разница заключается в точности измерения и способе получения результата: считывание движения стрелки по механическим часам (аналоговое) или на экране (цифровое). Цифровые проще в использовании по ряду причин, поэтому они подходят для пользователей с минимальными знаниями в области электроники. Независимо от типа тестера, проверка транзистора с помощью мультиметра — это простой процесс.

Сложно о простом: как проверить транзистор

Прежде чем приступить к диагностике транзистора, следует уделить особое внимание правильному оснащению тестера. Это займет не более нескольких минут, но позволит избежать ошибок в результатах. Поэтому мультиметр оснащен двумя щупами. Черный — это минус, а красный — плюс. Убедитесь, что каждый из них подключен к правильному разъему, поскольку в зависимости от модели и типа тестера может быть разное количество щупов. Транзисторы можно тестировать только в таком положении: черный щуп вставьте в гнездо, обозначенное английскими буквами COM, красный щуп вставьте в гнезда, обозначенные буквами греческого алфавита.

Как проверить биполярный транзистор мультиметром

Силовой транзистор — это полупроводниковый прибор, который используется для увеличения мощности входного электрического сигнала. Такие транзисторы управляются током. Он состоит из трех элементов. Первым из них является эмиттер. Он генерирует носители заряда. Рабочий ток течет на коллектор, который является разновидностью приемника и вторым ключевым элементом транзистора. Третье — это основание. Именно он обеспечивает напряжение.

Как мультиметром проверить транзистор.

Проверяем биполярный NPN и PNP

Представьте устройство в виде пары диодов. Они переключаются в противоположных направлениях и сходятся у основания. Чтобы выяснить, неисправен ли этот тип, достаточно провести два измерения сопротивления. Определите тип транзистора: p-n-p или n-p-n. Рассмотрим подробнее, как проверить n-pn транзистор с помощью мультиметра. Используйте следующий алгоритм:

 

  • Приложите минусовую клемму U к базовой клемме. Используйте тестер для измерения значения R. Установите порог 2000. Вы также можете использовать “режим набора”, это для тех, кто хочет узнать, как набрать транзистор с помощью мультиметра. Какой бы способ вы ни предпочли, результат будет правильным.
  • Возьмите черный щуп и подведите его к клемме на основании, закрепите его. Красный щуп к переходу коллектора. Затем переместите его на эмиттер (вывод).
    Если значение прямого сопротивления находится в пределах от 500 Ом до 1200 Ом, то спай исправен.
  • Затем измерьте обратный R-фактор. Для этого поднесите красный щуп вплотную к базовой клемме и зафиксируйте его. Поочередно перемещайте черный щуп сначала к клемме коллектора, а затем к клемме эмиттера. Тестер должен показать высокое значение. Если ваш мультиметр, настроенный на “2000”, показывает “1”, то значение R больше 2000 Ом. Высокое значение указывает на то, что транзистор находится в хорошем состоянии.

 

Этот метод также подходит для тех, кто ищет способ проверить транзистор с помощью мультиметра, не выпаивая его. Предположим, вам нужно проверить устройство на плате непосредственно в схеме. Тогда проблемы могут возникнуть только в том случае, если вы плотно зашунтируете p-n-переход низкоомными резисторами. Это легко проверить: при измерении оба значения сопротивления будут очень низкими. В этом случае отпайка базового штифта является необходимым действием для дальнейшей правильной диагностики.

Аналогичным образом диагностируется n-p-n транзистор. Единственное отличие — красный, а не черный щуп тестера на выходе базы.

Как проверить нетипичные модели транзисторов

Существуют некоторые транзисторы, которые могут не подходить для обычного тестирования мультиметром, будь то в режиме циферблата или омметра. Такие триоды используются, например, в электронных пускорегулирующих аппаратах для светильников. Модели включают MJE13003, 13005, 13007.

Давайте подробнее рассмотрим, как проверить транзисторы 13003 с помощью мультиметра, на одном примере. Это связано с необычным расположением выводов транзистора 13003 — базовый вывод находится справа. В технических характеристиках указано, что контакты могут чередоваться слева направо в таком порядке: база, коллектор, эмиттер. Поэтому вы должны определить точный порядок и расположение компонентов и следовать описанному выше методу.

Ошибки измерения также могут быть вызваны диодами внутри некоторых транзисторов.

Поэтому перед проведением измерений важно знать точную структуру тестируемого транзистора.

Как проверить полевой транзистор мультиметром

Это устройство приводится в действие электрическим полем, которое создает напряжение. Это одно из главных отличий от биполярного полупроводникового переключателя. Униполярные транзисторы делятся на два типа. Первый имеет изолированные ворота. Второй имеет p-n-переходы. Независимо от типа, они бывают n-канальными или p-канальными. Большинство полевых транзисторов имеют три вывода: исток, сток и затвор. По сравнению с биполярным, они аналогичны Эмиттеру, Коллектору и Базе.

В качестве основы для тестирования мы берем устройство типа p-n. Независимо от типа канала (n, p), последовательность не изменится. Единственное различие заключается в противоположном подключении зондов. Таким образом, для диагностики n-канального устройства нам потребуется:

 

  • Установите мультиметр в режим “R-измерение”. Уровень 2000. Прикрепите плюсовой щуп к источнику. Прикрепите черный к сливу. Измерьте сопротивление. Затем необходимо изменить положение зондов. Измерьте еще раз. Результаты с работающим транзистором будут примерно одинаковыми.
  • Далее мы тестируем переход источник-затвор. Для этого на мультиметре устанавливаем режим “диодный тест”. Плюс подключается к затвору, а минус — к источнику. Обычно измерительный прибор регистрирует падение U около 650 мВ. Отсоедините щупы и переместите черный щуп к затвору, а красный — к источнику. Тестер должен показать единицу или бесконечность. Это указывает на то, что транзистор находится в хорошем состоянии.
  • Чтобы проверить переход сток-затвор, оставьте мультиметр в режиме проверки диодов. Выполните ту же процедуру для проверки p-n-перехода затвор-исток.

 

Если все три измерения совпадают с описанными выше, полевой транзистор готов к использованию.

Как проверить полевой транзистор мультиметром

Поделиться на Facebook

Поделиться в ВК

Поделиться в ОК

Поделиться в Twitter

Поделиться в Google Plus

Содержание:

  • 1 Биполярный транзистор
  • 2 Полевой транзистор
  • 3 Определение функциональности n-канального полупроводника.
  • 4 Составной транзистор
  • 5 Однопереходный транзистор
  • 6 Проверка элемента без выпаивания его из схемы

При проведении ремонтных работ электронной техники, возникает вопрос проверки функционального состояния тех или иных полупроводниковых элементов. Решение этой проблемы сильно облегчает наличие специализированных приборов, однако, во многих случаях вполне можно обойтись и без них.

Есть ряд способов, как проверить транзистор мультиметром без использования сложных приборов и каких-либо дополнительных электрических схем. Рассматриваются алгоритмы проверки различных типов транзисторов.

 

 

Проверка trz (транзистора), равно как и любого другого элемента схемы, начинается с определения его типа. Эту информацию несложно найти в интернете. У опытного мастера всегда есть под рукой ссылки на проверенные ресурсы. Если таковых нет, то, обычно достаточно вбить маркировку компонента в поисковой системе и нужная информация найдется уже на первой странице поисковой выдачи. Наиболее распространенные типы транзисторов: биполярные, полевые, составные, однопереходные. Определив тип элемента, можно начинать его функциональную проверку.

Биполярный транзистор

Наиболее распространенные транзисторы. Используются в основном в схемах усиления или генерации сигнала: в усилителях, генераторах, модуляторах, инверторах и т. д. Бывают двух типов: p-n-p и n-p-n. Не углубляясь в структуру полупроводникового прибора, достаточно будет сказать, что каждый p-n переход представляет собой диод. Строго говоря, это не совсем так, но для проверки работоспособности такое представление вполне допустимо. Таким образом, последовательность p-n-p представима в виде двух диодов, соединенных катодами, а n-p-n – двух диодов, соединенных анодами. Чтобы проверить, работоспособность такого элемента, нужно мультиметром замерить сопротивление переходов.

Определение работоспособности p-n-p полупроводника:

  • Берется мультиметр. Черный провод (обозначим его как Ч) помещается в гнездо COM (минус).
  • Красный (К) – в гнездо VΩmA (плюс).
  • Тестер выставляется на замер электрического сопротивления. Предельное значение выбирается 2 кОм. Это означает, что мультиметр может корректно измерять сопротивление от 0 до 2000 Ом. При превышении данного порога, на экране прибора загорится «1».
  • Для замера прямых сопротивлений Ч закрепляется на базе элемента.
  • Чтобы замерить величину сопротивления эмиттерного перехода, К помещается на эмиттер.
  • Измеренное значение должно быть от 500 до 1200 Ом. Аналогично и для коллектора.
  • Для измерения обратных сопротивлений на базе элемента закрепляется К. Ч поочередно помещается на коллектор и эмиттер. Полученные значения должны превышать установленный порог в 2кОм. Об этом, в обоих случаях, будет свидетельствовать цифра «1» на экране тестера.
  • Для n-p-n полупроводника применяется та же самая методика. За исключение того, что в п.1 Ч и К помещаются в противоположные гнезда. Тем самым меняется полярность щупов тестера.

Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты.

Остается найти эмиттер и коллектор. Для этого необходимо просто замерить сопротивление коллекторных и эмиттерных переходов. Ч помещается на базу. К поочередно замыкается на оставшиеся выводы. Полученные значения должны лежать в диапазоне от 500–1200 Ом. При этом большее значение будет относиться к коллекторному переходу, а меньшее, соответственно к эмиттерному.

Полевой транзистор

Обладает значительно меньшим энергопотреблением по сравнению с биполярным. Основная область применения – это приборы, работающие в ждущем или следящем режимах. Импортные элементы обычно имеют маркировку, упрощающую идентификацию выводов: G-затвор, S-исток, D-сток. Полевой транзистор или, как его еще называют, мосфет, бывает n-канальный и p-канальный. Алгоритмы проверки работоспособности полупроводников обоих типов похожи.

Определение функциональности n-канального полупроводника.

Поскольку у таких компонентов между стоком и истоком часто встраивается диод, то, для проверки функциональности, на измерительном устройстве устанавливается в режим проверки диодов. Ч идет на минус тестера, а К – на плюс.

  • К помещается на исток элемента, а Ч – на сток. Напряжение должно быть от 500 до 700 мВ.
  • К – на сток, а Ч – на исток. Значение в этом случае должны выходить за пределы измерений мультиметра. Об этом свидетельствует цифра «1» на экране прибора.
  • Ч – на истоке. Касание К затвора открывает транзистор. Ч остается на истоке, а К соединяется со стоком. Замеренное напряжение должно лежать в диапазоне от 0 до 800 мВ и не зависеть от смены полярности проводов тестера.
  • Замыкание К на исток, а Ч – на затвор проводит к закрытию прибора и переводу его в изначальное состояние.

Для определение работоспособности p-канального полупроводника Ч подключается к плюсу мультиметра, а К – к минусу. Дальнейшая последовательность действий аналогична методике проверки элемента n-канального типа.

Составной транзистор

Также известен как пара Дарлингтона. Является каскадом из двух и более биполярных транзисторов. Тестирование таких элементов одним лишь мультиметром, без сборки дополнительных схем, не представляется возможным. Вопрос монтажа подобных вспомогательных схем выходит за рамки данной статьи.

Однопереходный транзистор

В основном используются во всевозможных реле и пороговых устройствах. У элементов данного типа присутствует только один p-n переход. Для проверки его работоспособности мультиметром замеряется сопротивление между ножками «Б1» и «Б2». Если полученная величина незначительна, то компонент неисправен.

Проверка элемента без выпаивания его из схемы

Часто возникает вопрос, как проверить smd транзистор мультиметром. SMD – это аббревиатура от английского Surface Mounted Device (устройство, монтируемое на поверхность). Такие полупроводники не вставляются в отверстия плат. Их просто напаивают сверху на контактные дорожки. В современных платах плотность таких дорожек невероятно велика. Более того, часто они располагаются в несколько слоев. Поэтому если какая-то из дорожек располагается в середине такого «пирога», то ее может быть просто не видно.

Становится понятно, что поскольку демонтаж и обратный монтаж smd компонентов на контактные дорожки печатных плат зачастую сопряжен со значительными сложностями, то лучше всего было бы осуществить проверку функциональности элемента, не выпаивая его. К сожалению, такое подход возможен только для биполярных транзисторов. Однако даже при положительных итогах проверки нельзя быть полностью уверенным в результате. В большинстве же случаев только лишь демонтаж элемента с печатной планы позволяет гарантированно проверить его работоспособность.

Жми «Нравится» и получай только лучшие посты в Facebook ↓

Поделиться на Facebook

Поделиться в ВК

Поделиться в ОК

Поделиться в Twitter

Поделиться в Google Plus

Как проверить транзисторы NPN и PNP с помощью мультиметра.

Нравится и делится

Интерпретация того, является ли транзистор типом PNP или NPN, ставила многих людей в затруднительное положение при выборе транзистора. Просто представьте, что вы работаете над схемой и вам нужны транзисторы, но вы не можете знать, какой у вас тип — PNP или NPN. Я хорошо помню те дни, когда они должны были маркировать мой транзистор в магазине, чтобы помочь мне идентифицировать их, не зная, только с помощью мультиметра, я мог определить, является ли транзистор PNP или NPN. Заставляет меня пройти через строгий стресс, проверяя этикетку, и иногда этикетка становится бледной для просмотра.

Но, зная, как пользоваться мультиметром, я смог умело определить, является ли транзистор транзистором NPN или PNP. Так что поверьте мне, так много людей, у которых все еще есть проблемы, с которыми я сталкиваюсь, должны прочитать этот конкретный пост, поскольку я делюсь решением проблемы.

Прежде чем приступить к основному делу, давайте напомним себе, как мы можем определить цоколевку транзистора.

Как определить распиновку транзисторов BJT.
Для ТО9Транзисторы 2А, ТО92Б и ТО92С.

Транзистор этого типа имеет трехвыводную схему контактов: коллектор, база и эмиттер. Есть способ, которым мы пользуемся при определении этого вывода на биполярном транзисторе. Поместив транзистор плоской поверхностью вверх, с левой стороны пометьте первый вывод эмиттера, вторую базу и третий коллектор.

Для транзисторов ТО18.

Этот тип транзистора имеет круглый металлический корпус с выводами под металлической чашкой.

, чтобы определить клемму этого типа транзистора, выберите транзистор и обратите внимание на небольшой выступ вокруг металлического корпуса

. Ближний к проекции штифт — это эмиттер, а центральный — база с последним эмиттером.

Для транзисторов TO220

Это тип транзисторов, которые выглядят как микросхема регулятора напряжения. Обычно они подключаются к радиатору охлаждения в контурах охлаждения.

При идентификации цоколевки этого типа транзистора. Металлическая сторона транзистора обращена к земле, а другая сторона обращена вверх. Начиная с левой стороны, пронумеруйте и пометьте контакты. Первый — это база, второй — коллектор, а последний — излучатель.

Тип транзистора ТО3.

эта форма транзистора имеет металлический корпус корпуса и два контакта под транзистором. Металлический корпус транзистора является эмиттером, а оставшиеся два вывода — базой и коллектором.

Как проверить электронный диод с помощью мультиметра

Как мультиметр можно использовать для определения PNP и NPN транзисторов BJT.

Зная распиновку транзистора, следующим шагом будет определить, является ли транзистор типом PNP или NPN. И это можно сделать, просто воспользовавшись мультиметром или изучив схемы транзисторов. При проверке транзистора в цепи удалите транзистор из цепи перед проверкой.

Этапы идентификации BJT-транзистора типа NPN.
  • Установите мультиметр в режим измерения диодов. Это можно сделать, повернув ручку и установив ее в режим диода.
  • Включите мультиметр и поместите красный щуп мультиметра на средний контакт (базу) транзистора.
  • Используйте второй щуп измерителя (черный) и коснитесь первого контакта (эмиттера). Некоторые значения напряжения будут отображаться на измерителе.
  • оставив красный щуп на базе, меняем черный щуп на коллектор, третий пин, и записываем значение напряжения на мультиметре.
  • Логика теста NPN такова: эмиттер (E) из материала N-типа такой же, как катод диода.
Проверка транзистора NPN с помощью мультиметра

База (В) из материала N-типа такая же, как и анод диода.

коллектор (C) из материала типа N, такой же, как катод диода.

  • поэтому, если положительный щуп мультиметра подключен к аноду, а отрицательный щуп к аноду, то измеритель будет отображать напряжение от 0,5 В до 0,7 В. А когда щуп подключен наоборот, на индикаторе отображается OL, что означает обрыв цепи.
Идентификация транзистора BJT типа PNP
  • Установите мультиметр в режим диода.
  • Поместите отрицательный щуп мультиметра на контакт 2 (База) транзистора.
  • Прикоснитесь положительным щупом к контакту 1 (эмиттер) транзистора, и измеритель отобразит напряжение. Вольт будет между 0,5В-0,7В.
  • Прикосновение положительного щупа к контакту 3 (коллектор). Счетчик по-прежнему будет показывать вольт. Между 0,5В – 0,7В.
  • Снятие отрицательного щупа с основания и установка его на любой другой контакт. Мультиметр не будет отображать OL.

Нравится и делиться

By Sparkrey ElectronicsLeave a Comment on Как проверить транзисторы NPN и PNP с помощью мультиметра.

Тестирование транзисторов — транзисторы с биполярным соединением

Биполярные переходные транзисторы

Существует несколько различных способов проверки транзисторов. Их можно протестировать а в схеме, методом замещения, или с транзистором тестер или омметр. С помощью большинства тестеров транзисторов можно проверить транзистор в цепи или вне ее.

Существует четыре основных теста, необходимых для транзисторов при практическом поиске и устранении неисправностей: усиление, утечка, пробой и время переключения. Для обслуживания и ремонта, однако проверки двух-трех параметров обычно достаточно, чтобы определить требуется ли замена транзистора.

Поскольку охватить все различные типы тестеров транзисторов нецелесообразно.

а поскольку к каждому тестеру прилагается собственное руководство по эксплуатации, будем двигаться дальше на то, что вы будете чаще использовать для проверки транзисторов — омметр.

С помощью омметра можно выполнить два теста: коэффициент усиления и сопротивление перехода. Тесты сопротивления перехода транзистора выявит утечку, короткое замыкание и обрыв.

Тест коэффициента усиления транзистора
Базовый тест коэффициента усиления транзистора можно выполнить с помощью омметра и простой тестовой схемы. Тестовую схему можно составить всего из пары резисторов и переключателя, как показано на рисунке. на рисунке ниже. Принцип теста заключается в том, что мало или совсем нет ток будет течь в транзисторе между эмиттером и коллектором до тех пор, пока эмиттер-база соединение смещено вперед. Единственная предосторожность, которую вы должны соблюдать, связана с омметром. В счетчике можно использовать любую внутреннюю батарею при условии, что ее емкость не превышает максимальное напряжение пробоя коллектор-эмиттер.

Проверка коэффициента усиления транзистора с помощью омметра.

Когда переключатель на рисунке выше находится в разомкнутом положении, как показано, напряжение отсутствует. применяется к базе транзистора PNP, а переход эмиттер-база не смещен в прямом направлении. Следовательно, омметр должен показывать высокое сопротивление. Когда ключ замкнут, цепь эмиттер-база смещена в прямом направлении. напряжением на R 1 и R 2 . Актуально сейчас течет в цепи эмиттер-коллектор, что приводит к снижению показаний сопротивления на омметре.

Чтобы проверить NPN-транзистор с помощью этой схемы, просто поменяйте местами выводы омметра. и выполните процедуру, описанную ранее.

Проверка сопротивления перехода транзистора

Омметр можно использовать для проверки транзистора на утечку (нежелательное протекание тока) путем измерения прямой линии база-эмиттер, база-коллектор и коллектор-эмиттер и обратные сопротивления.

Для простоты рассмотрим тестируемый транзистор на каждом изображении на рисунке ниже. как два диода, соединенных встречно. Следовательно, каждый диод будет иметь низкое прямое сопротивление и высокое обратное сопротивление. Измеряя эти сопротивления с помощью омметра, как показано на рисунке, можно определить, Транзистор пропускает ток через свои переходы. При изготовлении этих измерений, избегайте использования глюкометра с высоким напряжением внутренней батареи. Это условие может повредить маломощный транзистор.

Проверка утечки транзистора с помощью омметра.

Теперь рассмотрим возможные проблемы с транзисторами, которые могли бы существовать, если бы указанное показания на рисунке выше не получены. Список этих проблем представлен в таблице ниже.

ПОКАЗАНИЯ СОПРОТИВЛЕНИЯ ПРОБЛЕМЫ
ВПЕРЕД НАЗАД Транзистор:
НИЗКИЙ (БЕЗ ЗАМЫКАНИЯ) НИЗКИЙ (НЕ ЗАКОРАЧЕН) УТЕЧКА
НИЗКИЙ (ЗАКОРАЧЕННЫЙ) НИЗКИЙ (ЗАКОРАЧЕННЫЙ) ЗАМЫКАННЫЙ
ВЫСОКИЙ ВЫСОКИЙ ОТКРЫТ*
*Кроме испытания коллектор-эмиттер.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *