Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Почему биполярный транзистор может усиливать сигналы

 

Итак, мы уже знаем, что усиление электрических сигналов возможно в приборах с управляемыми потоками электрических зарядов. Однако сама по себе данная фраза ничего не значит. Возникает естественный вопрос: как, имея управляемый поток зарядов и подавая на вход слабый сигнал, на выходе прибора получить сильный сигнал?

Для начала, видимо, следует разобраться в том, что же такое усиление электрических сигналов. Предположим, что мы имеем источник электрического сигнала, который при определенном сопротивлении нагрузки может обеспечить некоторые ток и напряжение сигнала на ней. Если нас не удовлетворяет напряжение на нагрузке, то, используя простейшие пассивные элементы (например, трансформатор), мы можем легко поднять его до необходимого уровня. Расплатой за это будет падение сигнального тока. И наоборот, если мы увеличим ток — снизится напряжение. В любом случае полезная мощность сигнала \(P_C = U_С I_С\) , передаваемая в нагрузку, при добавлении любых пассивных компонентов в схему может только снижаться.

Для увеличения этой мощности нужны так называемые активные компоненты — усилители. Именно они позволяют из слабых входных воздействий получать мощные сигналы на выходе устройства.

Что же необходимо для работы усилительного устройства? Рассмотрим простой пример. Водитель автомобиля давит на педаль газа, и чем большее усилие он прикладывает к маленькой педали, тем быстрее едет большой и тяжелый автомобиль. Однако всем известно, что автомобиль двигает не слабый водитель, а мощный двигатель. Т.е. педаль — это лишь средство воздействия на двигатель, который и выполняет всю работу. На таком же принципе основано действие и усилителей электрических сигналов. В них создается отдельный мощный сигнал, который и попадает на выход усилителя, а слабый входной сигнал лишь воздействует на этот мощный сигнал, заставляя его изменяться по тому же закону.

Как уже говорилось, в полупроводниках могут существовать потоки электрических зарядов. Если такой поток протекает от одного электрода полупроводникового прибора к другому, то между этими двумя электродами возникает электрический ток, абсолютная величина которого пропорциональна мощности потока (количеству перемещаемых за единицу времени зарядов). Очевидно, что при определенных условиях с помощью мощного внешнего источника питания мы можем создавать в полупроводниковых структурах самые разнообразные потоки зарядов. Вопрос, однако, заключается в том, как обеспечить воздействие на эти потоки слабого сигнала, который мы хотим усилить. Вернемся теперь к рассмотрению биполярного транзистора.

На рис. 1.2 показана схема, в которой на выводы эмиттера и коллектора транзистора \(n\)-\(p\)-\(n\)-типа подано достаточно большое напряжение от внешнего мощного источника питания плюсом к коллектору и минусом к эмиттеру. Если бы между эмиттерной и коллекторной \(n\)-областями транзистора не было тонкой базовой прослойки с проводимостью \(p\)-типа, то очевидно, что в полупроводнике возник бы мощный поток электронов от эмиттера к коллектору.

 

Рис. 1.2. Схема подачи напряжений на биполярный транзистор n-p-n-типа для обеспечения режима усиления

 

Однако на практике даже весьма тонкой базовой прослойки оказывается достаточно, чтобы предотвратить это явление. Все изменяется, если мы приложим к базе транзистора некоторое незначительное по величине и положительное относительно эмиттера напряжение (рис. 1.2). При этом эмиттерный p-n-переход транзистора оказывается под напряжением, соответствующим его проводящему состоянию, и в \(p\)-\(n\)-структуре эмиттер—база образуется поток электронов в том же направлении, в котором он мог бы возникнуть при отсутствии базовой области. Электроны, достигая базовой области, по логике должны уходить в базовый электрод, обеспечивая прохождение тока в цепи база—эмиттер транзистора, но на практике происходит другое. Подгоняемые большим напряжением, приложенным между коллектором и эмиттером, электроны быстро пролетают через узкую базовую область и уходят к коллекторному электроду, т.е. возникает тот самый мощный поток зарядов между эмиттером и коллектором, который мы не могли получить ранее. Только крайне незначительная часть электронов попадает в базовый электрод. Таким образом, мы имеем слабый ток в цепи эмиттер—база и сильный ток в цепи эмиттер—коллектор (напомним, что направление электрического тока считается противоположным направлению движения отрицательных зарядов, в нашем случае — электронов).

Повышая напряжение на базе транзистора, мы будем наращивать мощность потока электронов, при этом токи в цепях будут расти соответственно.

Итак, оказывается, что в биполярном транзисторе можно создать сильный электрический ток в цепи “коллектор — эмиттер — внешний мощный источник питания” при достаточно слабом токе в цепи “база — эмиттер — маломощный источник сигнала”. Причем данное слабое воздействие на базу оказывает управляющее действие на ток в коллекторно-эмиттерной цепи. Если далее в коллекторную или эмиттерную цепь транзистора (рис. 1.2) включить некоторое сопротивление (нагрузку), то окажется, что ток и напряжение на нем повторяют форму входного сигнала на базе транзистора, но мощность, подаваемая на него, гораздо выше мощности входного сигнала, т.е. происходит усиление.

Мы описали работу биполярного транзистора \(n\)-\(p\)-\(n\)-типа. Для приборов \(p\)-\(n\)-\(p\)-типа все выглядит совершенно аналогично. Только здесь мы должны рассматривать не потоки электронов, а потоки положительных зарядов — дырок.

При этом полярности всех внешних напряжений меняются на обратные. Других отличий нет.

 

 

< Предыдущая   Следующая >

ГЛАВА 2. ТРАНЗИСТОРЫ



Подразделы: Введение 2.01

Транзистор – это один из основных «активных» компонентов. Он представляет собой устройство, которое может усиливать входной сигнал по мощности. Увеличение мощности сигнала происходит за счет внешнего источника питания. Отметим, что увеличение амплитуды сигнала не является в данном случае определяющим. Так, например, повышающий трансформатор – «пассивный» компонент, такой же, как резистор или конденсатор, обеспечивает усиление по напряжению, но не может усилить сигнал по мощности. Устройства, которые обладают свойством усиления по мощности, характеризуются способностью к генерации, обусловленной передачей выходного сигнала обратно на вход.

Изобретателей транзистора когда-то заинтересовала именно способность устройства усиливать сигнал по мощности. Для начала они соорудили с помощью транзистора усилитель звуковых частот для громкоговорителя и убедились, что на выходе сигнал больше, чем на входе.

Транзистор является неотъемлемой частью всякой электронной схемы, начиная от простейшего усилителя или генератора до сложнейшей цифровой вычислительной машины. Интегральные схемы (ИС). которые в основном заменили схемы, собранные из дискретных транзисторов, представляют собой совокупности транзисторов или других компонентов, построенные на едином кристалле полупроводникового материала.

Обязательно следует разобраться в том, как работает транзистор, даже если вам придется пользоваться в основном интегральными схемами. Дело в том, что, для того чтобы собрать электронное устройство из интегральных схем и подключить его к внешним цепям, необходимо знать входные и выходные характеристики каждой используемой ИС. Кроме того, транзистор служит основой построения межсоединений, как внутренних (между ИС), так и внешних. И наконец, иногда (и даже довольно часто) случается, что подходящей ИС промышленность не выпускает и приходится прибегать к схемам, собранным из дискретных компонентов. Как вы сами вскоре убедитесь, транзисторы сами по себе очень интересны, и ознакомление с их работой доставит вам удовольствие.

Мы будем рассматривать транзисторы совершенно не так, как авторы других книг. Обычно изучая транзистор, пользуются его эквивалентной схемой и h – параметрами. На наш взгляд, такой подход сложен и надуман. И дело не только в том, что, глядя на мудреные уравнения, вы едва ли поймете, как работает схема, скорее всего вы будете иметь смутное представление о параметрах транзистора, их значениях и самое главное диапазонах изменения.

Мы предлагаем вам другой подход. В этой главе мы построим простую модель транзистора и с ее помощью создадим несколько схем. Как только начнут проявляться ограничения модели, дополним ее с учетом уравнений Эберса-Молла. Полученная таким образом модель даст правильное представление о работе транзистора; с ее помощью вы сможете создавать самые хорошие схемы, не прибегая к большим расчетам. Кроме того, характеристики ваших схем не будут серьезно зависеть от таких неуправляемых параметров транзистора как, например, коэффициент усиления по току.

И наконец, несколько слов о принятых в инженерной практике условностях. Напряжение на выводе транзистора, взятое по отношению к потенциалу земли, обозначается буквенным индексом (К, Б или Э): например, U

к – это напряжение на коллекторе. Напряжение между выводами обозначается двойным индексом, например, Uбэ – это напряжение между базой и эмиттером. Если индекс образован двумя одинаковыми буквами, то это – напряжение источника питания: Uкк – это напряжение питания (обычно положительное) коллектора, Uээ – напряжение питания (обычно отрицательное) эмиттера.


Подразделы: Введение 2.01

Некоторые основные транзисторные схемы


Обратная связь (биполярные транзисторы)

Добавлено 23 января 2018 в 04:43

Сохранить или поделиться

Если на вход усилителя подается некоторая часть его выходного сигнала, так что усилитель усиливает часть собственного выходного сигнала, то мы имеем так называемую обратную связь.

Обратная связь бывает двух типов: положительная (так называемая регенеративная) и отрицательная (так называемая дегенеративная). Положительная обратная связь усиливает направление изменения выходного напряжения усилителя, а отрицательная – наоборот.

Известным примером обратной связи являются акустические системы, где кто-то держит микрофон слишком близко к громкоговорителю: возникают сильные «гудение» и «свист», поскольку усилительная аудиосистема обнаруживает и усиливает свой собственный шум. Это частный случай положительной или регенеративной обратной связи, так как любой звук, обнаруженный микрофоном, усиливается и превращается в громкий звук от динамика, который затем снова обнаруживается микрофоном, и так далее… Результатом является шум неуклонно увеличивающейся громкости, пока система не будет «насыщена» и не сможет больше увеличивать громкость.

Можно задаться вопросом, какая выгода возможна от обратной связи в схеме усилителя, учитывая такой раздражающий пример, как «гудение» электроакустической системы. Если мы вводим положительную (или регенеративную) обратную связь в схему усилителя, то у него появляется склонность к созданию и поддержанию колебаний, частота которых определяется значениями компонентов, обрабатывающих сигнал обратной связи с выхода на вход. Это один из способов создания схемы генератора для вырабатывания переменного напряжения от источника питания постоянного напряжения. Генераторы – это очень полезные схемы, и поэтому обратная связь имеет для нас определенное практическое применение. Смотрите «Фазосдвигающий генератор» в главе 9 в качестве практического применения положительной обратной связи.

С другой стороны, отрицательная обратная связь оказывает на усилитель эффект «затухания»: если выходной сигнал увеличивает амплитуду, сигнал обратной связи оказывает на вход усилителя понижающее влияние, что противодействует изменению выходного сигнала. В то время как положительная обратная связь ведет схему усилителя к точке неустойчивости (к колебаниям), отрицательная обратная связь ведет ее в противоположном направлении: к точке устойчивости.

Схема усилителя, снабженная отрицательной обратной связью, не только более стабильна, но и меньше искажает входной сигнал и, как правило, способна усиливать более широкий диапазон частот. Плата за эти преимущества (ведь должен же быть у отрицательной обратной связи недостаток?) – это уменьшение коэффициента усиления. Если часть выходного сигнала «подается обратно» обратно на вход, чтобы противодействовать любым изменениям выходного сигнала, то для получения такой же амплитуды выходного сигнала, что была раньше (без обратной связи), потребуется больший входной сигнал. Это уменьшает коэффициент усиления. Однако преимущества стабильности, меньших искажений и большей ширины полосы частот для многих приложений стоят того, чтобы заплатить путем уменьшения коэффициента усиления.

Давайте рассмотрим простую схему усилителя и посмотрим, как мы можем ввести в нее отрицательную обратную связь. Начнем с рисунка ниже.

Усилитель с общим эмиттером без обратной связи

Схема усилителя, показанная здесь, представляет собой схему с общим эмиттером, со схемой смещения на делителе напряжения из резисторов R1 и R2. Конденсатор связывает источник Vвх с усилителем, чтобы на источник сигнала не поступало постоянное напряжение с делителя R1/R2. Резистор R3 служит для управления коэффициентом усиления по напряжению. Мы могли бы убрать его для получения максимального усиления по напряжению, но поскольку подобные ему резисторы базы в схемах усилителей с общим эмиттером распространены, мы оставим его.

Как и все усилители с общим эмиттером, этот усилитель при усилении инвертирует входной сигнал. Другими словами, увеличивающееся входное напряжение приводит к уменьшению выходного напряжения, а уменьшающееся – наоборот. Осциллограммы сигналов показаны на рисунке ниже.

Усилитель с общим эмиттером, без обратной связи, с предоставлением осциллограмм для сравнения

Поскольку выходной сигнал представляет собой инвертированное (или зеркально отраженное) воспроизведение входного сигнала, любое соединение между выходным выводом (коллектором) и входным выводом (базой) транзистора (как на рисунке ниже) создаст в результате отрицательную обратную связь.

Отрицательная обратная связь, коллекторная обратная связь, ослабляет выходной сигнал

Сопротивления R1, R2, R3 и Rобр.связи действуют вместе как схема смешения сигналов, поэтому напряжение, наблюдаемое на базе транзистора (относительно земли), является средневзвешенным значением входного напряжения и напряжения обратной связи, в результате чего на транзистор поступает сигнал уменьшенной амплитуды. Таким образом, схем усилителя на рисунке выше будет иметь пониженный коэффициент усиления по напряжению, но и улучшенную линейность (пониженные искажения) и увеличенную полосу частот.

Резистор, связывающий коллектор с базой, не является единственным способом введения в схему этого усилителя отрицательной обратной связи. Другой способ, с трудом понимаемый вначале, заключается в добавлении резистора между выводом эмиттера транзистора и землей на схеме, как показано на рисунке ниже.

Эмиттерная обратная связь: еще один способ введения в схему отрицательной обратной связи

Этот новый резистор обратной связи понижает напряжение, пропорциональное току эмиттера через транзистор, и делает это таким образом, чтобы противодействовать влиянию входного сигнала на переход эмиттер-база транзистора. Давайте более подробно рассмотрим переход эмиттер-база и посмотрим, какие изменения вносит этот новый резистор, на рисунке ниже.

Без резистора обратной связи, соединяющего эмиттер с землей, на рисунке ниже (a) независимо от уровня входного сигнала (Vвх), проходящего через конденсатор связи и резисторную цепь R1/R2/R3 будет подаваться непосредственно на переход база-эмиттер как входное напряжение транзистора (VБ-Э). Другими словами, без резистора обратной связи VБ-Э будет равно Vвх. Поэтому, если Vвх увеличивается на 100 мВ, то VБ-Э увеличится на 100 мВ: изменение одного из них совпадает с изменением другого, поскольку оба напряжения равны друг другу.

Теперь рассмотрим эффект вставки резистора (Rобр.связи) между выводом эмиттера транзистора и землей, как показано на рисунке ниже (b)

Отсутствие обратной связи (a) и эмиттерная обратная связь (b). Форма сигнала на коллекторе инвертирована относительно сигнала на базе. На (b) форма сигнала на эмиттере совпадает по фазе (эмиттерный повторитель) с сигналом на базе и не совпадает по фазе с сигналом на коллекторе. Следовательно, сигнал на эмиттере вычитается из выходного сигнала на коллекторе.

Обратите внимание, что сумма напряжения, падающего на Rобр.связи, и VБ-Э равна Vвх. С резистором Rобр.связи в контуре Vвх–VБ-Э напряжение VБ-Э больше не будет равно напряжению Vвх. Мы знаем, что Rобр.связи снизит напряжение пропорционально току эмиттера, который, в свою очередь, управляется током базы, который, в свою очередь, управляется напряжением, падающим на переходе база-эмиттера транзистора (VБ-Э). Таким образом, если Vвх будет увеличиваться в положительном направлении, это увеличит VБ-Э, вызывая больший ток коллектора (нагрузки), вызывающий больший ток эмиттера, и вызывающий большее напряжение обратной связи, падающее на Rобр.связи. Однако, это увеличение падения напряжения на резисторе обратной связи вычитается из Vвх, уменьшая VБ-Э, поэтому фактическое увеличение VБ-Э будет меньше, чем увеличение напряжения Vвх. Теперь увеличение Vвх на 100 мВ больше не приведет к увеличению VБ-Э на эти же 100 мВ, поскольку эти два напряжения не равны друг другу.

Следовательно, входное напряжение обладает меньшим влиянием на транзистор, чем раньше, и коэффициент усиления по напряжению у усилителя уменьшается: это именно то, чего мы ожидали от отрицательной обратной связи.

В практических схемах с общим эмиттером отрицательная обратная связь – это не просто излишество; она необходима для стабильной работы. В идеальном мире мы могли бы собрать и использовать усилитель на транзисторе с общим эмиттером без отрицательной обратной связи и подавать полную амплитуду Vвх на переход база-эмиттер транзистора. Это дало бы нам большой коэффициент усиления по напряжению. Однако, к сожалению, связь между напряжением база-эмиттер и током база-эмиттер изменяется с температурой, что можно предугадать, исходя из «диодного уравнения». По мере того, как транзистор нагревается, прямое падение напряжения на переходе база-эмиттер будет уменьшаться для любого заданного тока. Это создает для нас проблему, поскольку делитель напряжения R1/R2 рассчитан для обеспечения соответствующего неизменного тока через базу транзистора, чтобы тот работал в необходимом нам классе работы (в этом примере я показал усилитель, работающий в режиме класса A). Если у транзистора связь напряжение/ток изменяется с температурой, величина постоянного напряжения смещения, необходимого для требуемого класса работы, также изменится. Горячий транзистор будет потреблять больше тока смещения при том же напряжении смещения, что заставляет его нагреваться еще больше, потребляя еще больший ток смещения. В результате, если нет защиты, – тепловой разгон.

Усилители с общим коллектором (рисунок ниже) не страдают от теплового разгона. Почему? Ответ связан с отрицательной обратной связью.

Усилитель с общим коллектором (эмиттерный повторитель)

Обратите внимание, что усилитель с общим коллектором (рисунок выше) имеет резистор нагрузки, расположенный точно в том же месте, что и резистор Rобр.связи в последней схеме (рисунок выше (b)): между эмиттером и корпусом. Это означает, что напряжение, прикладываемое к переходу база-эмиттер транзистора, равно только разнице между Vвх и Vвых, что приводит к очень низкому усилению по напряжению (обычно около 1 для усилителя с общим коллектором). Для этого усилителя тепловой разгон невозможен: если ток базы увеличивается из-за нагревания транзистора, ток эмиттера также будет увеличиваться, уменьшая напряжение на нагрузке, которое, в свою очередь, вычитается из Vвх, что уменьшает напряжение, падающее на переходе база-эмиттер. Другими словами, отрицательная обратная связь, создаваемая установкой резистора нагрузки, автоматически решает проблему теплового разгона. В обмен на значительное снижение усиления по напряжению мы получаем превосходную стабильность и защиту от теплового разгона.

Добавляя резистор обратной связи между эмиттером и землей в схему усилителя с общим эмиттером, мы создаем усилитель, который чуть меньше похож на «идеальный» усилитель с общим эмиттером и чуть больше похож на усилитель с общим коллектором. Значение резистора обратной связи обычно выбирается немного меньше сопротивления нагрузки, минимизируя величину обратной связи и сохраняя достаточно высокий коэффициент усиления по напряжению.

Другим преимуществом отрицательной обратной связи, явно видимым в схеме с общим коллектором, является то, что она стремится сделать усиление по напряжению усилителя менее зависимым от характеристик транзистора. Обратите внимание, что в усилителе с общим коллектором коэффициент усиления по напряжению почти равен единице (1), независимо от β транзистора. Это означает, среди прочего, что мы могли бы заменить транзистор в усилителе с общим коллектором на другой, который обладает другим коэффициентом β, и не заметить каких-либо значительных изменений в усилении по напряжению. В схеме с общим эмиттером коэффициент усиления по напряжению сильно зависит от коэффициента β. Если бы мы заменили транзистор в схеме с общим эмиттером на другой, с другим коэффициентом β, коэффициент усиления по напряжению усилителя изменился бы значительно. В усилителе с общим эмиттером, снабженном отрицательной обратной связью, коэффициент усиления по напряжению по-прежнему в некоторой степени зависит от β транзистора, но не так сильно, как прежде, делая схему более предсказуемой, несмотря на изменение коэффициента β транзистора.

Тот факт, что мы должны вводить отрицательную обратную связь в усилитель с общим эмиттером, чтобы избежать теплового разгона, является не самым хорошим решением. Возможно ли избежать теплового разгона без необходимости подавлять изначально высокий коэффициент усиления по напряжению усилителя? Лучшее решение этой проблемы станет очевидным, если мы рассмотрим ее более внимательно: усиление по напряжению, которые мы должны уменьшить, чтобы избежать теплового разгона, – это усиление постоянного напряжения, а не переменного. В конце концов, к тепловому разгону транзистор подгоняется не входным сигналом переменного напряжения: транзистору для определенного класса работы требуется постоянное напряжение смещения: этот сигнал постоянного напряжения мы используем, чтобы «заставить» транзистор (по сути, устройство постоянного тока) усиливать сигнал переменного напряжения. Мы можем подавить усиление по постоянному напряжению без подавления усиления по переменному напряжению, если узнаем способ создания отрицательной обратной связи только по постоянному напряжению. То есть, если мы подадим с выхода на вход только инвертированный сигнал постоянного напряжения без инвертированного сигнала переменного напряжения.

Резистор эмиттера Rобр.связи обеспечивает отрицательную обратную связь, создавая падение напряжения, пропорциональное току нагрузки. Другими словами, отрицательная обратная связь достигается путем вставки импеданса в путь протекания тока эмиттера. Если мы хотим подавать обратно постоянное напряжение, а не переменное, нам нужен импеданс, который является высоким для постоянного тока и низким для переменного тока. Какая схема представляет высокий импеданс для постоянного тока и низкий импеданс для переменного тока? Конечно фильтр верхних частот!

Подключив конденсатор параллельно резистору обратной связи (рисунок ниже), мы сделаем как раз то, что необходимо: путь от эмиттера к земле, который для переменного тока проще, чем для постоянного.

Высокое усиление по переменному напряжению восстановлено с помощью добавления Cобхода параллельно Rобр.связи

Переменный ток от эмиттера к корпусу «обходит» резистор через новый конденсатор, поэтому не будет происходить никакого значительного падения напряжения между эмиттером и землей, чтобы «подаваться обратно» на вход и подавлять усиление по напряжению. С другой стороны, постоянный ток не может проходить через конденсатор обхода, поэтому он должен проходить через резистор обратной связи, создавая падение постоянного напряжения между эмиттером и землей, которое уменьшает усиление по постоянному напряжению и стабилизирует отклик усилителя на постоянное напряжение, предотвращая тепловой разгон. Поскольку мы хотим, чтобы реактивное сопротивление этого конденсатора (XC) было как можно ниже, величина Cобхода должна быть относительно большой. Поскольку полярность на этом конденсаторе никогда не изменится, то для этой задачи безопасно использовать поляризованный (электролитический) конденсатор.

Другим подходом к проблеме снижения усиления по напряжению из-за отрицательной обратной связи является использование не однокаскадных, многокаскадных усилителей. Если ослабленного усиления одного транзистора недостаточно для поставленной задачи, мы можем использовать более одного транзистора, чтобы компенсировать это снижение. Пример схемы, показывающей отрицательную обратную связь в трехкаскадном усилителе с общим эмиттером, приведен ниже.

Обратная связь, охватывающая нечетное количество непосредственно соединенных каскадов, создает отрицательную обратную связь

Путь обратной связи от конечного выхода к входу осуществляется через один резистор Rобр.связи. Поскольку каждый каскад представляет собой усилитель с общим эмиттером (соответственно, инвертирующий), нечетное количество каскадов от входа до выхода инвертирует входной сигнал; обратная связь будет отрицательно (дегенеративной). В этом случае можно использовать относительно большую величину обратной связи, не жертвуя усилением по напряжению, поскольку три каскада усилителя изначально обеспечивают очень большое усиление.

Сначала такой подход к разработке схем может показаться неэлегантным и, возможно, даже контрпродуктивным. Разве это не достаточно грубый способ преодолеть снижение усиления, вызванное использованием отрицательной обратной связи, – восстановление усиления путем простого добавления каскад за каскадом? Какай смысл создавать огромное усиление по напряжению с помощью трех транзисторных каскадов, если мы собираемся их просто ослабить отрицательной обратной связью? Суть, хотя, возможно, и неочевидная поначалу, – это повышение предсказуемости и стабильности схемы в целом. Если три транзисторных каскада спроектированы так, чтобы обеспечить произвольно большое усиление по напряжению (десятки тысяч или более) без отрицательной обратной связи, можно обнаружить, что добавление отрицательной обратной связи приводит к тому, что общее усиление по напряжению становится менее зависимым от коэффициентов усиления отдельных каскадов и приблизительно равным простому отношению Rобр.связи/Rвх. Чем больше у схемы коэффициент усиления по напряжению (без обратной связи), тем ближе коэффициент усиления по напряжению будет соответствовать отношению Rобр.связи/Rвх после установки обратной связи. Другими словами, коэффициент усиления по напряжению этой схемы фиксируется значениями двух резисторов, и не более того.

Это является преимуществом для массового производства электронных схем: если усилители с предсказуемых коэффициентом усиления по напряжению могут быть построены с использованием транзисторов со значениями β в широком диапазоне, это облегчает выбор и замену компонентов. Это также означает, что коэффициент усиления усилителя слабо меняется при изменении температуры. Этот принцип стабильного управления усилением с помощью усилителя с высоким коэффициентом усиления, «прирученного» отрицательной обратной связью, возводится почти до уровня искусства в электронных схемах, называемых операционными усилителями (ОУ). Вы можете прочитеть об этих схемах в главе 8.

Подведем итоги:

  • Обратная связь – это соединение выхода усилителя с его входом.
  • Положительная (или регенеративная) обратная связь имеет тенденцию делать схему усилителя нестабильной, поскольку она вызывает колебания (переменное напряжение). Частота этих колебаний в значительной степени определяется компонентами схемы обратной связи.
  • Отрицательная (или дегенеративная) обратная связь имеет тенденцию делать схему усилителя более стабильной, поскольку его выходной сигнал меньше зависит от входного сигнала, чем без обратной связи. Это уменьшает коэффициент усиления усилителя, но имеет преимущество уменьшения искажений и увеличения полосы пропускания (диапазона частот, в котором может работать усилитель).
  • Отрицательная обратная связь может быть введена в схему с общим эмиттером путем соединения коллектора с базой или путем вставки резистора между эмиттером и землей.
  • Резистор обратной связи между эмиттером и корпусом обычно встречается в схемах с общим эмиттером как превентивная мера против теплового разгона.
  • Отрицательная обратная связь также обладает преимуществом, заключающемся в том, что коэффициент усиления по напряжению усилителя больше зависит от номиналов резисторов и меньше зависит от характеристик транзистора.
  • Усилители с общим коллектором обладают большой отрицательной обратной связью из-за размещения резистора нагрузки между эмиттером и корпусом. Эта обратная связь объясняет чрезвычайно стабильное усиления по напряжению усилителя, а также его устойчивость к тепловому разгону.
  • Коэффициент усиления по напряжению схемы с общим эмиттером может быть восстановлен без ущерба устойчивости к тепловому разгону путем подключения конденсатора обхода параллельно эмиттерному резистору обратной связи.
  • Если коэффициент усиления по напряжению усилителя произвольно высок (десятки тысяч и более), а отрицательная обратная связь используется для его уменьшения до разумного уровня, можно обнаружить, что коэффициент усиления примерно равен Rобр.связи/Rвх. Изменения в значениях β транзистора или других значений компонентов мало влияют на коэффициент усиления по напряжению при действующей обратной связи, что приводит к стабильности и простоте разработки.

Оригинал статьи:

Теги

Биполярный транзисторОбратная связьОбучениеОтрицательная обратная связьЭлектроника

Сохранить или поделиться

Глава 28. Усилители . Введение в электронику

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Описать назначение усилителя.

• Перечислить три основных типа транзисторных усилительных цепей.

• Перечислить классы усилителей.

• Описать работу усилителей с непосредственной связью, усилителей звуковой частоты, видеоусилителей, усилителей радиочастоты, усилителей промежуточной частоты и операционных усилителей.

• Нарисовать принципиальные схемы усилителей различных типов.

Усилители — это электронные цепи, используемые для увеличения амплитуды электрического сигнала. Цепь, рассчитанная на преобразование низкого напряжения в высокое, называется усилителем напряжения. Цепь, рассчитанная на преобразование слабого тока в большой по величине, называется усилителем тока.

28-1. ТИПЫ УСИЛИТЕЛЕЙ

Для обеспечения усиления транзистор должен принять входной сигнал и выдать выходной, значительно больший, чем входной.

Входной сигнал управляет током, текущим через транзистор. Этот ток, в свою очередь, управляет напряжением на нагрузке. Транзисторная цепь рассчитана таким образом, чтобы брать напряжение от внешнего источника питания (VCC) и подавать его на резистор нагрузки (RL) в виде выходного напряжения.

Транзистор используется, главным образом, как усилительное устройство. Существует несколько способов включения в цепь транзистора: схема с общей базой, схема с общим эмиттером и схема с общим коллектором. В каждой из этих схем один из выводов транзистора служит общей точкой, а два других являются входом и выходом.

Каждая схема может быть собрана как с р-n-р, так и с n-р-n транзистором. В каждом случае на переход эмиттер-база подается напряжение смещения в прямом направлении, а на переход коллектор-база — в обратном. Каждая схема имеет преимущества и недостатки.

В схеме с общей базой (рис. 28-1) входной сигнал подается в цепь эмиттер-база, а выходной наблюдается в цепи коллектор-база. База является общим элементом для входа и выхода.

Рис. 28-1. Схема усилителя с общей базой.

В схеме с общим эмиттером (рис. 28-2) входной сигнал подается в цепь эмиттер-база, а выходной сигнал снимается с нагрузки в цепи коллектор-эмиттер. Эмиттер является общим для входа и выхода. Этот способ включения транзистора используется наиболее широко.

Рис. 28-2. Схема усилителя с общим эмиттером

Третий тип соединения (рис. 28-3) — это схема с общим коллектором. В этой схеме входной сигнал подается в цепь база-коллектор, а выходной сигнал снимается с цепи эмиттер-коллектор. Здесь коллектор является общим для входа и выхода. Эта схема используется для согласования импедансов.

Рис. 28-3. Схема усилителя с общим коллектором.

В таблице, изображенной на рис. 28-4, приведены входные и выходные сопротивления, а также величина усиления по напряжению, току и мощности для трех схем включения транзистора.

Рис. 28-4. Характеристики усилительных цепей.

На рис. 28-5 показаны фазовые соотношения входного и выходного сигналов для трех схем включения транзистора. Заметим, что схема с общим эмиттером обеспечивает изменение фазы выходного сигнала на 180° по отношению к фазе входного.

Рис. 28-5. Фазовые соотношения между входным и выходным сигналами усилительных цепей.

28-1. Вопросы

1. Нарисуйте схемы трех основных конфигураций транзисторных усилительных цепей.

2. Перечислите характеристики:

а. Цепи с общей базой;

б. Цепи с общим эмиттером;

в. Цепи с общим коллектором.

3. Составьте таблицу, показывающую фазовые соотношения входного и выходного сигналов для трех схем включения транзистора.

4. Составьте таблицу, показывающую входные и выходные сопротивления для трех схем включения транзистора.

5. Составьте таблицу, показывающую усиление по напряжению, току и мощности для трех схем включения транзистора.

28-2. ЦЕПИ СМЕЩЕНИЯ УСИЛИТЕЛЯ

Основными конфигурациями транзисторных усилительных цепей являются схемы с общей базой, с общим эмиттером и с общим коллектором. Для подачи правильного напряжения смещения на n-р-n или р-n-р переходы все они требуют двух источников тока. На переход база-эмиттер должно быть подано смещение в прямом направлении, а на переход база-коллектор — в обратном направлении. Однако оба напряжения смещения могут быть обеспечены с помощью одного источника тока.

Поскольку цепи с общим эмиттером используются наиболее часто, они детально описываются. Те же принципы применимы и к цепям с общей базой и общим коллектором.

На рис. 28-6 изображен транзисторный усилитель с общим эмиттером, использующий один источник питания. Эта же цепь схематически изображена на рис. 28-7.

Рис. 28-6. Усилитель с общим эмиттером и одним источником питания.

Рис. 28-7. Схематическое представление усилителя с общим эмиттером и одним источником питания.

Источник питания обозначен +VCC. Символ заземления является отрицательным выводом источника питания VCC. Один источник питания обеспечивает подачу правильного напряжения смещения для переходов база-эмиттер и база-коллектор. Два резистора (RB и RL) используются для распределения напряжения, обеспечивающего правильную работу транзистора. Резистор RL, сопротивление нагрузки коллектора, соединен последовательно с коллектором. Когда через коллектор течет ток, на резисторе RL появляется падение напряжения. Падение напряжения на резисторе RL и падение напряжения на переходе коллектор-эмиттер транзистора должны в сумме равняться приложенному напряжению.

Резистор RB, соединяющий базу с источником питания, управляет величиной тока базы. Ток базы, текущий через резистор RB, создает на нем падение напряжения, составляющего большую часть напряжения источника питания. Меньшая часть этого напряжения падает на переходе база-эмиттер транзистора, обеспечивая правильное прямое смещение.

Один источник питания может обеспечить необходимые напряжения прямого и обратного смещения. В случае n-р-n транзистора потенциал на базе и коллекторе транзистора должен быть положительным по отношению к эмиттеру.

Следовательно, источник питания может быть связан с базой и коллектором через резисторы RB и RL. Эту цепь часто называют цепью смещения базы, так как ток базы управляется величиной резистора RB и напряжением источника питания. Входной сигнал подключается между базой транзистора и его эмиттером или между выводом входа и землей.

Значение входного сигнала либо складывается с прямым смещением на эмиттерном переходе, либо вычитается из него. Это служит причиной изменения коллекторного тока, что, в свою очередь, приводит к изменению падения напряжения на резисторе RL. Выходной сигнал появляется между выводом выхода и землей.

Цепь, изображенная на рис. 28-6, является нестабильной, так как она не может компенсировать изменения тока смещения при отсутствии сигнала. Изменения температуры приводят к изменению внутреннего сопротивления транзистора, что заставляет изменяться ток смещения и сдвигает рабочую точку транзистора, уменьшая его усиление. Этот процесс называется температурной нестабильностью.

Существует возможность компенсации температурных изменений в схеме транзисторного усилителя посредством организации отрицательной обратной связи в нем. Если часть нежелательного выходного сигнала подать на вход цепи, этот сигнал будет противодействовать изменениям в транзисторе. Такой процесс называется отрицательной обратной связью (рис. 28-8).

Рис. 28-8. Усилитель с общим эмиттером и коллекторной обратной связью.

В цепи, использующей отрицательную обратную связь, базовый резистор RB соединен непосредственно с коллектором транзистора. Если температура увеличивается, то ток коллектора и падение напряжения на резисторе RL тоже увеличиваются. Напряжение коллектор-эмиттер уменьшается, уменьшая также напряжение приложенное, к RB. Это уменьшает ток базы, что служит причиной уменьшения тока коллектора. Таким образом действует коллекторная цепь обратной связи.

На рис. 28-9 показан другой тип обратной связи. Эта цепь похожа на цепь, изображенную на рис. 28-7, за исключением того, что последовательно с выводом эмиттера включен резистор RE. Резисторы RB и RE и переход транзистора эмиттер-база соединены последовательно с источником питания VCC.

Рис. 28-9. Усилитель с общим эмиттером и эмиттерной обратной связью.

Увеличение температуры служит причиной увеличения коллекторного тока. Ток эмиттера также увеличивается, увеличивая падение напряжения на резисторе RE и уменьшая падение напряжения на резисторе RB. Ток базы уменьшается, что уменьшает как ток коллектора, так и ток эмиттера. Поскольку сигнал обратной связи создается на эмиттере транзистора, эта цепь называется цепью эмиттерной обратной связи.

В цепи этого типа происходит уменьшение общего усиления цепи, связанное с тем, что входной сигнал переменного тока появляется как на резисторе RL, так и на резисторе RE и на транзисторе. При подсоединении конденсатора параллельно резистору RE (рис. 28–10), сигнал переменного тока обходит резистор RE, так как сопротивление конденсатора существенно меньше RE. Этот конденсатор часто называют блокировочным конденсатором.

Рис. 28–10. Эмиттерная обратная связь с блокировочным конденсатором.

Блокировочный конденсатор устраняет любые быстрые изменения напряжения на резисторе RE, благодаря тому, что он обладает низким импедансом для переменного тока. Блокировочный конденсатор удерживает напряжение на резисторе RE неизменным, в то же самое время не мешая работе цепи обратной связи, обеспечиваемой RE.

Цепь обратной связи с делителем напряжения обеспечивает большую стабильность транзистора (рис. 28–11). Эта цепь используется наиболее широко. Резистор RB заменяется двумя резисторами, R1 и R2. Эти соединенные последовательно резисторы подключены параллельно источнику питания VСС. Резисторы делят напряжение питания на два напряжения, образуя делитель напряжения.

Рис. 28–11. Усилитель с общим эмиттером и обратной связью на основе делителя напряжения.

На резисторе R2 падает меньшее напряжение, чем на резисторе R1. Напряжение на базе по отношению к земле равно падению напряжения на резисторе R2. Цель делителя напряжения — установить постоянное напряжение на базе транзистора по отношению к земле. Ток, текущий через резистор R2, направлен к базе. Следовательно, подсоединенный к базе конец резистора R2, имеет положительный потенциал по отношению к земле.

Так как через резистор RE течет ток эмиттера, то на конце резистора RE, подсоединенном к эмиттеру, положительный потенциал по отношению к земле. Напряжение на переходе эмиттер-база является разностью двух положительных напряжений — напряжения на резисторе R2 и напряжения на резисторе RE. Для того, чтобы на транзисторе имело место правильно приложенное прямое смещение, положительный потенциал базы должен быть немного выше положительного потенциала эмиттера.

При увеличении температуры токи коллектора и эмиттера также увеличиваются. Увеличение тока эмиттера приводит к увеличению падения напряжения на резисторе RE. Это приводит к тому, что положительный потенциал эмиттера по отношению к земле увеличивается. Тогда прямое смещение перехода эмиттер-база уменьшается, что приводит к уменьшению тока базы. Уменьшение тока базы уменьшает токи коллектора и эмиттера. Противодействие также имеет место и при понижении температуры: ток базы увеличивается, что приводит к увеличению токов эмиттера и коллектора.

Усилители, обсуждавшиеся до сих пор, имели такое напряжение смещения, что выходной сигнал был таким же, как и входной сигнал в течение всего периода, только величина его была больше. Усилитель, смещение которого такое, что ток через него течет и усиливается во время всего периода сигнала, называется усилителем, работающим в классе А (рис. 28–12).

Рис. 28–12. Выходное напряжение усилителя класса А.

Усилитель, смещение которого таково, что выходной ток через него течет и усиливается в течение времени меньшем, чем полный период, но большем половины периода, называется усилителем, работающим в классе АВ (рис. 28–13).

Рис. 28–13. Выходное напряжение усилителя класса АВ.

Усилитель, смещение которого такое, что выходной ток через него течет только половину периода входного сигнала — это усилитель, работающий в классе В. Только во время половины периода входной сигнал переменного тока усиливается в режиме класса В (рис. 28–14).

Рис. 28–14. Выходное напряжение усилителя класса В.

Усилитель, смещение которого такое, что выходной ток через него течет меньше, чем половину периода входного сигнала переменного тока — это усилитель, работающий в классе С. Меньше, чем половина периода входного сигнала усиливается в режиме класса С (рис. 28–15).

Рис. 28–15. Выходное напряжение усилителя класса С.

Усилители класса А создают наименьшие искажения и называются линейными. Они также имеют самую низкую выходную мощность и наименее эффективны. Усилители класса А находят широкое применение в тех случаях, когда требуется точное сохранение входного сигнала, как, например, при усилении сигналов звуковой частоты в радиоприемниках и телевизорах. Однако из-за высоких требований по мощности, транзисторы обычно работают в режиме класса АВ или класса В.

Усилители классов АВ, В и С вносят значительные искажения. Это обусловлено тем, что они усиливают только часть входного сигнала. Для усиления полного входного сигнала переменного тока необходимы два транзистора, соединенные в двухтактную схему (рис. 28–16).

Рис. 28–16. Схема двухтактного усилителя.

Усилители класса В используются в качестве выходных каскадов в стереосистемах и мощных концертных усилителях, а также в промышленности. Усилители класса С используются в качестве усилителей высокой мощности в передатчиках, где необходимо усиление только одной частоты, например в радио и телевизионных передатчиках.

28-2. Вопросы

1. Нарисуйте схему транзисторного усилителя с общим эмиттером, использующего один источник питания.

2. Как компенсируются изменения температуры в транзисторном усилителе?

3. Нарисуйте схему цепи обратной связи с делителем напряжения.

4. Перечислите классы усилителей и укажите их выходные мощности.

5. Перечислите применения усилителей каждого класса.

28-3. СОЕДИНЕНИЕ УСИЛИТЕЛЕЙ

Для получения большого усиления, транзисторные усилители могут быть соединены вместе. Однако для избежания влияния смещения одного усилителя на работу другого, они должны соединяться специальным образом.

Используемый метод соединения усилителей не должен нарушать работу какой-либо цепи. Возможны следующие методы соединения усилителей: посредством резистивно-емкостной, импедансной, трансформаторной и непосредственной (гальванической) связей.

Резистивно-емкостная связь или RC связь состоит из двух резисторов и конденсатора, соединенных как показано на рис. 28–17.

Рис. 28–17. RC связь.

Резистор R3 является коллекторной нагрузкой первого каскада. Конденсатор C1 является блокирующим для постоянного тока и конденсатором связи для переменного тока. Резистор R4 является входной нагрузкой, а также замыкает по постоянному току цепь перехода база-эмиттер второго каскада. Резистивно-емкостная связь используется, главным образом, в усилителях низкой частоты.

Конденсатор связи C1 должен иметь низкое реактивное сопротивление для минимизации ослабления сигнала на низких частотах. Обычно используется емкость в пределах от 10 до 100 микрофарад. Конденсатор связи обычно бывает электролитическим.

Реактивное сопротивление конденсатора связи увеличивается при уменьшении частоты. Низкочастотная граница определяется величиной емкости конденсатора связи. Высокочастотная граница определяется типом использованного транзистора.

Импедансная связь подобна RC связи, только вместо резистора в качестве нагрузки коллектора первого каскада усиления используется катушка индуктивности (рис. 28–18).

Рис. 28–18. Импедансная связь.

Импедансная связь работает совершенно аналогично RC связи. Ее преимуществом является то, что катушка индуктивности имеет очень низкое сопротивление постоянному току. Выходной сигнал переменного тока на катушке индуктивности такой же, как и на нагрузочном резисторе. Однако катушка индуктивности потребляет меньшую мощность, чем резистор, что увеличивает общую эффективность цепи.

Недостатком импедансной связи является то, что индуктивное сопротивление увеличивается при увеличении частоты. Поэтому коэффициент усиления по напряжению изменяется при изменении частоты. Этот тип связи идеален для одночастотного усиления, то есть при усилении очень узкой полосы частот.

В цепи с трансформаторной связью два усилительных каскада связаны между собой через трансформатор (рис. 28–19).

Рис. 28–19. Трансформаторная связь.

Трансформатор может эффективно согласовать высокоимпедансный источник с низкоимпедансной нагрузкой. Недостатком этого метода является то, что трансформаторы громоздки и дороги. Кроме того, как и усилитель с импедансной связью, усилитель с трансформаторной связью может использоваться только в узком диапазоне частот.

Когда необходимо усилить очень низкие частоты или сигнал постоянного тока, следует использовать усилитель с непосредственной (гальванической) связью (рис. 28–20).

Рис. 28–20. Гальваническая связь.

Усилители с гальванической связью обеспечивают равномерное усиление по току и напряжению в широком диапазоне частот. Усилители этого типа могут усиливать частоты от нуля герц (постоянный ток) до многих тысяч герц. Однако усилители с гальванической связью преимущественно применяются на низких частотах.

Недостатком усилителей с гальванической связью является то, что они нестабильны. Любые изменения выходного тока первого каскада усиливаются вторым каскадом. Это происходит потому, что смещение второго каскада непосредственно связано с первым каскадом. Для повышения стабильности требуется использование дорогих прецизионных компонентов.

28-3. Вопросы

1. Каковы четыре основных метода соединения транзисторных усилителей?

2. Где, в основном, используется резистивно-емкостная связь?

3. В чем разница между резистивно-емкостной связью и импедансной связью?

4. В чем недостаток трансформаторной связи?

5. Какой метод связи используется при усилении низкочастотных сигналов и сигналов постоянного тока?

28-4. УСИЛИТЕЛИ С ГАЛЬВАНИЧЕСКОЙ СВЯЗЬЮ

Усилители с гальванической связью или усилители постоянного тока используются для усиления низкочастотных сигналов или для усиления сигналов постоянного тока. Усилитель постоянного тока также используется для устранения индуктивных потерь в цепях связи. Усилители постоянного тока применяются в компьютерах, измерительном и тестирующем оборудовании и в промышленной аппаратуре для управления производственными процессами.

Простейший усилитель постоянного тока изображен на рис. 28–21.

Рис. 28–21. Простой усилитель постоянного тока.

Чаще всего используется усилитель с общим эмиттером. Изображенная схема содержит цепь смещения на основе делителя напряжения и эмиттерную цепь обратной связи. В цепях этого типа не используется конденсатор связи. Входной сигнал подается прямо на базу транзистора. Выходной сигнал снимается с коллектора.

Усилитель постоянного тока может обеспечивать усиление как по току, так и по напряжению. Однако, он применяется, главным образом, в качестве усилителя напряжения. Усиление по напряжению одинаково для сигналов постоянного и переменного токов.

В большинстве случаев одного каскада усиления недостаточно. Для получения более высокого усиления требуются два или более каскадов. Соединенные вместе два или более каскадов называются многокаскадным усилителем.

На рис. 28–22 изображен двухкаскадный усилитель.

Рис. 28–22. Двухкаскадный усилитель постоянного тока.

Входной сигнал усиливается первым каскадом. После этого усиленный сигнал поступает на базу транзистора второго каскада. Общее усиление цепи равно произведению коэффициентов усиления по напряжению двух каскадов. Например, если и первый, и второй каскады имеют коэффициент усиления по напряжению равный 10, то общий коэффициент усиления цепи равен 100.

На рис. 28–23 изображен усилитель постоянного тока другого типа. В нем используются транзисторы типов n-р-n и р-n-р. Цепь такого типа называется комплементарным усилителем. Функции этой цепи такие же, как и у цепи, изображенной на рис. 28–22. Разница только в том, что транзистор второго каскада р-n-р типа, р-n-р транзистор, перевернут, так что на эмиттер и коллектор подается напряжение смещения правильно.

Рис. 28–23. Комплементарный усилитель постоянного тока.

На рис. 28–24 изображены два соединенных вместе транзистора, работающих, как одно целое. Эта цепь называется схемой Дарлингтона. Транзистор Q1 используется для управления проводимостью транзистора Q2. Входной сигнал, поданный на базу транзистора Q1, управляет током базы транзистора Q2. Схема Дарлингтона может быть изготовлена в одном корпусе с тремя выводами: эмиттер (Э), база (Б) и коллектор (К). Она используется как простой усилитель постоянного тока с высоким коэффициентом усиления по напряжению.

Рис. 28–24. Схема Дарлингтона.

Основным недостатком многокаскадных усилителей является их высокая температурная нестабильность. В цепях, требующих три или четыре каскада усиления постоянного тока, оконечный каскад может не усиливать исходный сигнал постоянного или переменного тока, так как он будет сильно искажен. Та же самая проблема существует и со схемой Дарлингтона.

В случаях, когда требуется и высокий коэффициент усиления, и высокая температурная стабильность, необходим усилитель другого типа. Это — дифференциальный усилитель (рис. 28–25).

Рис. 28–25. Дифференциальный усилитель.

Его особенность в том, что он имеет два отдельных входа и может обеспечить либо один, либо два выходных сигнала. Если сигнал подан на вход транзистора Q1, усиленный сигнал появится между выходом А и землей, как в обычном усилителе. Однако малый сигнал появится также на резисторе R4 и на эмиттере транзистора Q2. Транзистор Q2 работает, как усилитель с общей базой. Усиленный выходной сигнал появится между выходом В и землей. Выходной сигнал с выхода В сдвинут по фазе на 180 градусов по отношению к сигналу на выходе А. Это делает дифференциальный усилитель более универсальным, чем обычный.

Обычно дифференциальный усилитель не используется для получения выходного напряжения между одним из выходов и землей. Выходной сигнал получают между выходом А и выходом В. Поскольку два выходных сигнала сдвинуты относительно друг друга на 180 градусов по фазе, то между этими точками существует значительное выходное напряжение. Входной сигнал может быть подан на любой вход.

Дифференциальный усилитель обладает высокой температурной стабильностью, так как транзисторы Q1 и Q2 расположены близко друг к другу и испытывают одинаковое влияние температуры. Кроме того, коллекторные токи транзисторов Q1 и Q2 испытывают одинаковые тенденции к увеличению и уменьшению, так что выходное напряжение остается постоянным.

Дифференциальный усилитель широко используется в интегральных микросхемах и в электронном оборудовании. Он используется для усиления и(или) сравнения амплитуд сигналов как постоянного, так и переменного токов. Дифференциальные усилители можно соединять последовательно для получения более высокого усиления. В некоторых случаях дифференциальный усилитель используется в качестве первого каскада в многокаскадных обычных усилителях. Дифференциальные усилители, благодаря их универсальности и температурной стабильности, являются наиболее важным типом усилителей с гальванической связью.

28-4. Вопросы

1. В каких случаях используют усилители с гальванической связью?

2. Какую конфигурацию усилителя обычно используют в усилителях с гальванической связью?

3. Нарисуйте схемы следующих цепей:

а. Комплементарный усилитель.

б. Схему Дарлингтона.

в. Дифференциальный усилитель.

4. Как дифференциальный усилитель отличить от обычного?

5. Где, в основном, используются дифференциальные усилители?

28-5. УСИЛИТЕЛИ ЗВУКОВОЙ ЧАСТОТЫ

Усилители звуковой частоты усиливают сигналы переменного тока в диапазоне частот примерно от 20 до 20000 герц. Они могут усиливать весь диапазон звуковых частот или только небольшую часть его.

Усилители звуковой частоты делятся на две категории: усилители напряжения и усилители мощности. Усилители напряжения применяются, главным образом, для получения высокого усиления по напряжению. Усилители мощности используются для передачи большой мощности в нагрузку. Например, усилитель напряжения применяется, главным образом, для повышения напряжения выходного сигнала до уровня, достаточного для раскачки усилителя мощности. После этого используется усилитель мощности для получения высокой мощности, необходимой для передачи сигнала на усилительные колонки или другое устройство высокой мощности. Обычно усилители напряжения работают как усилители класса А, а усилители мощности — как усилители класса В.

На рис. 28–26 изображен простой усилитель напряжения.

Рис. 28–26. Усилитель напряжения

Изображенная цепь является цепью с общим эмиттером. Смещение транзистора выбрано для работы в классе А, чтобы обеспечить минимальные искажения. Усилитель может обеспечить заметное усиление по напряжению в широком диапазоне частот. Наличие конденсатора связи не позволяет цепи усиливать сигнал постоянного тока.

Два или более усилителя напряжения могут быть соединены последовательно для получения большего усиления. Каскады могут быть соединены с помощью RC связи или трансформаторной связи. Трансформаторная связь более эффективна. Трансформатор используется для согласования входного и выходного импеданса двух каскадов. Это предохраняет второй каскад от перегрузки первым каскадом. Перегрузка возникает, когда устройство создает большую нагрузку и сильно влияет на выход, потребляя слишком большой ток. Трансформатор, используемый для связи двух каскадов, называется меж каскадным трансформатором.

Когда достаточный уровень выходного напряжения достигнут, используется усилитель мощности для раскачки нагрузки. Усилители мощности рассчитаны для раскачки определенных нагрузок и характеризуются мощностью в ваттах. Обычно сопротивление нагрузки лежит в пределах от 4 до 16 Ом.

На рис. 28–27 изображена схема усилителя мощности на двух транзисторах, которая называется двухтактной.

Рис. 28–27. Двухтактный усилитель мощности.

Верхняя половина цепи является зеркальным отображением нижней. Каждая половина представляет собой усилитель на одном транзисторе. Выходное напряжение снимается с первичной обмотки трансформатора в течение чередующихся полупериодов входного сигнала. Оба транзистора работают как усилители класса АВ или В. Вход двухтактного усилителя требует сдвинутых по фазе на 180° входных сигналов. Это означает, что один сигнал должен быть инвертирован по отношению к другому. Однако оба сигнала должны иметь одинаковую амплитуду и частоту. Цепь, создающая такой фазовый сдвиг сигнала, называется фазовращателем. Фазовращатель на одном транзисторе изображен на рис. 28–28. Выходы взяты с коллектора и эмиттера транзистора.

Рис. 28–28. Фазовращатель.

Фазовращатель работает, как усилитель класса А, обеспечивая наименьшие искажения выходного сигнала. Конденсаторы связи необходимы для компенсации разницы между коллекторным и эмиттерным напряжениями постоянного тока.

Двухтактный усилитель, не требующий фазовращателя, называется комплементарным двухтактным усилителем.

Для работы двухтактного каскада в нем используются транзисторы n-р-n и р-n-р (рис. 28–29).

Рис. 28–29. Комплементарный двухтактный усилитель мощности.

Два транзистора соединены последовательно, эмиттерами друг к другу. Когда на каждый транзистор подается напряжение смещения в прямом направлении, между его базой и эмиттером возникает напряжение 0,7 вольт или 1,4 вольт между двумя базами. Два диода помогают поддерживать разность потенциалов 1,4 вольт постоянной. Выходное напряжение берется из точки соединения эмиттеров через конденсатор связи.

Для усилителей мощностью более 10 ватт, трудно и дорого подобрать пару n-р-n и р-n-р транзисторов с одинаковыми характеристиками. На рис. 28–30 изображена цепь, использующая два n-р-n транзистора в качестве мощного выходного транзистора. Мощные транзисторы раскачиваются двумя транзисторами n-р-n и р-n-р меньшей мощности. Верхний набор транзисторов образует схему Дарлингтона.

Рис. 28–30. Квазикомплементарный усилитель мощности.

Нижний набор транзисторов использует транзисторы n-р-n и р-n-р. Работая как одно устройство, они соответствуют р-n-р транзистору. Усилитель этого типа называется квазикомплементарным усилителем. Он работает так же, как и комплементарный усилитель, но не требует комплементарных выходных транзисторов высокой мощности.

Так как усилители мощности развивают высокую мощность, некоторые его детали сильно нагреваются. Для отвода накопленного тепла используются радиаторы. Радиатор — это устройство, имеющее большую площадь, которая может излучать тепло. На рис. 28–31 изображены различные типы радиаторов для транзисторов.

Рис. 28–31. Типы радиаторов

28-5. Вопросы

1. В каком диапазоне частот используются усилители звуковой частоты?

2. Каковы два типа усилителей звуковой частоты?

3. Что такое межкаскадный трансформатор?

4. Нарисуйте схемы следующих устройств:

а. Двухтактного усилителя.

б. Комплементарного двухтактного усилителя.

в. Квазикомплементарного двухтактного усилителя.

28-6. ВИДЕОУСИЛИТЕЛИ

Видеоусилители — это широкополосные усилители, используемые для усиления видеоинформации. Диапазон частот видеоусилителя значительно шире, чем диапазон частот усилителя звуковой частоты. Он занимает полосу частот от нескольких герц до 5 или 6 мегагерц. Например, для передачи телевизионного сигнала требуется полоса частот от 60 герц до 4 мегагерц. Радиолокаторы используют полосу частот от 30 герц до 2 мегагерц. В цепях, использующих пилообразное или импульсное напряжение, необходим частотный диапазон от одной десятой наименьшей частоты сигнала до десятикратно увеличенной наибольшей частоты.

Такой широкий диапазон частот необходим потому, что несинусоидальное напряжение содержит в своем составе много гармоник и все они должны быть одинаково усилены.

Так как видеоусилители должны иметь однородную амплитудно-частотную характеристику, в них используется только гальваническая или RC связь между каскадами.

Гальваническая связь обеспечивает наилучшую амплитудно-частотную характеристику, тогда как RC связь имеет экономические преимущества. Усилитель с RC связями имеет плоскую амплитудно-частотную характеристику в области средних частот диапазона, подходящую для видеоусилителей. Плоская амплитудно-частотная характеристика — это термин, показывающий, что усиление усилителя только незначительно меняется в пределах заданного частотного диапазона. Амплитудно-частотная характеристика такого усилителя представляет собой почти прямую линию; отсюда и термин — плоская амплитудно-частотная характеристика.

Фактор, ограничивающий усиление транзисторного усилителя на высоких частотах — это шунтирование транзистора паразитной емкостью цепи. Между переходами транзистора существует небольшая емкость, ее величина определяется размером перехода и расстоянием между выводами транзистора, а также смещением, приложенным к переходу. Переход база-эмиттер, смещенный в прямом направлении имеет большую емкость, чем переход коллектор-база, смещенный в обратном направлении.

Для того, чтобы уменьшить влияние шунтирующей емкости и увеличить усиление на высоких частотах, в транзисторных видеоусилителях используются корректирующие катушки индуктивности. На рис. 28–32 изображен метод параллельной коррекции.

Рис. 28–32. Параллельная коррекция.

Небольшая индуктивность включается последовательно с резистором нагрузки. В диапазоне низких и средних частот корректирующая индуктивность почти не влияет на амплитудно-частотную характеристику. На высоких частотах катушка индуктивности резонирует с емкостью цепи, что приводит к увеличению выходного импеданса и поднимает усиление.

Другим методом является включение небольшой индуктивности последовательно с конденсатором межкаскадной связи. Этот метод называется последовательной коррекцией (рис. 28–33).

Рис. 28–33. Последовательная коррекция.

Корректирующая индуктивность эффективно отделяет входные и выходные емкости двух каскадов. Часто параллельная и последовательная коррекции комбинируются для того, чтобы усилить преимущества обоих методов (рис. 28–34). Это комбинирование может расширить полосу пропускания усилителя до частот, превышающих 5 мегагерц.

Рис. 28–34. Последовательно-параллельная коррекция.

Чаще всего видеоусилители используются в телевизионных приемниках (рис. 28–35).

Рис. 28–35. Видеоусилитель телевизионного приемника.

Транзистор Q1 включен, как эмиттерный повторитель. Сигнал на транзистор Q1 подается с видеодетектора. Видеодетектор получает видеосигнал с усилителя промежуточной частоты. В цепи коллектора Q2 транзистора включена параллельная корректирующая индуктивность (L1). На пути выходного сигнала включена последовательная корректирующая индуктивность (L2). После этого видеосигнал подается на электронно-лучевую трубку через конденсатор связи С5.

28-6. Вопросы

1. Что такое видеоусилитель?

2. Каков диапазон частот видеоусилителя?

3. Какими способами соединяются каскады видеоусилителей?

4. Дайте определения следующих понятий:

а. Параллельная коррекция.

б. Последовательная коррекция.

5. Где используются видеоусилители?

28-7. УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ

Усилители радиочастоты похожи на другие усилители. Они отличаются, главным образом, диапазоном рабочих частот, занимающим область от 10 до 30 мегагерц. Существуют два класса усилителей радиочастоты: перестраиваемые и неперестраиваемые. Основной функцией неперестраиваемого усилителя является усиление, а его амплитудно-частотная характеристика должна занимать как можно более широкий диапазон радиочастот. В перестраиваемом усилителе высокое усиление должно достигаться в узкой области частот или на отдельной частоте. Обычно, когда говорят об усилителях радиочастоты, подразумевают, что они являются перестраиваемыми, если не оговорено другое.

В радиоприемных устройствах усилители радиочастоты служат для усиления сигнала и выделения сигнала, соответствующей частоты. В передающих устройствах усилители радиочастоты служат для усиления сигнала на определенной частоте перед его подачей в антенну. В основном, приемные усилители радиочастоты являются усилителями напряжения, а передающие усилители радиочастоты являются усилителями мощности.

В приемных цепях усилитель радиочастоты должен обеспечивать достаточное усиление приемного сигнала, обладать низким собственным шумом, обеспечивать хорошую избирательность и иметь плоскую амплитудно-частотную характеристику на выбранных частотах.

На рис. 28–36 изображен усилитель радиочастоты, используемый в радиоприемнике с амплитудной модуляцией.

Рис. 28–36. Усилитель радиочастоты в радиоприемнике сигналов с амплитудной модуляцией.

Конденсаторы C1 и С4 настраивают антенну и выходной трансформатор T1 на одну и ту же частоту. Входной сигнал с помощью индуктивной связи подается на базу транзистора Q1. Транзистор работает, как усилитель класса А. Конденсатор С4 и трансформатор T1 обеспечивают высокое усиление по напряжению на резонансной частоте для цепи коллекторной нагрузки. Трансформатор T1 имеет отвод для обеспечения хорошего согласования импедансов с транзистором.

На рис. 28–37 изображен усилитель радиочастоты, используемый в телевизионном высокочастотном тюнере.

Рис. 28–37. Усилитель радиочастоты в телевизионном высокочастотном тюнере.

Цепь настраивается катушками индуктивности L1A; L1B и L1C. При повороте ручки переключателя каналов в цепь включается новый набор катушек. Это обеспечивает усиление в необходимой полосе частот для каждого канала. Входной сигнал попадает в перестраиваемую цепь, состоящую из L1A, C1 и С2. Транзистор Q1 работает, как усилитель класса А. Выходная коллекторная цепь представляет собой двойной перестраиваемый трансформатор. Катушка L1B настраивается конденсатором С4, а катушка — L1C конденсатором С7. Резистор R2 и конденсатор С6 образуют развязывающий фильтр, предотвращающий попадание радиочастот в блок питания и их взаимодействие с другими цепями.

В радиоприемниках с амплитудной модуляцией входной радиосигнал преобразуется в сигнал постоянной промежуточной частоты. После этого используется усилитель промежуточной частоты с фиксированной настройкой для увеличения уровня сигнала до необходимой величины.

Усилитель промежуточной частоты — это одночастотный (узкополосный) усилитель. Обычно для усиления сигнала до необходимого уровня используются два или три каскада усиления промежуточной частоты. Чувствительность приемника определяется усилением усилителя промежуточной частоты. Чем выше усиление, тем выше чувствительность. На рис. 28–38 показан типичный усилитель промежуточной частоты радиоприемника амплитудно-модулированных сигналов. Промежуточная частота равна 455000 герц. На рис. 28–39 изображен усилитель промежуточной частоты телевизионного приемника.

Рис. 28–38. Усилитель промежуточной частоты в радиоприемнике сигналов с амплитудной модуляцией.

Рис. 28–39. Усилитель промежуточной частоты в телевизионном приемнике.

На рис. 28–40 приведена таблица, в которой сравниваются частоты радио и телевизионных приемников.

Рис. 28–40. Сравнение радио и телевизионных частот.

28-7. Вопросы

1. Чем усилители радиочастоты отличаются от других усилителей?

2. Какие два типа усилителей радиочастоты вы знаете?

3. Где используются усилители радиочастоты?

4. Что такое усилитель промежуточной частоты?

5. Что самое главное в усилителе промежуточной частоты?

28-8. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ

Операционный усилитель — это усилитель постоянного тока с очень высоким усилением. Обычно операционные усилители имеют коэффициент усиления от 20 000 до 1000000.

На рис. 28–41 изображено схематическое обозначение операционного усилителя. Вход, помеченный знаком (-), называется инвертирующим входом, а вход, помеченный знаком (+) — неинвертирующим входом.

Рис. 28–41. Схематическое обозначение операционного усилителя.

На рис. 28–42 изображена блок-схема операционного усилителя.

Рис. 28–42. Блок-схема операционного усилителя.

Операционный усилитель состоит из трех каскадов. Каждый каскад является усилителем со своими характерными особенностями.

Входной каскад — это дифференциальный усилитель. Он позволяет операционному усилителю реагировать только на разность входных сигналов. Кроме того, дифференциальный усилитель усиливает сигнал, пропорциональный разности входных напряжений, и не реагирует на одинаковые сигналы на обоих входах. Это называется ослаблением синфазного сигнала. Ослабление синфазного сигнала полезно при измерении слабых сигналов на фоне шума с частотой 60 герц. Шум с частотой 60 герц является общим для обоих входов и поэтому он ослабляется, а операционный усилитель усиливает только малую разность сигналов на обоих входах. Амплитудно-частотная характеристика дифференциального усилителя обеспечивает усиление от области низких частот до постоянного тока. Это означает, что дифференциальный усилитель может усиливать не только низкочастотные сигналы переменного тока, но и сигналы постоянного тока.

Второй каскад — это усилитель напряжения с высоким коэффициентом усиления. Этот каскад состоит из нескольких пар транзисторов, соединенных по схеме Дарлингтона, достигает усиления по напряжению в 200000 раз и более, обеспечивая большую часть усиления операционного усилителя.

Последний каскад — это выходной усилитель. Обычно это эмиттерный повторитель на комплементарных транзисторах. Он используется для того, чтобы операционный усилитель имел низкий выходной импеданс. Операционный усилитель может обеспечить несколько миллиампер тока нагрузки.

Операционные усилители рассчитаны на питание от двухполярного источника напряжения от ±5 до ±15 вольт. Положительный вывод источника питания должен обеспечивать от +5 до +15 вольт по отношению к земле, а отрицательный от -5 до -15 вольт по отношению к земле. Это позволяет выходному напряжению изменяться в сторону положительных и отрицательных значений по отношению к земле. Однако в некоторых случаях операционные усилители могут работать и от однополярного источника питания.

Принципиальная схема типичного операционного усилителя изображена на рис. 28–43.

Рис. 28–43. Схема операционного усилителя.

Изображенный усилитель называется LM741 (отечественный аналог К140УД7). Этот операционный усилитель не требует частотной коррекции, защищен от короткого замыкания, не имеет проблем с запиранием. Хорошие эксплуатационные качества при низкой цене обеспечивают его широкое использование.

Устройство, содержащее в одном корпусе два операционных усилителя LM741, называется LM747 (наш аналог КР140УД20). Благодаря отсутствию конденсаторов связи эти операционные усилители могут усиливать сигналы переменного и постоянного токов.

Нормальный режим работы операционного усилителя — это режим работы с обратной связью. В нем используется отрицательная обратная связь, что уменьшает общее усиление операционного усилителя, но обеспечивает лучшую стабильность.

При работе операционного усилителя с обратной связью, выходной сигнал подается на один из входов в качестве сигнала обратной связи. Этот сигнал обратной связи противодействует входному сигналу, так как находится в противофазе. Существуют две основные цепи с обратной связью: инвертирующая и неинвертирующая. Инвертирующая конфигурация более популярна.

На рис. 28–44 изображен операционный усилитель с инвертирующей обратной связью: входной сигнал подается на инвертирующий вход (-) через резистор R1. Обратная связь обеспечивается с помощью резистора R2.

Рис. 28–44. Операционный усилитель в качестве инвертирующего усилителя.

Величина сигнала на инвертирующем входе определяется как входным, так и выходным напряжением. Знак минус указывает на то, что выходной сигнал отрицателен, когда входной сигнал положителен. Знак плюс указывает на то, что выходной сигнал положителен, когда входной сигнал отрицателен. Выходной сигнал сдвинут по фазе на 180 градусов по отношению ко входному. В зависимости от отношения резисторов R2 и R1 усиление инвертирующего усилителя может быть меньше, равно или больше 1. Когда усиление равно 1, его называют усилителем с единичным усилением, и используют для инвертирования полярности входного сигнала.

На рис. 28–45 изображен операционный усилитель с неинвертирующей обратной связью: выходной сигнал находится в фазе со входным.

Рис. 28–45. Операционный усилитель в качестве неинвертирующего усилителя.

Входной сигнал подается на неинвертирующий вход операционного усилителя. Выходное напряжение делится с помощью резисторов R2 и R1 для того, чтобы подать напряжение обратной связи на инвертирующий (-) вход. Усиление по напряжению по неинвертирующему входу всегда больше 1.

Коэффициент усиления операционного усилителя зависит от частоты. Обычно усиление, указываемое в справочных данных — это усиление по постоянному току. При увеличении частоты усиление уменьшается. Без использования методов увеличения полосы пропускания, операционный усилитель хорош только для усиления сигналов постоянного тока. Для расширения полосы пропускания используется обратная связь, уменьшающая усиление. Насколько уменьшается усиление, настолько увеличивается полоса пропускания. С помощью этого способа полоса пропускания операционного усилителя 741 может быть увеличена до 1 мегагерца.

Операционные усилители применяются для сравнения, инвертирования или неинвертирования сигналов, они также могут использоваться для сложения сигналов, как показано на рис. 28–46. Такой усилитель называется суммирующим усилителем.

Рис. 28–46. Операционный усилитель в качестве суммирующего усилителя.

Отрицательная обратная связь удерживает потенциал инвертирующего входа близким к потенциалу земли. Следовательно, все входные сигналы электрически изолированы друг от друга. На выходе усилителя получается инвертированная сумма входных сигналов.

В суммирующем усилителе резистор, соединяющий неинвертирующий вход с землей, выбран равным полному сопротивлению параллельно включенных входному сопротивлению и сопротивлению обратной связи. Если сопротивление обратной связи увеличить, то цепь может обеспечить и усиление. Если используются различные входные сопротивления, сигналы могут быть сложены с различным усилением.

Суммирующие усилители используются при смешивании сигналов звуковой частоты. В качестве входных сопротивлений используются потенциометры для регулирования уровня каждого из входных сигналов.

Операционные усилители также могут использоваться в качестве активных фильтров. Фильтры, использующие резисторы, катушки индуктивности и конденсаторы, называются пассивными. Активные фильтры — это безындуктивные фильтры, использующие интегральные микросхемы. Преимущество активных фильтров в отсутствии катушек индуктивности, имеющих большие размеры.

При использовании операционных усилителей в качестве активных фильтров недостатком является то, что они требуют источника питания, могут создавать шум и превращаться в генератор (возбуждаться) вследствие температурного дрейфа или старения компонентов.

На рис. 28–47 изображен фильтр верхних частот, использующий операционный усилитель. Фильтр верхних частот подавляет низкие частоты и пропускает частоты, расположенные выше частоты среза.

Рис. 28–47. Операционный усилитель в качестве фильтра верхних частот.

На рис. 28–48 изображен фильтр нижних частот, использующий операционный усилитель. Фильтр нижних частот пропускает низкие частоты и не пропускает частоты, расположенные выше частоты среза.

Рис. 28–48. Операционный усилитель в качестве фильтра нижних частот.

На рис. 28–49 изображен полосовой фильтр, использующий операционный усилитель. Полосовой фильтр пропускает частоты, расположенные вблизи некоторой центральной частоты, и ослабляет более высокие и более низкие частоты.

Рис. 28–49. Операционный усилитель в качестве полосового фильтра.

Разностный усилитель вычитает один сигнал из другого. На рис. 28–50 изображен стандартный разностный усилитель. Эта цепь называется вычитающим устройством, поскольку она вычитает значение Е2 из значения E1.

Рис. 28–50. Операционный усилитель в качестве разностного усилителя.

28-8. Вопросы

1. Что такое операционный усилитель?

2. Нарисуйте блок-схему операционного усилителя.

3. Кратко объясните, как работает операционный усилитель.

4. Что такое нормальный режим работы операционного усилителя?

5. Какое усиление может быть получено с помощью операционного усилителя?

6. Нарисуйте схемы следующих цепей:

а. Инвертирующий усилитель;

б. Суммирующий усилитель;

в. Фильтр верхних частот;

г. Фильтр нижних частот;

д. Разностный усилитель.

РЕЗЮМЕ

• Усилители — это электронные цепи, используемые для увеличения амплитуды электрического сигнала.

• Транзистор используется, главным образом, в качестве усилительного устройства.

• Транзисторные усилители могут быть трех типов: усилитель с общей базой, с общим коллектором и с общим эмиттером.

• Усилители с общим коллектором используются для согласования импедансов.

• Усилители с общим эмиттером обеспечивают обращение фазы выходного сигнала по отношению к входному.

• Все транзисторные усилители требуют двух напряжений для правильной подачи напряжения смещения.

• Один источник питания может обеспечить необходимые напряжения прямого и обратного смещения с помощью делителя напряжения.

• Цепь обратной связи с делителем напряжения является наиболее широко используемой цепью для напряжения смещения.

• Транзисторный усилитель может быть смещен таким образом, что на выходе будет усиливаться весь период входного сигнала или только его часть.

• Усилители класса А смещены таким образом, что выходной ток течет в течение всего периода.

• Усилители класса АВ смещены таким образом, что выходной ток течет в течение промежутка времени, большего, чем половина периода входного сигнала, но меньшего, чем период.

• Усилители класса В смещены таким образом, что выходной ток течет в течение только половины периода входного сигнала.

• Усилители класса С смещены таким образом, что выходной ток течет в течение промежутка меньшего половины периода входного сигнала.

• Для соединения одного транзистора с другим используют резистивно-емкостную, импедансную, трансформаторную и непосредственную (гальваническую) связи.

• Усилители с гальванической связью используются для получения высокого усиления на низких частотах или для усиления сигнала постояннного тока.

• Усилители с гальванической связью используются, главным образом, в качестве усилителей напряжения.

• Дифференциальный усилитель имеет два отдельных входа и может обеспечивать или один, или два выхода.

• Усилители звуковой частоты усиливают сигналы переменного тока в диапазоне частот от 20 до 20000 герц.

• Усилители звуковой частоты делятся на усилители напряжения и усилители мощности.

• Видеоусилители — это широкополосные усилители, используемые для усиления видеосигналов.

• Видеочастоты занимают полосу от нескольких герц до 5 или б мегагерц.

• Усилители радиочастоты работают в диапазоне от 10 до 30 мегагерц.

• Усилители радиочастоты делятся на перестраиваемые и неперестраиваемые.

• Операционные усилители — это усилители с гальванической связью и очень высоким коэффициентом усиления.

• Операционные усилители могут иметь коэффициент усиления от 20000 до 1000000.

• Операционные усилители обычно работают в режиме с обратной связью.

• Существуют два режима работы с обратной связью — инвертирующий и неинвертирующий.

Глава 28. САМОПРОВЕРКА

1. Кратко опишите, как используется транзистор для усиления сигналов.

2. Почему схема усилителя с общим эмиттером применяется наиболее широко?

3. Какие факторы влияют на усиление транзистора, и что может быть сделано для их компенсации?

4. Как поданное напряжение смещения влияет на класс работы усилителя?

5. Какой фактор необходимо учесть при соединении одного усилителя с другим?

6. Как метод связи, используемый для соединения усилителей, влияет на его рабочий диапазон частот?

7. При каких условиях могут использоваться усилители постоянного тока?

8. Как решается проблема температурной стабильности в усилителях постоянного тока с большим коэффициентом усиления?

9. В чем основные отличия между усилителями напряжения звуковой частоты и усилителями мощности звуковой частоты?

10. Каковы практические преимущества использования квазикомплементарного усилителя мощности перед комплементарным двухтактным усилителем?

11. Чем видеоусилитель отличается от усилителя звуковой частоты?

12. Какой фактор ограничивает усиление видеоусилителя на высоких частотах?

13. Для чего предназначен усилитель радиочастоты?

14. Для чего используются усилители промежуточной частоты?

15. Перечислите три каскада операционного усилителя и опишите их функции.

16. Где используются операционные усилители?

Почему один из выводов транзистора в схеме нередко называется “общим” ? | Лампа Эксперт

Любой начинающий радиолюбитель, собирая первые усилительные схемы на транзисторах, рано или поздно узнает, что транзистор включается в них одним из трех вариантов, которые называются «с общим эмиттером», «с общим коллектором» и «с общей базой».

В чем особенность этих схем? И почему один из выводов называют «общим»? Поговорим на эту тему.

Суть работы биполярного транзистора

Независимо от того, по какой схеме собран усилительный каскад, в транзисторе всегда выполняется условие, что в режиме усиления ток, текущий между коллектором и эмиттером, пропорционален току, текущему между базой и эмиттером, и больше него в несколько десятков (и даже сотен, в зависимости от параметров)  раз.

Следовательно, создав в базе некоторый небольшой ток, содержащий полезный сигнал, можно получать на участке «коллектор-эмиттер» гораздо больший ток, в котором полезный сигнал будет также пропорционально больше, и  который может быть передан дальше по схеме.

Сделать все это можно разными способами. Какими?

Первый способ

Первый вариант – подать сигнал на базу, а усиленный – снять с коллектора.

В данной схеме ток на участке база-эмиттер создается резистором R1, а полезный сигнал поступает на базу через разделительный конденсатор С1. Смешиваясь, они создают через базу ток, который изменяется пропорционально сигналу.

Заметим, что подать просто сигнал на базу, без резистора R1, нельзя, поскольку транзистор работает только с постоянным током. И без этого резистора ток через транзистор будут создавать только положительные полуволны сигнала. Будет происходить не усиление, а детектирование сигнала.

Ток через коллектор будет пропорционален созданному базовому току, и он создаст на резисторе R2 пропорциональное падение напряжения, в котором будет и усиленный сигнал. Чтобы передать этот сигнал далее по схеме, используется разделительный конденсатор C2.

Из схемы видно, что входная и выходная цепь имеют одну общую линию, к которой подключен также эмиттер транзистора. Поэтому данное подключение транзистора называется подключением с общим эмиттером. Такое подключение позволяет получить значительное усиление по напряжению и некоторое усиление по току.

Второй способ.

А можно ли усиленный сигнал снять с эмиттера?

Можно. Вот так:

Однако, надо помнить, что переход база-эмиттер, фактически, является полупроводниковым диодом, а значит, напряжение на этих двух точках будет всегда различаться примерно на полвольта. Получается, что в таком включении на выходе сигнал будет иметь практически тоже напряжение, что и на входе. И какой тогда смысл в таком включении?

Смысл есть. Вспомним, что ток на участке коллектор-эмиттер во много раз больше тока на участке база-эмиттер. А это значит, что с эмиттера можно снимать сигнал с гораздо большим током, чем поступающий на базу. Фактически, такое подключение транзистора позволяет значительно увеличить входное сопротивление усилительной цепи.

Напряжение же сигнала на выходе повторяет напряжение на входе. Поэтому такой каскад называется эмиттерным повторителем. Заметим также, что для входной и выходной цепи коллектор транзистора подключен непосредственно к источнику питания. Поэтому этот вывод можно считать общим, и схему называют «с общим коллектором».

Третий способ

А можно ли подавать сигнал не на базу? Можно. Для транзистора не имеет значения, как был создан ток в цепи база-эмиттер. А значит, если напряжение на базе зафиксировать, а сигнал подать на эмиттер – то нужный ток базы будет также создан.

В таком включении общим выводом для входной и выходной цепи оказывается база. Поэтому схема так и называется – «с общей базой».

Усилитель, собранный по данной схеме, дает усиление по напряжению такое же, как усилитель с общим эмиттером, однако, поскольку ток эмиттера и ток коллектора почти одинаков, этот усилитель не усиливает сигнал по току. Кроме того, входное сопротивление такого каскада весьма невелико, что может являться как минусом, так и плюсом этой схемы, в зависимости от ситуации.

Главным плюсом данной схемы являются ее наилучшие частотные характеристики и наименьшие нелинейные искажения.  

Краткие итоги

В заключении кратко суммируем сказанное.

  • Название усилительного транзисторного каскада обозначает вывод, который является общим для входной и выходной части схемы.
  • Наибольший коэффициент усиления по мощности дает схема включения с общим эмиттером.
  • Наибольшее входное сопротивление имеет схема с общим эмиттером, такая схема усиливает сигнал только по току.
  • Схема с общей базой усиливает сигнал только по напряжению. При этом она имеет низкое входное сопротивление и наивысшую линейность и частотные характеристики.  

О ТРАНЗИСТОРАХ НА ПАЛЬЦАХ – Наука природы

О транзисторах “на пальцах”. Часть 1. Биполярные транзисторы.

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор – это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, – сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и расчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа – биполярные транзисторы.

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn. Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) – транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно – истина где-то рядом. © Всё гениальное – просто. N – negative (англ.) – отрицательный. P – positive (англ.) – положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. “Положительный” – слой полупроводника с “дырочной” проводимостью (в нём основные носители заряда имеют положительный знак), “отрицательный” – слой полупроводника с “электронной” проводимостью (в нём основные носители заряда имеют отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э – эмиттер, К – коллектор, Б – база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, – это вывод со стрелочкой. Оставшийся вывод – это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов – ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, – ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один – между эмиттером и базой, его обычно называют эмиттерный, второй – между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от “p” к “n” – это прямое смещение pn-перехода, если от “n” к “p” – это обратное смещение.

Режимы работы биполярного транзистора:

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном – обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: “активный режим”, – опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение – транзистор находится в режиме насыщения. При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения – тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение – транзистор находится в режиме отсечки. При этом ток через него не течёт (за исключением очень маленьких токов утечки – обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном – прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, – на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на “нормальный активный режим” и “инверсный активный режим”.

Иногда ещё выделяют пятый, так называемый, “барьерный режим”. В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный – близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку – транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Итак, c теорией пока закончили.  Едем дальше.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), – должен протекать ток между эмиттером и базой (или между коллектором и базой – для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): IБ*β=IK.

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице – тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить hFE. Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто “коэффициент усиления транзистора”.

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (IК=β*IБ) – транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз – напряжение на нём начинает опускаться ниже, чем на эмиттере – появляется ток из эмиттера в базу (ток базы) и одновременно с этим – ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора – тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх – то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор – начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

И снова вперёд!

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, – появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 – транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями – открытым и закрытым. Обычно при использовании транзистора в качестве ключа – стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, – минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами “а, б, в, г”, так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, – в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания – 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА – это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? – у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером.

Если считать, что входной ток – это ток базы, входное напряжение – это напряжение на переходе БЭ, выходной ток – ток коллектора и выходное напряжение – это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт – выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, – мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой.

Здесь входной ток – это ток эмиттера, входное напряжение – это напряжение на переходе БЭ, выходной ток – ток коллектора, а выходное напряжение – это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток – это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток – ток эмиттера, а выходное напряжение – это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(IК+IБ)/IБ=β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, – ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду – pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами – pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Продолжение следует…    МАТЕРИАЛ   http://radiohlam.ru/teory/transistor.htm  

ИНТЕРЕСНО  http://www.junradio.com/index/tranzistory/0-80

нет публикаций

нет публикаций

Видео YouTube

Видео YouTube

Видео YouTube



Форсирование характеристик сверхширокополосного усилителя Дарлингтона

%PDF-1.6 % 1 0 obj > endobj 5 0 obj /Title >> endobj 2 0 obj > /Encoding > >> >> endobj 3 0 obj > endobj 4 0 obj > stream

  • Форсирование характеристик сверхширокополосного усилителя Дарлингтона
  • Стукач Олег Владимирович endstream endobj 6 0 obj > endobj 7 0 obj > endobj 8 0 obj > endobj 9 0 obj > endobj 10 0 obj > endobj 11 0 obj > endobj 12 0 obj > stream HTMo6=PRZZzi1h”[email protected]”99M

    транзисторов – learn.sparkfun.com

    Добавлено в избранное Любимый 80

    Приложения II: Усилители

    Некоторые из самых мощных транзисторных приложений включают усиление: преобразование сигнала малой мощности в сигнал большей мощности. Усилители могут увеличивать напряжение сигнала, беря что-то из диапазона мкВ и преобразовывая его в более полезный уровень в мВ или В. Или они могут усиливать ток, что полезно для превращения мкА тока, создаваемого фотодиодом, в ток гораздо большей величины.Существуют даже усилители, которые принимают ток и вырабатывают более высокое напряжение или наоборот (называемые транссопротивлением и крутизной соответственно).

    Транзисторы являются ключевым компонентом многих усилительных схем. Существует бесконечное количество разнообразных транзисторных усилителей, но, к счастью, многие из них основаны на некоторых из этих более примитивных схем. Запомните эти схемы, и, надеюсь, с небольшим сопоставлением с образцом вы сможете разобраться в более сложных усилителях.

    Общие конфигурации

    Три основных транзисторных усилителя: общий эмиттер, общий коллектор и общая база. В каждой из трех конфигураций один из трех узлов постоянно связан с общим напряжением (обычно с землей), а два других узла являются либо входом, либо выходом усилителя.

    Общий эмиттер

    Обычный эмиттер – одна из наиболее популярных схем транзисторов. В этой схеме на эмиттер подается напряжение, общее как для базы, так и для коллектора (обычно это земля).База становится входом сигнала, а коллектор – выходом.

    Схема с общим эмиттером популярна, потому что она хорошо подходит для усиления напряжения , особенно на низких частотах. Например, они отлично подходят для усиления аудиосигналов. Если у вас небольшой входной сигнал с размахом 1,5 В, вы можете усилить его до гораздо более высокого напряжения, используя немного более сложную схему, например:

    Одна особенность обычного эмиттера заключается в том, что он инвертирует входной сигнал (сравните его с инвертором с последней страницы!).

    Общий коллектор (эмиттерный повторитель)

    Если мы подключим коллектор к общему напряжению, используем базу как вход, а эмиттер как выход, то получится общий коллектор. Эта конфигурация также известна как эмиттерный повторитель .

    Общий коллектор не усиливает напряжение (фактически, выходное напряжение будет на 0,6 В ниже входного). По этой причине эту схему иногда называют повторителем напряжения .

    Эта схема действительно имеет большой потенциал в качестве усилителя тока .В дополнение к этому, высокий коэффициент усиления по току в сочетании с коэффициентом усиления, близким к единице, делает эту схему отличным буфером напряжения . Буфер напряжения предотвращает нежелательные помехи цепи нагрузки цепи, управляющей ею.

    Например, если вы хотите подать 1 В на нагрузку, вы можете пойти простым путем и использовать делитель напряжения, или вы можете использовать эмиттерный повторитель.

    По мере увеличения нагрузки (что, наоборот, означает уменьшение сопротивления) выход схемы делителя напряжения падает.Но выходное напряжение эмиттерного повторителя остается стабильным, независимо от нагрузки. Большие нагрузки не могут «нагружать» эмиттерный повторитель, как это могут быть цепи с большим выходным сопротивлением.

    Общая база

    Мы поговорим об общей базе, чтобы завершить этот раздел, но это наименее популярная из трех основных конфигураций. В усилителе с общей базой эмиттер является входом, а коллектор – выходом. База общая для обоих.

    Общая база похожа на антиэмиттер-повторитель.Это приличный усилитель напряжения, и ток на входе примерно равен току на выходе (на самом деле ток на входе немного больше, чем на выходе).

    Схема с общей базой лучше всего работает как токовый буфер . Он может принимать входной ток с низким входным сопротивлением и подавать почти такой же ток на выход с более высоким сопротивлением.

    Вкратце

    Эти три конфигурации усилителей лежат в основе многих более сложных транзисторных усилителей. У каждого из них есть приложения, где они сияют, будь то усиление тока, напряжения или буферизация.

    Общий эмиттер Общий коллектор Общая база
    Коэффициент усиления по напряжению Средний Низкий Высокий
    Коэффициент усиления по току Средний Высокий Низкий
    Входное сопротивление Средний Высокий Низкий
    Выходной импеданс Средний Низкий Высокий

    Многокаскадные усилители

    Мы можем продолжать говорить о большом разнообразии транзисторных усилителей.Вот несколько быстрых примеров, демонстрирующих, что происходит, когда вы комбинируете одноступенчатые усилители, указанные выше:

    Дарлингтон

    Усилитель Дарлингтона соединяет один общий коллектор с другим для создания усилителя с высоким коэффициентом усиления по току .

    Выходное напряжение составляет , что примерно соответствует входному напряжению (минус 1,2–1,4 В), но коэффициент усиления по току является произведением двух коэффициентов усиления транзистора . Это β 2 – более 10 000!

    Пара Дарлингтона – отличный инструмент, если вам нужно управлять большой нагрузкой с очень малым входным током.

    Дифференциальный усилитель

    Дифференциальный усилитель вычитает два входных сигнала и усиливает эту разницу. Это важная часть цепей обратной связи, где вход сравнивается с выходом для получения будущего выхода.

    Вот основа дифференциального усилителя:

    Эта схема также называется длиннохвостой парой . Это пара схем с общим эмиттером, которые сравниваются друг с другом для получения дифференциального выхода.Два входа подаются на базы транзисторов; выход представляет собой дифференциальное напряжение на двух коллекторах.

    Двухтактный усилитель

    Двухтактный усилитель является полезным «заключительным каскадом» многих многокаскадных усилителей. Это энергоэффективный усилитель мощности, часто используемый для управления громкоговорителями.

    Основной двухтактный усилитель использует транзисторы NPN и PNP, оба сконфигурированы как общие коллекторы:

    Двухтактный усилитель на самом деле не усиливает напряжение (выходное напряжение будет немного меньше входного), но усиливает ток.Это особенно полезно в биполярных схемах (с положительным и отрицательным питанием), потому что оно может как «проталкивать» ток в нагрузку от положительного источника питания, так и «вытягивать» ток и погружать его в отрицательный источник питания.

    Если у вас есть биполярный источник питания (или даже если у вас его нет), двухтактный – отличный конечный каскад для усилителя, действующий как буфер для нагрузки.

    Собираем их вместе (операционный усилитель)

    Давайте рассмотрим классический пример многокаскадной транзисторной схемы: операционный усилитель.Умение распознавать общие транзисторные схемы и понимание их назначения может очень помочь! Вот схема внутри LM3558, действительно простого операционного усилителя:

    Внутреннее устройство операционного усилителя LM358. Узнали какие-то усилители?

    Здесь определенно больше сложности, чем вы можете быть готовы усвоить, однако вы можете увидеть некоторые знакомые топологии:

    • Q1, Q2, Q3 и Q4 образуют входной каскад. Очень похоже на общий коллектор (Q1 и Q4) на дифференциальный усилитель , верно? Он просто выглядит перевернутым, потому что использует PNP.Эти транзисторы образуют входной дифференциальный каскад усилителя.
    • Q11 и Q12 являются частью второго этапа. Q11 – это общий коллектор, а Q12 – это общий эмиттер . Эта пара транзисторов буферизует сигнал с коллектора Q3 и обеспечивает высокий коэффициент усиления, когда сигнал поступает на конечный каскад.
    • Q6 и Q13 являются частью финальной стадии, и они тоже должны выглядеть знакомо (особенно если не обращать внимания на R SC ) – это push-pull ! Этот этап буферизует выходной сигнал, позволяя ему управлять большими нагрузками.
    • Есть множество других распространенных конфигураций, о которых мы не говорили. Q8 и Q9 сконфигурированы как токовое зеркало , которое просто копирует величину тока, проходящего через один транзистор, в другой.

    После этого ускоренного курса по транзисторам мы не ожидаем, что вы поймете, что происходит в этой схеме, но если вы можете начать определять общие транзисторные схемы, вы на правильном пути!



    ← Предыдущая страница
    Приложения I: Коммутаторы

    Базовый транзисторный усилитель

    ОСНОВНОЙ ТРАНЗИСТОРНЫЙ УСИЛИТЕЛЬ

    На предыдущих страницах мы объяснили внутреннюю работу транзистора и введены новые термины, такие как эмиттер, база и коллектор.Поскольку вы должны быть знакомы к настоящему времени со всеми новыми условиями, упомянутыми ранее, и с внутренней работой транзисторный, перейдем к базовому транзисторному усилителю.

    Чтобы понять общую работу транзисторного усилителя, необходимо учитывать только ток на входе и выходе транзистора и через различные компоненты в схема. Таким образом, с этого момента будет отображаться только схематический символ транзистора. использоваться в иллюстрациях, и вместо того, чтобы думать о большинстве и меньшинстве носителей, теперь мы начнем думать с точки зрения эмиттерного, базового и коллекционного тока.

    Перед тем, как перейти к простому транзисторному усилителю, есть два условия, которые вы должны знаком с: УСИЛИТЕЛЬ и УСИЛИТЕЛЬ. Усиление – это процесс увеличения сила СИГНАЛА. Сигнал – это просто общий термин, используемый для обозначения любого конкретного ток, напряжение или мощность в цепи. Усилитель – это устройство , которое обеспечивает усиление (увеличение тока, напряжения или мощности сигнала) без заметного изменение исходного сигнала.

    Транзисторы часто используются в качестве усилителей. Некоторые транзисторные схемы – ТЕКУЩИЕ усилители, с малым сопротивлением нагрузки; другие схемы рассчитаны на НАПРЯЖЕНИЕ усиление и высокое сопротивление нагрузке; другие усиливают СИЛУ.

    Теперь взгляните на NPN-версию базового транзисторного усилителя на рис. 2-12 и посмотрим, как это работает.

    До сих пор в этом обсуждении использовалась отдельная батарея для обеспечения необходимого напряжение прямого смещения.Хотя раньше для Для удобства использовать батарею для смещения эмиттер-база нецелесообразно. Например, это потребует от батареи чуть больше 0,2 В для правильного прямого смещения германия транзистор, в то время как аналогичный кремниевый транзистор потребует напряжения чуть более 0,6 вольт. Однако обычные батареи не имеют таких значений напряжения. Кроме того, поскольку предвзятость напряжения весьма критичны и должны поддерживаться в пределах нескольких десятых одного вольта, это проще для работы с токами смещения, протекающими через резисторы с большим омическим сопротивлением, чем с батареи.

    Путем включения одного или нескольких резисторов в схему можно использовать различные методы смещения. достигнута и устранена батарея эмиттер-база. Помимо удаления батареи, некоторые из этих методов смещения компенсируют небольшие изменения в транзисторных характеристики и изменения проводимости транзистора в результате изменения температуры неровности. Обратите внимание на рис. 2-12, что эмиттер-база удалена. и резистор смещения R B вставлен между коллектором и базой.Резистор R B обеспечивает необходимое прямое смещение для перехода эмиттер-база. Ток течет в цепи смещения эмиттер-база от земли к эмиттеру, от базы свинец и через R B на V CC . Поскольку ток в базовой цепи очень мало (несколько сотен микроампер), а прямое сопротивление транзистора составляет низкий, только несколько десятых вольт положительного смещения будут ощущаться на основании транзистор. Однако этого достаточно напряжения на базе вместе с массой на эмиттере. и большое положительное напряжение на коллекторе для правильного смещения транзистора.

    Рисунок 2-12. – Базовый транзисторный усилитель.

    При правильном смещении Q1 постоянный ток течет непрерывно, со входом или без него. сигнал по всей цепи. Постоянный ток, протекающий по цепи развивает больше, чем просто предвзятость; он также развивает напряжение коллектора (В C ) поскольку он течет через Q1 и R L . Обратите внимание на напряжение коллектора на выходе. график.Поскольку он присутствует в цепи без входного сигнала, выходной сигнал начинается с уровня V C и либо увеличивается, либо уменьшается. Эти напряжения постоянного тока и токи, которые существуют в цепи до подачи сигнала, известны как МОЩНЫЕ напряжения и токи (состояние покоя цепи).

    Резистор R L , резистор нагрузки коллектора, помещается в цепь для сохранения полное действие напряжения питания коллектора от коллектора.Это позволяет напряжение коллектора (В C ) изменяться с входным сигналом, что, в свою очередь, позволяет транзистор для усиления напряжения. Без R L в цепи напряжение на коллектор всегда будет равен V CC .

    Разделительный конденсатор (C C ) – еще одно новое дополнение к транзистору. схема. Он используется для передачи входного сигнала переменного тока и блокировки постоянного напряжения от предыдущий контур. Это предотвращает появление постоянного тока в схеме слева от разделительного конденсатора. от влияния смещения на Q1.Конденсатор связи также блокирует смещение Q1 от достигнув источника входного сигнала.

    Вход усилителя – это синусоидальная волна, которая изменяется на несколько милливольт выше и ниже. нуль. Он вводится в цепь конденсатором связи и применяется между база и эмиттер. Когда входной сигнал становится положительным, напряжение на переход эмиттер-база становится более положительным. По сути, это увеличивает прямое смещение, которое заставляет базовый ток увеличиваться с той же скоростью, что и входной синусоидальный сигнал.Эмиттер токи коллектора также увеличиваются, но намного больше, чем ток базы. С увеличением в токе коллектора большее напряжение вырабатывается на R L . Поскольку напряжение Напряжение на R L и напряжение на Q1 (коллектор к эмиттеру) должно составлять в сумме V CC , увеличение напряжения на R L приводит к одинаковому снижению напряжения на Q1. Следовательно, выходное напряжение усилителя, снятое на коллекторе Q1 с относительно эмиттера, это отрицательное изменение напряжения , что на больше чем входной, но имеет те же синусоидальные характеристики.

    При отрицательном изменении входа входной сигнал противодействует прямому предвзятость. Это действие уменьшает базовый ток, что приводит к уменьшению как эмиттера, так и коллекторные токи. Уменьшение тока через R L снижает его напряжение падение и вызывает повышение напряжения на транзисторе вместе с выходным напряжением. Следовательно, выход для отрицательного чередования входа – это положительное чередование . напряжения, которое на больше, чем на входное, но имеет ту же синусоидальную волну характеристики.

    Путем изучения входных и выходных сигналов для одного полного чередования входных сигналов, мы можем видеть, что выход усилителя является точным воспроизведением входа, за исключением для с изменением полярности и увеличенная амплитуда (несколько милливольт по сравнению с несколькими вольт).

    Версия PNP этого усилителя показана в верхней части рисунка. Главная Разница между усилителями NPN и PNP заключается в полярности источника напряжения.С отрицательный V CC , базовое напряжение PNP немного отрицательно по отношению к земле, что обеспечивает необходимое условие прямого смещения между эмиттером и базой.

    Когда входной сигнал PNP становится положительным, он противодействует прямому смещению транзистора. Это действие отменяет часть отрицательного напряжения на переходе эмиттер-база, которое снижает ток через транзистор. Следовательно, напряжение на нагрузке резистор уменьшается, а напряжение на транзисторе увеличивается.Начиная с V CC отрицательный, напряжение на коллекторе (V C ) идет в отрицательном направлении (как показано на выходном графике) в сторону -V CC (например, от -5 вольт до -7 вольт). Таким образом, выходной сигнал представляет собой отрицательное изменение напряжения, которое изменяется с одинаковой скоростью. как входной синусоидальный сигнал, но он имеет противоположную полярность и имеет на большую амплитуду .

    При отрицательном изменении входного сигнала ток транзистора увеличивается. потому что входное напряжение способствует прямому смещению.Следовательно, напряжение на R L увеличивается, и, следовательно, напряжение на транзисторе уменьшается или переходит в положительное направление (например: от -5 вольт до -3 вольт). Это действие приводит к положительное выходное напряжение, имеющее те же характеристики, что и входное, за исключением того, что оно был усилен, и полярность изменена.

    Таким образом, входные сигналы в предыдущих схемах были усилены, потому что небольшое изменение тока базы вызвало большое изменение тока коллектора.И, поместив резистором R L последовательно с коллектором достигнуто усиление напряжения.

    Q.14 Как называется устройство, обеспечивающее увеличение тока, напряжения или мощность сигнала без существенного изменения исходного сигнала?
    Q.15 Помимо отказа от батареи эмиттера-базы, какие еще преимущества могут иметь Предлагаете методы смещения?
    Q.16 В базовом транзисторном усилителе, о котором говорилось ранее, какова взаимосвязь между полярность входных и выходных сигналов?
    В.17 В чем основное различие между усилителями NPN и PNP?

    Может ли транзистор усиливать постоянный ток?

    Два наиболее распространенных транзистора – это полевой транзистор и биполярный транзистор. BJT на самом деле усиливает сигнал DC . Он умножает ( усиливает ) входной ток DC на «базу», и этот усиленный ток извлекается на «коллекторе» или «эмиттере». Усиление – это свойство BJT, называемое «бета».

    Щелкните, чтобы увидеть полный ответ

    Также знаете, можно ли усилить постоянный ток?

    Да, вы можете усилить напряжение постоянного тока . Многие сигналы в приложениях, таких как температура, давление, взвешивание и т. Д., Изменяются настолько медленно, что их можно считать DC . Усилители, которые формируют эти сигналы , будут часто использовать операционные усилители 1 для буферизации и повышения уровня сигнала.

    Может ли транзистор усиливать сигнал переменного тока? Поскольку сигнал чередуется с A на -A, транзистор может ‘t усиливать весь сигнал , поскольку он может обрабатывать только сигнал в одном направлении.Теперь добавьте постоянный сигнал постоянного тока со значением A + a (a – небольшое значение для противодействия падению напряжения , вызванному транзистором ) к вашему сигналу переменного тока .

    Точно так же спрашивается, усиливает ли транзистор напряжение?

    Небольшое переменное напряжение на базе транзистора генерирует небольшой ток база-эмиттер, который усиливается транзистором для получения большего переменного тока коллектора. Этот усиленный ток коллектора через резистор коллектора создает напряжение переменного тока , которое больше, чем входное напряжение , таким образом, входное напряжение усиливается .

    Как усилить напряжение постоянного тока?

    Усилители постоянного тока не усиливают напряжение постоянного тока . Они усиливают медленно изменяющееся напряжение . Медленно изменяющееся напряжение почти близко к DC по частоте. Задача усилителя – обеспечить на выходе гораздо большее напряжение , которое изменяется точно так же, как и входное.

    Усиление транзистора

    The 2 встречных диодных перехода эмиттера и коллектора вынесены вперед смещен, когда ток течет из базы в NPN и в транзистор PNP .
    A малый базовый ток управляет гораздо более большим током E-C который управляет нагрузкой (динамик, соленоид, свет и т. д.)



    Усиливающий действие транзистора начинается с сигнала от преобразователя , такого в качестве микрофона, проигрывателя компакт-дисков или инструмента управления технологическим процессом и т. д.
    Этот сигнал слабый, но при подаче на базу его достаточно для прямого смещения. эмиттер / коллектор и позволяют току течь пропорционально базовый ток.

    Существует множество типов усилителей, но все они имеют одно и то же принципы.


    Прирост это термин, используемый для описания количества усиления, которое усилитель способен. (также называется Beta или H fe )

    Пример: если сигнал с микрофона мощностью 10 милливатт усиливается до Тогда выходная мощность 1 ватт…
    УСИЛЕНИЕ = P выход / P дюйм = 1000 МВт / 10 МВт = 100 (нет единицы, которую они делят !!)



    УСИЛИТЕЛЬ ТЯГАЮЩИЙ

    Усилитель Push Pull класса B – это типовой выходной каскад усилителя мощности



    Усилители часто состоят из 2 или более ступеней для улучшения усиление.За каскадом предусилителя может последовать более мощный драйвер выходной каскад. Усилитель, в котором используются транзисторы PNP и NPN, – это Push. Усилитель тяги . Транзистор NPN усиливает положительную сторону волна, и PNP усиливает отрицательную сторону волны.


    Этот двухступенчатый двухтактный усилитель имеет 2 ступени. Предусилитель и мощность.

    Конденсаторы на входе и выходе позволяют попеременно подавать сигнал. ток до «пропустить» через при стабилизации транзистора схемы.


    T

    его аудио усилитель имеет 2 секции (левые правые каналы), каждая с транзистор большой мощности.

    The радиаторы должны излучать тепло от транзисторы.



    делать ты знаешь, как работают колонки?



    транзисторная коммутация >>>>>>>

    пара схем усилителя >>>>>


    Как транзистор работает как усилитель? : askscience

    TL; DR: Когда вы прикладываете напряжение к «входу» транзистора, это заставляет соответствующий ток течь через «выход», который затем может быть использован для генерации большего напряжения, чем на входе.(Я заключил в кавычки вход и выход, потому что на самом деле транзисторы имеют три контакта; один обычно подключается к источнику питания или заземлению).

    Существует два очень распространенных типа транзисторов: транзисторы с биполярным переходом (BJT) и металлооксидные полевые транзисторы (MOSFET). Вы также можете увидеть термин CMOS, где C означает комплементарный, обозначающий использование двух разных «полярностей» полевых МОП-транзисторов (PMOS = положительный, NMOS = отрицательный). Вот отличное видео о том, как работают BJT: https: // www.youtube.com/watch?v=7ukDKVHnac4

    BJT в основном используются как дискретные устройства, то есть как одиночный чип на печатной плате, а не производятся внутри более крупного микрочипа. BJT по сути своей являются усилителями тока. Если у вас есть ток, протекающий через вход, вы получите больше тока через выход. Вы можете использовать резисторы для преобразования напряжения в ток или наоборот, что позволяет создать усилитель напряжения (вход напряжения -> вход тока; выход тока -> выход напряжения).Вот несколько техническое объяснение простого усилителя BJT: https://www.electronics-tutorials.ws/amplifier/amp_2.html, хотя математика относительно проста.

    МОП-транзисторы

    являются наиболее распространенным типом транзисторов и представляют собой технологию, лежащую в основе массивных цифровых схем, таких как процессоры и графические процессоры. Они также используются для аналоговых схем, таких как усилители, и существуют также в виде дискретных компонентов, хотя дискретные в основном используются в качестве переключателей. Это совершенно разные устройства по конструкции и работают по разным принципам, но в основном вы получаете один и тот же результат.МОП-транзистор – это трансформатор, то есть он превращает напряжение в ток. Вы подаете напряжение на вход, но в этом случае через вход не течет ток. Вызывает выходной ток, который аналогичным образом можно превратить в большое напряжение с помощью резистора. Обратите внимание, что полевые МОП-транзисторы также имеют внутреннее сопротивление, ограничивающее возможное усиление. Этот предел называется «самоокупаемостью».

    Персонализированная обучающая платформа для учащихся K6-K12

    Бесплатная Персонализированная обучающая платформа для студентов

    Simply Science – это бесплатная персонализированная платформа для обучения детей в возрасте от 6 до 12 классов на основе STEM.Мы – веб-сайт открытого обучения, который побуждает детей понимать концепции и логику в удобном для них темпе, предлагая помощь с помощью интерактивной навигации. Развивайте способности решения проблем, творческий подход к дизайну, логику и наблюдательность, не выходя из дома, бесплатно!

    Обучение на основе тем

    Наш контент создан специально для привлечения маленьких умов и их любопытства. Разделенные на темы, вы можете выбрать интересующую вас тему и просто узнать все, что вы хотели знать о ней.Упорядоченный, умный и интерактивный с помощью примеров, аналогий и моделирования, Simply Science гарантирует, что вы приложите максимум усилий для мышления!

    Знайте свой IQ и SQ

    Оцените свою способность обрабатывать информацию. Применяйте рассуждения и науку с помощью быстрого бесплатного теста IQ и SQ. Определите свои сильные и слабые стороны и сосредоточьтесь на своих интересах, чтобы построить свой научный коэффициент, который пробуждает ваше любопытство и облегчает изучение STEM. Наши IQ и SQ указывают на формирующую оценку по естествознанию и математике, которая может продвинуть вас вперед и раскрыть новый потенциал.

    Технологии позволяют учиться

    Раскройте науку, математику и их загадки с помощью наших уникальных технологий, основанных на исследованиях на основе тем. Отправьтесь в новый мир с нашими темами полного погружения, наполненными забавными, увлекательными видео, викторинами и персонализированной лентой контента.

    Лучшая платформа для внеклассных занятий STEM для учащихся

    В то время как формальное школьное и институциональное обучение фокусируется на языках, когнитивном развитии и многих других вещах, Simply Science является вспомогательной идеей учебной программы, обучая учащихся в 6 и 12 классах наукам, технологиям, инженерным наукам. и математика.Благодаря междисциплинарному подходу, мероприятиям и ресурсам, ориентированным на воздействие, это идеальное занятие для молодых умов после школы.

    Комплексные темы обучения для детей от 9 до 18 лет

    Узнавайте что-то новое каждый день, развивайте интересы и отвечайте на вопросы, которые всегда заставляли вас задуматься! Педагогика Simply Science поощряет вас исследовать, вводить новшества и применять полученные концепции в повседневной жизни, от базовых концепций до подробных бесед. Наша модель на основе темы гарантирует, что тема охватывает все темы в дисциплинах, которые она затрагивает – математику, науку и технологии, биологию и химию и все, что между ними.

    Интерактивный и увлекательный контент и виртуальная помощь

    Межотраслевое обучение с сокровищницей ресурсов – мы считаем, что каждый молодой ум должен иметь доступ к связанным и равным возможностям обучения. Наука формирует мир, она всепроникающая и преобразующая. Наши материалы мирового уровня, методология и ресурсы идут рука об руку с учебной программой учебного заведения. Наши виртуальные помощники направляют студентов к ключевым навыкам в темах, чтобы развивать критическое мышление, рассуждение и дизайн.

    Как сделать простой усилитель на транзисторе?

    Привет, ребята! Как поживаешь?

    Надеюсь, у вас все хорошо и вы в безопасности.

    Сегодня у меня для всех интересный проект.

    В этой статье я научу вас , как сделать простой усилитель на транзисторе.

    Это несложно, но очень привлекательно.

    Видите ли, по какой-то причине, когда я впервые услышал слово «усилитель» в школе, я сразу подумал о – большом динамике.

    Только позже я понял, что усилители не просто усиливают звук . Они бывают разных классов, и они в разной степени усиливают разные физические сущности.

    Вначале я хотел сконструировать эту статью вокруг усилителя напряжения. Но чтобы сделать его более доступным для широких масс, я подумал, почему бы не написать эту статью в качестве руководства по , как сделать простой усилитель звука с транзистором.

    Это привлечет больше внимания к теме, потому что звук играет большую роль в том, чтобы развлечь почти каждого из нас.

    Итак, мои рассуждения просты: если я научу вас чему-то, что вас интересует, вы узнаете больше.

    Надеюсь, вы согласны или, по крайней мере, понимаете аргументы, лежащие в основе статьи.

    Теперь, без лишних слов, давайте перейдем к этому.


    Кстати, вот еще несколько статей, которые, я думаю, заинтересуют вас. Все они открываются в новой вкладке.


    Давайте начнем с самого основного вопроса, который, я почти уверен, у вас возник бы до того, как сюда попали.

    Что такое усилитель на одном транзисторе?

    Один транзисторный усилитель – это примерно то, что звучит.

    Если схема усилителя состоит только из одного усилителя, который отвечает за усиление слабого сигнала.

    В то время как однокаскадный или одиночный транзисторный усилитель широко используется в качестве обучающего инструмента, в большинстве практических приложений несколько транзисторов соединены каскадно.

    По очевидным причинам это придает схеме определенную степень сложности, но эти сложные схемы можно разбить на простые одноступенчатые усилители и проанализировать.

    Звучит забавно, но когда я впервые услышал, на что способен усилитель, я подумал, что это за колдовство?

    Как что-то может увеличить мощность такого слабого сигнала?

    Немного позже я понял, что увеличение мощности является результатом забора энергии от источника питания и управления выходом для дублирования формы входного сигнала (но, конечно, с большей амплитудой).

    Итак, не смущайтесь, если вы думаете, что транзистор – это нечто волшебное.

    В некотором смысле это так. И он управляет вашим миром.

    Матричная тема фильма усиливается.

    Можно ли сделать усилитель на любом транзисторе?

    Еще один очень важный вопрос, который необходимо решить, прежде чем мы продолжим.

    И именно такие вопросы обычно возникают у людей, которые недавно начали изучать практическую электронику.

    Итак, из любого транзистора можно сделать усилитель?

    Ну, технически каждый транзистор в целом представляет собой усилитель.

    В более раннем сегменте этого поста я упоминал, что хотел создать эту статью, чтобы научить вас создавать усилитель напряжения.

    Итак, транзисторы – это объекты, которые помогают в усилении физических параметров, таких как ток, напряжение, мощность, звук и т. Д.

    Процесс усиления не является результатом независимого действия, а потому, что транзистор способен управлять большим током на выходе, используя слабый сигнал на входе.

    Проще говоря, транзистор способен воспроизводить входной сигнал в усиленной форме с использованием внешнего источника питания.

    Два наиболее часто используемых типа транзисторов – это биполярные и полевые транзисторы.

    Коэффициент усиления BJT или бета – это отношение тока коллектора к току базы.

    Неважно, какой транзистор вы используете, он в конечном итоге будет действовать как усилитель сигналов.

    Схема простого усилителя

    на транзисторе

    Хорошо, с этими основами пора приступить к созданию простого усилителя на транзисторе.

    Лучший способ составить основу того, как вы собираетесь поступать в электронике, – это принципиальная схема.

    Итак, позвольте мне сначала поделиться с вами принципиальной схемой, которую мы собираемся использовать для создания усилителя звука на транзисторе.

    Схема простого усилителя звука BJT

    Как сделать простой усилитель на транзисторе?

    Итак, теперь, когда у нас есть основы и принципиальная схема, давайте систематически создадим наш аудиоусилитель с транзистором.

    Вот компоненты, которые вам понадобятся.

    После того, как у вас есть все необходимые компоненты, выполните следующие действия, чтобы создать себе усилитель звука.

    На самом деле это так же просто, как увидеть принципиальную схему, разместить соответствующие компоненты в тандеме друг с другом и подать питание.

    Однако, насколько я знаю, эту статью увидят многие новички.

    Вот как вы действуете.

    1. Помните, что крайняя линия макета из соображений удобства и по соглашению считается мощностью, а линия рядом с ней – заземлением.
    2. Прежде всего, установите резистор на макетную плату.
    3. Теперь поместите резистор 2,2 кОм между контактами 1 и 2 транзистора. Свободно сказано, закоротите контакты 1 и 2 транзистора с помощью резистора 2,2 кОм.
    4. Теперь поместите положительный полюс конденсатора так, чтобы он соединялся с контактом 1 транзистора.
    5. Отрицательный конец того же конденсатора подключается к одному концу разъема 3,5 мм.
    6. Другой конец разъема 3,5 мм подключается к заземлению контакта 3 транзистора.
    7. Теперь подключим динамик. Подключите один конец динамика к контакту 2 транзистора, как показано на принципиальной схеме.
    8. Другой конец динамика подключается к положительной клемме 5-вольтовой батареи.
    9. Наконец, подключите отрицательный конец источника питания к контакту 3 транзистора, создав таким образом общую землю.

    Вот и все. Вам остается только подключить разъем 3,5 мм к аудиовыходу вашего любимого устройства и наслаждаться усиленным звуком.

    Вы даже можете попробовать создать постоянную схему на печатной плате и использовать ее в качестве проигрывателя подкастов.

    Вам решать, как вы хотите его использовать.

    Какие транзисторы лучше всего подходят для усилителя?

    Итак, вот как сделать простой усилитель на транзисторе.

    Если вы новичок или начинаете заниматься практической электроникой, я думаю, этот проект может стать отличной отправной точкой.

    Еще один очень важный вопрос, который, как мне кажется, имеет смысл затронуть здесь, – какие транзисторы, помимо тех, которые мы здесь использовали, подходят для проектов усилителей.

    Что касается применения транзисторов для усиления звука, существует множество различных типов BJT, которые вы можете рассмотреть.

    При этом вы также должны помнить о том, что схема усилителя звука будет работать в целом, а не только на транзисторе.

    Два моих любимых выбора, когда дело доходит до транзисторов для усиления звука:

    • 2N4401 (NPN) и,
    • 2N4403 (PNP)

    Я использовал эти два транзистора во многих проектах на протяжении многих лет.

    Они имеют приличное усиление и могут работать с напряжениями в диапазоне ~ 40 В, что должно быть достаточно для большинства практических проектов.

    Еще раз подчеркнем, что, честно говоря, речь идет не о транзисторах.

    Вы можете создать отличные усилители звука, используя эти транзисторы, и вы также можете не получить желаемых результатов, если всей схеме не уделено достаточно внимания на этапе планирования.

    И по этой причине в начале этой статьи я подчеркнул важность владения основами .

    И вы, очевидно, не ограничены только BJT-транзисторами в качестве предпочтительных транзисторов. Вы также можете использовать полевые транзисторы JFET и MOSFET.

    И снова их развертывание потребует хорошего понимания того, как создать дополнительную схему, которая позволит вам правильно их использовать.

    Если вы новичок, я бы порекомендовал вам придерживаться BJT, а когда вы хорошо разбираетесь, окунитесь в более продвинутые схемы, которые используют JFET и MOSFET.

    Часто задаваемые вопросы

    Надеюсь, вам понравилось создавать свой транзисторный усилитель, и если да, то я надеюсь, что вы примените его с пользой.

    Хотя я могу с уверенностью сказать, что я охватил все основные основы и сопутствующие темы, чтобы помочь выполнить проект, я понимаю, что знания всегда ограничены.

    Таким образом, в этой небольшой анкете я пытаюсь охватить еще несколько вопросов, которые внесут еще большую ясность.

    Если у вас есть еще вопросы, просто дайте мне знать в разделе комментариев ниже.

    Если запрос эффективен и помогает широкому кругу пользователей, я включу вопросы в этот раздел.

    Можно ли использовать полевые МОП-транзисторы в качестве усилителей?

    Да, полевые МОП-транзисторы определенно можно использовать в качестве линейных усилителей. Однако, в отличие от переходных транзисторов, полевые МОП-транзисторы, являющиеся устройствами с управлением по току, используются в основном как коммутационные блоки, а не как обычные линейные усилители.

    В чем разница между транзисторами NPN и PNP?

    Конструктивно транзистор NPN имеет слой кремния p-типа между двумя слоями n-типа. В транзисторах PNP все наоборот.Транзисторы NPN находят применение в первую очередь в коммутации и усилении. С другой стороны, транзисторы PNP находят применение в парных схемах Дарлингтона и для управления током в тяжелых приложениях, таких как робототехника.

    Как транзисторы работают как переключатели?

    Работа в качестве переключателя в электронной схеме – одно из наиболее важных применений, которым может подвергаться транзистор. Транзистор позволяет току течь через коллектор-эмиттер с напряжением, приложенным к базе. Следовательно, когда базовое напряжение не подается, переключатель находится в положении ВЫКЛ, а когда присутствует базовое напряжение, переключатель находится в положении ВКЛ.

    Надеюсь, вам понравилось читать и изучать эту статью о том, как сделать простой усилитель на транзисторе.

    Теперь я знаю, что, несмотря на все мои усилия, могут быть некоторые моменты, которые я, возможно, не смог осветить в отношении основной темы или вспомогательных тем, связанных с ней.

    Если у вас есть какие-либо другие вопросы, комментарии или отзывы относительно всего, что вы здесь прочитали, дайте мне знать в разделе комментариев ниже.

    Береги себя, увидимся в следующем!

    Тада!

    Вы успешно подписались!

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *